modeling of manufacturing of a fieldeffect

23
 Advanced Nanoscience and Technology : An International Journal (ANTJ) , Vol. 1, No. 1, June 2015 31 MODELING OF MANUFACTURING OF A FIELD- EFFECT TRANSISTOR TO DETERMINE CONDITIONS TO DECREASE LENGTH OF CHANNEL E.L. Pankratov 1 , E.A. Bulaeva 2 1 Nizhny Novgorod State University, 23 Gagarin avenue  , Nizhny Novgorod, 603950, Russia 2  Nizhny Novgorod State University of Architecture and Civil Engineering  , 65 Il'insky street  , Nizhny Novgorod  , 603950, Russia  A  BSTRACT   In this paper we introduce an approach to model technological process of manufacture of a field-effect heterotransistor. The modeling gives us possibility to optimize the technological process to decrease length of channel by using mechanical stress. As accompanying results of the decreasing one can find decreasing of thickness of the heterotransistors and increasing of their density, which were comprised in integrated circuits.  K  EYWORDS  Modelling of manufacture of a field-effect heterotransistor, Accounting mechanical stress; Optimization the technological process, Decreasing length of channel 1. INTRODUCTION One of intensively solved problems of the solid-state electronics is decreasing of elements of in- tegrated circuits and their discrete analogs [1-7]. To solve this problem attracted an i nterest wide- ly used laser and microwave types of annealing [8-14]. These types of annealing leads to genera- tion of inhomogeneous distribution of temperature. In this situation one can obtain increasing of sharpness of  p-n-junctions with increasing of homogeneity of dopant distribution in enriched area [8-14]. The first effects give us possibility to decrease switching time of p-n-junction and value of local overheats during operating of the device or to manufacture more shallow  p-n-junction with fixed maximal value of local overheat. An alternative approach to laser and microwave types of annealing one can use native inhomogeneity of heterostructure and optimization of annealing of dopant and/or radiation defects to manufacture diffusive –junction and implanted-junction rectifi- ers [12-18]. It is known, that radiation processing of materials is also leads to modification of dis- tribution of dopant concentration [19]. The radiation processing could be also used to increase of sharpness of  p-n-junctions with increasing of homogeneity of dopant distribution in enriched area [20, 21]. Distribution of dopant concentration is also depends on mechanical stress i n heterostruc- ture [15]. In this paper we consider a field-effect heterotransistor. Manufacturing of the transistor based on combination of main ideas of Refs. [5] and [12-18]. Framework the combination we consider a

Upload: antjjournal

Post on 04-Nov-2015

8 views

Category:

Documents


0 download

DESCRIPTION

MODELING OF MANUFACTURING OF A FIELDEFFECTTRANSISTOR TO DETERMINE CONDITIONSTO DECREASE LENGTH OF CHANNEL

TRANSCRIPT

  • Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015

    31

    MODELING OF MANUFACTURING OF A FIELD-

    EFFECT TRANSISTOR TO DETERMINE CONDITIONS

    TO DECREASE LENGTH OF CHANNEL

    E.L. Pankratov1, E.A. Bulaeva2

    1Nizhny Novgorod State University, 23 Gagarin avenue, Nizhny Novgorod, 603950, Russia

    2 Nizhny Novgorod State University of Architecture and Civil Engineering, 65 Il'insky

    street, Nizhny Novgorod, 603950, Russia

    ABSTRACT

    In this paper we introduce an approach to model technological process of manufacture of a field-effect heterotransistor. The modeling gives us possibility to optimize the technological process to decrease length of channel by using mechanical stress. As accompanying results of the decreasing one can find decreasing of thickness of the heterotransistors and increasing of their density, which were comprised in integrated circuits.

    KEYWORDS

    Modelling of manufacture of a field-effect heterotransistor, Accounting mechanical stress; Optimization the technological process, Decreasing length of channel

    1. INTRODUCTION

    One of intensively solved problems of the solid-state electronics is decreasing of elements of in-tegrated circuits and their discrete analogs [1-7]. To solve this problem attracted an interest wide-ly used laser and microwave types of annealing [8-14]. These types of annealing leads to genera-tion of inhomogeneous distribution of temperature. In this situation one can obtain increasing of sharpness of p-n-junctions with increasing of homogeneity of dopant distribution in enriched area [8-14]. The first effects give us possibility to decrease switching time of p-n-junction and value of local overheats during operating of the device or to manufacture more shallow p-n-junction with fixed maximal value of local overheat. An alternative approach to laser and microwave types of annealing one can use native inhomogeneity of heterostructure and optimization of annealing of dopant and/or radiation defects to manufacture diffusive junction and implanted-junction rectifi-ers [12-18]. It is known, that radiation processing of materials is also leads to modification of dis-tribution of dopant concentration [19]. The radiation processing could be also used to increase of sharpness of p-n-junctions with increasing of homogeneity of dopant distribution in enriched area [20, 21]. Distribution of dopant concentration is also depends on mechanical stress in heterostruc-ture [15].

    In this paper we consider a field-effect heterotransistor. Manufacturing of the transistor based on combination of main ideas of Refs. [5] and [12-18]. Framework the combination we consider a

  • Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015

    32

    heterostructure with a substrate and an epitaxial layer with several sections. Some dopants have been infused or implanted into the section to produce required types of conductivity. Farther we consider optimal annealing of dopant and/or radiation defects. Manufacturing of the transistor has been considered in details in Ref. [17]. Main aim of the present paper is analysis of influence of mechanical stress on length of channel of the field-effect transistor.

    Fig. 1. Heterostructure with substrate and epitaxial layer with two or three sections

    a1

    a2-a

    1L

    x-a

    2-a

    1

    c1 c1

    c2

    oxidesource drain

    gate

    c3

    Fig. 2. Heterostructure with substrate and epitaxial layer with two or three sections. Sectional view

  • Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015

    33

    2. METHOD OF SOLUTION

    To solve our aim we determine spatio-temporal distribution of concentration of dopant in the con-sidered heterostructure and make the analysis. We determine spatio-temporal distribution of con-centration of dopant with account mechanical stress by solving the second Ficks law [1-4,22,23]

    ( ) ( ) ( ) ( )+

    +

    +

    =

    z

    tzyxCD

    zytzyxC

    Dyx

    tzyxCD

    xt

    tzyxC ,,,,,,,,,,,, (1)

    ( ) ( ) ( ) ( )

    +

    +zz L

    SS

    L

    SS WdtWyxCtzyx

    TkD

    yWdtWyxCtzyx

    TkD

    x 00,,,,,,,,,,,,

    with boundary and initial conditions ( ) 0,,,

    0

    =

    =xx

    tzyxC,

    ( ) 0,,, =

    = xLx

    x

    tzyxC,

    ( ) 0,,,0

    =

    =yy

    tzyxC,

    ( ) 0,,, =

    = yLx

    ytzyxC

    ,

    ( ) 0,,,0

    =

    =zz

    tzyxC,

    ( ) 0,,, =

    = zLx

    z

    tzyxC, C (x,y,z,0)=fC(x,y,z).

    Here C(x,y,z,t) is the spatio-temporal distribution of concentration of dopant; is the atomic vo-lume; S is the operators of surficial gradient; ( )zL zdtzyxC

    0,,, is the surficial concentration of

    dopant on interface between layers of heterostructure; (x,y,z,t) is the chemical potential; D and DS are coefficients of volumetric and surficial (due to mechanical stress) of diffusion. Values of the diffusion coefficients depend on properties of materials of heterostructure, speed of heating and cooling of heterostructure, spatio-temporal distribution of concentration of dopant. Concen-traional dependence of dopant diffusion coefficients have been approximated by the following relations [24]

    ( ) ( )( )

    +=

    TzyxPtzyxCTzyxDD L

    ,,,

    ,,,1,,,

    , ( ) ( )( )

    +=

    TzyxPtzyxCTzyxDD SLSS

    ,,,

    ,,,1,,,

    . (2)

    Here DL (x,y,z,T) and DLS (x,y,z,T) are spatial (due to inhomogeneity of heterostructure) and tem-perature (due to Arrhenius law) dependences of dopant diffusion coefficients; T is the temperature of annealing; P

    (x,y,z,T) is the limit of solubility of dopant; parameter could be integer in the following interval

    [1,3] [24]; V

    (x,y,z,t) is the spatio-temporal distribution of concentration of radiation of vacancies; V* is the equilibrium distribution of vacancies. Concentrational depen-dence of dopant diffusion coefficients has been discussed in details in [24]. Chemical potential could be determine by the following relation [22]

    =E(z)ij[uij(x,y,z,t)+uji(x,y,z,t)]/2, (3)

    where E is the Young modulus; ij is the stress tensor;

    +

    =

    i

    j

    j

    iij

    x

    u

    x

    uu

    21

    is the deformation

    tensor; ui, uj are the components ux(x,y,z,t), uy(x,y,z,t) and uz(x,y,z,t) of the displacement vector ( )tzyxu ,,,r ; xi, xj are the coordinates x, y, z. Relation (3) could be transform to the following form

  • Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015

    34

    ( ) ( ) ( ) ( ) ( )

    +

    +

    =

    i

    j

    j

    i

    i

    j

    j

    i

    x

    tzyxux

    tzyxux

    tzyxux

    tzyxutzyx

    ,,,,,,

    21,,,,,,

    ,,,

    ( ) ( ) ( )( ) ( ) ( ) ( )[ ]

    +

    ijk

    kijij TtzyxTzzK

    x

    tzyxuz

    zzE

    000 ,,,3,,,

    212,

    where is the Poisson coefficient; 0=(as-aEL)/aEL is the mismatch strain; as, aEL are the lattice spacings for substrate and epitaxial layer, respectively; K is the modulus of uniform compression; is the coefficient of thermal expansion; Tr is the equilibrium temperature, which coincide (for our case) with room temperature. Components of displacement vector could be obtained by solv-ing of the following equations [23]

    ( ) ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( ) ( )

    +

    +

    =

    +

    +

    =

    +

    +

    =

    z

    tzyxy

    tzyxx

    tzyxt

    tzyxuz

    z

    tzyxy

    tzyxx

    tzyxt

    tzyxuz

    z

    tzyxy

    tzyxx

    tzyxt

    tzyxuz

    zzzyzxz

    yzyyyxy

    xzxyxxx

    ,,,,,,,,,,,,

    ,,,,,,,,,,,,

    ,,,,,,,,,,,,

    2

    2

    2

    2

    2

    2

    where ( )( )[ ]( ) ( ) ( ) ( )

    +

    +

    +

    =

    k

    kij

    k

    kij

    i

    j

    j

    iij

    x

    tzyxux

    tzyxux

    tzyxux

    tzyxuz

    zE ,,,,,,3

    ,,,,,,

    12

    ( ) ( ) ( ) ( )[ ]r

    TtzyxTzKzzK ,,, , (z) is the density of materials, ij is the Kronecker sym-bol. With account of the relation the last system of equation takes the form

    ( ) ( ) ( ) ( )( )[ ]( ) ( ) ( )( )[ ]

    ( )+

    ++

    ++=

    yxtzyxu

    z

    zEzK

    x

    tzyxuz

    zEzK

    t

    tzyxuz

    yxx,,,

    13,,,

    165,,, 2

    2

    2

    2

    2

    ( )( )[ ]

    ( ) ( ) ( ) ( )( )[ ]( ) ( )

    +++

    +

    +

    + zKzx

    tzyxuz

    zEzK

    z

    tzyxuy

    tzyxuz

    zE zzy ,,,13

    ,,,,,,

    12

    2

    2

    2

    2

    2

    ( ) ( )x

    tzyxTz

    ,,,

    ( ) ( ) ( )( )[ ]( ) ( ) ( ) ( ) ( ) +

    +

    +

    =

    ytzyxT

    zKzyx

    tzyxux

    tzyxuz

    zEt

    tzyxuz x

    yy ,,,,,,,,,

    12,,,

    2

    2

    2

    2

    2

    ( )( )[ ]

    ( ) ( ) ( )( )[ ] ( )

    ( )+

    ++

    +

    +

    +

    + 2

    2,,,

    1125,,,,,,

    12 ytzyxu

    zKz

    zEy

    tzyxuz

    tzyxuz

    zEz

    yzy

    ( ) ( )( )[ ]( ) ( ) ( )

    yxtzyxu

    zKzy

    tzyxuz

    zEzK yy

    +

    ++

    ,,,,,,

    16

    22

    (4)

    ( ) ( ) ( ) ( ) ( ) ( )

    +

    +

    +

    =

    zytzyxu

    zx

    tzyxuy

    tzyxux

    tzyxut

    tzyxuz

    yxzzz,,,,,,,,,,,,,,,

    22

    2

    2

    2

    2

    2

    2

  • Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015

    35

    ( )( )[ ] ( )

    ( ) ( ) ( ) ( )

    +

    +

    ++

    z

    tzyxTz

    tzyxuy

    tzyxux

    tzyxuzK

    zz

    zE xyx ,,,,,,,,,,,,12

    ( ) ( ) ( )( )( ) ( ) ( ) ( )

    +

    +z

    tzyxuy

    tzyxux

    tzyxuz

    tzyxuz

    zEz

    zzK zyxz,,,,,,,,,,,,6

    161

    .

    Conditions for the displacement vector could be written as ( ) 0,,,0 =

    x

    tzyur

    ; ( ) 0,,, =

    x

    tzyLu xr

    ; ( ) 0,,0, =

    y

    tzxur

    ; ( )

    0,,,

    =

    ytzLxu y

    r

    ;

    ( ) 0,0,, =

    z

    tyxur

    ; ( ) 0,,, =

    z

    tLyxu zr

    ; ( ) 00,,, uzyxu rr = ; ( ) 0,,, uzyxu rr = .

    Farther let us analyze spatio-temporal distribution of temperature during annealing of dopant. We determine spatio-temporal distribution of temperature as solution of the second law of Fourier [25]

    ( ) ( ) ( ) ( ) ( ) +

    +

    +

    =

    z

    tzyxTzy

    tzyxTyx

    tzyxTxt

    tzyxTTc ,,,,,,,,,,,,

    ( )tzyxp ,,,+ (5)

    with boundary and initial conditions ( ) 0,,,

    0

    =

    =xx

    tzyxT,

    ( ) 0,,, =

    = xLx

    x

    tzyxT,

    ( ) 0,,,0

    =

    =yy

    tzyxT,

    ( ) 0,,, =

    = yLx

    ytzyxT

    ,

    ( ) 0,,,0

    =

    =zz

    tzyxT,

    ( ) 0,,, =

    = zLx

    z

    tzyxT, T (x,y,z,0)=fT (x,y,z).

    Here is the heat conduction coefficient. Value of the coefficient depends on materials of hetero-structure and temperature. Temperature dependence of heat conduction coefficient in most inter-est area could be approximated by the following function: (x,y,z,T)=ass(x,y,z)[1+ Td/ T(x,y,z,t)] (see, for example, [25]). c(T)=cass[1- exp(-T(x,y,z,t)/Td)] is the heat capacitance; Td is the Debye temperature [25]. The temperature T(x,y,z,t) is approximately equal or larger, than Debye temperature Td for most interesting for us temperature interval. In this situation one can write the following approximate relation: c(T)cass. p(x,y,z,t) is the volumetric density of heat, which escapes in the heterostructure. Framework the paper it is attracted an interest microwave annealing of dopant. This approach leads to generation inhomogenous distribution of temperature [12-14,26]. Such distribution of temperature gives us possibility to increase sharpness of p-n-junctions with increasing of homogeneity of dopant distribution in enriched area. In this situation it is practicably to choose frequency of electro-magnetic field. After this choosing thickness of scin-layer should be approximately equal to thickness of epitaxial layer.

    First of all we calculate spatio-temporal distribution of temperature. We calculate spatio-temporal distribution of temperature by using recently introduce approach [15, 17,18]. Framework the ap-proach we transform approximation of thermal diffusivity

    ass(x,y,z) =ass(x,y,z)/cass =0ass[1+T gT(x,y,z)]. Farther we determine solution of Eqs. (5) as the following power series

    ( ) ( ) = =

    =0 0,,,,,,

    i j ijji

    T tzyxTtzyxT . (6)

  • Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015

    36

    Substitution of the series into Eq.(6) gives us possibility to obtain system of equations for the ini-tial-order approximation of temperature T00(x,y,z,t) and corrections for them Tij(x,y,z,t) (i1, j1). The equations are presented in the Appendix. Substitution of the series (6) in boundary and initial conditions for spatio-temporal distribution of temperature gives us possibility to obtain boundary and initial conditions for the functions Tij(x,y,z,t) (i0, j0). The conditions are presented in the Appendix. Solutions of the equations for the functions Tij(x,y,z,t) (i0, j0) have been obtain as the second-order approximation on the parameters and by standard approaches [28,29] and presented in the Appendix. Recently we obtain, that the second-order approximation is enough good approximation to make qualitative analysis and to obtain some quantitative results (see, for example, [15,17,18]). Analytical results have allowed to identify and to illustrate the main depen-dence. To check our results obtained we used numerical approaches.

    Farther let us estimate components of the displacement vector. The components could be obtained by using the same approach as for calculation distribution of temperature. However, relations for components could by calculated in shorter form by using method of averaging of function correc-tions [12-14,16,27]. It is practicably to transform differential equations of system (4) to integro-differential form. The integral equations are presented in the Appendix. We determine the first-order approximations of components of the displacement vector by replacement the required functions u(x,y,z,t) on their average values u1. The average values u1 have been calculated by the following relations

    us1=Ms1/4L, (7)

    where ( ) = 0 0

    ,,,

    x

    x

    y

    y

    zL

    L

    L

    L

    L

    isis tdxdydzdtzyxuM . The replacement leads to the following results

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

    =

    t zz

    xdwd

    x

    wyxTwwKtdwd

    x

    wyxTwwKttzyxu

    0 00 01

    ,,,,,,

    ,,,

    ( )] 101 ,,, uxxux twyx + , ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

    =

    t zz

    y dwdywyxT

    wwKtdwdy

    wyxTwwKttzyxu

    0 00 01

    ,,,,,,

    ,,,

    ( )] 101 ,,, uyyuy twyx + , ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

    =

    t zz

    z dwdw

    wyxTwwKtdwd

    w

    wyxTwwKttzyxu

    0 00 01

    ,,,,,,

    ,,,

    ( )] 101 ,,, zzuz twyx + .

    Substitution of the above relations into relations (7) gives us possibility to obtain values of the parameters u1. Appropriate relations could be written as

    ( ) ( )[ ]( ) ( )

    =

    zL

    z

    xxz

    ux

    zdzzLL

    L

    0

    3

    201

    8 ,

    ( ) ( )[ ]( ) ( )

    =

    zL

    z

    yyzuy

    zdzzLL

    L

    0

    3

    201

    8 ,

    ( ) ( )[ ]( ) ( )

    =

    zL

    z

    zzz

    uz

    zdzzLL

    L

    0

    3

    201

    8 ,

    where ( ) ( ) ( ) ( ) ( )

    +=

    0 0

    ,,,1x

    x

    y

    y

    zL

    L

    L

    L

    L

    z

    i

    is dxdydzds

    zyxTzzKzLt .

  • Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015

    37

    The second-order approximations of components of the displacement vector by replacement of the required functions u(x,y,z,t) on the following sums us2+us1(x,y,z,t), where us2=(Mus2-Mus1)/ 4L3. Results of calculations of the second-order approximations us2(x,y,z,t) and their average values us2 are presented in the Appendix, because the relations are bulky.

    Spatio-temporal distribution of concentration of dopant we obtain by solving the Eq.(1). To solve the equations we used recently introduce approach [15,17,18] and transform approximations of dopant diffusion coefficients DL (x,y,z,T) and DSL (x,y,z, T) to the following form: DL(x,y,z,T)=D0L[1+ L gL(x,y,z,T)] and DSL(x,y,z,T)=D0SL[1+ SLgSL(x,y,z,T)]. We also introduce the following dimensionless parameter: = D0SL/ D0L. In this situation the Eq.(1) takes the form

    ( ) ( )[ ] ( )( )( ) ( )

    +

    ++

    =

    ytzyxC

    yxtzyxC

    TzPtzyxCTzg

    xD

    t

    tzyxCLLL

    ,,,,,,

    ,

    ,,,1,1,,, 0

    ( )[ ] ( )( ) ( )[ ]( )( )

    ++

    +

    ++

    TzyxPtzyxCTzyxg

    zDD

    TzyxPtzyxCTzg LLLLLL

    ,,,

    ,,,1,,,1,,,

    ,,,1,1 00

    ( ) ( )[ ] ( )( ) ( )

    ++

    +

    zL

    SLSLSL WdtWyxCTzPtzyxCTzg

    xD

    z

    tzyxC0

    0 ,,,,

    ,,,1,1,,,

    (8) ( ) ( )

    ( )( ) ( )

    +

    +

    zL

    SSLL

    S WdtWyxCTk

    tzyxTzP

    tzyxCy

    DDTk

    tzyx0

    00 ,,,,,,

    ,

    ,,,1,,,

    .

    We determine solution of Eq.(1) as the following power series

    ( ) ( ) = =

    =

    =0 0 0,,,,,,

    i j k ijkkji

    L tzyxCtzyxC . (9)

    Substitution of the series into Eq.(8) gives us possibility to obtain systems of equations for initial-order approximation of concentration of dopant C000(x,y,z,t) and corrections for them Cijk(x, y,z,t) (i 1, j 1, k 1).The equations are presented in the Appendix. Substitution of the series into ap-propriate boundary and initial conditions gives us possibility to obtain boundary and initial condi-tions for all functions Cijk(x,y,z,t) (i 0, j 0, k 0). Solutions of equations for the functions Cijk(x,y,z,t) (i 0, j 0, k 0) have been calculated by standard approaches [28,29] and presented in the Appendix.

    Analysis of spatio-temporal distributions of concentrations of dopant and radiation defects has been done analytically by using the second-order approximations framework recently introduced power series. The approximation is enough good approximation to make qualitative analysis and to obtain some quantitative results. All obtained analytical results have been checked by compari-son with results, calculated by numerical simulation.

    3. DISCUSSION

    In this section we analyzed redistribution of dopant under influence of mechanical stress based on relations calculated in previous section. Fig. 3 show spatio-temporal distribution of concentration of dopant in a homogenous sample (curve 1) and in heterostructure with negative and positive value of the mismatch strain 0 (curve 2 and 3, respectively). The figure shows, that manufactur-ing field-effect heterotransistors gives us possibility to make more compact field-effect transistors in direction, which is parallel to interface between layers of heterostructure. As a consequence of

  • Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015

    38

    the increasing of compactness one can obtain decreasing of length of channel of field- effect tran-sistor and increasing of density of the transistors in integrated circuits. It should be noted, that presents of interface between layers of heterostructure give us possibility to manufacture more thin transistors [17].

    x, y

    C(x,

    ), C(y,

    )

    2

    3

    1

    Fig. 3. Distributions of concentration of dopant in directions, which is perpendicular to interface between layers of heterostructure. Curve 1 is a dopant distribution in a homogenous sample. Curve 2 corresponds to

    negative value of the mismatch strain. Curve 3 corresponds to positive value of the mismatch strain

    4. CONCLUSION

    In this paper we consider possibility to decrease length of channel of field-effect transistor by us-ing mechanical stress in heterostructure. At the same time with decreasing of the length it could be increased density of transistors in integrated circuits.

    ACKNOWLEDGEMENTS

    This work is supported by the contract 11.G34.31.0066 of the Russian Federation Government, Scientific School of Russia SSR-339.2014.2 and educational fellowship for scientific research.

    REFERENCES

    [1] I.P. Stepanenko. Basis of Microelectronics (Soviet Radio, Moscow, 1980). [2] A.G. Alexenko, I.I. Shagurin. Microcircuitry (Radio and communication, Moscow, 1990). [3] V.G. Gusev, Yu.M. Gusev. Electronics. (Moscow: Vysshaya shkola, 1991, in Russian). [4] V.I. Lachin, N.S. Savelov. Electronics (Phoenix, Rostov-na-Donu, 2001). [5] A. Kerentsev, V. Lanin. "Constructive-technological features of MOSFET-transistors" Power Elec-

    tronics. Issue 1. P. 34-38 (2008). [6] A.N. Andronov, N.T. Bagraev, L.E. Klyachkin, S.V. Robozerov. "Ultrashallow p+n junc-tions in

    silicon (100): electron-beam diagnostics of sub-surface region" Semiconductors. Vol.32 (2). P. 137-144 (1998).

    [7] S.T. Shishiyanu, T.S. Shishiyanu, S.K. Railyan. "Shallow pn junctions in Si prepared by pulse pho-ton annealing" Semiconductors. Vol.36 (5). P. 611-617 (2002).

    [8] V.I. Mazhukin, V.V. Nosov, U. Semmler. "Study of heat and thermoelastic fields in semiconductors at pulsed processing" Mathematical modeling. Vol. 12 (2), 75 (2000).

    [9] K.K. Ong, K.L. Pey, P.S. Lee, A.T.S. Wee, X.C. Wang, Y.F. Chong. "Dopant distribution in the re-crystallization transient at the maximum melt depth induced by laser annealing" Appl. Phys. Lett. Vol. 89 (17), 172111 (2006).

  • Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015

    39

    [10] J. A. Sharp, N. E. B. Cowern, R. P. Webb, K. J. Kirkby, D. Giubertoni, S. Genarro, M. Bersani, M. A. Foad, F. Cristiano, P. F. Fazzini. "Deactivation of ultrashallow boron implants in preamorphized sili-con after nonmelt laser annealing with multiple scans" Appl.Phys. Lett. Vol. 89, 192105 (2006).

    [11] Yu.V. Bykov, A.G. Yeremeev, N.A. Zharova, I.V. Plotnikov, K.I. Rybakov, M.N. Drozdov, Yu.N. Drozdov, V.D. Skupov. "Diffusion processes in semiconductor structures during microwave anneal-ing" Radiophysics and Quantum Electronics. Vol. 43 (3). P. 836-843 (2003).

    [12] E.L. Pankratov. "Redistribution of dopant during microwave annealing of a multilayer structure for production p-n-junction" J. Appl. Phys. Vol. 103 (6). P. 064320-064330 (2008).

    [13] E.L. Pankratov. "Optimization of near-surficial annealing for decreasing of depth of p-n-junction in semiconductor heterostructure" Proc. of SPIE. Vol. 7521, 75211D (2010).

    [14] E.L. Pankratov. "Decreasing of depth of implanted-junction rectifier in semiconductor heterostructure by optimized laser annealing" J. Comp. Theor. Nanoscience. Vol. 7 (1). P. 289-295 (2010).

    [15] E.L. Pankratov. "Influence of mechanical stress in semiconductor heterostructure on density of p-n-junctions" Applied Nanoscience. Vol. 2 (1). P. 71-89 (2012).

    [16] E.L. Pankratov, E.A. Bulaeva. "Application of native inhomogeneities to increase compactness of vertical field-effect transistors" J. Comp. Theor. Nanoscience. Vol. 10 (4). P. 888-893 (2013).

    [17] E.L. Pankratov, E.A. Bulaeva. "An approach to decrease dimensions of field-effect transistors " Uni-versal Journal of Materials Science. Vol. 1 (1). P.6-11 (2013).

    [18] E.L. Pankratov, E.A. Bulaeva. "Doping of materials during manufacture p-n-junctions and bipolar transistors. Analytical approaches to model technological approaches and ways of optimization of dis-tributions of dopants" Reviews in Theoretical Science. Vol. 1 (1). P. 58-82 (2013).

    [19] V.V. Kozlivsky. Modification of semiconductors by proton beams (Nauka, Sant-Peterburg, 2003, in Russian).

    [20] E.L. Pankratov. "Decreasing of depth of p-n-junction in a semiconductor heterostructure by serial radiation processing and microwave annealing" J. Comp. Theor. Nanoscience. Vol. 9 (1). P. 41-49 (2012).

    [21] E.L. Pankratov, E.A. Bulaeva. "Increasing of sharpness of diffusion-junction heterorectifier by using radiation processing" Int. J. Nanoscience. Vol. 11 (5). P. 1250028-1--1250028-8 (2012).

    [22] Y.W. Zhang, A.F. Bower. "Numerical simulations of islands formation in a coherent strained epitaxial thin film system" Journal of the Mechanics and Physics of Solids. Vol. 47 (11). P. 2273-2297 (1999).

    [23] L.D. Landau, E.M. Lefshits. Theoretical physics. 7 (Theory of elasticity) (Physmatlit, Moscow, 2001, in Russian).

    [24] Z.Yu. Gotra. Technology of microelectronic devices (Radio and communication, Moscow, 1991). [25] K.V. Shalimova. Physics of semiconductors (Moscow: Energoatomizdat, 1985, in Rus-sian). [26] V.E. Kuzmichev. Laws and formulas of physics. Kiev: Naukova Dumka, 1989 (in Russian). [27] Yu.D. Sokolov. About the definition of dynamic forces in the mine lifting Applied Mechanics. Vol.1

    (1). P. 23-35 (1955). [28] A.N. Tikhonov, A.A. Samarskii. The mathematical physics equations (Moscow, Nauka 1972) (in

    Russian). [29] H.S. Carslaw, J.C. Jaeger. Conduction of heat in solids (Oxford University Press, 1964).

    APPENDIX

    Equations for functions Tij(x,y,z,t) (i0, j0)

    ( ) ( ) ( ) ( ) ( )ass

    ass

    tzyxpz

    tzyxTy

    tzyxTx

    tzyxTt

    tzyxT

    ,,,,,,,,,,,,,,,

    200

    2

    200

    2

    200

    2

    000 +

    +

    +

    =

    ( ) ( ) ( ) ( )+

    +

    +

    =

    20

    2

    20

    2

    20

    2

    00 ,,,,,,,,,,,,

    z

    tzyxTy

    tzyxTx

    tzyxTt

    tzyxT iiiass

    i

    ( ) ( ) ( ) ( ) ( ) ( )

    +

    +

    + z

    tzyxTzg

    zytzyxT

    xgx

    tzyxTzg iT

    iT

    iTass

    ,,,,,,,,, 102

    102

    210

    2

    0 , i 1

  • Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015

    40

    ( ) ( ) ( ) ( )( ) +

    +

    +

    =

    tzyxTT

    z

    tzyxTy

    tzyxTx

    tzyxTt

    tzyxT dassass

    ,,,

    ,,,,,,,,,,,,

    00

    02

    012

    201

    2

    201

    2

    001

    ( ) ( ) ( )( )

    ( )

    +

    +

    +

    2

    00

    00

    02

    002

    200

    2

    200

    2,,,

    ,,,

    ,,,,,,,,,

    x

    tzyxTtzyxT

    Tz

    tzyxTy

    tzyxTx

    tzyxT dass

    ( ) ( )

    +

    +

    2

    00

    2

    00 ,,,,,,

    z

    tzyxTy

    tzyxT

    ( ) ( ) ( ) ( )( )+

    +

    +

    =

    tzyxTT

    z

    tzyxTy

    tzyxTx

    tzyxTt

    tzyxT dassass

    ,,,

    ,,,,,,,,,,,,

    00

    02

    022

    202

    2

    202

    2

    002

    ( ) ( ) ( )( )

    ( )

    +

    +

    + x

    tzyxTtzyxT

    Tz

    tzyxTy

    tzyxTx

    tzyxT dass ,,,,,,

    ,,,,,,,,, 001

    00

    02

    012

    201

    2

    201

    2

    ( ) ( ) ( ) ( ) ( )

    +

    +

    z

    tzyxTz

    tzyxTy

    tzyxTy

    tzyxTx

    tzyxT ,,,,,,,,,,,,,,, 0100010001

    ( ) ( ) ( )( ) ( )

    ( ) ( )

    +

    +

    =

    Tzyxgx

    tzyxTTzyxg

    tzyxTtzyxT

    x

    tzyxTt

    tzyxTTTass ,,,

    ,,,

    ,,,

    ,,,

    ,,,,,,,,,

    200

    2

    00

    012

    112

    011

    ( ) ( ) ( ) ( ) ( )

    +

    +

    +

    x

    tzyxTTzyxg

    xz

    tzyxTTzyxg

    zytzyxT

    TassT

    ,,,

    ,,,

    ,,,

    ,,,

    ,,, 010

    002

    002

    ( ) ( )[ ] ( ) ( )[ ] ( ) +

    ++

    ++

    +assTT

    z

    tzyxTTzyxg

    ytzyxT

    Tzyxgx

    tzyxT02

    012

    201

    2

    201

    2,,,

    ,,,1,,,

    ,,,1,,,

    ( )( )

    ( ) ( )( )

    ( ) ( )( )

    ( )

    +

    +

    ++++ 2

    002

    100

    102

    002

    100

    102

    002

    100

    10 ,,,

    ,,,

    ,,,,,,

    ,,,

    ,,,,,,

    ,,,

    ,,,

    z

    tzyxTtzyxT

    tzyxTy

    tzyxTtzyxT

    tzyxTx

    tzyxTtzyxT

    tzyxT

    ( )( ) ( ) ( )

    ( ) +

    +

    +

    +tzyxT

    Tz

    tzyxTy

    tzyxTx

    tzyxTtzyxT

    TT dassdassdass,,,

    ,,,,,,,,,

    ,,, 00

    02

    102

    210

    2

    210

    2

    00

    00

    ( ) ( ) ( ) ( ) ( ) ( )

    +

    +

    z

    tzyxTTzyxgzy

    tzyxTTzyxgx

    tzyxTTzyxg TTT,,,

    ,,,

    ,,,

    ,,,

    ,,,

    ,,,00

    210

    2

    210

    2

    ( ) ( ) ( ) ( ) ( ) ( )

    +

    +

    z

    tzyxTz

    tzyxTy

    tzyxTy

    tzyxTx

    tzyxTx

    tzyxT ,,,,,,,,,,,,,,,,,, 001000100010

    ( )( )( )

    ( ) ( ) ( )

    +

    +

    ++

    2

    002

    002

    001

    001

    00

    0 ,,,,,,,,,

    ,,,

    ,,,

    ,,, z

    tzyxTy

    tzyxTx

    tzyxTtzyxT

    TzyxgtzyxT

    T Tdass

    dass T0 . Conditions for the functions Tij(x,y,z,t) (i0, j0) ( )

    0,,,

    0

    =

    =x

    ij

    x

    tzyxT,

    ( )0

    ,,,

    =

    = xLx

    ij

    x

    tzyxT,

    ( )0

    ,,,

    0

    =

    =y

    ij

    ytzyxT

    ,

    ( )0

    ,,,

    =

    = yLx

    ij

    ytzyxT

    ,

    ( )0

    ,,,

    0

    =

    =z

    ij

    z

    tzyxT,

    ( )0

    ,,,

    =

    = zLx

    ij

    z

    tzyxT, T00(x,y,z,0)=fT(x,y,z), Tij(x,y,z,0)=0, i 1, j 1.

    Solutions of the equations for the functions Tij(x,y,z,t) (i0, j0) with account appropriate boun-dary and initial conditions could be written as

  • Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015

    41

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) + = =1 00 0 0

    002

    ,,

    1,,,

    n

    L

    nnTnnnzyx

    L L L

    Tzyx

    xx y z

    uctezcycxcLLL

    udvdwdwvufLLL

    tzyxT

    ( ) ( ) ( ) ( ) + + zyx

    t L L L

    asszyx

    L L

    Tnn LLLdudvdwdwvup

    LLLudvdwdwvufwcvc x

    y zy z 2,,,1,,

    0 0 0 00 0

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) =1 0 0 0 0

    ,,,

    n

    t L L L

    ass

    nnnnTnTnnn

    x y z

    dudvdwdwvupwcvcucetezcycxc

    ,

    where cn() = cos (pi n/L), ( )

    ++= 2220

    22 111expzyx

    assnT LLLtnte pi ;

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) = =1 0 0 0 0

    20

    0 ,,,2,,,n

    t L L L

    TnnnnTnTnnnzyx

    ass

    i

    x y z

    TwvugwcvcusetezcycxcnLLL

    tzyxT pi

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) +

    =

    1 0 0 02010 2,,,

    n

    t L L

    nnnTnTnnnzyx

    assix y

    vsucetezcycxcnLLL

    dudvdwdu

    wvuT

    pi

    ( ) ( ) ( ) ( ) ( ) ( ) ( )+

    =

    12

    0

    0

    10 2,,,,,,n

    nTnnnzyx

    assL

    inT tezcycxcnLLL

    dudvdwdv

    wvuTwcTwvug

    z pi

    ( ) ( ) ( ) ( ) ( ) ( )

    t L L L

    iTnnnnT

    x y z

    dudvdwdw

    wvuTTwvugwsvcuce

    0 0 0 0

    10 ,,,,,,

    , i 1,

    where sn() = sin (pi n /L); ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

    =

    =1 0 0 0 02

    002

    2001,,,2

    ,,,

    n

    t L L L

    nnnTnTnnnzyx

    dass

    x y z

    u

    wvuTvcusetezcycxcn

    LLLT

    tzyxT

    pi

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) +

    =1 0 0 0 020

    00

    2,,, n

    t L L L

    nnnnTnTnnnzyx

    dassn

    x y z

    wcvsucetezcycxcnLLL

    TwvuT

    dudvdwdwc

    pi

    ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) +

    =1 0 0 020

    002

    002 2

    ,,,

    ,,,

    n

    t L L

    nnnTnTnnnzyx

    dass

    x y

    vcucetezcycxcnLLL

    TwvuT

    dudvdwdv

    wvuT

    pi

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

    =1 0 0

    0

    0 002

    002

    2,,,

    ,,,

    n

    t L

    nnTnTnnnzyx

    ass

    d

    L

    n

    xz

    ucetezcycxcLLL

    TwvuT

    dudvdwdu

    wvuTws

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

    =

    +1 0

    0

    0 01

    00

    2

    00 2,,,

    ,,,

    n

    t

    nTnTnnnzyx

    dassL L

    nnetezcycxc

    LLLT

    wvuTdudvdwd

    u

    wvuTwcvc

    y z

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

    =

    +1

    0

    0 0 01

    00

    2

    00 2,,,

    ,,,

    nnTnnn

    zyx

    ass

    d

    L L L

    nnntezcycxc

    LLLT

    wvuTdudvdwd

    v

    wvuTwcvcuc

    x y z

    ( ) ( ) ( ) ( ) ( ) ( )

    +

    t L L L

    nnnnT

    x y z

    wvuTdudvdwd

    w

    wvuTwcvcuce

    0 0 0 01

    00

    2

    00

    ,,,

    ,,,

    ;

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

    =

    =1 0 0 0 02

    012

    2002,,,2

    ,,,

    n

    t L L L

    nnnTnTnnnzyx

    dass

    x y z

    u

    wvuTvcusetezcycxcn

    LLLT

    tzyxT

    pi

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) +

    =1 0 0 0 020

    00

    2,,, n

    t L L L

    nnnnTnTnnnzyx

    dassn

    x y z

    wcvsucetezcycxcnLLL

    TwvuT

    dudvdwdwc

    pi

    ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) +

    =1 0 020

    002

    012 2

    ,,,

    ,,,

    n

    t L

    nnTnTnnnzyx

    dass

    x

    ucetezcycxcnLLL

    TwvuT

    dudvdwdv

    wvuT

    pi

  • Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015

    42

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

    =1 02

    0

    0 0 002

    012

    2,,,

    ,,,

    n

    t

    nTnTnnnzyx

    ass

    L L

    nnetezcycxc

    LLLwvuTdudvdwd

    w

    wvuTwsvc

    y z

    pi

    ( ) ( ) ( ) ( ) ( ) ( ) ( )

    =

    +1

    20

    0 0 01

    00

    0100 2,,,

    ,,,,,,

    nn

    zyx

    ass

    d

    L L L

    nnnd xcLLLT

    wvuTdudvdwd

    u

    wvuTu

    wvuTwcvcucT

    x y z pi

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

    +

    t L L L

    nnnnTnTnn

    x y z

    wvuTdudvdwd

    v

    wvuTv

    wvuTwcvcucetezcyc

    0 0 0 01

    00

    0100

    ,,,

    ,,,,,,

    ( ) ( ) ( ) ( ) ( ) ( ) ( )

    =

    +10 0 0 0

    100

    01002

    0

    ,,,

    ,,,,,,2n

    t L L L

    nnnnTzyx

    assdx y z

    wvuTdudvdwd

    w

    wvuTw

    wvuTwcvcuce

    LLLT

    pi

    ( ) ( ) ( ) ( )tezcycxc nTnnn ; ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

    =

    =1 0 0 0 02

    002

    011

    ,,,2,,,

    n

    t L L L

    nnnnTnTnnnzyx

    assx y z

    w

    wvuTwcvcucetezcycxc

    LLLtzyxT

    ( ) ( ) ( ) ( ) ( ) ( )( ) +

    +

    +

    dudvdwdwvuTwvuT

    w

    wvuTwg

    wv

    wvuTTwvugTwvug TTT,,,

    ,,,,,,,,,

    ,,,,,,

    00

    01002

    002

    ( ) ( )[ ] ( ) ( ) ( ) +

    +

    ++

    dudvdwd

    w

    wvuTTwvug

    wv

    wvuTTwvug

    u

    wvuTTT

    ,,,

    ,,,

    ,,,

    ,,,1,,, 01

    201

    2

    201

    2

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )

    +

    +

    =

    +1 0 0 0 0

    200

    2

    100

    100 ,,,

    ,,,

    ,,,

    2n

    t L L L

    nnnTnTnnnzyx

    dassx y z

    u

    wvuTwvuT

    wvuTvcucetezcycxc

    LLLT

    ( )( )

    ( ) ( )( )

    ( ) ( ) +

    +

    ++yx

    ass

    n LLdudvdwdwc

    w

    wvuTwvuT

    wvuTv

    wvuTwvuT

    wvuT 02

    002

    100

    102

    002

    100

    10 ,,,

    ,,,

    ,,,,,,

    ,,,

    ,,,

    ( ) ( ) ( ) ( ) ( ) ( ) ( )

    +

    +

    =1 0 0 0 02

    102

    210

    2

    210

    2,,,,,,,,,

    2n

    t L L L

    nnnnTz

    dx y z

    w

    wvuTv

    wvuTu

    wvuTwcvcuce

    LT

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) +

    =1 0 0 0

    0

    00

    22,,, n

    t L L

    nnnTnTnnnzyx

    dassnTnnn

    x y

    vcucetezcycxcLLLT

    tezcycxcwvuT

    dudvdwd

    ( ) ( ) ( ) ( ) ( ) ( )

    +

    +

    zL

    TTTn Twvugw

    wvuTTwvug

    wu

    wvuTTwvugwc

    0

    002

    002

    ,,,

    ,,,

    ,,,

    ,,,

    ,,,

    ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

    =1 0 0 0

    0

    002

    002

    2,,,

    ,,,

    n

    t L L

    nnnTnTnnnzyx

    dassx y

    vcucetezcycxcLLLT

    wvuTdudvdwd

    v

    wvuT

    ( ) ( ) ( ) ( ) ( )

    +

    +

    +

    zL

    nwvuT

    dudvdwdw

    wvuTv

    wvuTu

    wvuTwc

    01

    00

    2

    00

    2

    00

    2

    00

    ,,,

    ,,,,,,,,,

    .

    Integro-differential form of equations of systems (4) could be written as

    ( ) ( ) ( ) ( ) ( ) ( )

    +=t z

    zyxxx

    wx

    wyxuyxwyxu

    x

    wyxuttzyxutzyxu

    0 0

    22

    2

    2,,,,,,,,,5,,,,,,

    ( )( )[ ]

    ( ) ( ) ( ) ( )( ) +

    +

    0 0

    22

    2

    2

    1,,,,,,,,,5

    616z

    zyx dw

    wdwEwx

    wyxuyxwyxu

    x

    wyxutw

    dwdwE

    ( ) ( ) ( ) ( ) ( )

    +

    +

    +

    +

    t zx

    zzyx

    yxwyxudwd

    wx

    wyxuyxwyxu

    x

    wyxuwKt

    0 0

    2

    0 0

    22

    2

    2,,,

    21,,,,,,,,,

  • Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015

    43

    ( ) ( )( ) ( ) ( )

    ( ) ( )

    +

    +

    +

    +t z yxy

    w

    wyxuwx

    wyxutdt

    w

    wdwEy

    wyxu0 0

    2

    22

    2

    2,,,,,,

    21

    1,,,

    ( )( )

    ( ) ( ) ( )( )

    ( )

    +

    +

    +

    +

    0 0

    2

    0 02

    22,,,

    1,,,,,,

    21z

    xz

    yx

    wx

    wyxudw

    wdwEy

    wyxuyxwyxutd

    w

    wdwE

    ( ) ( )( ) ( ) ( ) ( )

    ( ) ( ) +

    +

    +

    0 00 02

    2,,,

    21,,, zt zy

    wKtdwdx

    wyxTwKwttd

    w

    wdwEw

    wyxu

    ( ) ( ) ( ) ( ) ( ) ( )

    +

    tzyxdwdwyxuwtdwd

    x

    wyxTw x

    t zx

    ,,,

    ,,,,,,

    10 0

    2

    2

    ( ) ( )

    0 02

    2,,,z

    x dwdwyxuwt

    ,

    ( ) ( ) ( ) ( ) ( ) ( )( )

    +

    +

    +=

    21,,,,,,

    21

    ,,,,,,

    0 0

    2

    2

    2td

    w

    wdwEyxwyxu

    x

    wyxuttzyxutzyxu

    t zxy

    yy

    ( ) ( ) ( )( )

    ( ) ( )

    + +

    +

    t zxy

    zxy

    yxwyxu

    ywyxu

    dw

    wdwEyxwyxu

    x

    wyxu0 0

    2

    2

    2

    0 0

    2

    2

    2,,,,,,5

    61

    1,,,,,,

    ( ) ( )( ) ( )

    ( ) ( ) ( )

    +

    0 0

    22

    2

    22,,,,,,,,,5

    1,,, z zxyz

    wywyxu

    yxwyxu

    ywyxu

    dtw

    wdwEwywyxu

    ( )( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( ) +

    +

    +

    0 00 0

    ,,,,,,

    61zt z

    dwdy

    wyxTwKwtdwd

    ywyxT

    wwKttdw

    wdwE

    ( ) ( ) ( ) ( ) ( ) ( )

    +

    +

    +

    0 00 0

    2

    2

    22,,,,,,,,, zt z yyy

    wKtdwdwywyxu

    ywyxu

    yxwyxu

    wKt

    ( ) ( ) ( ) ( ) ( )

    +

    +

    +

    +

    t

    yyyy

    z

    zyxutdwd

    wywyxu

    ywyxu

    yxwyxu

    0

    2

    2

    22,,,,,,,,,,,,

    ( ) ( )( )[ ]

    ( )( )[ ]

    ( ) ( )+

    +

    +

    +

    +

    0

    ,,,,,,

    1212,,,

    dy

    zyxuz

    zyxuz

    zEtz

    zEdy

    zyxu zyz

    ( ) ( ) ( ) ( ) ( ) ( )

    +

    tzyxdwdwyxu

    wtdwdwyxu

    w yt z yz y

    ,,,

    ,,,,,,

    10 0

    2

    2

    0 02

    2

    ,

    ( ) ( ) ( ) ( ) ( ) ( )( )

    +

    +

    +=

    21,,,,,,

    21

    ,,,,,,

    0 0

    2

    2

    2 tdw

    wdwEwx

    wyxux

    wyxuttzyxutzyxu

    t zxz

    zz

    ( ) ( ) ( )( )

    ( ) ( )

    +

    +

    +

    +

    t zyz

    zxz

    wywyxu

    ywyxud

    w

    wdwEwx

    wyxux

    wyxu0 0

    2

    2

    2

    0 0

    2

    2

    2,,,,,,

    1,,,,,,

    ( )( )

    ( ) ( ) ( ) ( )( ) ( ) ( ) +

    +

    +

    t zzyz wtd

    w

    wdwEwywyxu

    ywyxutdt

    w

    wdwE0 00 0

    2

    2

    2

    1,,,,,,

    221

    ( ) ( ) ( ) ( ) ( ) ( ) ( )

    +

    +

    tz

    z

    z

    zyxutdwd

    w

    wyxTwwKtdwd

    w

    wyxTwK

    00 0

    ,,,5,,,,,, ( ) ( ) ( )

    ( )[ ]( )

    ( )( ) ( )

    +

    +

    0

    ,,,,,,5116

    ,,,,,,

    x

    zyxuz

    zyxuz

    zEz

    zEdy

    zyxux

    zyxuxzyx

  • Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015

    44

    ( ) ( ) ( ) ( ) ( ) ( )

    +

    +

    +

    tzyxy d

    z

    zyxuy

    zyxux

    zyxutzKtd

    yzyxu

    0

    ,,,,,,,,,

    6,,,

    ( ) ( ) ( ) ( ) ( )

    +

    +

    tzyxdz

    zyxuy

    zyxux

    zyxuzKt zz

    yx,,,

    ,,,,,,,,,

    10

    ,

    where ( ) ( ) ( )[ ]= z iis wdtwyxuwtzyx s0

    ,,,,,, , s =x,y,z, =L/2E0, E0 is the average value of Young modulus.

    The second-order approximations of components of displacement vector could be written as

    ( ) ( ) ( ) ( ) ( )

    ++=t z

    yxxuxx yx

    wyxux

    wyxuttzyxutzyxu

    0 0

    12

    21

    2

    1122

    ,,,,,,561

    ,,,,,,

    ( ) ( )( )

    ( ) ( ) ( )

    +

    0 0

    12

    12

    21

    21

    2,,,,,,,,,5

    1,,, z zyxz

    wx

    wyxuyx

    wyxux

    wyxudw

    wdwEwx

    wyxu

    ( )( ) ( ) ( )

    ( ) ( ) ( )

    +

    +

    ++

    t z

    zyx dwdwx

    wyxuyxwyxu

    x

    wyxuwKttd

    w

    wdwE0 0

    12

    12

    21

    2,,,,,,,,,

    61

    ( ) ( ) ( ) ( ) ( )

    +

    +

    +

    +

    t zx

    zzyx

    yxwyxudwd

    wx

    wyxuyxwyxu

    x

    wyxuwKt

    0 0

    12

    0 0

    12

    12

    21

    2,,,,,,,,,,,,

    ( ) ( )( )

    ( ) ( ) ( ) ( )( ) +

    +

    +

    +

    +t z

    yxy

    w

    wdwEy

    wyxuyxwyxudt

    w

    wdwEy

    wyxu0 0

    21

    21

    2

    21

    2

    1,,,,,,

    21

    21,,,

    ( ) ( ) ( ) ( ) ( ) ( )( )

    ( ) + +

    +

    +

    0 00 02

    12

    12

    121,,,,,,

    21 zt z yx

    w

    wEtdw

    wdwEw

    wyxuwx

    wyxutdt

    ( ) ( ) ( ) ( )

    +

    +

    0 02

    12

    12

    21

    21

    2,,,,,,

    2,,,,,,

    zyxyx

    w

    wyxuwx

    wyxutdwdy

    wyxuyxwyxu

    ( )( ) ( ) ( )

    ( ) ( ) ( ) ( ) (

    ++

    t zz

    twdx

    wyxTwwKdwd

    x

    wyxTwKwtd

    w

    wdwE0 00 0

    ,,,,,,

    1

    ) ( ) ( ) ( ) ( ) ( )

    +

    0 02

    12

    0 02

    12

    ,,,,,,z

    xt z

    x dwdwyxuwtdwdwyxuwtd

    ( ) ( )}tzyxtzyxxxux

    ,,,,,, 102 ,

    ( ) ( ) ( ) ( ) ( )( )

    +

    +

    ++=t z

    xyyuyy d

    w

    wdwEyxwyxu

    x

    wyxuttzyxutzyxu

    0 0

    12

    21

    2

    122 1,,,,,,

    2,,,,,,

    ( ) ( ) ( )( )

    ( ) ( )

    + +

    +

    t zxy

    zxy

    yxwyxu

    ywyxu

    dw

    wdwEyxwyxu

    x

    wyxut0 0

    12

    21

    2

    0 0

    12

    21

    2,,,,,,5

    1,,,,,,

    2

    ( ) ( )( )

    ( ) ( ) ( )

    +

    0 0

    12

    12

    21

    21

    2,,,,,,,,,5

    61,,,

    zzxyz

    wywyxu

    yxwyxu

    ywyxu

    dtw

    wdwEwy

    wyxu

    ( )( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( )

    +

    +

    0 00 0

    ,,,,,,

    61zt z

    dwdy

    wyxTwwKtdwd

    ywyxT

    wKwttdw

    wdwE

  • Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015

    45

    ( ) ( ) ( ) ( ) ( ) ( )

    +

    +

    0 00 0

    12

    21

    21

    2,,,,,,,,, zt z yyy

    wKtdwdwy

    wyxuy

    wyxuyxwyxu

    wKt

    ( ) ( ) ( ) ( ) ( )

    +

    +

    +

    +

    t yyyy

    z

    zyxutdwd

    wywyxu

    ywyxu

    yxwyxu

    0

    112

    21

    21

    2,,,

    21,,,,,,,,,

    ( ) ( )( )

    ( )( )[ ]

    ( ) ( )

    +

    +

    +

    +

    20

    111 ,,,,,,

    121,,,

    uyzyz d

    yzyxu

    z

    zyxuz

    zEtz

    zEdy

    zyxu

    ( ) ( )} 110 ,,,,,, tzyxtzyx yy , ( ) ( ) ( ) ( ) ( ) ( )

    +

    +

    ++=

    t zxz

    zzzw

    wdwEwx

    wyxux

    wyxutzyxutzyxu

    0 0

    12

    21

    2

    1122 1,,,,,,

    21

    ,,,,,,

    ( ) ( ) ( ) ( )( ) ( )( )

    +

    + +

    +

    t zz

    zxz

    ywyxu

    tdw

    wdwEwx

    wyxux

    wyxutdt0 0

    21

    2

    0 0

    12

    21

    2,,,

    21

    1,,,,,,

    2

    ( ) ( )( ) ( ) ( ) ( )

    ( ) ( )

    +

    +

    +

    0 02

    12

    0 0

    12

    ,,,,,,

    1,,, z

    zt z

    y

    ywyxudwd

    w

    wyxTwwKtd

    w

    wdwEwy

    wyxu

    ( ) ( )( ) ( ) ( )

    ( ) ( )( )[ ] ( ) ++

    +

    +

    + tzy t

    z

    zEdwdw

    wyxTwwKttd

    w

    wdwEwy

    wyxu00 0

    12

    16,,,

    21,,,

    ( ) ( ) ( ) ( ) ( )

    0

    11111 ,,,,,,56

    ,,,,,,,,,5x

    zyxuz

    zyxutdy

    zyxux

    zyxuz

    zyxu xzyxz

    ( ) ( )( )[ ] ( )

    ( ) ( ) ( )

    +

    +

    ++

    tzyxy d

    z

    zyxuy

    zyxux

    zyxut

    z

    zEtdy

    zyxu0

    1111 ,,,,,,,,,

    16,,,

    ( ) ( ) ( ) ( ) ( ) ( )

    +

    +

    tzyxdz

    zyxuy

    zyxux

    zyxuzKtzK zz

    zyx,,,

    ,,,,,,,,,

    020

    111

    ( )}tzyxz ,,,1 .

    Calculation of the average values u2 leads to the following results

    ( ) ( ) ( ) ( ) ( ) ( ) (

    +

    =

    0 0 0 0

    12

    12

    21

    22

    2 1,,,,,,,,,5

    121 x y zL L L

    zzyx

    zux Lz

    zdzEzx

    tzyxuyx

    tzyxux

    tzyxutL

    ) ( ) ( ) ( ) ( ) ( )( ) +

    0 0 0 0

    12

    12

    21

    22

    1,,,,,,,,,5

    12x y zL L L

    zzyx

    z

    zLzx

    tzyxuyx

    tzyxux

    tzyxuzEtdxdydz

    ( ) ( ) ( ) ( ) ( )

    +

    +

    +

    0 0 0 0

    12

    12

    21

    22 ,,,,,,,,,

    21 x y zL L L zyx

    zzx

    tzyxuyx

    tzyxux

    tzyxuzLttdxdydzd

    ( ) ( ) ( ) ( ) ( )

    +

    +

    0 0 0 0

    12

    12

    21

    22,,,,,,,,,

    2x y zL L L

    zyxz

    zx

    tzyxuyx

    tzyxux

    tzyxuzLtdxdydzdzK

    ( ) ( ) ( ) ( ) ( ) ( ) +

    +

    +

    0 0 0 02

    12

    12

    2

    1,,,,,,

    21 x y zL L L zyx ydzd

    z

    zLy

    tzyxuyx

    tzyxuzEttdxdydzdzK

  • Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015

    46

    ( ) ( ) ( ) ( ) ( ) ( )

    +

    +

    +

    41,,,,,,

    21 2

    0 0 0 02

    12

    12

    2 xy zL L L yx

    z tdxdydz

    zdzEz

    tzyxuzx

    tzyxuzLttdxd

    ( ) ( )( )( ) ( ) ( ) ( ) +

    +

    +

    +

    0 0 0 0

    2

    0 0 0 02

    12

    12

    141,,,,,,

    1x y zx y z L L L

    zL L L

    yxz

    z

    zLttdxdydzd

    ytzyxu

    yxtzyxu

    z

    zLzE

    ( ) ( ) ( ) ( ) ( ) ( )

    +

    +

    0 0 0 02

    12

    21

    21

    2,,,

    2,,,,,, x

    y zL L Lx

    z

    yx

    t

    tzyxuzzLtdxdydzdzE

    z

    tzyxuzx

    tzyxu

    ( ) ( ) ( ) ( ) ( ) + 0 0 0 0

    2

    0 0 0 01

    2

    2,,,

    x y zx y z L L L

    z

    L L L

    xz zLtdxdydzdtzyxuzzLttdxdydzd

    ( ) ( ) ( ) ( ) ( )

    +

    zL

    zxxx zdzzLLtdxdydzd

    t

    tzyxu0

    20

    2

    21

    2

    421

    2,,, ,

    ( ) ( ) ( )( )( ) ( )

    +

    +

    =

    2,,,,,,

    121 2

    0 0 0 0

    12

    21

    22

    2

    x y zL L Lxyz

    zuy tdxdydzdyxtzyxu

    x

    tzyxuz

    zLzEL

    ( ) ( )( )( ) ( ) ( ) ( ) +

    +

    +

    +

    0 0 0 00 0 0 0

    12

    21

    2

    1121,,,,,,

    1x y zx y z L L L

    zL L L

    xyz

    z

    zLzEtdxdydzd

    yxtzyxu

    x

    tzyxuz

    zLzE

    ( ) ( ) ( ) ( ) ( )

    0 0 0 0

    221

    21

    2

    21

    2

    12,,,,,,,,,5

    x y zL L Lzxy zEtdxdydzd

    zytzyxu

    yxtzyxu

    ytzyxu

    ( )( ) ( ) ( ) ( ) ( ) +

    +

    0 0 0 0

    212

    12

    21

    2

    2,,,,,,,,,5

    1x y zL L L

    zxyz zKttdxdydzdzy

    tzyxuyx

    tzyxuy

    tzyxuz

    zL

    ( ) ( ) ( ) ( ) ( ) ( )

    +

    +

    0 0 0 0

    12

    21

    21

    2,,,,,,,,, x y zL L L

    z

    yyyz zLzKtdxdydzd

    zytzyxu

    ytzyxu

    yxtzyxu

    zL

    ( ) ( ) ( ) ( )

    +

    +

    +

    +

    0 0 0 0

    112

    21

    21

    22,,,

    21,,,,,,,,,

    2x y zL L L yyyy

    z

    tzyxutdxdydzd

    zytzyxu

    ytzyxu

    yxtzyxu

    ( ) ( )( ) ( )

    ( ) ( ) ( )( ) +

    +

    +

    +

    0 0 0 0

    112

    21

    1,,,,,,

    21,,, x

    y zL L Lzyz

    z

    zdzEy

    tzyxuz

    tzyxutdxdyd

    z

    zdzEy

    tzyxu

    ( ) ( ) ( ) ( )

    +

    0 0 0 02

    122

    0 0 0 02

    12

    2 ,,,

    2,,,

    21 x y zx y z L L L yL L L y

    t

    tzyxutdxdydzd

    t

    tzyxuzttdxdyd

    ( ) ( ) ( ) ( ) ( ) ( ) +

    22,,,

    022

    0 0 0 01

    yyL L L

    yz

    x y z

    tdxdydzdtzyxuzzLtdxdydzdz

    ( ) ( )1

    04

    zL

    z zdzzLL ,

    ( ) ( ) ( )( )( ) ( )

    +

    +

    =

    2,,,,,,

    121 2

    0 0 0 0

    12

    21

    22

    2

    x y zL L Lxzz

    zz tdxdydzdzx

    tzyxux

    tzyxuz

    zLzEtL

    ( ) ( )( )( ) ( ) ( ) ( ) +

    +

    +

    0 0 0 0

    2

    0 0 0 0

    12

    21

    2

    21,,,,,,

    1x y zx y z L L LL L L

    xzz zEttdxdydzdzx

    tzyxux

    tzyxuz

    zLzE

    ( ) ( ) ( ) ( )

    +

    +

    0 0 0 0

    12

    21

    21

    2

    21

    2,,,,,,,,,,,, x

    y zL L L yzyz

    zytzyxu

    ytzyxu

    tdxdydzdzy

    tzyxuy

    tzyxu

  • Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015

    47

    ( ) ( )( )[ ]

    ( ) ( ) ( )

    ++

    0 0 0 0

    1112,,,,,,,,,5

    121

    12x y zL L L yxzz

    ytzyxu

    x

    tzyxuz

    tzyxutdxdydzd

    z

    zLzE

    ( )( ) ( )

    ( ) ( ) ( )

    +

    0 0 0 0

    1112

    2 ,,,,,,,,,5121

    x y zL L L yxz

    ytzyxu

    x

    tzyxuz

    tzyxutdtxdyd

    z

    zdzE

    ( )( ) ( )

    ( ) ( ) ( ) ( )

    +

    +

    ++

    0 0 0 0

    1112 ,,,,,,,,,

    21x y zL L L

    zyx

    z

    tzyxuy

    tzyxux

    tzyxuzKttdxdyd

    z

    zdzE

    ( ) ( ) ( ) ( ) ( )

    +

    +

    0 0 0 0

    1112

    2 ,,,,,,,,,

    22x y zL L L

    zyxz

    z

    tzyxuy

    tzyxux

    tzyxuzKtdxdydzd

    ( ) ( ) ( ) ( ) ( )

    +

    zx y z L

    z

    zL L L

    zz zLtdxdydzdztzyxuzLtdxdydzd0

    02

    0 0 0 01 42

    ,,,

    ( ) } 1 Lzdz .

    System of equations for the functions Cijk(x,y,z,t) (i 0, j 0, k 0) could be written as

    ( ) ( ) ( ) ( )

    +

    +

    =

    2000

    2

    2000

    2

    2000

    2

    0000 ,,,,,,,,,,,,

    z

    tzyxCy

    tzyxCx

    tzyxCDt

    tzyxCL ;

    ( ) ( ) ( ) ( ) ( )

    +

    +

    =

    ytzyxC

    Tzgyx

    tzyxCTzg

    xD

    t

    tzyxC iL

    iLL

    i ,,,,

    ,,,

    ,

    ,,, 1001000

    00

    ( ) ( ) ( ) ( ) ( )

    +

    +

    +

    + 200

    2

    200

    2

    200

    2100 ,,,,,,,,,,,,

    ,

    z

    tzyxCy

    tzyxCx

    tzyxCz

    tzyxCTzg

    ziiii

    L , i 1;

    ( ) ( ) ( ) ( )+

    +

    +

    =

    2010

    2

    2010

    2

    2010

    2

    0010 ,,,,,,,,,,,,

    z

    tzyxCy

    tzyxCx

    tzyxCD

    t

    tzyxCL

    ( )( )

    ( ) ( )( )

    ( )

    +

    +

    +y

    tzyxCTzyxPtzyxC

    yxtzyxC

    TzyxPtzyxC

    xD L

    ,,,

    ,,,

    ,,,,,,

    ,,,

    ,,, 0000000000000

    ( )( )

    ( )

    +z

    tzyxCTzyxPtzyxC

    z

    ,,,

    ,,,

    ,,, 000000

    ;

    ( ) ( ) ( ) ( )+

    +

    +

    =

    LL Dz

    tzyxCy

    tzyxCx

    tzyxCD

    t

    tzyxC02

    0202

    2020

    2

    2020

    2

    0020 ,,,,,,,,,,,,

    ( ) ( )( )( ) ( ) ( )

    +

    ytzyxC

    tzyxCyy

    tzyxCTzyxPtzyxC

    tzyxCx

    ,,,

    ,,,

    ,,,

    ,,,

    ,,,

    ,,,000

    010000

    1000

    010

    ( )( ) ( )

    ( )( )

    ( ) ( )( )

    +

    +

    TzyxPtzyxC

    xD

    z

    tzyxCTzyxPtzyxC

    tzyxCzTzyxP

    tzyxCL

    ,,,

    ,,,,,,

    ,,,

    ,,,

    ,,,

    ,,,

    ,,, 0000

    0001

    000010

    1000

    ( ) ( )( )

    ( ) ( )( )

    ( )

    +

    +

    z

    tzyxCTzyxPtzyxC

    zytzyxC

    TzyxPtzyxC

    yxtzyxC ,,,

    ,,,

    ,,,,,,

    ,,,

    ,,,,,, 010000010000010

    ;

    ( ) ( ) ( ) ( )+

    +

    +

    =

    2001

    2

    2001

    2

    2001

    2

    0001 ,,,,,,,,,,,,

    z

    tzyxCy

    tzyxCx

    tzyxCD

    t

    tzyxCL

  • Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015

    48

    ( )[ ] ( )( ) ( )( )

    +

    ++

    +

    Tktzyx

    WdtWyxCTzyxPtzyxC

    Tzyxgx

    D SL

    SLSLSSL

    z ,,,

    ,,,

    ,,,

    ,,,1,,,10

    000000

    0

    ( )[ ] ( )( ) ( )( )

    ++

    +

    Tktzyx

    WdtWyxCTzyxPtzyxC

    Tzyxgy

    D SL

    SLSLSSL

    z ,,,

    ,,,

    ,,,

    ,,,1,,,10

    000000

    0

    ;

    ( ) ( ) ( ) ( )+

    +

    +

    =

    2002

    2

    2002

    2

    2002

    2

    0002 ,,,,,,,,,,,,

    z

    tzyxCy

    tzyxCx

    tzyxCDt

    tzyxCL

    ( )[ ] ( )( ) ( )( )

    +

    ++

    +

    Tktzyx

    WdtWyxCTzyxPtzyxC

    Tzyxgx

    D SL

    SLSLSSL

    z ,,,

    ,,,

    ,,,

    ,,,1,,,10

    001000

    0

    ( )[ ] ( )( ) ( )( )

    +

    ++

    +

    Tktzyx

    WdtWyxCTzyxPtzyxC

    Tzyxgy

    D SL

    SLSLSSL

    z ,,,

    ,,,

    ,,,

    ,,,1,,,10

    001000

    0

    ( )[ ] ( ) ( )( ) ( )

    ++

    +

    zL

    SLSLSSL WdtWyxCTzyxPtzyxC

    tzyxCTzyxgx

    D0

    000

    1000

    0010 ,,,,,,

    ,,,

    ,,,1,,,1

    ( ) ( ) ( )( )( ) ( )

    +

    +

    zLS

    SS WdtWyxC

    Tktzyx

    TzyxPtzyxC

    tzyxCyTk

    tzyx0

    000

    1000

    001 ,,,,,,

    ,,,

    ,,,

    ,,,1,,,

    ( )[ ]} SLLSLS DTzyxg 0,,,1 + ; ( ) ( ) ( ) ( ) ( )

    +

    +

    +

    =

    x

    tzyxCxz

    tzyxCy

    tzyxCx

    tzyxCDt

    tzyxCL

    ,,,,,,,,,,,,,,, 0102

    1102

    2110

    2

    2110

    2

    0110

    ( ) ( ) ( ) ( ) ( ) +

    +

    +

    LLLL D

    z

    tzyxCTzyxg

    zytzyxC

    Tzyxgy

    Tzyxg 0010010 ,,,

    ,,,

    ,,,

    ,,,,,,

    ( )( )

    ( ) ( )( )

    ( ) ( )( )

    +

    +

    +TzyxPtzyxC

    zytzyxC

    TzyxPtzyxC

    yxtzyxC

    TzyxPtzyxC

    x ,,,

    ,,,,,,

    ,,,

    ,,,,,,

    ,,,

    ,,, 000100000100000

    ( ) ( ) ( )( )( ) ( )

    ( )

    +

    +

    TzyxPtzyxC

    yxtzyxC

    TzyxPtzyxC

    tzyxCx

    Dz

    tzyxCL

    ,,,

    ,,,,,,

    ,,,

    ,,,

    ,,,

    ,,,1

    0000001

    0001000

    100

    ( ) ( ) ( ) ( )( )( )

    LDz

    tzyxCTzyxPtzyxC

    tzyxCzy

    tzyxCtzyxC 0000

    1000

    100000

    100,,,

    ,,,

    ,,,

    ,,,

    ,,,

    ,,,

    +

    ;

    ( ) ( ) ( ) ( ) ( )

    +

    +

    +

    =

    ytzyxC

    xz

    tzyxCy

    tzyxCx

    tzyxCD

    t

    tzyxCL

    ,,,,,,,,,,,,,,, 0002

    1002

    2100

    2

    2100

    2

    0101

    ( ) ( ) ( ) ( ) ( ) +

    +

    +

    LLLL D

    z

    tzyxCTzyxgzy

    tzyxCTzyxgy

    Tzyxg 0000000,,,

    ,,,

    ,,,

    ,,,,,,

    ( )[ ] ( ) ( )( ) ( )

    ++

    +

    zL

    SLSLSSL WdtWyxCTzPtzyxC

    tzyxCTzyxgx

    D0

    100

    1000

    1000 ,,,,

    ,,,

    ,,,1,,,1

    ( ) ( )[ ] ( ) ( )( )( ) ( ) ( )[ ] ( )

    +

    +

    ++

    +

    zz L

    LSLSS

    L

    SLSLSSLS

    WdtWyxCTzyxgxTk

    tzyxWdtWyxC

    TzPtzyxC

    tzyxCTzyxgy

    DTk

    tzyx

    0100

    0100

    1000

    1000

    ,,,,,,1,,,,,,

    ,

    ,,,

    ,,,1,,,1,,,

  • Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015

    49

    ( ) ( ) ( )[ ] ( )

    +

    +

    Tk

    tzyxTzyxgy

    DWdtWyxCTk

    tzyx SLSLSSL

    LS

    z ,,,

    ,,,1,,,,,, 00

    100

    ( ) ( ) SLLL

    DWdtWyxCWdtWyxCzz

    00

    1000

    100 ,,,,,,

    ;

    ( ) ( ) ( ) ( ) ( )( )

    +

    +

    +

    =

    TzyxPtzyxC

    xz

    tzyxCy

    tzyxCx

    tzyxCDt

    tzyxCL

    ,,,

    ,,,,,,,,,,,,,,, 0002

    0112

    2011

    2

    2011

    2

    0011

    ( ) ( )( )

    ( ) ( )( )

    ( )+

    +

    +

    LDz

    tzyxCTzyxPtzyxC

    zytzyxC

    TzyxPtzyxC

    yxtzyxC

    0001000001000001 ,,,

    ,,,

    ,,,,,,

    ,,,

    ,,,,,,

    ( ) ( )( )( ) ( ) ( )

    +

    +

    ytzyxC

    tzyxCyx

    tzyxCTzyxPtzyxC

    tzyxCx

    D L,,,

    ,,,

    ,,,

    ,,,

    ,,,

    ,,,000

    001000

    1000

    0010

    ( )( ) ( )

    ( )( )

    ( ) ( )

    +

    +

    Tktzyx

    xz

    tzyxCTzyxPtzyxC

    tzyxCzTzyxP

    tzyxC S ,,,,,,,,,

    ,,,

    ,,,

    ,,,

    ,,, 0001

    000001

    1000

    ( )[ ] ( )( ) ( )( )

    +

    ++

    Tktzyx

    xDWdtWyxC

    TzyxPtzyxCTzyxg SSL

    L

    SLSLS

    z ,,,

    ,,,

    ,,,

    ,,,1,,,1 00

    010000

    ( )[ ] ( ) ( )( ) ( ) +

    ++

    SLSL

    L

    SLSLS DDWdtWyxCTzyxPtzyxC

    tzyxCTzyxgz

    000

    000

    1000

    010 ,,,,,,

    ,,,

    ,,,1,,,1

    ( )[ ] ( ) ( )( )( ) ( )

    ++

    zLS

    SLSLS WdtWyxCTktzyx

    TzyxPtzyxC

    tzyxCTzyxgy 0 000

    1000

    010 ,,,,,,

    ,,,

    ,,,

    ,,,1,,,1

    .

    Boundary and initial conditions for functions Cijk(x,t) (i 0, j 0, k 0) could be written as ( )

    0,,,

    0

    =

    =x

    ijk

    x

    tzyxC

    ;

    ( )0

    ,,,

    =

    = xLx

    ijk

    x

    tzyxC

    ;

    ( )0

    ,,,

    0

    =

    =y

    ijk

    ytzyxC

    ; ( )

    0,,,

    =

    = yLy

    ijk

    ytzyxC

    ;

    ( )0

    ,,,

    0

    =

    =z

    ijk

    z

    tzyxC

    ;

    ( )0

    ,,,

    =

    = zLz

    ijk

    z

    tzyxC

    ; C000(x,y,z,0)=fC (x,y,z); Cijk(x,y,z,0)=0.

    Solutions of equations for functions Cijk(x,t) (i 0, j 0, k 0) could be written as

    ( ) ( ) ( ) ( ) ( )+= =1

    0000

    2,,,

    nnCnnnnC

    zyxzyx

    C tezcycxcFLLLLLL

    FtzyxC ,

    where ( )

    ++= 2220

    22 111expzyx

    LnC LLLtDnte pi , ( ) ( ) ( ) ( ) = x y zL

    L L

    CnnnnC udvdwdwvufwcvcucF0 0 0

    ,, ;

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) = =1 0 0 0 0

    20

    00 ,,,2

    ,,,

    n

    t L L L

    LnnnCnCnnnnCzyx

    Li

    x y z

    TwvugvcusetezcycxcFnLLL

    DtzyxC

    pi

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

    =

    1 0 02

    0100 2,,,n

    t L

    nnCnCnnnnCzyx

    Lin

    x

    ucetezcycxcFnLLL

    Ddudvdwdu

    wvuCwc

    pi

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

    =

    12

    0

    0 0

    100 2,,,,,,

    nnCnnn

    zyx

    LL L

    iLnn tezcycxcLLL

    Ddudvdwdv

    wvuCTwvugwcvsy z pi

  • Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015

    50

    ( ) ( ) ( ) ( ) ( ) ( )

    t L L L

    iLnnnnCnC

    x y z

    dudvdwdw

    wvuCTwvugwsvcuceFn

    0 0 0 0

    100 ,,,,,,

    , i 1;

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) =

    =1 0 0 0 0

    0002

    0010

    ,,,

    ,,,2,,,

    n

    t L L L

    nnnCnCnnnnCzyx

    Lx y z

    TwvuPwvuC

    vcusetezcycxcFnLLL

    DtzyxC

    pi

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

    =1 0 02

    0000 2,,,n

    t L

    nnCnCnnnnCzyx

    Ln

    x

    ucetezcycxcFnLLL

    Ddudvdwdu

    wvuCwc

    pi

    ( ) ( ) ( ) ( )( )( ) ( ) ( )

    =12

    0

    0 0 0

    000000 2,,,,,,

    ,,,

    nnn

    zyx

    LL L L

    nnnycxcn

    LLLDdudvdwd

    v

    wvuCTwvuP

    wvuCwcwcvs

    y z z pi

    ( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )

    t L L L

    nnnnCnCnnC

    x y z

    dudvdwdw

    wvuCTwvuP

    wvuCwsvcucetezcF

    0 0 0 0

    000000 ,,,

    ,,,

    ,,,

    ;

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) = =1 0 0 0 0

    01020

    020 ,,,2

    ,,,

    n

    t L L L

    nnnCnCnnnnCzyx

    Lx y z

    wvuCvcusetezcycxcFnLLL

    DtzyxC pi

    ( ) ( )( )( ) ( ) ( ) ( ) ( )

    =

    12

    00001

    000 2,,,,,,

    ,,,

    nnCnnnnC

    zyx

    Ln

    tezcycxcFnLLL

    Ddudvdwdu

    wvuCTwvuP

    wvuCwc

    pi

    ( ) ( ) ( ) ( ) ( ) ( )( )( )

    t L L L

    nnnnC

    x y z

    dudvdwdv

    wvuCTwvuP

    wvuCwvuCwcvcuse

    0 0 0 0

    0001

    000010

    ,,,

    ,,,

    ,,,

    ,,,

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

    =

    1 0 0 0 0

    1000

    010,,,

    ,,,

    ,,,

    n

    t L L L

    nnnnCnCnnnnC

    x y z

    TwvuPwvuC

    wvuCwcvcusetezcycxcFn

    ( ) ( ) ( ) ( ) ( ) ( )

    =1 02

    00002

    0 2,,,2n

    t

    nCnCnnnnCzyx

    L

    zyx

    L etezcycxcFnLLL

    Ddudvdwdw

    wvuCLLL

    D

    pi

    pi

    ( ) ( ) ( ) ( )( )( ) ( )

    =12

    0

    0 0 0

    010000 2,,,,,,

    ,,,

    nnnC

    zyx

    LL L L

    nnnxcFn

    LLLDdudvdwd

    u

    wvuCTwvuP

    wvuCwcvcus

    x y z pi

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )

    t L L L

    nnnnCnCnn

    x y z

    dudvdwdv

    wvuCTwvuP

    wvuCwcvsucetezcyc

    0 0 0 0

    010000 ,,,

    ,,,

    ,,,

    ( ) ( ) ( ) ( ) ( )( )( )

    =1 0 0 0 0

    0100002

    0 ,,,

    ,,,

    ,,,2n

    t L L L

    nnnnCnCzyx

    Lx y z

    dudvdwdw

    wvuCTwvuP

    wvuCwsvcuceFn

    LLLD

    pi

    ( ) ( ) ( ) ( )tezcycxcnCnnn ;

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) = =1 0 0 0 0

    20

    001,,,2

    ,,,

    n

    t L L LS

    nnCnCnnnnCzyx

    Lx y z

    Tkwvu

    usetezcycxcFnLLL

    DtzyxC pi

    ( )[ ] ( )( ) ( ) ( ) ( )

    ++

    dudvdvcwdwcWdWvuCTwvuP

    wvuCTwvugnn

    L

    SLSLS

    z

    0000

    000,,,

    ,,,

    ,,,1,,,1

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) =1 0 0 0 0 0

    00020

    ,,,

    2n

    t L L L L

    nnnnCnCnnnnCzyx

    Lx y z z

    WdWvuCwcvsucetezcycxcFnLLL

    D

    pi

    ( )[ ] ( )( )( )

    dudvdwdTk

    wvu

    TwPwvuC

    Twvug SSLSLS,,,

    ,

    ,,,

    1,,,1 000

    ++ ;

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) = =1 0 0 0 0

    20

    002,,,2

    ,,,

    n

    t L L LS

    nnnCnCnnnnCzyx

    Lx y z

    Tkwvu

    vcusetezcycxcFnLLL

    DtzyxC pi

    ( )[ ] ( )( ) ( ) ( )

    ++

    zyx

    Ln

    L

    SLSLS LLLDdudvdwdwcWdWvuC

    TwvuPwvuCTwvug

    z

    20

    0001

    000,,,

    ,,,

    ,,,1,,,1 pi

  • Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015

    51

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) =1 0 0 0 0 0

    001 ,,,,,,

    n

    t L L L LS

    nnnnCnCnnnnC

    x y z z

    WdWvuCTk

    wvuwcvsucetezcycxcFn

    ( )[ ] ( )( ) ( ) ( ) ( )

    ++

    =12

    0000 2,,,

    ,,,1,,,12n

    nnnnCzyx

    LSLSLS zcycxcFLLL

    DdudvdwdTwvuP

    wvuCTwvug pi

    ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

    +

    t L L L L

    SnnnnCnC

    x y z z

    WdWvuCTwvuP

    wvuCtzyxCwcvcuseten

    0 0 0 0 0000

    1000

    001 ,,,,,,

    ,,,

    ,,,1

    ( )[ ] ( ) ( ) ( ) ( ) ( ) + =1

    202,,,

    ,,,1n

    nCnnnnCzyx

    LSLSLS tezcycxcFLLL

    DdudvdwdTk

    wvuTwvug pi

    ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

    +

    t L L L L

    SS

    nnn

    x y z z

    WdWvuCTwPwvuC

    tzyxCTk

    wvuwcvcusn

    0 0 0 0 0000

    1000

    001 ,,,,

    ,,,

    ,,,1,,,

    ( )[ ] ( ) deudvdwdTwvugnCLSLS + ,,,1 ;

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) = =1 0 0 0 0

    20

    110 ,,,2

    ,,,

    n

    t L L L

    LnnnCnCnnnnCzyx

    Lx y z

    TwvugvcusetezcycxcFnLLL

    DtzyxC

    pi

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

    =1 0 02

    0010 2,,,n

    t L

    nnCnCnnnnCzyx

    Ln

    x

    ucetezcycxcFnLLL

    Ddudvdwdu

    wvuCwc

    pi

    ( ) ( ) ( ) ( ) ( ) ( ) ( )

    =12

    0

    0 0

    010 2,,,,,,

    nnnnnC

    zyx

    LL L

    Lnn zcycxcFnLLLDdudvdwd

    v

    wvuCTwvugwcvsy z pi

    ( ) ( ) ( ) ( ) ( ) ( ) ( )

    zyx

    Lt L L L

    LnnnnCnC LLLDdudvdwd

    w

    wvuCTwvugwsvcucetex y z

    20

    0 0 0 0

    010 2,,,,,,

    pi

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) =1 0 0 0 0

    100 ,,,,,,n

    t L L L

    LnnnnCnCnnnnC

    x y z

    wvuCTwvugwcvcusetezcycxcFn

    ( )( )

    ( ) ( ) ( ) ( ) ( )

    =

    12

    00001

    000 2,,,,,,

    ,,,

    nnCnnnnC

    zyx

    L tezcycxcFnLLL

    Ddudvdwdu

    wvuCTwvuP

    wvuC pi

    ( ) ( ) ( ) ( ) ( ) ( )( )( )

    t L L L

    LnnnC

    x y z

    v

    wvuCTwvuP

    wvuCwvuCTwvugvsuce

    0 0 0 0

    0001

    000100

    ,,,

    ,,,

    ,,,

    ,,,,,,

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) =1 0 0 0

    202

    n

    t L L

    nnnCnCnnnnCzyx

    Ln

    x y

    vcucetezcycxcFnLLL

    Ddudvdwdwc pi

    ( ) ( ) ( ) ( )( )( )

    zL

    Ln dudvdwdw

    wvuCTwvuP

    wvuCwvuCTwvugws

    0

    0001

    000100

    ,,,

    ,,,

    ,,,

    ,,,,,,

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) =1 0 0 0 0

    20

    ,,,

    2n

    t L L L

    LnnnnCnCnnnnCzyx

    Lx y z

    TwvugwcvcusetezcycxcFnLLL

    D

    pi

    ( )( )

    ( ) ( ) ( ) ( ) ( )

    =12

    0100000 2,,,,,,

    ,,,

    nnCnnn

    zyx

    L tezcycxcnLLL

    Ddudvdwdu

    wvuCTwvuP

    wvuC pi

    ( ) ( ) ( ) ( ) ( )( )( )

    t L L L

    LnnnCnC

    x y z

    vdwdu

    wvuCTwvuP

    wvuCTwvugwcvseF0 0 0 0

    100000 ,,,

    ,,,

    ,,,

    ,,,

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) =1 0 0 0 0

    202

    n

    t L L L

    nnnnCnCnnnnCzyx

    Ln

    x y z

    wsvcucetezcycxcFnLLL

    Dduduc pi

    ( ) ( )( )( )

    dudvdwdu

    wvuCTwPwvuC

    Twvug L

    ,,,

    ,

    ,,,

    ,,,100000 ;

  • Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015

    52

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) = =1 0 0 0 0

    20

    101 ,,,2

    ,,,

    n

    t L L L

    LnnnCnCnnnnCzyx

    Lx y z

    TwvugvcusetezcycxcFnLLL

    DtzyxC pi

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

    =1 0 02

    0000 2,,,n

    t L

    nnCnCnnnnCzyx

    Ln

    x

    ucetezcycxcFLLL

    Ddudvdwdu

    wvuCwc

    pi

    ( ) ( ) ( ) ( ) ( ) ( ) ( )

    =12

    0

    0 0 0

    000 2,,,,,,

    nnn

    zyx

    LL L L

    Lnnn ycxcnLLLDdudvdwd

    v

    wvuCTwvugwcwcvsny z z pi

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

    t L L L

    LnnnnCnCnnC

    x y z

    dudvdwdw

    wvuCTwvugwsvcucetezcF0 0 0 0

    000 ,,,,,,

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] + =1 0 0 0 0

    20

    ,,,12n

    t L L L

    LSLSnnnCnCnnnnCzyx

    Lx y z

    TwvugvcusetezcycxcFnLLL

    D

    pi

    ( ) ( )( ) ( )

    ( )

    +

    dudvdwdTk

    wvuWdWvuCTwvuP

    wvuCTk

    wvu SL

    SS

    z ,,,

    ,,,

    ,,,

    ,,,1,,,0

    100000

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] + =1 0 0 0 0

    20

    ,,,12n

    t L L L

    LSLSnnnCnCnnnnCzyx

    Lx y z

    TwvugvcusetezcycxcFnLLL

    D

    pi

    ( ) ( ) ( )( )( ) ( )

    +

    dudvdwdWdWvuCTk

    wvu

    TwvuPwvuC

    wvuCwczL

    SSn

    0000

    1000

    100 ,,,,,,

    ,,,

    ,,,

    ,,,1

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] + =1 0 0 0 0

    20

    ,,,12

    n

    t L L L

    LSLSnnnCnCnnnnCzyx

    Lx y z

    TwvugvsucetezcycxcFnLLL

    D

    pi

    ( ) ( ) ( ) ( )( ) ( )

    dudvdwdWdWvuCTwvuP

    wvuCwvuC

    Tkwvu

    wczL

    SS

    n

    +

    0000

    1000

    100 ,,,,,,

    ,,,

    ,,,1,,, ;

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) =

    =1 0 0 0 0

    0002

    0011

    ,,,

    ,,,2,,,

    n

    t L L L

    nnnCnCnnnnCzyx

    Lx y z

    TwvuPwvuC

    vcusetezcycxcFnLLL

    DtzyxC

    pi

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

    =1 0 02

    0001 2,,,n

    t L

    nnCnCnnnnCzyx

    Ln

    x

    ucetezcycxcFnLLL

    Ddudvdwdu

    wvuCwc

    pi

    ( ) ( ) ( ) ( )( )( ) ( ) ( )

    =12

    0

    0 0 0

    001000 2,,,,,,

    ,,,

    nnnnC

    zyx

    LL L L

    nnnycxcFn

    LLLDdudvdwd

    v

    wvuCTwvuP

    wvuCwcwcvs

    y z z pi

    ( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )

    zyx

    Lt L L L

    nnnnCnCn LLLDdudvdwd

    w

    wvuCTwvuP

    wvuCwsvcucetezc

    x y z

    20

    0 0 0 0

    001000 2,,,,,,

    ,,, pi

    ( ) ( ) ( ) ( ) ( ) ( )( )( )

    =

    1 0 0 0 0

    0001

    000001

    ,,,

    ,,,

    ,,,

    ,,,

    n

    t L L L

    nnnnCnC

    x y z

    dudvdwdu

    wvuCTwvuP

    wvuCwvuCwcvcuseF

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) =1 0 0 0 0

    00120

    ,,,

    2n

    t L L L

    nnnCnCnnnzyx

    LnCnnn

    x y z

    wvuCvsucetezcycxcLLL

    Dtezcycxcn pi

    ( ) ( )( )( ) ( ) ( ) ( ) ( )

    =

    12

    00001

    000 2,,,,,,

    ,,,

    nnCnnn

    zyx

    LnnC tezcycxcnLLL

    Ddudvdwdv

    wvuCTwvuP

    wvuCwcFn pi

    ( ) ( ) ( ) ( ) ( ) ( )( )( )

    t L L L

    nnnnCnC

    x y z

    dudvdwdw

    wvuCTwvuP

    wvuCwvuCwsvcuceF

    0 0 0 0

    0001

    000001

    ,,,

    ,,,

    ,,,

    ,,,

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] + =1 0 0 0 0

    20

    ,,,12

    n

    t L L L

    LSLSnnnnCnCnnnnCzyx

    Lx y z

    TwvugwcvcusetezcycxcFnLLL

    D

    pi

  • Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015

    53

    ( )( )

    ( ) ( )

    +

    =12

    0

    0010

    000 2,,,

    ,,,

    ,,,

    ,,,1n

    nCzyx

    LL

    SS FLLL

    DdudvdwdWdWvuCTk

    wvu

    TwvuPwvuC z pi

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( )( )

    ++

    t L L L

    SLSLSnnnCnCnnn

    x y z

    TwvuPwvuCTwvugvsucetezcycxcn

    0 0 0 0

    000

    ,,,

    ,,,1,,,1

    ( ) ( ) ( ) ( ) ( ) ( ) =1

    20

    0010

    2,,,

    ,,,

    nnnnnC

    zyx

    LL

    Sn

    zcycxcFLLL

    DdudvdwdWdWvuCTk

    wvuwc

    z pi

    ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( )( )

    ++

    t L L L

    SLSLSnnnnCnC

    x y z

    TwvuPwvuC

    wvuCTwgwcvcuseten0 0 0 0

    1000

    010,,,

    ,,,

    ,,,1,1

    ( ) ( ) ( ) ( ) ( ) ( )

    =12

    0

    0000

    2,,,

    ,,,

    nnCnnn

    zyx

    LL

    S tezcycxcnLLL

    DdudvdwdWdWvuCTk

    wvu z pi

    ( ) ( ) ( ) ( ) ( )[ ] ( ) + t L L L LLSLSnnnnCnC x y z z WdWvuCTwvugwcvsuceF0 0 0 0 0

    000 ,,,,,,1

    ( ) ( )( )( )

    dudvdwdTk

    wvu

    TwPwvuC

    wvuC SS,,,

    ,

    ,,,

    ,,,11

    000010

    +

    .

    Author

    Pankratov Evgeny Leonidovich was born at 1977. From 1985 to 1995 he was educated in a secondary school in Nizhny Novgorod. From 1995 to 2004 he was educated in Nizhny Novgorod State University: from 1995 to 1999 it was bachelor course in Radiophysics, from 1999 to 2001 it was master course in Ra-diophysics with specialization in Statistical Radiophysics, from 2001 to 2004 it was PhD course in Radio-physics. From 2004 to 2008 E.L. Pankratov was a leading technologist in Institute for Physics of Micro-structures. From 2008 to 2012 E.L. Pankratov was a senior lecture/Associate Professor of Nizhny Novgo-rod State University of Architecture and Civil Engineering. Now E.L. Pankratov is in his Full Doctor course in Radiophysical Department of Nizhny Novgorod State University. He has 96 published papers in area of his researches.

    Bulaeva Elena Alexeevna was born at 1991. From 1997 to 2007 she was educated in secondary school of village Kochunovo of Nizhny Novgorod region. From 2007 to 2009 she was educated in boarding school Center for gifted children. From 2009 she is a student of Nizhny Novgorod State University of Architec-ture and Civil Engineering (spatiality Assessment and management of real estate). At the same time she is a student of courses Translator in the field of professional communication and Design (interior art) in the University. E.A. Bulaeva was a contributor of grant of President of Russia (grant MK-548.2010.2). She has 29 published papers in area of her researches.