modeling in biology...

21
Modeling The stochastic ingredient Modeling in Biology (Introduction) Alberto Policriti Dipartimento di Matematica e Informatica Istituto di Genomica Applicata A. Policriti Modeling in Biology 1/18

Upload: others

Post on 16-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Modeling in Biology (Introduction)users.dimi.uniud.it/.../files/bioinformatica-supe/Modeling_in_Biology.p… · Modeling in Biology (Introduction) Alberto Policriti Dipartimento di

ModelingThe stochastic ingredient

Modeling in Biology(Introduction)

Alberto Policriti

Dipartimento di Matematica e InformaticaIstituto di Genomica Applicata

A. Policriti Modeling in Biology 1/18

Page 2: Modeling in Biology (Introduction)users.dimi.uniud.it/.../files/bioinformatica-supe/Modeling_in_Biology.p… · Modeling in Biology (Introduction) Alberto Policriti Dipartimento di

ModelingThe stochastic ingredient

Introduction: What can Informatics do forBiology?

Systems Biology. New approaches are needed to determine the logicaland informational processes that underpin cellular behaviorur.

Paul Nurse. Understanding Cells. Nature vol. 24 (2003)

[...] An important part of the search for such explanations is theidentification, characterization and classification of the logical andinformational modules that operate in cells. For example, the types ofmodules that may be involved in the dynamics of intracellularcommunication include feedback loops, switches, timers, oscillators andamplifiers. Many of these could be similar in formal structure to thosealready studied in the development of machine theory, computing andelectronic circuitry. When these modules are coupled in space by processessuch as reaction diffusion and regulated cytoskeletal transport, they help toprovide a basis for the spatial organization of the cell. The identificationand characterization of these modules will require extensive experimentalinvestigation, followed by realistic modelling of the processes involved.[...]

A. Policriti Modeling in Biology 2/18

Page 3: Modeling in Biology (Introduction)users.dimi.uniud.it/.../files/bioinformatica-supe/Modeling_in_Biology.p… · Modeling in Biology (Introduction) Alberto Policriti Dipartimento di

ModelingThe stochastic ingredient

Computational Systems Biology

Computational Systems Biology.H. Kitano. Computational Systems Biology. Nature vol. 420 (2002)

To understand complex biological systems requires the integration ofexperimental and computational research - in other words a systems biologyapproach. Computational biology, through pragmatic modelling andtheoretical exploration, provides a powerful foundation from which toaddress critical scientific questions head-on. The reviews in this Insightcover many different aspects of this energetic field, although all, in one wayor another, illuminate the functioning of modular circuits, including theirrobustness, design and manipulation. Computational systems biologyaddresses questions fundamental to our understanding of life, yet progresshere will lead to practical innovations in medicine, drug discovery andengineering. [...]

A. Policriti Modeling in Biology 3/18

Page 4: Modeling in Biology (Introduction)users.dimi.uniud.it/.../files/bioinformatica-supe/Modeling_in_Biology.p… · Modeling in Biology (Introduction) Alberto Policriti Dipartimento di

ModelingThe stochastic ingredient

Outline

1 Modeling

2 The stochastic ingredient

A. Policriti Modeling in Biology 4/18

Page 5: Modeling in Biology (Introduction)users.dimi.uniud.it/.../files/bioinformatica-supe/Modeling_in_Biology.p… · Modeling in Biology (Introduction) Alberto Policriti Dipartimento di

ModelingThe stochastic ingredient

What does it mean modeling?

modeling = describing “systems” using the precise and formallanguage of mathematics. Useful for:

(re)organization of knowledge;simulation;prediction of properties and behaviors.

What we can model in biology?Protein interaction networks, genetic regulation networks...(already now)cells, tissues, organs, organisms... (in the future)

A. Policriti Modeling in Biology 5/18

Page 6: Modeling in Biology (Introduction)users.dimi.uniud.it/.../files/bioinformatica-supe/Modeling_in_Biology.p… · Modeling in Biology (Introduction) Alberto Policriti Dipartimento di

ModelingThe stochastic ingredient

An example: MAPKinase

A. Policriti Modeling in Biology 6/18

Page 7: Modeling in Biology (Introduction)users.dimi.uniud.it/.../files/bioinformatica-supe/Modeling_in_Biology.p… · Modeling in Biology (Introduction) Alberto Policriti Dipartimento di

ModelingThe stochastic ingredient

An example: MAPKinase

A. Policriti Modeling in Biology 6/18

Page 8: Modeling in Biology (Introduction)users.dimi.uniud.it/.../files/bioinformatica-supe/Modeling_in_Biology.p… · Modeling in Biology (Introduction) Alberto Policriti Dipartimento di

ModelingThe stochastic ingredient

Choosing the detail of models

The choice of the level of detail of models is an art, dependingon the phenomenon one wishes to describe.

photosynthesis - simplified model6CO2 + 6H2O → C6H12O6 + 6O2

photosynthesis - extended model

light-dependent phase

2H2O+ADP+Pi+2NADP+ → O2+ATP+2NADPH+2H+

carbon-fixation phase

CO2 +ATP + 2NADPH + 2H+ →(CH2O) +H2O +ADP + Pi+ 2NADP+

A. Policriti Modeling in Biology 7/18

Page 9: Modeling in Biology (Introduction)users.dimi.uniud.it/.../files/bioinformatica-supe/Modeling_in_Biology.p… · Modeling in Biology (Introduction) Alberto Policriti Dipartimento di

ModelingThe stochastic ingredient

Choosing the detail of models

The choice of the level of detail of models is an art, dependingon the phenomenon one wishes to describe.

photosynthesis - simplified model6CO2 + 6H2O → C6H12O6 + 6O2

photosynthesis - extended model

light-dependent phase

2H2O+ADP+Pi+2NADP+ → O2+ATP+2NADPH+2H+

carbon-fixation phase

CO2 +ATP + 2NADPH + 2H+ →(CH2O) +H2O +ADP + Pi+ 2NADP+

A. Policriti Modeling in Biology 7/18

Page 10: Modeling in Biology (Introduction)users.dimi.uniud.it/.../files/bioinformatica-supe/Modeling_in_Biology.p… · Modeling in Biology (Introduction) Alberto Policriti Dipartimento di

ModelingThe stochastic ingredient

Choosing the detail of models

The choice of the level of detail of models is an art, dependingon the phenomenon one wishes to describe.

photosynthesis - simplified model6CO2 + 6H2O → C6H12O6 + 6O2

photosynthesis - extended model

light-dependent phase

2H2O+ADP+Pi+2NADP+ → O2+ATP+2NADPH+2H+

carbon-fixation phase

CO2 +ATP + 2NADPH + 2H+ →(CH2O) +H2O +ADP + Pi+ 2NADP+

A. Policriti Modeling in Biology 7/18

Page 11: Modeling in Biology (Introduction)users.dimi.uniud.it/.../files/bioinformatica-supe/Modeling_in_Biology.p… · Modeling in Biology (Introduction) Alberto Policriti Dipartimento di

ModelingThe stochastic ingredient

Modeling process

A. Policriti Modeling in Biology 8/18

Page 12: Modeling in Biology (Introduction)users.dimi.uniud.it/.../files/bioinformatica-supe/Modeling_in_Biology.p… · Modeling in Biology (Introduction) Alberto Policriti Dipartimento di

ModelingThe stochastic ingredient

What mathematics?

What we want to capture of biological systems?The dynamics, i.e. their temporal evolution.

Differential EquationsConcentration of moleculesThe instantaneousvariation of theconcentration of a moleculeis given by the balance ofingoing and outgoingfluxes.

Stochastic ProcessesNumber of moleculesThe variation of thenumber of molecules isgoverned by probabilisticlaws (noise).

A. Policriti Modeling in Biology 9/18

Page 13: Modeling in Biology (Introduction)users.dimi.uniud.it/.../files/bioinformatica-supe/Modeling_in_Biology.p… · Modeling in Biology (Introduction) Alberto Policriti Dipartimento di

ModelingThe stochastic ingredient

An example: reaction catalyzed by an enzyme

SE→ P

A. Policriti Modeling in Biology 10/18

Page 14: Modeling in Biology (Introduction)users.dimi.uniud.it/.../files/bioinformatica-supe/Modeling_in_Biology.p… · Modeling in Biology (Introduction) Alberto Policriti Dipartimento di

ModelingThe stochastic ingredient

The dilemma: deterministic or stochastic?

Let’s consider a colony of bacteria, in which every bacteriagenerates new offspring with rate λ (i.e. it generates λ newbacteria per unit of time) and dies with rate µ (i.e. the fractionof bacteria dying per unit of time is µ).

FormalizationX(t) is the number of bacteria at time t.Birth rate at time t: ∝ X(t) (= λX(t))Death rate at time t: ∝ X(t) (= µX(t))

A. Policriti Modeling in Biology 11/18

Page 15: Modeling in Biology (Introduction)users.dimi.uniud.it/.../files/bioinformatica-supe/Modeling_in_Biology.p… · Modeling in Biology (Introduction) Alberto Policriti Dipartimento di

ModelingThe stochastic ingredient

Model with differential equations

X(t) is a continuous variable (taking values in R).The speed of change of X(t):

dX(t)

dt= λX(t)− µX(t) = (λ− µ)X(t)

This differential equation has solution

X(t) = X0e(λ−µ)t.

A. Policriti Modeling in Biology 12/18

Page 16: Modeling in Biology (Introduction)users.dimi.uniud.it/.../files/bioinformatica-supe/Modeling_in_Biology.p… · Modeling in Biology (Introduction) Alberto Policriti Dipartimento di

ModelingThe stochastic ingredient

Model with stochastic processes

X(t) is a discrete variable (values in N).We observe a sequence of (discrete) events in (continuous) time,each happening with a certain probability. Mathematically, themodel is a Continuous Time Markov Chain.

prob. birth =λX(t)

λX(t)+µX(t)

prob. death =

µX(t)λX(t)+µX(t)

A. Policriti Modeling in Biology 13/18

Page 17: Modeling in Biology (Introduction)users.dimi.uniud.it/.../files/bioinformatica-supe/Modeling_in_Biology.p… · Modeling in Biology (Introduction) Alberto Policriti Dipartimento di

ModelingThe stochastic ingredient

Comparing the two models

ODEPopulation of bacteria doesnot fluctuate.Bacteria canasymptotically go extinct.Dynamics determined byλ− µ.

Stochastic ProcessesNoisy evolution.Bacteria can extinguish infinite time.Dynamics determined byλ− µ (trend) and λ+ µ(variance).

A. Policriti Modeling in Biology 14/18

Page 18: Modeling in Biology (Introduction)users.dimi.uniud.it/.../files/bioinformatica-supe/Modeling_in_Biology.p… · Modeling in Biology (Introduction) Alberto Policriti Dipartimento di

ModelingThe stochastic ingredient

Analysis of the stochastic model

Analysis are usually performed simulating the modelseveral times.We can study the average behavior, or distributions atspecific times or of specific events.

Distribution of bacteria at time t = 1

100000 runs mean = 37.07; sd = 13.50

Distribution of extinction time

100000 runs mean = 3.82; sd = 1.23

A. Policriti Modeling in Biology 15/18

Page 19: Modeling in Biology (Introduction)users.dimi.uniud.it/.../files/bioinformatica-supe/Modeling_in_Biology.p… · Modeling in Biology (Introduction) Alberto Policriti Dipartimento di

ModelingThe stochastic ingredient

Stochasticity in biological systems?

Stochastic mechanisms act when number of molecules is low.They are central in genetic regulatory networks. For instance,they may be responsible for phenotypic variation in isogenicpopulation of bacteria.

H. H. McAdams and A. Arkin. Stochastic mechanisms in gene expression. PNAS, 1997.

A. Policriti Modeling in Biology 16/18

Page 20: Modeling in Biology (Introduction)users.dimi.uniud.it/.../files/bioinformatica-supe/Modeling_in_Biology.p… · Modeling in Biology (Introduction) Alberto Policriti Dipartimento di

ModelingThe stochastic ingredient

Stochasticity in biological systems

A. Policriti Modeling in Biology 17/18

Page 21: Modeling in Biology (Introduction)users.dimi.uniud.it/.../files/bioinformatica-supe/Modeling_in_Biology.p… · Modeling in Biology (Introduction) Alberto Policriti Dipartimento di

ModelingThe stochastic ingredient

Effect of stochasticity

Lotka-Volterra system

C →kd

E →kb 2EC + E →ke 2C

A. Policriti Modeling in Biology 18/18