modeling river discharges of the heavily managed limpopo ... · wasserkreislauf flaches grundwasser...

17
Modeling river discharges of the heavily managed Limpopo river using SWIM and the open-source datasets Shaochun Huang, Hagen Koch, Valentina Krysanova, Fred F. Hattermann Potsdam Institute for Climate Impact Research Research Domain II - Climate Impacts & Vulnerabilities Contact: [email protected]

Upload: others

Post on 12-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Modeling river discharges of the heavily

managed Limpopo river using SWIM and the

open-source datasets

Shaochun Huang, Hagen Koch, Valentina Krysanova, Fred F. Hattermann

Potsdam Institute for Climate Impact Research

Research Domain II - Climate Impacts & Vulnerabilities

Contact: [email protected]

Potsdam Institute for Climate Impact Research

Shaochun Huang, Hagen Koch, Valentina Krysanova, Fred F. Hattermann

7/25/2013 Page 2

Content

• Introduction

• Data

• Method

• Results – Calibration and validation results without management

information

– Calibration and validation results with management information

– Climate change impacts on river discharge

• Conclusion

Potsdam Institute for Climate Impact Research

Shaochun Huang, Hagen Koch, Valentina Krysanova, Fred F. Hattermann

7/25/2013 Page 3

Introduction

Source: Global Trends 2025: A Transformed World (page 75), National Intelligence Council, 2008

• High water

demand in

sourthern

Africa

Potsdam Institute for Climate Impact Research

Shaochun Huang, Hagen Koch, Valentina Krysanova, Fred F. Hattermann

7/25/2013 Page 4

Introduction

Change in annual runoff by 2041-60 relative to 1900-70, in percent, under the

SRES A1B emissions scenario and based on an ensemble of 12 climate models

(Milly et al., 2005)

Significant impact on water resources in southern Africa

Potsdam Institute for Climate Impact Research

Shaochun Huang, Hagen Koch, Valentina Krysanova, Fred F. Hattermann

7/25/2013 Page 5

Introduction

Source: DWA 2010

Distribution of dams in the Limpopo River basin • Catchment area:

ca. 413,000 km²

• Rainfall: 530 mm/year

• Runoff: 13 mm/year

• Population: 14 million

• Human influence:

• over 100 dams

and reservoirs

• Irrigation

• 1900 mines

Any minor human

influences can lead to

significant changes in

river discharge

Potsdam Institute for Climate Impact Research

Shaochun Huang, Hagen Koch, Valentina Krysanova, Fred F. Hattermann

7/25/2013 Page 6

Introduction

• Objective

– To simulate the Limpopo river discharge using the

eco-hydrological model SWIM (Soil and Water

Integrated Model)

– To test the usage of the global datasets and the

rough information on managements available in

internet

– To project the future climate change impacts on river

discharges of the Limpopo river

Potsdam Institute for Climate Impact Research

Shaochun Huang, Hagen Koch, Valentina Krysanova, Fred F. Hattermann

7/25/2013 Page 7

Data

• Digital elevation model: Shuttle Radar Topography Missions (90 m)

• Soil parameters: Digital Soil Map of the World (FAO et al. 2012)

• Land use: Global Land Cover (GLC2000 2003)

• Climate data (1961-2001): WATCH (0.5°) (Weedon et al. 2011)

• Observed discharge: Global Runoff Data Centre

• Climate scenarios: five GCM outputs (HadGEM2-ES, IPSL-5 CM5A-LR, MIROC-ESM-CHEM, GFDL-ESM2M, NorESM1-M), rcp 8.5, downscaled and bias corrected, 0.5° (Hempel et al. 2013) .

Potsdam Institute for Climate Impact Research

Shaochun Huang, Hagen Koch, Valentina Krysanova, Fred F. Hattermann

7/25/2013 Page 8

Data

Human Influence data from internet

• 8 reservoirs

(capacity,

withdrawal from

the reservoirs)

• 31 additional

irrigation

withdrawal

(annual

abstraction rate)

Potsdam Institute for Climate Impact Research

Shaochun Huang, Hagen Koch, Valentina Krysanova, Fred F. Hattermann

7/25/2013 Page 9

Method

The Model SWIM (Soil and Water Integrated Model)

OF-Abfluss

GW-Neubildung

Perkolation

Interflow

Basisabfluss

Pflanzenaufnahme

OF-Abfluss

GW-Neubildung

Perkolation

Interflow

Basisabfluss

Pflanzenaufnahme

Landbedeckung Landnutzung

Klima: Strahlung, Temperatur & Niederschlag

Biomasse

Wurzeln

LAI

Pflanzen-

wachsum

Stickstoffkreilauf

Phosphorkreislauf

N-NO3No-ac

No-st Nres

Plab Pm-ac Pm-st

Porg Pres

Wasserkreislauf

Flaches

Grundwasser

Tiefes

Grundwasser

B

CBo

de

np

rofil

A

Landbedeckung Landnutzung

Klima: Strahlung, Temperatur & Niederschlag

Biomasse

Wurzeln

LAI

Pflanzen-

wachsum

Stickstoffkreilauf

Phosphorkreislauf

N-NO3No-ac

No-st Nres

Plab Pm-ac Pm-st

Porg Pres

Wasserkreislauf

Flaches

Grundwasser

Tiefes

Grundwasser

B

CBo

de

np

rofil

A

Wasserkreislauf

Flaches

Grundwasser

Tiefes

Grundwasser

B

CBo

de

np

rofil

A

Percolation

GW recharge Interflow

Surface

Wetlands

GW flow

Potsdam Institute for Climate Impact Research

Shaochun Huang, Hagen Koch, Valentina Krysanova, Fred F. Hattermann

7/25/2013 Page 10

Method

SWIM structure

Potsdam Institute for Climate Impact Research

Shaochun Huang, Hagen Koch, Valentina Krysanova, Fred F. Hattermann

7/25/2013 Page 11

• Transmision loss module in WASA (Model for Water Availability in

Semi-Arid Environments) (Hacker, 2005)

tloss(x,w) = Qin – (a(x,w) + b(x,w)*Qin)

a(x,w) = (a / (1 - b))*(1 – b(x,w))

b(x,w) = exp (-k*x*w)

• Qin is the upstream inflow volume

• tloss(x,w) is the volume of transmission losses, x is channel length

and w is channel mean width.

• a, k, and b have been related to the effective, steady-state hydraulic

conductivity K (in/h), the mean duration of inflow to the reach D (h),

and the mean volume of inflow to the reach Q

Method

Channel transmission loss module

Potsdam Institute for Climate Impact Research

Shaochun Huang, Hagen Koch, Valentina Krysanova, Fred F. Hattermann

7/25/2013 Page 12

Result

Calibration and validation results without

management information

Calibration Validation

ecal: 4.5 ecal: general potential ET calibration factor (the

TURC-IVANOV method was used in this study),

default value = 1.

Potsdam Institute for Climate Impact Research

Shaochun Huang, Hagen Koch, Valentina Krysanova, Fred F. Hattermann

7/25/2013 Page 13

Result

Calibration and validation results with

management information

Calibration Validation

ecal: 1.45

Potsdam Institute for Climate Impact Research

Shaochun Huang, Hagen Koch, Valentina Krysanova, Fred F. Hattermann

7/25/2013 Page 14

Result

Climate change impacts on river discharge (Sicacate)

0 100 200 300

Julian day

0

200

400

600

800

Q (

m3

/s)

GFDL-ESM2M

HadGEM2-ES

IPSL-CM5A-LR

MIROC-ESM-CHEM

NorESM1-M

WATCH

1971-1999

0 100 200 300

Julian day

-200

0

200

400

600

800

1000

Cha

nge

in

%

Q(2071-2099) - Q(1971-1999)

Potsdam Institute for Climate Impact Research

Shaochun Huang, Hagen Koch, Valentina Krysanova, Fred F. Hattermann

7/25/2013 Page 15

Result

Climate change impacts on low and high flows (Sicacate)

GF

DL

-ES

M2

M

Ha

dG

EM

2-E

S

IPS

L-C

M5

A-L

R

MIR

OC

-ES

M-C

HE

M

No

rES

M1

-M

-50

0

50

100

Cha

nge in %

Q90(2071-2099) - Q90(1971-1999)

GF

DL

-ES

M2

M

Ha

dG

EM

2-E

S

IPS

L-C

M5

A-L

R

MIR

OC

-ES

M-C

HE

M

No

rES

M1

-M

-50

0

50

100

150

200

Cha

nge in %

Q10(2071-2099) - Q10(1971-1999)

Potsdam Institute for Climate Impact Research

Shaochun Huang, Hagen Koch, Valentina Krysanova, Fred F. Hattermann

7/25/2013 Page 16

Conclusion

• SWIM can reproduce the discharge well using the global dataset with and without human influence data for the Limpopo river

• The rough estimation of human interference indeed helps to simulate comparable results using more reasonable parameters settings.

• The global dataset and the sparse internet information are useful in hydrological modellings for the large-scale but data-scarce regions.

• There is a large uncertainty of climate change impacts on river discharges for the Limpopo river. Additional RCM scenarios are required.

Potsdam Institute for Climate Impact Research

Shaochun Huang, Hagen Koch, Valentina Krysanova, Fred F. Hattermann

7/25/2013 Page 17

Source: americanelephant.wordpress.com