modeling in molecular biologypks/presentation/litschau-05.pdf · modeling in molecular biology...

130

Upload: others

Post on 10-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and
Page 2: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Modeling in Molecular Biology

Peter Schuster

Institut für Theoretische Chemie, Universität Wien, Austria, andThe Santa Fe Institute, Santa Fe, New Mexico, USA

Third GEN-AU Summer School: Ultra-Sensitive Proteomics and Genomics

Litschau, 29.– 31.08.2005

Page 3: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Web-Page for further information:

http://www.tbi.univie.ac.at/~pks

Page 4: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Mathematical modelsDiscrete methods Continuous methods

Enumeration, combinatorics Differentiation, IntegrationGraph theory, network theory OptimizationString matching (sequence comparison)

Dynamical systemsStochastic difference equs. Difference equs. Stochastic differential equs. Differential equs.

n , t dn , t n , dt dn , dt … ODE

n , x , t dn , x , t n , dx , dt dn , dx , dt … PDE

Simulation methodsCellular automata Genetic algorithms Neural networks Simulated annealing Differential equs.

Structure prediction and optimizationDiscrete states Continuous states

Dynamic programming Simplex methods Gradient techniques

RNA secondary structures, lattice proteins 3D-Structures of (bio)molecules

Page 5: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and
Page 6: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and
Page 7: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

OCH2

OHO

O

PO

O

O

N1

OCH2

OHO

PO

O

O

N2

OCH2

OHO

PO

O

O

N3

OCH2

OHO

PO

O

O

N4

N A U G Ck = , , ,

3' - end

5' - end

Na

Na

Na

Na

5'-end 3’-endGCGGAU AUUCGCUUA AGUUGGGA G CUGAAGA AGGUC UUCGAUC A ACCAGCUC GAGC CCAGA UCUGG CUGUG CACAG

Definition of RNA structure

Page 8: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

5'-End

5'-End

5'-End

3'-End

3'-End

3'-End

70

60

50

4030

20

10

GCGGAUUUAGCUCAGDDGGGAGAGCMCCAGACUGAAYAUCUGGAGMUCCUGUGTPCGAUCCACAGAAUUCGCACCASequence

Secondary structure

Symbolic notation

A symbolic notation of RNA secondary structure that is equivalent to the conventional graphs

Page 9: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

RNA sequence

RNA structureof minimal free

energy

RNA folding:

Structural biology,spectroscopy of biomolecules, understanding

molecular functionEmpirical parameters

Biophysical chemistry: thermodynamics and

kinetics

Sequence, structure, and design

Page 10: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

G

GG

G

GG

G GG

G

GG

G

GG

G

U

U

U

U

UU

U

U

U

UU

A

A

AA

AA

AA

A

A

A

A

UC

C

CC

C

C

C

C

C

CC

C

5’-end 3’-end

S1(h)

S9(h)

Free

ene

rgy

G

0

Minimum of free energy

Suboptimal conformations

S0(h)

S2(h)

S3(h)

S4(h)

S7(h)

S6(h)

S5(h)

S8(h)

The minimum free energy structures on a discrete space of conformations

Page 11: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

RNA sequence

RNA structureof minimal free

energy

RNA folding:

Structural biology,spectroscopy of biomolecules, understanding

molecular function

Inverse FoldingAlgorithm

Iterative determinationof a sequence for the

given secondarystructure

Sequence, structure, and design

Inverse folding of RNA:

Biotechnology,design of biomolecules

with predefined structures and functions

Page 12: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

The Vienna RNA-Package:

A library of routines for folding,inverse folding, sequence andstructure alignment, kinetic folding, cofolding, …

Page 13: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Minimum free energycriterion

Inverse folding of RNA secondary structures

1st2nd3rd trial4th5th

The inverse folding algorithm searches for sequences that form a given RNA secondary structure under the minimum free energy criterion.

Page 14: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Sk I. = ( )ψfk f Sk = ( )

Sequence space Structure space Real numbers

Mapping from sequence space into structure space and into function

Page 15: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Sk I. = ( )ψfk f Sk = ( )

Sequence space Structure space Real numbers

Page 16: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Sk I. = ( )ψ

Sequence space Structure space

Page 17: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Sk I. = ( )ψ

Sequence space Structure space

The pre-image of the structure Sk in sequence space is the neutral network Gk

Page 18: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

AUCAAUCAG

GUCAAUCAC

GUCAAUCAUGUCAAUCAA

GUCAAUCCG

GUCAAUCG

G

GU

CA

AU

CU

G

GU

CA

AU

GA

G

GUC

AAUU

AG

GUCAAUAAGGUCAACCAG

GUCAAGCAG

GUCAAACAG

GUCACUCAG

GUCAGUCAG

GUCAUUCAGGUCCAUCAG GUCGAUCAG

GUCU

AUCA

G

GU

GA

AUC

AG

GU

UA

AU

CA

G

GU

AA

AU

CA

G

GCC

AAUC

AGGGCAAUCAG

GACAAUCAG

UUCAAUCAG

CUCAAUCAG

GUCAAUCAG

One-error neighborhood

The surrounding of GUCAAUCAG in sequence space

Page 19: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Degree of neutrality of neutral networks and the connectivity threshold

Page 20: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

A multi-component neutral network formed by a rare structure: < cr

Page 21: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

A connected neutral network formed by a common structure: > cr

Page 22: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Reference for postulation and in silico verification of neutral networks

Page 23: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Properties of RNA sequence to secondary structure mapping

1. More sequences than structures

Page 24: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Properties of RNA sequence to secondary structure mapping

1. More sequences than structures

Page 25: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Properties of RNA sequence to secondary structure mapping

1. More sequences than structures

2. Few common versus many rare structures

Page 26: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Properties of RNA sequence to secondary structure mapping

1. More sequences than structures

2. Few common versus many rare structures

n = 100, stem-loop structures

n = 30

RNA secondary structures and Zipf’s law

Page 27: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Properties of RNA sequence to secondary structure mapping

1. More sequences than structures

2. Few common versus many rare structures

3. Shape space covering of common structures

Page 28: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Properties of RNA sequence to secondary structure mapping

1. More sequences than structures

2. Few common versus many rare structures

3. Shape space covering of common structures

Page 29: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Properties of RNA sequence to secondary structure mapping

1. More sequences than structures

2. Few common versus many rare structures

3. Shape space covering of common structures

4. Neutral networks of common structures are connected

Page 30: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Properties of RNA sequence to secondary structure mapping

1. More sequences than structures

2. Few common versus many rare structures

3. Shape space covering of common structures

4. Neutral networks of common structures are connected

Page 31: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

GkNeutral Network

Structure S k

Gk Ck

Compatible Set Ck

The compatible set Ck of a structure Sk consists of all sequences which form Sk as its minimum free energy structure (the neutral network Gk) or one of itssuboptimal structures.

Page 32: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Structure S 0

Structure S 1

The intersection of two compatible sets is always non empty: C0 C1

Page 33: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Reference for the definition of the intersection and the proof of the intersection theorem

Page 34: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

A ribozyme switch

E.A.Schultes, D.B.Bartel, Science 289 (2000), 448-452

Page 35: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Two ribozymes of chain lengths n = 88 nucleotides: An artificial ligase (A) and a natural cleavage ribozyme of hepatitis- -virus (B)

Page 36: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

The sequence at the intersection:

An RNA molecules which is 88 nucleotides long and can form both structures

Page 37: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Two neutral walks through sequence space with conservation of structure and catalytic activity

Page 38: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Cell biology

Regulation of cell cycle, metabolic networks, reaction

kinetics, homeostasis, ...

The bacterial cell as an example for the simplest form of autonomous life

The human body:

1014 cells = 1013 eukaryotic cells + 9 1013 bacterial (prokaryotic) cells,

and 200 eukaryotic cell types

Page 39: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Linear chain

Network

Processing of information in cascades and networks

Page 40: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Albert-László Barabási, Linked – The New Science of NetworksPerseus Publ., Cambridge, MA, 2002

Page 41: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

••

Formation of a scale-free network through evolutionary point by point expansion: Step 000

Page 42: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

••

Formation of a scale-free network through evolutionary point by point expansion: Step 001

Page 43: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

••

Formation of a scale-free network through evolutionary point by point expansion: Step 002

Page 44: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

••

Formation of a scale-free network through evolutionary point by point expansion: Step 003

Page 45: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

••

Formation of a scale-free network through evolutionary point by point expansion: Step 004

Page 46: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

••

Formation of a scale-free network through evolutionary point by point expansion: Step 005

Page 47: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

••

••

Formation of a scale-free network through evolutionary point by point expansion: Step 006

Page 48: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

••

••

Formation of a scale-free network through evolutionary point by point expansion: Step 007

Page 49: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

••

••

Formation of a scale-free network through evolutionary point by point expansion: Step 008

Page 50: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

••

••

Formation of a scale-free network through evolutionary point by point expansion: Step 009

Page 51: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

••

••

Formation of a scale-free network through evolutionary point by point expansion: Step 010

Page 52: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

••

••

••

Formation of a scale-free network through evolutionary point by point expansion: Step 011

Page 53: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

••

••

••

Formation of a scale-free network through evolutionary point by point expansion: Step 012

Page 54: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

••

••

•••

•••

• •

• •••

••

Formation of a scale-free network through evolutionary point by point expansion: Step 024

Page 55: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

••

••

•••

•••

• •

• •••

••

• 14

10

22

2

2

22

22

2

2

2

2

2 2

333

3

3

33

12

5

5

links # nodes

2 143 65 2

10 112 114 1

Analysis of nodes and links in a step by step evolved network

Page 56: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

A B C D E F G H I J K L

1 Biochemical Pathways

2

3

4

5

6

7

8

9

10

The reaction network of cellular metabolism published by Boehringer-Ingelheim.

Page 57: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

The citric acid or Krebs cycle (enlarged from previous slide).

Page 58: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

General conditionsInitial conditions

: T , p , pH , I , ...:

... ... S , u

Boundary conditionsboundary normal unit vector

Dirichlet

Neumann

:

:

:

)0(x

),( trgx S =

Timet

Con

cent

ratio

n

( )x tSolution curves: xi(t)

Kinetic differential equations

);(2 kxfxDtx

+∇=∂∂

),,(;),,(;);( 11 mn kkkxxxkxftdxd

KK ===

Reaction diffusion equations

),(ˆ trgxuux S =∇⋅=

∂∂

Parameter setm,,2,1j;),I,Hp,p,T(j KK =k

The forward problem of chemical reaction kinetics (Level I)

Page 59: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

General conditionsInitial conditions

: T , p , pH , I , ...:

... ... S , u

Boundary conditionsboundary normal unit vector

Dirichlet

Neumann

:

:

:

)0(x

),( trgx S =

Timet

Con

cent

ratio

n

( )x tSolution curves: xi(t)

Kinetic differential equations

);(2 kxfxDtx

+∇=∂∂

),,(;),,(;);( 11 mn kkkxxxkxftdxd

KK ===

Reaction diffusion equations

),(ˆ trgxuux S =∇⋅=

∂∂

Parameter setmjIHppTkj ,,2,1;),,,,;I( G KK =

Gen

ome:

Seq

uenc

e I G

The forward problem of cellular reaction kinetics (Level I)

Page 60: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

The inverse problem of cellularreaction kinetics (Level I) Time

tCo

ncen

tratio

n

Data from measurements

(t ); = 1, 2, ... , x j Nj

xi (t )j

Kinetic differential equations

);(2 kxfxDtx

+∇=∂∂

),,(;),,(;);( 11 mn kkkxxxkxftdxd

KK ===

Reaction diffusion equations

General conditionsInitial conditions

: T , p , pH , I , ...:

... ... S , u

Boundary conditionsboundary normal unit vector

Dirichlet

Neumann

:

:

:

)0(x

),( trgx S =

),(ˆ trgxuux S =∇⋅=

∂∂

Parameter setmjIHppTk j ,,2,1;),,,,;I( G KK =

Gen

ome:

Seq

uenc

e I G

Page 61: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

The forward problem of bifurcation analysis in cellular dynamics (Level II)

Page 62: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

The inverse problem of bifurcationanalysis in cellular dynamics (Level II)

Page 63: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

1 2 3 4 5 6 7 8 9 10 11 12

Regulatory protein or RNA

Enzyme

Metabolite

Regulatory gene

Structural gene

A model genome with 12 genes

Sketch of a genetic and metabolic network

Page 64: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Timet

Con

cent

ratio

n

xi (t)

Sequences

Vienna RNA Package

Structures and kinetic parameters

Stoichiometric equations

SBML – systems biology markup language

Kinetic differential equations

ODE Integration by means of CVODE

Solution curves

A + B X2 X Y

Y + X D

yxkd

yxkxky

yxkxkbakx

bakba

3

32

2

32

21

1

tdd

tdd

tdd

tdd

tdd

=

−=

−−=

−==

The elements of the simulation tool MiniCellSim

SBML: Bioinformatics 19:524-531, 2003; CVODE: Computers in Physics 10:138-143, 1996

Page 65: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

ATGCCTTATACGGCAGTCAGGTGCACCATT...GGCTACGGAATATGCCGTCAGTCCACGTGGTAA...CCGDNA string genotype

environment

mRNA

Protein

RNA

Metabolism

RNA and proteinstructures

enzymes and smallmolecules

Recycling of moleculescell membrane

nutrition waste

genotype-p e h p mappinge ynot

genetic regulation network

metabolic reaction network

transport system

The regulatory logic of MiniCellSym

Page 66: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

The model regulatory gene in MiniCellSim

Page 67: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

The model structural gene in MiniCellSim

Page 68: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Neurobiology

Neural networks, collectiveproperties, nonlinear

dynamics, signalling, ...

A single neuron signaling to a muscle fiber

Page 69: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

The human brain

1011 neurons connected by 1013 to 1014 synapses

Page 70: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

BA

Christof Koch, Biophysics of Computation. Information Processing in single neurons. Oxford University Press, New York 1999.

Page 71: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Christof Koch, Biophysics of Computation. Information Processing in single neurons. Oxford University Press, New York 1999.

Page 72: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Christof Koch, Biophysics of Computation. Information Processing in single neurons. Oxford University Press, New York 1999.

Page 73: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Neurobiology

Neural networks, collectiveproperties, nonlinear

dynamics, signalling, ...

)()()(1 43llKKNaNa

M

VVgVVngVVhmgICtd

Vd−−−−−−=

mmdtdm

mm βα −−= )1(

hhdtdh

hh βα −−= )1(

nndtdn

nn βα −−= )1(

Hogdkin-Huxley OD equations

A single neuron signaling to a muscle fiber

Page 74: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Gating functions of the Hodgkin-Huxley equations

Page 75: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Temperature dependence of the Hodgkin-Huxley equations

Page 76: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

)()()(1 43llKKNaNa

M

VVgVVngVVhmgICtd

Vd−−−−−−=

mmdtdm

mm βα −−= )1(

hhdtdh

hh βα −−= )1(

nndtdn

nn βα −−= )1(Hogdkin-Huxley OD equations

Hhsim.lnk

Simulation of space independent Hodgkin-Huxley equations:Voltage clamp and constant current

Page 77: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Hodgkin-Huxley partial differential equations (PDE)

nntn

hhth

mmtm

LrVVgVVngVVhmgtVC

xV

R

nn

hh

mm

llKKNaNa

β)1(α

β)1(α

β)1(α

2])()()([1 432

2

−−=∂∂

−−=∂∂

−−=∂∂

−+−+−+∂∂

=∂∂ π

Hodgkin-Huxley equations describing pulse propagation along nerve fibers

Page 78: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Hodgkin-Huxley ordinary differential equations (ODE)

Travelling pulse solution: V(x,t) = V( ) with

= x + tnnn

hhh

mmm

LrVVgVVngVVhmgVCVR

nn

hh

mm

llKKNaNaM

β)1(αθ

β)1(αθ

β)1(αθ

2])()()([θ1 432

2

−−=∂∂

−−=∂∂

−−=∂∂

−+−+−+∂∂

=∂∂

ξ

ξ

ξ

πξξ

Hodgkin-Huxley equations describing pulse propagation along nerve fibers

Page 79: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

50

0

-50

100

1 2 3 4 5 6 [cm]

V [

mV

]

T = 18.5 C; θ = 1873.33 cm / sec

Page 80: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

T = 18.5 C; θ = 1873.3324514717698 cm / sec

Page 81: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

T = 18.5 C; θ = 1873.3324514717697 cm / sec

Page 82: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

-10

0

10

20

30

40

V

[mV

]

6 8 10 12 14 16 18 [cm]

T = 18.5 C; θ = 544.070 cm / sec

Page 83: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

T = 18.5 C; θ = 554.070286919319 cm/sec

Page 84: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

T = 18.5 C; θ = 554.070286919320 cm/sec

Page 85: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Propagating wave solutions of the Hodgkin-Huxley equations

Page 86: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Hodgkin-Huxley ordinary differential equations (ODE)

Travelling pulse solution: V(x,t) = V( ) with

= x + t

nnn

mmm

LrVVgVVngVVnnhmgVCVR

nn

mm

llKKNaNaM

β)1(αθ

β)1(αθ

2])()()()([θ1 400

32

2

−−=∂∂

−−=∂∂

−+−+−−++∂∂

=∂∂

ξ

ξ

πξξ

)1(125.0)(exp125.0;αE

α 80800VV

nNa

nV

−≈−=+= β

An approximation to the Hodgkin-Huxley equations

Page 87: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Propagating wave solutions of approximations to the Hodgkin-Huxley equations

Page 88: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Evolutionary biology

Optimization through variation and selection, relation between genotype,

phenotype, and function, ...

Generation time

Selection and adaptation

10 000 generations

Genetic drift in small populations 106 generations

Genetic drift in large populations 107 generations

RNA molecules 10 sec 1 min

27.8 h = 1.16 d 6.94 d

115.7 d 1.90 a

3.17 a 19.01 a

Bacteria 20 min 10 h

138.9 d 11.40 a

38.03 a 1 140 a

380 a 11 408 a

Multicelluar organisms 10 d 20 a

274 a 200 000 a

27 380 a 2 × 107 a

273 800 a 2 × 108 a

Time scales of evolutionary change

Page 89: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Genotype = Genome

GGCUAUCGUACGUUUACCCAAAAAGUCUACGUUGGACCCAGGCAUUGGAC.......GMutation

Fitness in reproduction:

Number of genotypes in the next generation

Unfolding of the genotype:

RNA structure formation

Phenotype

Selection

Evolution of phenotypes

Page 90: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Ij

In

I2

Ii

I1 I j

I j

I j

I j

I j

I j +

+

+

+

+

(A) +

fj Qj1

fj Qj2

fj Qji

fj Qjj

fj Qjn

Q (1- ) ij-d(i,j) d(i,j) = lp p

p .......... Error rate per digit

d(i,j) .... Hamming distance between Ii and Ij

........... Chain length of the polynucleotidel

dx / dt = x - x

x

i j j i

j j

Σ

; Σ = 1 ;

f

f x

j

j j i

Φ

Φ = Σ

Qji

QijΣi = 1

[A] = a = constant

[Ii] = xi 0 ; i =1,2,...,n ;

Chemical kinetics of replication and mutation as parallel reactions

Page 91: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Mutation-selection equation: [Ii] = xi 0, fi > 0, Qij 0

Solutions are obtained after integrating factor transformation by means of an eigenvalue problem

fxfxnixxQfdtdx n

j jjn

i iijn

j jiji ====−= ∑∑∑ === 111

;1;,,2,1, φφ L

( ) ( ) ( )( ) ( )

)0()0(;,,2,1;exp0

exp01

1

1

0

1

0 ∑∑ ∑

∑=

=

=

= ==⋅⋅

⋅⋅=

n

i ikikn

j kkn

k jk

kkn

k iki xhcni

tc

tctx L

l

l

λ

λ

{ } { } { }njihHLnjiLnjiQfW ijijiji ,,2,1,;;,,2,1,;;,,2,1,; 1 LLlL ======÷ −

{ }1,,1,0;1 −==Λ=⋅⋅− nkLWL k Lλ

Page 92: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Formation of a quasispeciesin sequence space

Page 93: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Formation of a quasispeciesin sequence space

Page 94: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Formation of a quasispeciesin sequence space

Page 95: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Formation of a quasispeciesin sequence space

Page 96: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Uniform distribution in sequence space

Page 97: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Error rate p = 1-q0.00 0.05 0.10

Quasispecies Uniform distribution

Quasispecies as a function of the replication accuracy q

Page 98: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Chain length and error threshold

npn

pnp

pnpQ n

σ

σσσσ

ln:constant

ln:constant

ln)1(ln1)1(

max

max

−≥−⋅⇒≥⋅−=⋅

K

K

sequencemasterofysuperiorit

lengthchainrateerror

accuracynreplicatio)1(

K

K

K

K

∑ ≠

=

−=

mj j

m

n

ffσ

nppQ

Page 99: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Stock Solution Reaction Mixture

Replication rate constant:

fk = / [ + dS(k)]

dS(k) = dH(Sk,S )

Selection constraint:

# RNA molecules is controlled by the flow

NNtN ±≈)(

The flowreactor as a device for studies of evolution in vitro and in silico

Page 100: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Phenylalanyl-tRNA as target structure

Randomly chosen initial structure

Page 101: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

f0 f

f1

f2

f3

f4

f6

f5f7

Replication rate constant:

fk = / [ + dS(k)]

dS(k) = dH(Sk,S )

Evaluation of RNA secondary structures yields replication rate constants

Page 102: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

spaceSequence

Con

cent

ratio

n

Master sequence

Mutant cloud

“Off-the-cloud” mutations

The molecular quasispeciesin sequence space

Page 103: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

S{ = ( )I{

f S{ {ƒ= ( )

S{

f{

I{M

utat

ion

Genotype-Phenotype Mapping

Evaluation of the

Phenotype

Q{jI1

I2

I3

I4 I5

In

Q

f1

f2

f3

f4 f5

fn

I1

I2

I3

I4

I5

I{

In+1

f1

f2

f3

f4

f5

f{

fn+1

Q

Evolutionary dynamics including molecular phenotypes

Page 104: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

In silico optimization in the flow reactor: Evolutionary Trajectory

Page 105: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

28 neutral point mutations during a long quasi-stationary epoch

Transition inducing point mutations change the molecular structure

Neutral point mutations leave the molecular structure unchanged

Neutral genotype evolution during phenotypic stasis

Page 106: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Evolutionary trajectory

Spreading of the population on neutral networks

Drift of the population center in sequence space

Page 107: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Spreading and evolution of a population on a neutral network: t = 150

Page 108: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Spreading and evolution of a population on a neutral network : t = 170

Page 109: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Spreading and evolution of a population on a neutral network : t = 200

Page 110: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Spreading and evolution of a population on a neutral network : t = 350

Page 111: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Spreading and evolution of a population on a neutral network : t = 500

Page 112: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Spreading and evolution of a population on a neutral network : t = 650

Page 113: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Spreading and evolution of a population on a neutral network : t = 820

Page 114: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Spreading and evolution of a population on a neutral network : t = 825

Page 115: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Spreading and evolution of a population on a neutral network : t = 830

Page 116: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Spreading and evolution of a population on a neutral network : t = 835

Page 117: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Spreading and evolution of a population on a neutral network : t = 840

Page 118: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Spreading and evolution of a population on a neutral network : t = 845

Page 119: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Spreading and evolution of a population on a neutral network : t = 850

Page 120: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Spreading and evolution of a population on a neutral network : t = 855

Page 121: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Evolutionary design of RNA molecules

D.B.Bartel, J.W.Szostak, In vitro selection of RNA molecules that bind specific ligands. Nature 346 (1990), 818-822

C.Tuerk, L.Gold, SELEX - Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249 (1990), 505-510

D.P.Bartel, J.W.Szostak, Isolation of new ribozymes from a large pool of random sequences. Science 261 (1993), 1411-1418

R.D.Jenison, S.C.Gill, A.Pardi, B.Poliski, High-resolution molecular discrimination by RNA. Science 263 (1994), 1425-1429

Y. Wang, R.R.Rando, Specific binding of aminoglycoside antibiotics to RNA. Chemistry & Biology 2 (1995), 281-290

Jiang, A. K. Suri, R. Fiala, D. J. Patel, Saccharide-RNA recognition in an aminoglycoside antibiotic-RNA aptamer complex. Chemistry & Biology 4 (1997), 35-50

Page 122: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

An example of ‘artificial selection’ with RNA molecules or ‘breeding’ of biomolecules

Page 123: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

The SELEX technique for the evolutionary preparation of aptamers

Page 124: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Aptamer binding to aminoglycosid antibiotics: Structure of ligands

Y. Wang, R.R.Rando, Specific binding of aminoglycoside antibiotics to RNA. Chemistry & Biology 2(1995), 281-290

Page 125: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

tobramycin

A

AA

AA C

C C CC

C

CC

G G G

G

G

G

G

G U U

U

U

U U5’-

3’-

AAAAA UUUUUU CCCCCCCCG GGGGGGG5’- -3’

RNA aptamer

Formation of secondary structure of the tobramycin binding RNA aptamer with KD = 9 nM

L. Jiang, A. K. Suri, R. Fiala, D. J. Patel, Saccharide-RNA recognition in an aminoglycoside antibiotic-RNA aptamer complex. Chemistry & Biology 4:35-50 (1997)

Page 126: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

The three-dimensional structure of the tobramycin aptamer complex

L. Jiang, A. K. Suri, R. Fiala, D. J. Patel, Chemistry & Biology 4:35-50 (1997)

Page 127: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Acknowledgement of support

Fonds zur Förderung der wissenschaftlichen Forschung (FWF)Projects No. 09942, 10578, 11065, 13093

13887, and 14898

Wiener Wissenschafts-, Forschungs- und Technologiefonds (WWTF) Project No. Mat05

Jubiläumsfonds der Österreichischen NationalbankProject No. Nat-7813

European Commission: Contracts No. 98-0189, 12835 (NEST)

Austrian Genome Research Program – GEN-AU: BioinformaticsNetwork (BIN)

Österreichische Akademie der Wissenschaften

Siemens AG, Austria

Universität Wien and the Santa Fe Institute

Universität Wien

Page 128: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Coworkers

Peter Stadler, Bärbel M. Stadler, Universität Leipzig, GE

Paul E. Phillipson, University of Colorado at Boulder, CO

Heinz Engl, Philipp Kügler, James Lu, Stefan Müller, RICAM Linz, AT

Jord Nagel, Kees Pleij, Universiteit Leiden, NL

Walter Fontana, Harvard Medical School, MA

Christian Reidys, Christian Forst, Los Alamos National Laboratory, NM

Ulrike Göbel, Walter Grüner, Stefan Kopp, Jaqueline Weber, Institut für Molekulare Biotechnologie, Jena, GE

Ivo L.Hofacker, Christoph Flamm, Andreas Svrček-Seiler, Universität Wien, AT

Kurt Grünberger, Michael Kospach , Andreas Wernitznig, Stefanie Widder, Stefan Wuchty, Universität Wien, AT

Jan Cupal, Stefan Bernhart, Lukas Endler, Ulrike Langhammer, Rainer Machne, Ulrike Mückstein, Hakim Tafer, Thomas Taylor, Universität Wien, AT

Universität Wien

Page 129: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and

Web-Page for further information:

http://www.tbi.univie.ac.at/~pks

Page 130: Modeling in Molecular Biologypks/Presentation/litschau-05.pdf · Modeling in Molecular Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria, and