modeling in semiconductor spintronics, s. k. saikin, y. v. pershin

19
Modeling in Semiconductor Spintronics, S. K. Saikin, Yu. V. Pershin and V. L. Privman, Sci. Trans. Kazan State Univ. 147, 97-115 (2005)

Upload: others

Post on 28-Mar-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Modeling in Semiconductor Spintronics, S. K. Saikin, Y. V. Pershin, V. L. Privman, Sci. Trans. Kazan State Univ. 147, 97-115 (2005)
! "# $ % % & ' ()* +, -. .* /$ ! " 0 0# % * " " / . # * 0# % (1, 0 / # .. . ! . " # #* " .% &23456789 :35;<= >996?? 26=<@A' B # # 0 . C % $ D % E ()F, G * 0 ! #* . " $ ! 0 / . " . $ B " " # % ())1+,* 0# ! # # H $ 0 # % ! (+I* +J, - #. $
% % ! % # $ # (K1, L * * M3>? &))F' # # % ! " # $ # (+, / (+, C" $ . % % " ! % # (F, # $ # (), B " * $ ! # # " )FF N * $% " 0 . % # # (+, G ! " $ ! (), 0 % (, N "
Modeling in Semiconductor Spintronics, S. K. Saikin, Yu. V. Pershin and V. L. Privman, Sci. Trans. Kazan State Univ. 147, 97-115 (2005)
2 σ · B, 3)4
# g∗ ,, g ", ! σ " ! & + ( 3)4 - # ' " # ! % - $ ,- ' # ( " $ # ! $ " # 3 " 4! % 5 " # % ! # - 5 6& ! &" # ! " ! # # # $- 7 " ,, 8 ' 9
HSO =
2
4m2c2


1 (& & 7 & & #.3 .8 45% / ' ' ( ! + * & 9 & 6 ( (( '& , +0
e ∂n↑(↓)
σ↑(↓) = en↑(↓)µ, :



+ , --- " - ./ n * " %&&( 0 " " 1 )) " 2 !) , , -- -- Di Ni τi 34$ $ -- 4) " %&5( . ! ) # 4) * " " $ "), 6 , ) $ %&5(





!"# $%&! ' (")* !* *! %! n&"+ ,"&'%- *% &,# !"# $%&# % &*.& ! *!% ! &'% x = x0 ,/".& ! ""! &0-"1 x = 0 1 -&!, !2( $%&'%( &&3 !- ")1 "!"," &'%,1 "#, ! &'% x0 = −10 1 %"% 0*%) %"&# x
" '# %)&") ,- N2 4τ1 = τ2 D1 = D2 !' N2 !& % ! "&". && !- ") !5 &0-" &&3 !- ") *'&, " $%&- && !5 (" )# 6789 %" "" 2&*%&- -
!" # ! $%&'$(& ) # * + + ! # , * ! + α β (- % . # ! ! / * + ( 0 ! + # 1 +


ρσ = 1


(x,y),(x′,y′)dx ′dy′,
(x,y),(x′,y′) #
(x′, y′) P(x, y, t) $ % $ & # !! ' ! ! (x, y) !! ! t !! # ( ) " ( *( ! ' ! $ + " ) , (x′, y′) (x, y) " ! P′
(x,y),(x′,y′) , )( ) $
- " .!" !!, ! # , ! . ! (x′, y′) (x, y) $ / . ! ! ( ! (" !# $ 0 " ! " ! # , , ) $ 1 " a ) # " # " 234
P′ (x,y),(x′,y′) = P + P⊥ (cos− 1) + a×P sin, 3

: ) " # !. !*, ,* " ! , 0!$ ; !. " ! 23<4" ! ( # 23=" 3>4 ? 239" =4" " ( # . $ @! " ! # ! " ! 2<4$ ? )! ! ) # # ( # , ! . ) # !$ ; " ,* , ," ! ! # # 1/2 ) , $ & . !. #" ! #$ ? * ! , !$
A ! ! ( # ( ) ( ( !(" ! ! ! # ! " $ % ! !. " ! # ? 2=" 394$ ? . ) #
α # β # # Mαβ ! + # , ! - * './)
Ws′s(R,k, t) =
∫ ψ∗(R−r/2, s′)ψ(R + r/2, s) exp (−ikr) d2r, (
ψ(r, s) & ! * & * ( 0 0! 1 2 $ $ 3 σα 4 I ')
W = 1
∂W
∂t +
1
2
{ vj ,
∂W
∂xj
+ ikj [vj ,W ] = StW, /
vj = ∂H/∂pj 2 [A,B] {A,B} # $ 4 '( ./)! * $ & StW 4% ! 8 2 2 4 , 2 # '. .5)!
9 4% # # $ , './)! * $2 $ %4 '.) '( .()! : 2 4# # 4 '.5 ;)!


! " # !
$ # % & # '' ()*+)*,*-./.01* +/).023*,4! 5 '' ! $ # # 6 #! 7 # ! $ 6 (,/8+30-9 .08*4 " ! " 6: 6 6 # ! ; ' ' # # ! ! <!
= # ( # >?@A >?BA4 # ! C # ( 4 # 6 # ! " 6# # '! $ i#
ρi(t+ δt) = exp
F #
Pα = ∑
i
I dV ! J (DD4 (DH4 # ' >?GA
Pα =
∑ i
5 ( ' ) -"1$ 8 9):* -"1* , 0#$ 5 ) , $

9 , # ( "#* ( .#* & ' !"#* , , & !#$



! " #!$ %&'(# )(*+# #! ! ! *+*, ('(!, - ! %$, ('(!, - !"%!+ %!(( (!*! $( " #!$
! " # $ ! % $ &


! " " # ! ! ! $ ! #% &' "( # ! ) %* " " % !$ " + " ! , - " " ! ! "! . # " % " # $ " # " ,++ " " !$ ! !


30
40
50
60
70
80
90
100
110
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20

,
# N = 55000 $ %& tsamp = 1 '()* & + %&$ !& & $ %& !!
0.2
0.4
0.6
0.8
1.0
0.2
0.4
0.6
0.8
1.0
S pi
n po
la riz
at io
5 % 6 "7 7! 8 5 ) ! 9 :+! 6 :! ; 8 <! % ! %$ !
111
Summary
S.K. Saikin, Yu.V. Pershin, V.L. Privman. Modeling in semiconductor spintronics.
In this paper we review theoretical methods utilized to investigate spin dynamics in semi- conductor structures. In particular, we consider drift-diffusion, kinetic transport equation and Monte-Carlo simulation approaches applied for spin transport modelling. Several examples of applications of these modelling techniques are presented.

(URL: http://public.itrs.net/Files/2003ITRS/Home2003.htm)
2. Research needs for novel devices (SRC Edition May 2003)
3. Prinz G. Spin-Polarized Transport // Phys. Today. – 1995. –V. 48, No 4. – P. 58–63.
4. Wolf S.A., Awschalom D.D., Buhrman R.A., Daughton J.M., von Molnar S.,
Roukes M.L., Chtchelkanova A.Y., Treger D.M. Spintronics: a spin-based electronics.
Vision for the future // Science. – 2001. –V. 294. – P. 1488–1495.
5. Das Sarma S. Spintronics // Am. Sci. – 2001. – V. 89. – P. 516–523.
6. Awschalom D.D., Flatte M.E., Samarth N. Spintronics // Sci. Am. – 2002. – V. 286. –
P. 66–73.
7. Akinaga H., Ohno H. Semiconductor spintronics // IEEE Trans. Nanotechnology. –
2002. – No 1. – P. 19–31.
8. Jonker B.T. Progress toward electrical injection of spin-polarized electrons into semicon-
ductors // Proc. of the IEEE. – 2003. – V. 91. – P. 727–740.
9. Zutic I., Fabian J., Das Sarma S. Spintronics: Fundamentals and applications // Rev.
Mod. Phys. – 2004. – V. 76. – P. 323–410.
10. Parkin S., Jiang X., Kaiser C., Panchula A., Roche K., Samant M. Magnetically en-
gineered spintronic sensors and memory // Proc. of the IEEE. – 2003. – V. 91. –
P. 661–680.
11. Fabian J., Zutic I., Das Sarma S. Magnetic bipolar transistor // Appl. Phys. Lett. –
2004. – V. 84. – P. 85–87.
12. Flatte M.E., Yu Z.G., Johnson-Halperin E., Awschalom D.D. Theory of semiconductor
magnetic bipolar transistors // Appl. Phys. Lett. – 2003. – V. 82. – P. 4740–4742.
13. Datta S., Das B. Electronic analog of the electro-optic modulator // Appl. Phys. Lett. –
1990. – V. 56. – P. 665–667.
14. Wang B., Wang J., Guo H. Quantum spin field effect transistor // Phys. Rev. B. –
2003. – V. 67, Art. 092408. – P. 1–4.
15. Schliemann J., Egues J.C., Loss D. Nonballistic spin-field-effect transistor // Phys. Rev.
Lett. – 2003. – V. 90, Art. 146801. – P. 1–4.
16. Egues J.C., Burkard G., Loss D. Datta-Das transistor with enhanced spin control //
Appl. Phys. Lett. – 2003. – V. 82. – P. 2658–2660.
17. Wang X.F., Vasilopoulos P. Influence of subband mixing due to spin-orbit interaction on
the transmission through periodically modulated waveguides // Phys. Rev. B. – 2003. –
V. 68, Art. 035305. – P. 1–8.
18. Hall K.C., Lau W.H., Gundogdu K., Flatte M.E., Boggess T.F. Non-magnetic semicon-
ductor spin transistor // Appl. Phys. Lett. – 2003. – V. 83. – P. 2937–2939.
19. Jonker B.T. Polarized optical emission due to decay or recombination of spin-polarized
injected carriers. – US patent 5874749. – Feb. 23, 1999.
20. Mani R.G., Johnson W.B., Narayanamurti V., Privman V., Zhang Y.-H. Nuclear spin
based memory and logic in quantum Hall semiconductor nanostructures for quantum
computing applications // Physica E. – 2002. – No 12. – P. 152–156.
21. Vrijen R., Yablonovitch E., Wang K., Jiang H.W., Balandin A., Roychowdhury V.,
Mor T., DiVincenzo D. Electron-spin-resonance transistors for quantum computing in
silicon-germanium heterostructures // Phys. Rev. A. – 2000. –V. 62, Art. 012306. –
P. 1–10.
22. Bandyopadhyay S., Cahay M. Proposal for a spintronic femto-Tesla magnetic field sen-
sor // Physica E. – 2005. – No 27. – P. 98–103.
23. Ciuti C., McGuire J.P., Sham L.J. Spin-dependent properties of a two-dimensional elec-
tron gas with ferromagnetic gates // Appl. Phys. Lett. – 2002. – V. 81. – P. 4781–4783.
24. Osipov V.V., Bratkovsky A.M. A class of spin injection-precession ultrafast nanodevices //
Appl. Phys. Lett. – 2004. – V. 84. – P. 2118–212025.
25. Bratkovsky A.M., Osipov V.V. High-frequency spin-valve effect in a ferromagnet-
semiconductor-ferromagnet structure based on precession of the injected spins // Phys.
Rev. Lett. – 2004. – V. 92, Art. 098302. – P. 1–4.
26. D’yakonov M. “Spintronics?” // Future Trends in Microelectronics: The Nano, the Giga,
and the Ultra / Eds. S. Luryi, J. Xu, A. Zaslavsky. – Wiley-IEEE Press, 2004.
27. Bandyopadhyay S., Cahay M. Reexamination of some spintronic field-effect device con-
cepts / Appl. Phys. Lett. – 2004. – V. 85. – P. 1433–1435.
28. Ohno Y., Terauchi R., Adachi T., Matsukura F., Ohno H. Spin relaxation in GaAs (110)
quantum wells // Phys. Rev. Lett. – 1999. – V. 83. – P. 4196–4199.
29. Karimov O.Z., John G.H., Harley R.T., Lau W.H., Flatte M.E., Henini M., Airey R.
High temperature gate control of quantum well spin memory // Phys. Rev. Lett. –
2003. – V. 91, Art. 246601. – P. 1–4.
30. Malajovich I., Berry J.J., Samarth N., Awschalom D.D. Persistent sourcing of coherent
spins for multifunctional semiconductor spintronics // Nature. – 2001. – V. 411. –
P. 770–772.
31. Kikkawa J.M., Awschalom D.D. Lateral drag of spin coherence in gallium arsenide //
Nature. – 1999. – V. 397. – P. 139–141.
32. Rudolph J., Hagele D., Gibbs H.M., Khitrova G., Oestreich M. Laser threshold reduction
in a spintronic device // Appl. Phys. Lett. – 2003. – V. 82. – P. 4516–4518.
33. Lannon J.M.Jr., Dausch D.E., Temple D. High sensitivity polarized-light discriminator
device. – US patent application. – Apr. 24, 2003.
34. Stevens M.J., Smirl A.L., Bhat R.D.R., Najmaie A., Sipe J.E., van Driel H.M. Quantum
interference control of ballistic pure spin currents in semiconductors // Phys. Rev. Lett. –
2003. – V. 90, Art. 136603. – P. 1–4.
35. Landau L.D., Lifshitz E.M. Quantum Mechanics. – Oxford: Butterworth-Heinemann,
1997.
36. Condon E.U., Shortley G.H. The Theory of Atomic Spectra. – Cambridge: Cambridge
University Press, 1953.
37. Dresselhaus G. Spin-orbit coupling effects in zinc blende structures // Phys. Rev. –
1955. – V. 100. – P. 580–586.
113
38. Bychkov Yu., Rashba E.I. Oscillatory effects and the magnetic susceptibility of carriers
in inversion layers // J. Phys. C. – 1984. – No 17. – P. 6039–6045.
39. Gantmakher V.F., Levinson Y.B. Carrier scattering in metals and semiconductors //
Modern Problems in Condensed Matter Science. V. 19 / Ser. eds. V.M. Agranovich,
A.A. Maradudin. – N. Y.: North-Holland, 1987.
40. Yu Z.G., Flatte M.E. Spin diffusion and injection in semiconductor structures: Electric
field effects // Phys. Rev. B. – 2002. – V. 66, Art. 235302. – P. 1–14.
41. Yu Z.G., Flatte M.E. Electric-field dependent spin diffusion and spin injection into semi-
conductors // Phys. Rev. B. – 2002. – V. 66, Art. 201202. – P. 1–4.
42. Zutic I., Fabian J., Das Sarma S. Spin-polarized transport in inhomogeneous magnetic
semiconductors: theory of magnetic/nonmagnetic p− n junctions // Phys. Rev. Lett. –
2002. – V. 88, Art. 066603. – P. 1–4.
43. Pershin Yu.V., Privman V. Focusing of spin polarization in semiconductors by inhomo-
geneous doping // Phys. Rev. Lett. – 2003. – V. 90, Art. 256602. – P. 1–4.
44. Pershin Yu.V., Privman V. Propagation of spin-polarized electrons through interfaces
separating differently doped semiconductor regions // Proc. Conference “IEEE-NANO
2003”. – Monterey, CA: IEEE Press, 2003. – P. 168–170.
45. Martin I. Spin-drift transport and its applications // Phys. Rev. B. – 2003. – V. 67,
Art. 014421. – P. 1–5.
46. Pershin Yu.V. Accumulation of electron spin polarization at semiconductor interfaces //
Phys. Rev. B. – 2003. – V. 68, Art. 233309. – P. 1–4.
47. Saikin S. Drift-diffusion model for spin-polarized transport in a non-degenerate 2DEG
controlled by a spin-orbit interaction // J. Phys.: Condens. Matter. – 2004. – V. 16. –
P. 5071–5081.
48. Culcer D., Sinova J., Sinitsyn N.A., Jungwirth T., MacDonald A.H., Niu Q. Semiclassical
spin transport in spin-orbit-coupled bands // Phys. Rev. Lett. – 2004. – V. 93, Art.
046602. – P. 1–4.
49. Pershin Yu.V. Drift–diffusion approach to spin-polarized transport // Physica E. – 2004. –
No 23. – P. 226–231.
50. Pershin Yu.V. Dynamics of spin relaxation near the edge of two-dimensional electron
gas // Physica E. – 2005. – No 27. – P. 77–81.
51. Burkov A.A., Nunez A.S., MacDonald A.H. Theory of spin-charge-coupled transport in
a two-dimensional electron gas with Rashba spin-orbit interactions // Phys. Rev. B. –
2004. – V. 70, Art. 155308. – P. 1–8.
52. Shafir E., Shen M., Saikin S. Modulation of spin dynamics in a channel of a nonballistic
spin-field effect transistor // Phys. Rev. B. – 2004. – V. 70, Art. 241302(R). – P. 1–4.
53. Saikin S., Shen M., Cheng M.-C. Study of spin-polarized transport properties for spin-
FET design optimization // IEEE Trans. Nanotechnology. – 2004. – No 3. – P. 173–179.
54. Dyakonov M.I., Kachorovskii V.Yu. Spin relaxation of two-dimensional electrons in non-
centrosymmertic semiconductors // Sov. Phys. Semicond. – 1986. – V. 20. – P. 110–112.
55. Bauer G.E.W., Tserkovnyak Y., Huertas-Hernando D., Brataas A. From digital to ana-
logue magnetoelectronics: theory of transport in non-collinear magnetic nanostructures //
Advances in Solid State Physics. V. 43. – Berlin: Springer-Verlag, 2003.
56. Ivchenko E.L., Lyanda-Geller Yu.B., Pikus G.E. Current of thermalized spin-oriented
photocarriers // Sov. Phys. JETP. – 1990. – V. 71. – P. 550–557.
114
57. Takahashi Y., Shizume K., Masuhara N. Spin diffusion in a two-dimensional electron
gas // Phys. Rev. B. – 1999. – V. 60. – P. 4856–4865.
58. Weng M.Q., Wu M.W. Kinetic theory of spin transport in n-type semiconductor quantum
wells // J. Appl. Phys. – 2003. – V. 93. – P. 410–420.
59. Mishchenko E.G., Halperin B.I. Transport equations for a two-dimensional electron gas
with spin-orbit interaction // Phys. Rev. B. – 2003. – V. 68, Art. 045317. – P. 1–6.
60. Bir G.L., Pikus G.E. Symmetry and strain-induced effects in semiconductor. – Keter
Publishing House Jerusalem Ltd., 1974.
61. Carruthers P., Zachariasen F. Quantum collision theory with phase-space distributions //
Rev. Mod. Phys. – 1983. – V. 55. – P. 245–285.
62. Wigner E. On the quantum correction for thermodynamic equilibrium // Phys. Rev. –
1932. – V. 40. – P. 749–759.
63. Weng M.Q., Wu M.W., Jiang L. Hot-electron effect in spin dephasing in n-type GaAs
quantum wells // Phys. Rev. B. – 2004. – V. 69, Art. 245320. – P. 1–9.
64. Hess K. Monte Carlo device simulation: full band and beyond. – Boston: Kluwer Aca-
demic Publishers, 1991.
65. Tomizawa K. Numerical simulation of submicron semiconductor devices. – London,
Boston: Artech House, 1993.
66. Fischetti M.V., Laux S.E. DAMOCLES Theoretical Manual. – IBM, Yorktown Heights,
1995.
67. Bournel A., Dollfus P., Bruno P., Hesto P. Gate-induced spin precession in an
In0.53 Ga0.47 As two dimensional electron gas // Eur. Phys. J. AP. – 1998. – No 4. –
P. 1–4.
68. Saikin S., Shen M., Cheng M.-C., Privman V. Semiclassical Monte Carlo model for in-
plane transport of spin-polarized electrons in III–V heterostructures // J. Appl. Phys. –
2003. – V. 94. – P. 1769–1775.
69. Shen M., Saikin S., Cheng M.-C. Monte Carlo modeling of spin injection through a
Schottky barrier and spin transport in a semiconductor quantum well // J. Appl. Phys. –
2004. – V. 96. – P. 4319–4325.
70. Bournel A., Dollfus P., Bruno P., Hesto P. Spin-dependent transport phenomena in a
HEMT // Physica B. – 1999. – V. 272. – P. 331–334.
71. Kiselev A.A., Kim K.W. Progressive suppression of spin relaxation in two-dimensional
channels of finite width // Phys. Rev. B. – 2000. – V. 61. – P. 13115–13120.
72. Pershin Yu.V., Privman V. Slow spin relaxation in two-dimensional electron systems with
antidots // Phys. Rev. B. – 2004. – V. 69, Art. 073310. – P. 1–4.
73. Pramanik S., Bandyopadhyay S., Cahay M. Spin dephasing in quantum wires // Phys.
Rev. B. – 2003. – V. 68, Art. 075313. – P. 1–10.
74. Pramanik S., Bandyopadhyay S., Cahay M. Decay of spin-polarized hot carrier current
in a quasi-one-dimensional spin-valve structure // Appl. Phys. Lett. – 2004. – V. 84. –
P. 266–268.
75. Pramanik S., Bandyopadhyay S. Spin fluctuations and “spin noise”. – E-print cond-
mat/0312099. – 2003.
76. Bournel A., Dollfus P., Cassan E., Hesto P. Monte Carlo study of spin relaxation in
AlGaAs/GaAs quantum wells // Appl. Phys. Lett. – 2000. – V. 77. – P. 2346–2348.
77. Barry E.A., Kiselev A.A., Kim K.W. Electron spin relaxation under drift in GaAs //
Appl. Phys. Lett. – 2003. – V. 82. – P. 3686–3688

78. Pershin Yu.V. Long-lived spin coherence states // Phys. Rev. B. – 2005. – V. 71, Art.
155317.
79. Pershin Yu.V., Privman V. Spin relaxation of conduction electrons in semiconductors
due to interaction with nuclear spins // Nano Lett. – 2003. – No 3. – P. 695–700.
80. Shen M., Saikin S., Cheng M.-C., Privman V. Monte Carlo modeling of spin FETs
controlled by spin-orbit interaction // Math. Comp. Simul. – 2004. – V. 65. – P. 351–
363.
81. Shen M., Saikin S., Cheng M.-C. Spin injection in spin FETs using a step-doping profile //
IEEE Trans. Nanotechnology. – 2005. – No 4. – P. 40–44.
82. Pershin Yu.V. Spin coherence control by pulsed magnetic fields. – E-print cond-
mat/0310225.
83. D’yakonov M.I., Perel’ V.I. Spin orientation of electronics associated with the interband
absorption of light in semiconductors // Soviet Phys. JETP. – 1971. – V. 33. – P. 1053–
1059.