modeling earthquake source processes: from tectonics to ... · abercrombie, r. e. (2015),...

65
Modeling earthquake source processes: from tectonics to dynamic rupture Appendix C, References cited Aagaard, B.T., and T. H. Heaton (2004). Near-Source Ground Motions from Simulations of Sustained Intersonic and Supersonic Fault Ruptures. Bulletin of the Seismological Society of America; 94 (6): 2064–2078. Aagaard, B.T., Heaton, T.H., and J.F Hall (2001). Dynamic Earthquake Ruptures in the Presence of Lithostatic Normal Stresses: Implications for Friction Models and Heat Production Bulletin of the Seismological Society of America, v. 91, p. 1765-1796, doi:10.1785/0120000257. Aagaard, B. T., Knepley, M. G. and C. A. Williams (2013), A domain decomposition approach to implementing fault slip in finite-element models of quasi-static and dynamic crustal deformation, Journal of Geophysical Research, 118, 3059– 3079, doi: 10.1002/jgrb.50217. Aben, F. M., Doan, M.-L., Gratier, J.-P. and F. Renard (2017), Coseismic Damage Generation and Pulverization in Fault Zones: Insights From Dynamic SplitHopkinson Pressure Bar Experiments, in Fault Zone Dynamic Processes, vol. 227, edited by M. Y. Thomas, T. M. Mitchell, and H. S. Bhat, pp. 47–80, John Wiley and Sons, Inc. Abercrombie, R. E. (2014), Stress drops of repeating earthquakes on the San Andreas Fault at Parkfield, Geophys. Res. Lett., 41, 8784–8791, doi:10.1002/2014GL062079. Abercrombie, R. E. (2015), Investigating uncertainties in empirical Green's function analysis of earthquake source parameters. Journal of Geophysical Research, 120, 4263–4277. doi: 10.1002/2015JB011984. Abercrombie, R. E., and J. Mori (1996), Occurrence patterns of foreshocks to large earthquakes in the western United States, Nature, 381, pp. 303–307. Abercrombie, R. E., and J.R., Rice (2005). Can observations of earthquake scaling constrain slip weakening? Geophysical Journal International, 162(2), 406–424. https://doi.org/10.1111/j.1365-246X.2005.02579.x Abercrombie, R. E. and P. Shearer, (2018). Towards Improved Stress Drop Measurement: A Detailed Comparison of Contrasting Approaches. Annual American Geophysical Union Fall Meeting. Adams M., Twardzik C., and C. Ji (2016), Exploring the uncertainty range of coseismic stress drop estimations of large earthquakes using finite fault inversions. Geophysical Journal International, 208 (1):86-100. Ader, T. J., N. Lapusta, J.-P. Avouac, and J.-P. Ampuero (2014), Response of rate-and-state seismogenic faults to harmonic shear-stress perturbations, Geophys. J. Int., 198. Aguiar, A. C. and G. C. Beroza (2014), PageRank for earthquakes, Seismology Research Letters, 85(2):344-50. Aharonov, E., and C. H. Scholz (2019), The BrittleDuctile Transition Predicted by a Physicsbased Friction Law, J. Geophys. Res. Solid Earth, doi: 10.1029/2018JB016878 Aki, K. (1981). A Probabilistic Synthesis of Precursory Phenomena. Earthquake Prediction: An International Review 4: 566–74. Allam, A. A. and Y. Ben-Zion (2012), Seismic velocity structures in the Southern California plate-boundary environment from double-difference tomography, Geophys. J. Int., 190, 1181–1196, doi: 10.1111/j.1365-246X.2012.05544.x. Allam, A. A., Y. Ben-Zion, and Z. Peng (2014), Seismic imaging of a bimaterial interface along The Hayward Fault, CA, with fault zone head waves and direct P arrivals, Pure Applied Geophysics, 171(11), 2993–3011, doi:10.1007/s00024-014- 0784-0.

Upload: others

Post on 24-May-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Modeling earthquake source processes: from tectonics to dynamic rupture

Appendix C, References cited Aagaard, B.T., and T. H. Heaton (2004). Near-Source Ground Motions from Simulations of Sustained Intersonic and

Supersonic Fault Ruptures. Bulletin of the Seismological Society of America; 94 (6): 2064–2078. Aagaard, B.T., Heaton, T.H., and J.F Hall (2001). Dynamic Earthquake Ruptures in the Presence of Lithostatic Normal

Stresses: Implications for Friction Models and Heat Production Bulletin of the Seismological Society of America, v. 91, p. 1765-1796, doi:10.1785/0120000257.

Aagaard, B. T., Knepley, M. G. and C. A. Williams (2013), A domain decomposition approach to implementing fault slip in

finite-element models of quasi-static and dynamic crustal deformation, Journal of Geophysical Research, 118, 3059–3079, doi: 10.1002/jgrb.50217.

Aben, F. M., Doan, M.-L., Gratier, J.-P. and F. Renard (2017), Coseismic Damage Generation and Pulverization in Fault

Zones: Insights From Dynamic Split-­‐Hopkinson Pressure Bar Experiments, in Fault Zone Dynamic Processes, vol. 227, edited by M. Y. Thomas, T. M. Mitchell, and H. S. Bhat, pp. 47–80, John Wiley and Sons, Inc.

Abercrombie, R. E. (2014), Stress drops of repeating earthquakes on the San Andreas Fault at Parkfield, Geophys. Res.

Lett., 41, 8784–8791, doi:10.1002/2014GL062079. Abercrombie, R. E. (2015), Investigating uncertainties in empirical Green's function analysis of earthquake source

parameters. Journal of Geophysical Research, 120, 4263–4277. doi: 10.1002/2015JB011984. Abercrombie, R. E., and J. Mori (1996), Occurrence patterns of foreshocks to large earthquakes in the western United

States, Nature, 381, pp. 303–307. Abercrombie, R. E., and J.R., Rice (2005). Can observations of earthquake scaling constrain slip weakening? Geophysical

Journal International, 162(2), 406–424. https://doi.org/10.1111/j.1365-246X.2005.02579.x Abercrombie, R. E. and P. Shearer, (2018). Towards Improved Stress Drop Measurement: A Detailed Comparison of

Contrasting Approaches. Annual American Geophysical Union Fall Meeting. Adams M., Twardzik C., and C. Ji (2016), Exploring the uncertainty range of coseismic stress drop estimations of large

earthquakes using finite fault inversions. Geophysical Journal International, 208 (1):86-100. Ader, T. J., N. Lapusta, J.-P. Avouac, and J.-P. Ampuero (2014), Response of rate-and-state seismogenic faults to

harmonic shear-stress perturbations, Geophys. J. Int., 198. Aguiar, A. C. and G. C. Beroza (2014), PageRank for earthquakes, Seismology Research Letters, 85(2):344-50. Aharonov, E., and C. H. Scholz (2019), The Brittle-­‐Ductile Transition Predicted by a Physics-­‐based Friction Law, J.

Geophys. Res. Solid Earth, doi: 10.1029/2018JB016878 Aki, K. (1981). A Probabilistic Synthesis of Precursory Phenomena. Earthquake Prediction: An International Review 4:

566–74. Allam, A. A. and Y. Ben-Zion (2012), Seismic velocity structures in the Southern California plate-boundary environment

from double-difference tomography, Geophys. J. Int., 190, 1181–1196, doi: 10.1111/j.1365-246X.2012.05544.x. Allam, A. A., Y. Ben-Zion, and Z. Peng (2014), Seismic imaging of a bimaterial interface along The Hayward Fault, CA, with

fault zone head waves and direct P arrivals, Pure Applied Geophysics, 171(11), 2993–3011, doi:10.1007/s00024-014-0784-0.

1

Allison, K. L., and E.M. Dunham (2018). Earthquake cycle simulations with rate-and-state friction and power-law viscoelasticity. Tectonophysics, 733, 232–256. https://doi.org/10.1016/j.tecto.2017.10.021

Allix, O., and F. Hild (2002), Continuum Damage Mechanics of Materials and Structures, Elsevier. Allmann, B. P., and P. M. Shearer (2009), Global variations of stress drop for moderate to large earthquakes, Journal of

Geophysical Research, 114, B01310, doi:10.1029/2008JB005821. Ampuero, J.P., and Y. Ben-Zion (2008), Cracks, pulses and macroscopic asymmetry of dynamic rupture on a bimaterial

interface with velocity-weakening friction. Geophysical Journal International 173 (2), 674-692. Ampuero, J. P., and X. Mao (2017), Upper limit on damage zone thickness controlled by seismogenic depth, in Fault Zone

Dynamic Processes:, vol. 227, edited by M. Y. Thomas, T. M. Mitchell, and H. S. Bhat, p. 243, ,John Wiley and Sons, Inc.

Ampuero, J. P., and A. M., Rubin (2008). Earthquake nucleation on rate and state faults–Aging and slip laws. Journal of

Geophysical Research, 113 (B1). Anders, M. H., & Wiltschko, D. V. (1994). Microfracturing, paleostress and the growth of faults. Journal of Structural

Geology, 16(6), 795-815. Anderson, E. M. (1951), The Dynamics of Faulting, 2nd ed., 206 pp., Oliver and Boyd, Edinburgh, Scotland. Ando, M. (2001), Geological and geophysical studies of the Nojima Fault from drilling: An outline of the Nojima Fault zone

probe, Island Arc, 10(3-4), 206-214. Ando, M., and Y. Kaneko (2018). Dynamic rupture simulation reproduces spontaneous multi-fault rupture and arrest during

the 2016 Mw 7.9 Kaikoura earthquake, Geophysical Research Letters, 45, 12,875–12,883. https://doi.org/10.1029/2018GL080550

Andrade, J. E., and C. F., Avila (2012). Granular element method (GEM): linking inter-particle forces with macroscopic

loading. Granular Matter, 14(1), 51-61. Andrews, D. J. (1976). Rupture velocity of plane strain shear crack, Journal of Geophysical Research, 81(32), 5679-5687. Andrews, D. J., (2002), A fault constitutive relation accounting for thermal pressurization of pore fluid, Journal of

Geophysical Research, 107(B12), 2363, doi:10.1029/2002JB001942. Andrews, D. J. (2005). Rupture dynamics with energy loss outside the slip zone. Journal of Geophysical Research: Solid

Earth, 110(B1). Andrews, D. J., and M. Barall (2011). Specifying initial stress for dynamic heterogeneous earthquake source models,

Bulletin of the Seismological Society of America, 101, no. 5, 2408–2417, doi:10.1785/0120110012. Andrews, D. J., and Y. Ben-­‐Zion (1997), Wrinkle-­‐like slip pulse on a fault between different materials, Journal of

Geophysical Research: Solid Earth 102 (B1), 553-571, 1997. Andrews, D. J., and S. Ma (2016), Validating a dynamic earthquake model to produce realistic ground motion, Bull.

Seismol. Soc. Am., 106, 665–672, doi: 10.1785/0120150251. Angiboust, S., J. Kirsch, O. Oncken, J. Glodny, P. Monie, and E. Rybacki (2015), Probing the transition between

seismically coupled and decoupled segments along an ancient subduction interface, Geochemistry Geophysics Geosystems, 5, 1905–1922, doi:10.1002/2015GC005776.

Aochi, H. (2003), The role of fault continuity at depth in numerical simulations of earthquake rupture, Bulletin of the

Earthquake Research Institute, 78, 75-82. Aochi, H., and M. Matsu'ura (2002). Slip- and Time-dependent Fault Consitutive Law and its Significance in Earthquake

Generation Cycles. Pure and Applied Geophysics, 159, 9, 2029-2044.

2

Araki, E., Saffer, D. M., Kopf, A. J., Wallace, L. M., Kimura, T., Machida, Y., et al. (2017). Recurring and triggered slow-slip events near the trench at the Nankai Trough subduction megathrust. Science, 356(6343), 1157–1160. https://doi.org/10.1126/science.aan3120

Archard, F, J. (1959). The Temperature of Rubbing Surfaces, Wear, Vol. 2, Iss. 6., https://doi.org/10.1016/0043-

1648(59)90159-0 Archuleta, R.J. (1984). A faulting model for the 1979 Imperial Valley earthquake, Journal of Geophysical Research: Solid

Earth 89, B6, 4559-4585. Ashby, M. F., and C. G. Sammis (1990), The damage mechanics of brittle solids in compression, Pure and Applied

Geophysics 133, 489–521. Atkinson, M., Carpené, M., Casarotti, E., Claus, S., Filgueira, R., Frank, A., Galea, M., Garth, T., Gemünd, A., Igel, H. and

I., Klampanos (2015). VERCE delivers a productive e-Science environment for seismology research. Proceedings of the 2015 IEEE 11th International Conference on e-Science.Pages 224-236.

Avouac, J.-P. (2015) From geodetic imaging of seismic and aseismic fault slip to dynamic modeling of the seismic cycle.

Annual Reviews of Earth and Planetary Sciences 43, 233-271. Avouac, J.-P., Meng, L., Wei, S., Wang, T., and Ampuero, J. P. (2015). Lower edge of locked Main Himalayan Thrust

unzipped by the 2015 Gorkha earthquake. Nature Geoscience, 8(9), 708–711. https://doi.org/10.1038/ngeo2518 Bai, K., and J.-P. Ampuero (2017), Effect of seismogenic depth and background stress on physical limits of earthquake

rupture across fault step overs, Journal of Geophysical Research, 122, 10,280-210,298, doi:10.1002/2017/2017JB014848.

Bakun, W.H., B. Aagaard, B. Dost, W.L. Ellsworth, J.L. Hardebeck, R.A. Harris, C. Ji, M.J.S. Johnston, J. Langbein, J.J.

Lienkaemper, A.J. Michael, J.R. Murray, R.M. Nadeau, P.A. Reasenberg, M.S. Reichle, E. A. Roeloffs, A. Shakal, R.W., Simpson, and F. Waldhauser (2005), Implications for prediction and hazard assessment from the 2004 Parkfield earthquake, Nature 437, 969-974, doi:10.1038/nature04067.

Bakun, W. H., and T. V. McEvilly (1984). Recurrence Models and Parkfield, California, Earthquakes. Journal of

Geophysical Research 89 (B5): 3051–58. Bakhshian, S. & Sahimi, M. (2017), Adsorption-induced swelling of porous media. Int. J. Greenhouse Gas Control 57, 1–

13. Baltay A. S., Beroza, G. C., and S. Ide (2014). Radiated energy of great earthquakes from teleseismic empirical Green’s

function deconvolution. Pure and Applied Geophysics, 171(10):2841-62. Barall, M. (2009). A grid-doubling finite-element technique for calculating dynamic three-dimensional spontaneous rupture

on an earthquake fault, Geophysical Journal International, Volume 178, Issue 2, 1, Pages 845–859, https://doi.org/10.1111/j.1365-246X.2009.04190.x

Barbot, S., (2018). Asthenosphere flow modulated by megathrust earthquake cycles. Geophysical Research Letters 45,

6018–6031. https://doi.org/10.1029/2018GL078197. Barbot, S., Fialko, Y., and Y., Bock, (2009). Postseismic deformation due to the Mw 6.0 2004 Parkfield earthquake: Stress-

driven creep on a fault with spatially variable rate-state friction parameters. Journal of Geophysical Research: Solid Earth, 114(B7).

Barbot, S, Fialko Y. (2010). A unified continuum representation of post-seismic relaxation mechanisms: semi-analytic

models of afterslip, poroelastic rebound and viscoelastic flow. Geophysical Journal International. 182:1124-1140 Barbot, S., Lapusta, N., and Avouac, J. P. (2012). Under the hood of the earthquake machine: Toward predictive modeling

of the seismic cycle. Science, 336(6082), 707-710. Barnhart, W. D., J. R. Murray, R. W. Briggs, F. Gomez, C. P. J. Miles, J. Svarc, S. Riquelme, and B. J. Stressler (2016),

Coseismic slip and early afterslip of the 2015 Illapel, Chile, earthquake: Implications for frictional heterogeneity and coastal uplift, Journal of Geophysical Research Solid Earth., 121, 6172–6191, doi:10.1002/2016JB013124.

3

Bar-­‐Sinai, Y., R. Spatschek, E. A. Brener, and E. Bouchbinder (2014), On the velocity-­‐strengthening behavior of dry friction, Journal of Geophysical Research Solid Earth, 119, 1738–1748, doi:10.1029/2013JB010586.

Bartlow, N.  M., D.  A. Lockner, and N.  M. Beeler (2012), Laboratory triggering of stick-­‐slip events by oscillatory loading in the

presence of pore fluid with implications for physics of tectonic tremor, J. Geophys. Res., 117, B11411, doi:10.1029/2012JB009452.

Baumberger, T., and C. Caroli (2006), Solid friction from stick-­‐slip down to pinning and aging, Advances in Physics 55,

279–348. Bayart, E., Svetlizky, I., and J., Fineberg. (2016). Fracture mechanics determine the lengths of interface ruptures that

mediate frictional motion. Nature Physics, 12(2), 166–170. https://doi.org/10.1038/nphys3539. Becker, T. W. (2018). Research Collaboration Network: Planning for a Modeling Collaboratory for Subduction Zone

Science. Proposal submitted to the National Science Foundation in 2018. Available online at http://www-udc.ig.utexas.edu/external/becker/sz4dmcs/ftp/nsf_proposal_rev18.pdf.

Becker, T. W., Hashima, A., Freed, A. M., and H. Sato (2018), Stress change before and after the 2011 M9 Tohoku-oki

earthquake. Earth Planet Sci. Lett., 504, 174-184. Beeler, N. M., D. L. Lockner, and S. H. Hickman (2001), A simple stick-slip and creep-slip model for repeating earthquakes

and its implication for microearthquakes at Parkfield, Bull. Seismol. Soc. Am., 91, pp. 1797– 1804. Beeler, N. (2009), Constructing constitutive relationships for seismic and aseismic fault slip, Pure and Applied

Geophysics166(10), 1775–1798, doi:10.1007/s00024-009-0523-0. Beeler, N. M., Hirth, G., Thomas, A., and R., Burgmann (2016). Effective stress, friction, and deep crustal faulting. Journal

of Geophysical Research: Solid Earth, 121(2), 1040-1059. Beeler, N. M., Hirth, G., Tullis, T. E., and C. H., Webb (2018a). On the Depth Extent of Coseismic Rupture. Bulletin of the

Seismological Society of America, 108(2), 761–780. https://doi.org/10.1785/0120160295. Beeler, N. M., Thomas, A., Bürgmann, R., and D., Shelly (2018b). Constraints on friction, dilatancy, diffusivity, and effective

stress from low-­‐frequency earthquake rates on the deep San Andreas Fault. Journal of Geophysical Research: Solid Earth, 123, 583–605. https://doi.org/10.1002/2017JB015052.

Beeler, N. M., Tullis, T. E., and D. L., Goldsby (2008). Constitutive relationships and physical basis of fault strength due to

flash heating. Journal of Geophysical Research: Solid Earth, 113(B1). Beeler, N. M., Tullis, T. E., Kronenberg, A. K. and L. A. Reinen (2007), The instantaneous rate dependence in low

temperature laboratory rock friction and rock deformation experiments, Journal of Geophysical Research, 112, B07310, doi:10.1029/2005JB003772.

Beeler, N. M., Tullis, T. E., and Weeks, J. D. (1994). The roles of time and displacement in the evolution effect in rock

friction. Geophysical Research Letters, 21(18), 1987-1990. Behr, W., A. Kotowski, and K. Ashley (2018), Dehydration-induced rheological heterogeneity and the deep tremor source in

subduction zones, Geology, in press. Behr, W.M., and J.P. Platt (2011), A naturally constrained stress profile through the middle crust in an extensional terrane,

Earth and Planetary Science Letters, 303, 181-192, 2011. Behr, W. M., and J. P. Platt (2014), Brittle faults are weak, yet the ductile middle crust is strong: Implications for lithospheric

mechanics, Geophys. Res. Lett., 41, 8067–8075, doi:10.1002/ 2014GL061349. Ben-David, O., Cohen, G., and Fineberg, J. (2010). The dynamics of the onset of frictional slip. Science, 330(6001), 211–4.

https://doi.org/10.1126/science.1194777. Bense, V.F., Gleeson, T., Loveless, S.E., Bour, O., and J. Scibek (2013), Fault zone hydrogeology. Earth Science Reviews

v. 127, 171-192

4

Bense, V. F., Shipton, Z. K., Kremer, Y. and Kampman, N. (2016), Fault zone hydrogeology: introduction to the special issue. Geofluids, 16: 655-657. doi:10.1111/gfl.12205

Ben-Zion, Y., (1996). Stress, slip and earthquakes in models of complex single-fault systems incorporating brittle and creep

deformations, Journal Geophysical Research, 101, 5677-5706.

Ben-Zion, Y. and Andrews, D. J. (1998), Properties and Implications of Dynamic Rupture Along a Material Interface, Bull. Seismol., Soc. Am. 88, 1085–1094.

Ben-Zion, Y. (2001), Dynamic ruptures in recent models of earthquake faults. J. Mech. Phys. Solids 49, 2209–2244.

Ben-Zion, Y. (2008), Collective Behavior of Earthquakes and Faults: Continuum-Discrete Transitions, Progressive Evolutionary Changes, and Different Dynamic Regimes. Reviews of Geophysics 46 (4): 3604.

Ben-Zion, Y., and J. P., Ampuero (2009). Seismic radiation from regions sustaining material damage. Geophysical Journal

International, 178(3), 1351-1356. Ben-Zion, Y., K. Dahmen, V. Lyakhovsky, D. Ertas and A. Agnon (1999). Self-Driven Mode Switching of Earthquake

Activity on a Fault System, Earth and Planetary Science Letters, 172/1-2, 11-21. Ben-Zion, Y., Eneva, M. and Y. Liu (2003). Large Earthquake Cycles and Intermittent Criticality On Heterogeneous Faults

Due To Evolving Stress and Seismicity, Journal of Geophysical Research, 108 (B6), Art. No. 2307, doi:10.1029/2002JB002121.

Ben-Zion, Y., and V. Lyakhovsky (2002), Accelerated seismic release and related aspects of seismicity patterns on

earthquake faults, Pure and Applied Geophysics 159(10), 2385–2412, doi:10.1007/s00024-002-8740-9. Ben-Zion, Y., and V. Lyakhovsky (2006), Analysis of aftershocks in a lithospheric model with seismogenic zone governed

by damage rheology, Geophys. J. Int., 165, 197–210, doi:10.1111/j.1365-246X.2006.02878.x. Ben-Zion, Y., and P. Malin (1991), San Andreas fault zone head waves near Parkfield, California, Science, 251(5001),

1592–1594. Ben-Zion, Y., and J.R. Rice. (1993). Earthquake Failure Sequences along a Cellular Fault Zone in a Three-Dimensional

Elastic Solid Containing Asperity and Nonasperity Regions. Journal of Geophysical Research, Stanford Univ. Publ. Geol. Sci., 98 (B8): 14109–31.

Ben-Zion, Y., and J.R. Rice (1995). Slip patterns and earthquake populations along different classes of faults in elastic

solids. Journal of Geophysical Research: Solid Earth 100 (B7), 12959-12983. Ben-Zion, Y., and J.R. Rice (1997). Dynamic simulations of slip on a smooth fault in an elastic solid. Journal of Geophysical

Research: Solid Earth 102 (B8), 17771-17784. Ben-Zion, Y., and C. G. Sammis (2003), Characterization of fault zones, Pure and Applied Geophysics 160 (3-4), 677-715. Ben-Zion, Y. and Z. Shi (2005). Dynamic rupture on a material interface with spontaneous generation of plastic strain in the

bulk, Earth and Planetary Science Letters, 236, 486-496, DOI: 10.1016/j.epsl.2005.03.025. Ben-Zion, Y., Z. Peng, D. Okaya, L. Seeber, J. G. Armbruster, N. Ozer, A. J. Michael, S. Baris and M. Aktar (2003). A

shallow fault zone structure illuminated by trapped waves in the Karadere-Duzce branch of the North Anatolian Fault, western Turkey, Geophysical Journal International, 152, 699-717.

Ben-Zion Y, Vernon FL, Ozakin Y, Zigone D, Ross ZE, Meng H, White M, Reyes J, Hollis D, and M. Barklage (2015). Basic

data features and results from a spatially dense seismic array on the San Jacinto fault zone. Geophysical Journal International;202(1):370-80.

Benioff, H. (1951), Earthquakes and rock creep, Bull. Seismol. Soc. Am., 41, 31–62. Beroza, G. C., and T. Mikumo (1996), Short slip duration in dynamic rupture in the presence of heterogeneous fault

properties, J. Geophys. Res., 101(B10), 22449–22460, doi:10.1029/96JB02291.

5

Beroza, G.C., and S., Ide (2011). Slow earthquakes and nonvolcanic tremor. Annual Review of Earth and Planetary Science 39, 271–296. https://doi.org/10.1146/annurev-earth-040809- 152531.

Beroza GC, Kanamori H (2007), Comprehensive overview. In: Schubert G (ed) Earthquake seismology. Treatise on

Geophysics, vol 4.01. Elsevier, New York, pp 1–58. Berryman, K. R., Cochran, U. A., Clark, K. J., Biasi, G. P., Langridge, R. M. and P. Villamor (2012). Major Earthquakes

Occur Regularly on an Isolated Plate Boundary Fault. Science 336 (6089): 1690–93. Berthé, D., Choukroune, P., Jegouzo, P., (1979). Orthogneiss, mylonite and non-coaxial deformation of granites: the

example of the South American Shear Zone. J. Struct. Geol. 1, 31–42. Berthoud, T., Baumberger, T., G’Sell, C. and J.-M. Hiver (1999). Physical analysis of the state- and rate-dependent friction

law: Static friction, Physics Review B 59, 14313 Bhat, H. S., Biegel, R. L., Rosakis, A. J and C. G., Sammis (2010). The Effect of Asymmetric Damage on Dynamic Shear

Rupture Propagation II: With Mismatch in Bulk Elasticity, Tectonophysics, 2011 Special Edition on Supershear Ruptures, Vol. 493, Issue 3-4pp. 263-271.

Bhat, H.S., Dmowska, R., King, G.C.P., Klinger, Y., and J. R., Rice (2007). Off-fault damage patterns due to supershear

ruptures with application to the 2001 Mw 8.1 Kokoxili (Kunlun) Tibet earthquake. Journal of Geophysical Research 112, B06301.

Bhat, H. S., Rosakis, A. J. and C. G. Sammis (2012), A Micromechanics Based Constitutive Model for Brittle Failure at

High Strain Rates, Journal of Applied Mechanics 79(3), 031016, doi:10.1115/1.4005897. Bhattacharya, P., Rubin, A. M. and N. M. Beeler (2017), Does fault strengthening in laboratory rock friction experiments

really depend primarily upon time and not slip?, Journal of Geophysical Research Solid Earth, 122, 6389–6430, doi:10.1002/2017JB013936.

Bhattacharya, P., Rubin, A. M., Bayart, E., Savage, H. M., and C. Marone (2015), Critical evaluation of state evolution laws

in rate and state friction: Fitting large velocity steps in simulated fault gouge with time-­‐, slip-­‐, and stress-­‐dependent constitutive laws, Journal of Geophysical Research Solid Earth, 120, 6365–6385, doi:10.1002/2015JB012437.

Biasi, G.P., and S.G Wesnousky (2016). Steps and gaps in ground ruptures: empirical bounds on rupture propagation,

Bulletin of the Seismological Society of America 106(3), 1110-1124, https://doi.org/10.1785/0120150175. Biasi, G.P., and S.G Wesnousky (2017). Bends and ends of surface ruptures, Bulletin of the Seismological Society of

America 107(6), 2543-2560, https://doi.org/10.1785/0120160292. Biegel, R. L., Bhat, H. S., Sammis, C. G., and A. J., Rosakis (2010). The Effect of Asymmetric Damage on Dynamic Shear

Rupture Propagation I: No Mismatch in Bulk Elasticity, Tectonophysics, 2011 Special Edition on Supershear Ruptures, Vol. 493, Issue 3-4, pp. 254-262, 2010.

Bilham R., Singh B., Bhat I. & Hough S. (2010). Historical earthquakes in Srinagar, Kashmir: Clues from the Shiva Temple

at Pandrethan. In: Sintubin M., Stewart I.S., Niemi T.M. & Altunel E. (eds) Ancient Earthquakes. Geological Society of America, Special Papers, 471, 110–117.

Bindi, D., Cotton, F., Spallarossa, D., Picozzi, M., and E. Rivalta (2018). Temporal Variability of Ground Shaking and Stress

Drop in Central Italy: A Hint for Fault Healing?. Bulletin of the Seismological Society of America, 108(4):1853-63. Bindschadler, R. A., King, M.A., and R. B., Alley (2003), Anandakrishnan S, Padman L. Tidally controlled stick-slip

discharge of a West Antarctic ice. Science, 301(5636):1087-9. Bizzarri, A., and M. Cocco (2003), Slip-­‐weakening behavior during the propagation of dynamic ruptures obeying rate-­‐ and

state-­‐dependent friction laws, Journal of Geophysical Research, 108, 2373, doi:10.1029/2002JB002198, B8. Bizzarri, A., and M. Cocco (2006), A thermal pressurization model for the spontaneous dynamic rupture propagation on a

three-­‐dimensional fault: 1. Methodological approach, Journal of Geophysical Research, 111, B05303, doi:10.1029/2005JB003862.

6

Bizzarri, A., Dunham, E.M., and P. Spudich (2010), Coherence of Mach fronts during heterogeneous supershear earthquake rupture propagation: Simulations and comparison with observations, Journal of Geophysical Research, 115, B08301, doi:10.1029/2009JB006819.

Blanpied, M. L., Lockner, D. A. and J. D. Byerlee (1991), Fault stability inferred from granite sliding experiments at

hydrothermal conditions, Geophysical Research Letters, 18(4), 609-612. Blanpied, M. L., Lockner D. A. and J. D. Byerlee (1995). Frictional slip of granite at hydrothermal conditions, Journal of

Geophysical Research, 100, 13045-13064. Boatwright, J., and G. L. Choy (1986), Teleseismic estimates of the energy radiated by shallow earthquakes, J. Geophys.

Res., 91(B2), 2095–2112, doi:10.1029/JB091iB02p02095. Bock, Y., Melgar, D., and Crowell, B. W. (2011). Real-Time Strong-Motion Broadband Displacements from Collocated GPS

and Accelerometers. Bulletin of the Seismological Society of America, 101(6), 2904–2925. https://doi.org/10.1785/0120110007

Boettcher, M. S., McGarr, A., and M. Johnston (2009). Extension of Gutenberg-Richter Distribution to M W −1.3, No Lower

Limit in Sight. Geophysical Research Letters 36 (10): 237. Bohnhoff, M., P., Martínez-Garzón, F. Bulut, F., E. Stierle and Y. Ben-Zion (2016). Maximum earthquake magnitudes in

relation to fault zone evolution: The case of the North Anatolian Fault Zone, Tectonophysics, 674, 147-165, doi:10.1016/j.tecto.2016.02.028.

Bos, B., Peach, C.J., and C. J., Spiers (2000). Frictional-viscous flow of simulated fault gouge caused by the combined

effects of phyllosilicates and pressure solution. Tectonophysics 327 (3-4), 173e194. Bos, B., and C. J., Spiers (2001). Experimental investigation into the microstructural and mechanical evolution of

phyllosilicate-bearing fault rock under conditions favouring pressure solution. Journal of Structural Geology 23 (8), 1187e1202.

Böse, M., and Heaton, T. H. (2010). Probabilistic prediction of rupture length, slip and seismic ground motions for an

ongoing rupture: Implications for early warning for large earthquakes. Geophysical Journal International, 183(2), 1014-1030.

Bosl, W. J., and A. Nur (2002), Aftershocks and pore fluid diffusion following the 1992 Landers earthquake, J. Geophys.

Res., 107(B12), 2366, doi:10.1029/2001JB000155. Bostock, M. G., Thomas, A. M., Savard, G., Chuang, L., and A. M. Rubin (2015), Magnitudes and moment-duration scaling

of low-frequency earthquakes beneath southern Vancouver Island, Journal of Geophysical Research Solid Earth, 120, 6329–6350, doi:10.1002/2015JB012195.

Bouchon, M., M. P. Bouin, H. Karabulut, M. N. Toksoz, M. Dietrich, and A. J. Rosakis (2001), How fast is rupture during an

earthquake? New insights from the 1999 Turkey earthquakes, Geophys. Res. Lett., 28, 2723 – 2726. Bouchon, M., Durand, V., Marsan, D., Karabulut, H. and Schmittbuhl,J. (2013) The long precursory phase of most large

interplate earthquakes. Nature Geosci. 6, 299–302. Bouchon, M., and H. Karabulut (2002). A note on seismic activity near the eastern termination of the ̇Izmit rupture in the

hours preceding the Du ̈zce earthquake, Bull. Seism. Soc. Am. 92, no. 1, 406–410. Bouchon, M., H. Karabulut, M. Aktar, S. Ozalaybey, J. Schmittbuhl, and M. P. Bouin (2011), Extended nucleation of the

1999 Mw 7.6 Izmit earthquake, Science, 331, pp. 877–880. Bouchon M., Toksöz, N., Karabulut, H., Bouin, M.P., Dietrich, M., Aktar, M., and M., Edie (2000). Seismic imaging of the

1999 Izmit (Turkey) rupture inferred from the near-­‐fault recordings. Geophysical Research Letters, 27(18):3013-6. Bouchon, M. and M., Vallée (2003). Observation of long supershear rupture during the magnitude 8.1 Kunlunshan

earthquake. Science 301, 824–826.

7

Boulton, C., C. D. Menzies, V. G. Toy, J. Townend and R. Sutherland (2017). Geochemical and microstructural evidence for interseismic changes in fault zone permeability and strength, Alpine Fault, New Zealand. Geochemistry, Geophysics, Geosystems 18(1): 238-265.

Bourne, S. J., Oates, S. J. van Elk, J., and D. Doornhof (2014), A seismological model for earthquakes induced by fluid

extraction from a subsurface reservoir, Journal of Geophysical Research-Solid Earth, 119(12), 8991-9015. Bourouis, S., and P. Bernard (2007), Evidence for coupled seismic and aseismic fault slip during water injection in the

geothermal site of Soultz (France), and implications for seismogenic transients, Geophysical Journal International, 169(2), 723-732.

Brace, W. F., and E. G. Bombolakis (1963), A Note on Brittle Crack Growth in Compression, Journal of Applied Mechanics

68, 3709–3713. Bradbury, K. K., Evans, J. P., Chester, J.S., Chester, F.M., and D. L. Kirschner (2011), Lithology and internal structure of

the San Andreas fault at depth based on characterization of Phase 3 whole-rock core in the San Andreas Fault Observatory at Depth (SAFOD) borehole, Earth and Planetary Science Letters, 310(1-2), 131-144.

Brantut, N. (2018). Time-resolved tomography using acoustic emissions in the laboratory, and application to sandstone

compaction. Geophysical Journal International, 213 (3), 2177-2192. doi:10.1093/gji/ggy068 Brantut, N., Heap, M. J., Meredith, P. G., and P., Baud (2013). Time-dependent cracking and brittle creep in crustal rocks:

A review. Journal of Structural Geology, 52, 17-43. doi:10.1016/j.jsg.2013.03.007 Brantut, N. (2015), Time-dependent recovery of microcrack damage and seismic wave speeds in deformed limestone,

Journal of Geophysical Research Solid Earth, 120(12), 8088–8109, doi:10.1002/2015JB012324.

Brantut, N., and J. R. Rice (2011), How pore fluid pressurization influences crack tip processes during dynamic rupture, Geophys. Res. Lett., 38, L24314, doi:10.1029/2011GL050044.

Brantut, N., Schubnel, A., Corvisier, J., and J., Sarout (2010). Thermochemical pressurization of faults during coseismic

slip. Journal of Geophysical Research: Solid Earth, 115(B5). Brechet, Y., and Y. Estrin (1994), The effect of strain rate sensitivity on dynamic friction of metals, Scripta Metal. Materialia,

30, 1449–1454. Brenguier, F., Campillo, M., Hadziioannou, C., Shapiro, N.M., Nadeau, R.M., and E., Larose (2008). Postseismic relaxation

along the San Andreas fault at Parkfield from continuous seismological observations. Science, 321(5895):1478-81. Breuer, A., Heinecke, A., Rettenberger, S., Bader, M., Gabriel, A.A. and C., Pelties (2014). Sustained petascale

performance of seismic simulations with Seissol on SuperMuc. In International Supercomputing Conference (ISC) Proceedings, Lecture Notes in Computer Science, vol. 8488, pp. 1-18, Springer International Publishing, doi:10.1007/978-3-319-07518-1_1, PRACE ISC Award Winning Paper.

Brietzke, G. B., A. Cochard, and H. Igel (2009), Importance of biomaterial interfaces for earthquake dynamics and strong

ground motion, Geophysical Journal International, 178, 921–938, doi:10.1111/j.1365-246X.2009.04209.x. Brizzi, S., van Zelst, I., van Dinther, Y., Funiciello, F. and F. Corbi (2017). How long-term dynamics of sediment subduction

controls short-term dynamics of seismicity, AGU Fall Meetings Abstracts, New Orleans, US. Brodie, K. H. (1980). Variations in mineral chemistry across a shear zone in phlogopite peridotite. Journal of Structural

Geology, 2(1-2), 265-272. Brodsky, E. E., Gilchrist, J. J., Sagy, A., and C., Collettini (2011). Faults smooth gradually as a function of slip. Earth and

Planetary Science Letters 302, n. 1-2, 185-193. Brodsky, E. E., and H. Kanamori, Elastohydrodynamic lubrication of faults (2001), Journal of Geophysical Research, 106,

16,357 – 16,374. Brodsky, E E, J.D. Kirkpatrick, and T Candela (2016). Constraints from Fault Roughness on the Scale-Dependent Strength

of Rocks. Geology 44: 19–22.

8

Brodsky, E. E., and T. Lay (2014). Recognizing foreshocks from the 1 April 2014 Chile earthquake, Science, 344, 700-702. Brodsky, E. E., and S.G. Prejean (2005). New constraints on mechanisms of remotely triggered seismicity at Long Valley

Caldera. Journal of Geophysical Research, 110(B4). Brown, J. R., Beroza, G. C. and D. R. Shelly (2008), An autocorrelation method to detect low frequency earthquakes within

tremor, Geophysical Research Letters, 35, L16305, doi:10.1029/2008GL034560. Brown, J. R., Beroza, G. C., Ide, S., Ohta, K., Shelly, D. R., Schwartz, S.Y., Rabbel, W., Thorwart, M., and H. Kao (2009),

Deep low-­‐frequency earthquakes in tremor localize to the plate interface in multiple subduction zones, Geophysical Research Letters, 36, L19306, doi:10.1029/2009GL040027.

Brown, K. and Y. Fialko (2012). ‘Melt welt’ mechanism of extreme weakening of gabbro at seismic slip rate. Nature, 488,

638- 642. doi:10.1038/nature11370. Brown, S. R. and C. H., Scholz (1985). Broad bandwidth study of the topography of natural rock surfaces. Journal of

Geophysical Research: Solid Earth 90, B14, 12575-12582. Bruhat, L., Barbot, S. and J.-­‐P. Avouac (2011), Evidence for postseismic deformation of the lower crust following the 2004

Mw6.0 Parkfield earthquake, Journal of Geophysical Research, 116, B08401. Bruhat, L., Fang, Z., and E.M. Dunham (2016). Rupture complexity and the supershear transition on rough faults, Journal

of Geophysical Research Solid Earth 121, 1 210-224, https://doi.org/10.1002/2015JB012512. Bruhat L., and P. Segall (2016), Coupling on the northern Cascadia subduction zone from geodetic measurements and

physics-based models, Journal of Geophysical Research: Solid Earth, 121, doi:10.1002/2016JB013267. Brun, J. B., and P. R. Cobbold (1980), Strain heating and thermal softening in continental shear zones: A review, Journal of

Structural Geology 2, 149-158, doi:10.1016/0191-8141(80)90045-0. Brune, J. N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes, J. Geophys. Res. 75, 4997–5009. Brune, J. N., T. L. Henyey, and R. F. Roy (1969), Heat flow, stress, and rate of slip along the San Andreas Fault, California,

J. Geophys. Res., 74(15), 3821 – 3827. Bulut, F., Y. Ben-Zion, and M. Bohnhoff (2012), Evidence for a bimaterial interface along the Mudurnu segment of the

North Anatolian Fault Zone from polarization analysis of P waves, Earth and Planetary Science Letters, 327, 17–22. Burnley, P. C., & Zhang, D. (2008). Interpreting in situ x-ray diffraction data from high pressure deformation experiments

using elastic–plastic self-consistent models: an example using quartz. Journal of Physics: Condensed Matter, 20(28), 285201.

Bürgmann, R., Chadwell, C.D., (2014). Seafloor geodesy. Annu. Rev. Earth Planet. Sci.42, 509–534.

https://doi.org/10.1146/annurev-earth-060313-054953. Bürgmann, R. (2018), The Geophysics, Geology and Mechanics of Slow Fault Slip, Earth and Planetary Science Letters

495, 112–134, doi:10.1016/j.epsl.2018.04.062. Bürgmann, R., and G. Dresen (2008), Rheology of the lower crust and upper mantle: Evidence from rock mechanics,

geodesy, and field observations, Annual Review of Earth and Planetary Science 36, 531‚567, doi:10.1146/ annurev.earth.36.031207.124326.

Bürgmann, R., Ergintav, S., Segall, P., Hearn, E.H., McClusky, S., Reilinger, R., Woith,, H., and J. Zschau (2002), Time-

dependent distributed afterslip on and deep below the Izmit earthquake rupture, Bulletin of the Seismological Society of America , 92(1), 126–137.

Bürgmann, R., Schmidt, D., Nadeau, R. M., d’Alessio, M., Fielding, E., Manaker, D., McEvilly, T.V., and M. H. Murray

(2000), Earthquake potential along the northern Hayward fault, California, Science, 289, 1178 – 1182.

9

Burridge, R. (1969). The numerical solution of certain integral equations with non-integrable kernels arising in the theory of crack propagation and elastic wave diffraction, Philosophical Transactions of the Royal Society of London, Series A, 265, 353-381.

Burridge, R. (1973), Admissible speeds for plane-­‐strain self-­‐similar shear cracks with friction but lacking cohesion,

Geophys. J. R. Astron. Soc., 35, 439–455. Burridge, R., and L. Knopoff (1967). Model and Theoretical Seismicity. Bulletin of the Seismological Society of America 57

(3): 341–71. Bydlon, S. A., and E. M. Dunham (2015), Rupture dynamics and ground motions from earthquakes in 2-­‐D heterogeneous

media. Geophys. Res. Lett., 42, 1701–1709. doi: 10.1002/2014GL062982. Byerlee, J. D. (1968). Brittle-ductile transition in rocks. Journal of Geophysical Research, 73(14), 4741-4750. Byerlee, J. (1978). Friction of rocks. Pure and Applied Geophysics, 116(4), 615–626. https://doi.org/10.1007/BF00876528. Byerlee, J. (1990), Friction, overpressure and fault normal compression, Geophysical Research Letters, 17(12), 2109–

2112, doi:10.1029/ GL017i012p02109. Caine, J. S., Evans, J.P. and C. B. Forster (1996), Fault zone architecture and permeability structure, Geology, 24(11),

1025-1028. Candela, T. and E. E., Brodsky (2016) The minimum scale of grooving on faults. Geology 44, n. 8, 603-606. Candela, T., Renard, F., Bouchon, M., Brouste, A., Marsan, D., Schmittbuhl, J., and C. Voisin (2009). Characterization of

Fault Roughness at Various Scales: Implications of Three-Dimensional High-Resolution Topography Measurements. Pure and Applied Geophysics 166 (10): 1817–51.

Candela T., Renard, F., Bouchon, M., Schmittbuhl J. and E. E., Brodsky (2011). Stress drop during earthquakes: effect of

fault roughness scaling. Bulletin of the Seismological Society of America,101(5):2369-87. Cappa, F., Guglielmi, Y., Rutqvist, J., Tsang, C. and A. Thoraval (2006), Hydromechanical modelling of pulse tests that

measure fluid pressure and fracture normal displacement at the Coaraze Laboratory site, France, International Journal of Rock Mechanics and Mining Sciences, 43(7), 1062-1082.

Carpenter, B. M., Ikari, M. J., and C. Marone (2016). Laboratory observations of time-­‐dependent frictional strengthening

and stress relaxation in natural and synthetic fault gouges. Journal of Geophysical Research: Solid Earth, 121(2), 1183-1201.

Carpenter, B. M., C. Marone and D. M. Saffer (2011), Frictional strength of the San Andreas fault from laboratory

measurements of SAFOD drill samples, Nature Geoscience, 10.1038/ngeo1089. Carpenter, B. M., Saffer, D. M. and C. Marone (2012), Frictional properties and sliding stability of the San Andreas fault

from deep drill core, Geology, 40, 759–762; 10.1130/G33007. Carpenter, B. M., Saffer, D. M. and C. Marone (2015), Frictional properties of the active San Andreas Fault at SAFOD:

Implications for fault strength and slip behavior, Journal of Geophysical Research Solid Earth, 120, 5273–5289, 10.1002/ 2015JB011963.

Carter, N.L. and Tsenn, M.C., (1987). Flow properties of continental lithosphere. Tectonophysics, 136, 27–63. Cattania, C. and P. Segall (2018). Crack models of repeating earthquakes predict observed moment-recurrence scaling.

Journal of Geophysical Research Solid Earth, 124, 476–503. https://doi.org/10.1029/2018JB016056 Cembrano, J., González, G., Arancibia, G., Ahumada, I., Olivares, V., and Herrera, V. (2005). Fault zone development and

strain partitioning in an extensional strike-slip duplex: A case study from the Mesozoic Atacama fault system, Northern Chile. Tectonophysics, 400(1), 105–125. https://doi.org/10.1016/j.tecto.2005.02.012

Chang, K. W., and P. Segall (2016). Injection-­‐induced seismicity on basement faults including poroelastic stressing.

Journal of Geophysical Research: Solid Earth 121.4, 2708-2726.

10

Chang J.P., de Ridder S., and B. Biondi (2013). Power spectral densities and ambient noise cross-correlations at Long Beach. InSEG Technical Program Expanded Abstracts 2013 2013 Sep (pp. 2196-2200). Society of Exploration Geophysicists.

Chen, K. H., Bürgmann, R., Nadeau, R. M., Chen, T. and N. Lapusta (2010). Postseismic variations in seismic moment and

recurrence interval of repeating earthquakes. Earth and Planetary Science Letters 299, 118–125. Chen, K.H., Nadeau, R.M., and R.-J. Rau (2007). Towards a Universal Rule on the Recurrence Interval Scaling of

Repeating Earthquakes? Geophysical Research Letters 34 (16). https://onlinelibrary.wiley.com/doi/abs/10.1029/2007GL030554.

Chen, K. H., Tai, H.-­‐J., Ide, S., Byrne, T. B., and C.W. Johnson (2018). Tidal modulation and tectonic implications of

tremors in Taiwan. Journal of Geophysical Research: Solid Earth, 123, 5945–5964. https://doi.org/10.1029/2018JB015663.

Chen, J., Niemeijer, A., Yao, L. and S. Ma (2017), Water vaporization promotes coseismic fluid pressurization and buffers

temperature rise, Geophysical Research Letters, 44, 2177–2185, doi:10.1002/ 2016GL071932. Chen, J., & Spiers, C. J. (2016). Rate and state frictional and healing behavior of carbonate fault gouge explained using

microphysical model. Journal of Geophysical Research: Solid Earth, 121, 8642–8665. https://doi.org/10.1002/2016JB013470

Chen, T., and N. Lapusta (2009), Scaling of small repeating earthquakes explained by interaction of seismic and aseismic

slip in a rate and state fault model, Journal of Geophysical Research, 113, B01311, doi:10.1029/2008JB005749. Chen, W.-P., and P. Molnar (1983), Focal depths of intracontinental and intraplate earthquakes and their implications for

the thermal and mechanical properties of the lithosphere, Journal of Geophysical Research, 88(B5), 4183-4214. Chery, J., Zoback, M.D., Hickman, S., (2004). A mechanical model of the San Andreas fault and SAFOD pilot hole stress

measurements. Geophysical Research Letters 31 (15). Chester, F. M. (1994), Effects of temperature on friction: constitutive equations and experiments with quartz gouge, Journal

of Geophysical Research 99, No. B4, 7247–7261. Chester, F. M. (1995), A rheologic model for wet crust applied to strike-slip faults, Journal of Geophysical Research, 100,

13,033-13,044. Chester, F. M, and J. S., Chester (1998). Ultracataclasite structure and friction processes of the Punchbowl fault, San

Andreas system, California. Tectonophysics, 295(1), 199–221. https://doi.org/10.1016/S0040-1951(98)00121-8. Chester, F. M., and J. S. Chester (2000), Stress and deformation along wavy frictional faults, Journal of Geophysical

Research, 105(B10), 23421, doi:10.1029/2000JB900241. Chester, F. M., Chester, J.S., Kirschner, D.L., Schulz, S.E., and J. P. Evans (2004), Structure of large-displacement, strike-

slip fault zones, Rheol. Deform. Lithosph. Cont. Margins (eds Karner, G. D., Taylor, B., Driscoll, N. W. Kohlstedt, D. L.) (Columbia Univ. Press. New York).

Chester, F. M., Evans, J. P., and R. L. Biegel (1993). Internal structure and weakening mechanisms of the San Andreas

fault. Journal of Geophysical Research: Solid Earth, 98(B1), 771-786. Chester, F. M., and J. M. Logan (1987). Implications for mechanical properties of brittle faults from observations of the

Punchbowl fault zone, California. Pure and Applied Geophysics, 124(1-2), 79-106. Chester, F. M., and Logan, J. M. (1987). Composite planar fabric of gouge from the Punchbowl Fault, California. Journal of

Structural Geology, 9(5-6), 621-IN6. Chester, F. M., Rowe, C., Ujiie, K., Kirkpatrick, J., Regalla, C., Remitti, F. et al. (2013), Structure and composition of the

plate-boundary slip zone for the 2011 Tohoku-Oki earthquake, Science, 342(6163), 1208-1211. Chester, J. S., Chester, F.M. and A. K. Kronenberg (2005), Fracture surface energy of the Punchbowl fault, San Andreas

system, Nature, 437(7055), 133–136.

11

Chlieh, M., Avouac, J. -P., Sieh, K., Natawidjaja, D.H., and J. Galetzka (2008), Heterogeneous coupling of the Sumatran

megathrust constrained by geodetic and paleogeodetic measurements, Journal of Geophysical Research, 113, B05305, doi:10.1029/2007JB004981.

Cho, H. and E. M. Dunham (2010). Frequency Dependence of Radiation Patterns and Directivity Effects in Ground Motion

from Earthquakes on Rough Faults, Proceedings of the Southern California Earthquake Center Annual Meeting, Palm Springs.

Chounet, A., and M., Vallée (2018). Global and Interregion Characterization of Subduction Interface Earthquakes Derived

from Source Time Functions Properties. Journal of Geophysical Research: Solid Earth, 123(7), 5831–5852. https://doi.org/10.1029/2018JB015932

Cinti, F. R., Pantosti, D., De Martini, P.M., Pucci, S., Civico, R., Pierdominici, S., Cucci, L., Brunori, C.A., Pinzi, S. and A.

Patera (2011), Evidence for surface faulting events along the Paganica fault prior to the 6 April 2009 L’Aquila earthquake (central Italy), Journal of Geophysical Research Solid Earth, 116(7), 1–21, doi:10.1029/2010JB007988.

Cocco, M., and J. R. Rice (2002). Pore Pressure and Poroelasticity Effects in Coulomb Stress Analysis of Earthquake

Interactions. Journal of Geophysical Research 107 (B2): 25,533. Cocco M, Tinti E., and A., Cirella (2016). On the scale dependence of earthquake stress drop. Journal of Seismology.

20(4):1151-70. Cochard, A., and R. Madariaga (1994), Dynamic faulting under rate-dependent friction, Pure Appl. Geophys., 142, 419-

445. Cochard, A., Rice, J. R., (2000). Fault rupture between dissimilar materials: Ill-posedness, regularization, and slip-pulse

response. J. Geophys. Res. 105, 25891-25907. Cochran, E. S., Vidale, J. E. and S. Tanaka (2004), Earth tides can trigger shallow thrust fault earthquakes, Science 306

(5699), 1164-1166. Cochran, E.S., Li, Y.-G., Shearer, P.M., Barbot, S., Fialko, Y. and J. E. Vidale (2009). Seismic and geodetic evidence for

extensive, long-lived fault damage zones. Geology ; 37 (4): 315–318. doi: https://doi.org/10.1130/G25306A.1. Cochran, E. S., Ross, Z. E., Harrington, R.M., Dougherty, S.L., and J. L. Rubinstein (2018), Induced Earthquake Families

Reveal Distinctive Evolutionary Patterns Near Disposal Wells, Journal of Geophysical Research: Solid Earth, 123(9), 8045-8055.

Cochran, U. A., K. J. Clark, J. D. Howarth, G. P. Biasi, R. M. Langridge, P. Villamor, K. R. Berryman and M. J. Vandergoes

(2017). A plate boundary earthquake record from a wetland adjacent to the Alpine fault in New Zealand refines hazard estimates. Earth and Planetary Science Letters 464: 175-188.

Cole, J., Hacker, B., Ratschbacher, L., Dolan, J., Seward, G., Frost, E., and W. Frank (2007). Localized ductile shear below

the seismogenic zone: Structural analysis of an exhumed strike-slip fault, Austrian Alps. Journal of Geophysical Research: Solid Earth, 112(12). https://doi.org/10.1029/2007JB004975.

Collettini, C., and R. H. Sibson (2001), Normal faults, normal friction? Geology, 29(10), 927–930, doi:10.1130/0091-

7613(2001) 029<0927:NFNF>2.0.CO;2. Collettini, C., Niemeijer, A., Viti, C. and Marone, C. (2009). Fault zone fabric and fault weakness. Nature 462, n. 7275, 907. Collettini, C., Niemeijer, A.,Viti, C. Smith, S.A.F. and C. Marone (2011). Fault zone fabric and fault weakness, Earth and

Plan. Sci. Lett., 311, 316-327, 10.1016/j.epsl.2011.09.020. Conrad, C.P., Bilek, S., and C. Lithgow-Bertelloni (2004), Great earthquakes and slab pull: interaction between seismic

coupling and plate–slab coupling. Earth and Planetary Science Letters 218 (1-2), 109-122. Convers J.A., and A.V. Newman (2011). Global evaluation of large earthquake energy from 1997 through mid-­‐2010.

Journal of Geophysical Research: Solid Earth, 116(B8).

12

Cooke, M. L., and L. C. Dair (2011), Simulating the recent evolution of the southern big bend of the San Andreas fault, Southern California, Journal of Geophysical Research, 116, B04405, doi:04410.01029/02010JB007835.

Corbi, F., Herrendoerfer, R., Funiciello, F., and Y. van Dinther (2017). Controls of seismogenic zone width and subduction

velocity on interplate seismicity: insights from analog and numerical models, Geophysical Research Letters, 44, doi:10.1002/2016GL072415.

Corish, S.M., Bradley, C.R. and K.B. Olsen (2007). Assessment of a Nonlinear Dynamic Rupture Inversion Technique Applied to a Synthetic Earthquake. Bulletin of the Seismological Society of America, Vol. 97, No. 3, pp. 901–914, doi:

10.1785/0120060066 Cotton, F., Archuleta, R., and M. Causse (2013), What is sigma of stress drop?, Seismological Research Letters 84 ,42–

48. Cowie, P. A., and C. H. Scholz (1992), Growth of faults by accumulation of seismic slip, Journal of Geophysical Research,

97(B7), 11085, doi:10.1029/92JB00586. Cowie, P. A., and Z. K. Shipton (1998), Fault tip displacement gradients and process zone dimensions, J. Struct. Geol., 20,

983–997. Cox, S. C., C. D. Menzies, R. Sutherland, P. H. Denys, C. Chamberlain and D. A. H. Teagle (2015). Changes in hot spring

temperature and hydrogeology of the Alpine Fault hanging wall, New Zealand, induced by distal South Island earthquakes. Geofluids 15(1-2): 216-239.

Cruz-­‐Atienza, V.M., Ito, Y., Kostoglodov, V., Hjörleifsdóttir, V., Iglesias, A., Tago, J., Calò, M., Real, J., Husker, A., Ide, S.,

and T. A., Nishimura (2018). Seismogeodetic Amphibious Network in the Guerrero Seismic Gap, Mexico. Seismological Research Letters, 89 (4): 1435-1449.

Cubas, N., Lapusta, N. and J.-P., Avouac, and H. Perfettini. (2015) Numerical modeling of long-term earthquake

sequences on the NE Japan megathrust: Comparison with observations and implications for fault friction. Earth and Planetary Science Letters, 419 . pp. 187-198. ISSN 0012-821X.

Cui, Y., Olsen, K.B., Jordan, T. H., Lee, K., Zhou, J., Small, P., Roten, D., Ely, G., Panda, D.K., Chourasia, A., Levesque,

J., Day, S.M., and P. Maechling (2010). Scalable earthquake simulation on petascale supercomputers, Gordon Bell Prize finalist, and in Procs. Supercomputing Conference, New Orleans, November 2010.

Cui, Y., Poyraz, E., Olsen, K.B., Zhou, J., Withers, K., Callaghan, S., Larkin, J., Guest, C., Choi, D., Chourasia, A., Shi, Z.,

Day, S.M., Maechling, J.P. and T.H. Jordan (2013). Physics-based seismic hazard analysis on petascale heterogeneous supercomputers, Procs, Supercomputing Conference, 2013.

Cummins, P.R., (2007). The potential for giant tsunamigenic earthquakes in the northern Bay of Bengal. Nature,

449(7158), p.75. Custodio, S., Liu, P.-C. and R.J. Archuleta (2005). The 2004 Mw6.0 Parkfield, California, earthquake: inversion of near-

source ground motion using multiple data sets, Geophysical Research Letters, 32, L23312, doi:10.1029/2005GL024417.

Dal Zilio, L., van Dinther, Y., Gerya, T.V. and J.-P. Avouac (2019). Bimodal seismicity in the Himalaya controlled by fault

friction and geometry. Nature Communications, 10 (1). Dal Zilio, L., van Dinther, Y., Gerya, T.V. and C. C., Pranger (2018). Seismic behaviour of mountain belts controlled by

plate convergence rate. Earth and Planetary Science Letters, 482, (pp. 81-92). Daout, S., Barbot, S., Peltzer, G., Doin, M.P., Liu, Z. and R .Jolivet (2016). Constraining the kinematics of metropolitan Los

Angeles faults with a slip-­‐partitioning model. Geophysical research letters, 43(21), pp.11-192. D’Acquisto, M., Dal Zilio, L., van Dinther, Y., Molinari, I., Gerya, T., and E. H. Kissling (2018). Modelling tectonics and

seismicity due to slab retreat along the northern Apennines thrust belt, AGU Fall meeting, T33D-0432. Das, S. and K. Aki (1977a), Fault plane with barriers: A versatile earthquake model. Journal of Geophysical Research, 82,

5658-5670. 4.

13

Das, S. and K., Aki (1977b), A numerical study of spontaneous rupture propagation, Geophysical Journal of the Royal Astronomy Society, 50, 643-668.

Das, S., and C. H. Scholz (1981). Off-Fault Aftershock Clusters Caused by Shear Stress Increase? Bulletin of the

Seismological Society of America 71 (5): 1669–75. Das, S., and C. H. Scholz (1983), Why large earthquakes do not nucleate at shallow depths, Nature, 141(3), 183-206,

doi:10.1016/j.pepi.2003.11.002. Dascher-Cousineau, K., Kirkpatrick, J. D., and Cooke, M. L (2018) Smoothing of fault slip surfaces by scale-invariant wear.

Journal of Geophysical Research: Solid Earth 123, 7913-7930. Daub, E. G. and J. M. Carlson (2008). A constitutive model for fault gouge deformation in dynamic rupture simulations.

Journal of Geophysical Research Atmospheres 113(B12). Day, S.M. (1982). Three-dimensional simulation of spontaneous rupture: The effect of nonuniform prestress. Bulletin of the

Seismological Society of America ; 72 (6A): 1881–1902. doi: https://doi.org/10.1785/0120030166 Day, S., Dalguer, L.A., Lapusta, N., and Y. Liu (2005) Comparison of finite difference and boundary integral solutions to

three-dimensional spontaneous rupture. Journal of Geophysical Research 110, B12307, doi:10.1029/2005JB003813 De Barros L., Guglielmi, Y., Rivet, D., Cappa, F., and L. Duboeuf (2018). Seismicity and fault aseismic deformation caused

by fluid injection in decametric in-situ experiments. Comptes Rendus Geoscience. De Bresser, J. H. P., Peach, C. J. , Reijs, J. P. J. and C. J. Speirs (1998), On dynamic recrystallization during solid state

flow: Effects of stress and temperature, Geophysical Research Letters, 25, 3457-3460. Deelman, E., Callaghan, S., Field, E., Francoeur, H., Graves, R., Gupta, N., Gupta, V., Jordan, T. H., Kesselman, C.,

Maechling, P., Mehringer, J., Mehta, G., Okaya, D., Vahi, K., and L. Zhao (2006), Managing Large-Scale Workflow Execution from Resource Provisioning to Provenance tracking: The CyberShake Example, in e-Science 2006, 2006.

Deichmann, N., and D. Giardini (2009), Earthquakes Induced by the Stimulation of an Enhanced Geothermal System

below Basel (Switzerland), Seismological Research Letters, 80(5), 784-798. Denolle, M. A., and P. M. Shearer (2016). New perspectives on self-similarity for shallow thrust earthquakes. Journal of

Geophysical Research: Solid Earth, 121(9), 6533–6565. https://doi.org/10.1002/2016JB013105.

Deng, J., K. Hudnut, M. Gurnis, and E. Hauksson (1999), Stress loading from viscous flow in the lower crust and triggering

of aftershocks follow- ing the 1994 Northridge, California, earthquake, Geophys. Res. Lett., 26, 3209 – 3212. De Pascale, G. P., and R. M. Langridge (2012), New on-fault evidence for a great earthquake in A.D. 1717, central alpine

fault, New Zealand, Geology, 40(9), 791–794, doi:10.1130/G33363.1. De Paola, N., Hirose, T., Mitchell, T., Di Toro, G., Viti, C., Shimamoto, T., (2011). Fault lubrication and earthquake

propagation in thermally unstable rocks. Geology 39 (1), 35-38. http://dx.doi.org/10.1130/G31398.1 Dettmer J., Benavente, R., Cummins, P.R., and M. Sambridge (2014). Trans-dimensional finite-fault inversion. Geophysical

Journal International, 199(2):735-51. DeVries, P. M. R., Thompson, T. Ben, and B. J., Meade (2017). Enabling large-scale viscoelastic calculations via neural

network acceleration. Geophysical Research Letters, 44(6), 2662–2669. https://doi.org/10.1002/2017GL072716 DeVries, P. M. R., Viégas, F. Wattenberg, M., and B. J. Meade (2018) Deep learning of aftershock patterns following large

earthquakes, Nature, 560, 632-634. Di Carli, S., C. Francois-Holden, S. Peyrat, and R. Madariaga (2010), Dynamic inversion of the 2000 Tottori earthquake

based on elliptical sub-fault approximations, J. Geophys. Res., 115, B12238, doi:10.1029/2009JB006358. Dieterich, J. H. (1972). Time-­‐dependent friction in rocks. Journal of Geophysical Research, 77(20), 3690-3697.

14

Dieterich, J. H. (1979a). Modeling of rock friction: 1. Experimental results and constitutive equations. Journal of Geophysical Research: Solid Earth, 84(B5), 2161-2168.

Dieterich, J. H. (1979b), Modeling rock friction; 2, Simulation of preseismic slip, Journal of Geophysical Research, 84,

2169-2175. Dieterich, J. H. (1981a). Constitutive properties of faults with simulated gouge. Mechanical behavior of crustal rocks: the

Handin volume, 103-120. Dieterich, J. H. (1981b), Potential for geophysical experiments in large scale tests, Geophysical Research Letters, 8, 653–

656. Dieterich, J. H. (1992). Earthquake nucleation on faults with rate-and state-dependent strength. Tectonophysics, 211(1),

115–134. https://doi.org/10.1016/0040-1951(92)90055-B Dieterich, J. H. (1994). A Constitutive Law for Rate of Earthquake Production and Its Application to Earthquake Clustering.

Journal of Geophysical Research 99 (B2): 2601–18. Dieterich, J. (2007). Applications of rate- and state-dependent friction to models of fault slip and earthquake occurrence.

Treatise on Geophysics, 4, 107–129 Dieterich, J. and B. Kilgore (1994). Direct Observation of Frictional Contacts: New Insights for State-dependent Properties.

Pageoph, Vol. 143, No. 1/2/3. Dieterich, J. H., and K.B., Richards-Dinger (2010). Earthquake Recurrence in Simulated Fault Systems. Pure and Applied

Geophysics, 167(8–9), 1087–1104. https://doi.org/10.1007/s00024-010-0094-0 Dieterich, J. H., and D. E. Smith (2009), Nonplanar Faults: Mechanics of Slip and Off-fault Damage, Pure and Applied

Geophysics, 166, 1799-1815, doi:10.1007/s00024-009-0517-y. Di Toro, G., and G. Pennacchioni (2005). Fault plane processes and mesoscopic structure of a strong-type seismogenic

fault in tonalites (Adamello batholith, Southern Alps). Tectonophysics, 402(1), 55–80. https://doi.org/10.1016/j.tecto.2004.12.036

Di Toro, G., Goldsby, D. L., and Tullis, T. E. (2004). Friction falls towards zero in quartz rock as slip velocity approaches

seismic rates. Nature, 427(6973), 436. Di Toro, G., Hirose, T., Nielsen, S., Pennacchioni, G., and T. Shimamoto (2006), Natural and experimental evidence of

melt lubrication of faults during earthquakes: Science, v. 311, p. 647-649, doi:10.1126/science.1121012. Di Toro, G., Han, R., Hirose, T., De Paola, N., Nielsen, S., Mizoguchi, K., et al. (2011). Fault lubrication during

earthquakes. Nature, 471(7339), 494-498. doi:10.1038/nature09838. Doan, M.L. and G. Gary (2009) Rock pulverization at high strain rate near the San Andreas Fault. Nature Geoscience, 2,

pp.709-712. doi:10.1038/NGEO640. Dodge, D. A., G. C. Beroza, and W. L. Ellsworth (1995), Foreshock sequence of the 1992 Landers, California, earthquake

and its implications for earthquake nucleation, J. Geophys. Res., 100, pp. 9865–9880. Dodge, D. A., G. C. Beroza, and W. L. Ellsworth (1996), Detailed observations of California foreshock sequences:

Implications for the earthquake initiation process, J. Geophys. Res., 101, pp. 22371–22392. Doetsch, J., Gischig, V.S., Villiger, L., Krietsch, H., Nejati, M., Amann, F., Jalali, M., Madonna, C., Maurer, H., Wiemer, S.,

et al. (2018). Subsurface Fluid Pressure and Rock Deformation Monitoring Using Seismic Velocity Observations. Geophysical Research Letters 45, 10,389-10,397.

Dolan, J.F., Sieh, K., Rockwell, T.K., Yeats, R.S., Shaw, J., Suppe, J., Huftile, G.J., and E.M. Gath (1995). Prospects for

larger or more frequent earthquakes in the Los Angeles metropolitan region, Science 267 (5195), 199-2005. https://doi.org/10.1126/science.267.5195.199.

15

Dor, O., Rockwell, T. and Y. Ben-Zion (2006), Geological Observations of Damage Asymmetry in the Structure of the San Jacinto , San Andreas and Punchbowl Faults in Southern California  : A Possible Indicator for Preferred Rupture Propagation Direction, Pure and Applied Geophysics 163, 301–349, doi:10.1007/s00024-005-0023-9.

Dorbath, L., Cuenot, N., Genter, A., and M. Frogneux (2009). Seismic response of the fractured and faulted granite of

Soultz-sous-Forets (France) to 5 km deep massive water injections. Geophysical Journal International 177, 653–675. Douilly, R., Aochi, H., Calais, E., and A. M., Freed (2015). Three-dimensional dynamic rupture simulations across

interacting faults: The Mw 7.0, 2010, Haiti earthquake. Journal of Geophysical Research: Solid Earth, 120(2), 1108–1128. https://doi.org/10.1002/2014JB011595

Dragert, H., Wang, K., and T. S., James (2001). A silent slip event on the deeper Cascadia subduction interface. Science,

292(5521), 1525–1528. https://doi.org/10.1126/science.1060152. Dreger, D., Nadeau, R. M., and A., Chung (2007). Repeating earthquake finite source models: Strong asperities revealed

on the San Andreas Fault. Geophysical Research Letters, 34(23), n/a-n/a. https://doi.org/10.1029/2007GL031353 Duan, B. (2012), Dynamic rupture of the 2011 Mw 9.0 Tohoku-Oki earthquake: Roles of a possible subducting seamount,

Journal of Geophysical Research, 117, B05311, doi:10.1029/2011JB009124.

Duan, B., and S.M. Day (2008). Inelastic strain distribution and seismic radiation from rupture of a fault kink, Journal of Geophysical Research, 113, B12311, doi:10.1029/2008JB005847.

Duan, B., and D.D. Oglesby (2005a). The dynamics of thrust and normal faults over multiple earthquake cycles: Effects of

dipping fault geometry, Bulletin of the Seismological Society of America, 95(5), 1623–1636, doi: 10.1785/0120040234. Duan, B., and D. D. Oglesby (2005b), Multicycle dynamics of nonplanar strike-­‐slip faults, Journal of Geophysical Research,

110, B03304, doi:10.1029/2004JB003298. Duan, B., and D. D. Oglesby (2006), Heterogeneous fault stresses from previous earthquakes and the effect on dynamics

of parallel strike-slip faults, Journal of Geophysical Research, 111(B05309), doi:10.1029/2006JB004138. Duan, B., and D. D. Oglesby (2007), Nonuniform prestress from prior earthquakes and the effect on dynamics of branched

fault systems, Journal of Geophysical Research, 112, B05308, doi:05310.01029/02006JB004443. Duan, B., Z. Liu, and A. J. Elliott (2019), Multicycle dynamics of the Aksay bend along the Altyn Tagh Fault in Northwest

China, Part 2: The realistically complex fault geometry, Tectonics, doi:10.1029/2018TC005196. Dublanchet, P., Bernard, P. and P. Favreau (2013), Interactions and triggering in a 3-D rate-and-state asperity model,

Journal of Geophysical Research Solid Earth, 118, 2225–2245, doi:10.1002/jgrb.50187. Dunham, E. M. and R. J. Archuleta (2004), Evidence for a supershear transient during the 2002 Denali Fault earthquake,

Bulletin of the Seismological Society of America, 94(6B), S256-S268, doi:10.1785/0120040616. Dunham, E. M., and R. J. Archuleta (2005), Near-­‐source ground motion from steady state dynamic rupture pulses,

Geophysical Research Letters, 32, L03302, doi:10.1029/2004GL021793. Dunham, E. M., Belanger, D., Cong, L., and J. E., Kozdon (2011a). Earthquake ruptures with strongly rate-weakening

friction and off-fault plasticity, Part 1: Planar faults. Bulletin of the Seismological Society of America, 101(5), 2296-2307.

Dunham, E. M., D. Belanger, C. Lin, and J. E. Kozdon (2011b), Earthquake ruptures with strongly rate-weakening friction

and off-fault plasticity, Part 2: Rough faults, Bulletin of the Seismological Society of America, 101, 2308–2322, doi:10.1785/0120100076.

Dunham, E. M. and J. R. Rice (2008), Earthquake slip between dissimilar poroelastic materials, Journal of Geophysical

Research, 113, B09304, doi:10.1029/2007JB005405. Duputel, Z., Agram, P. S., Simons, M., Minson, S. E., and J.L., Beck (2014). Accounting for prediction uncertainty when

inferring subsurface fault slip. Geophysical Journal International, 197(1), 464–482. https://doi.org/10.1093/gji/ggt517.

16

Duru, K., and E.M. Dunham (2016). Dynamic earthquake rupture simulations on nonplanar faults embedded in 3D geometrically complex, heterogeneous elastic solids. Journal of Computational Physics, 305, 185-207. doi: 10.1016/j.jcp.2015.10.021

Duru, K., K. L. Allison, M. Rivet, and E. M. Dunham, Dynamic rupture and earthquake sequence simulations using the

wave equation in second-order form, Geophysical Journal International, submitted. https://doi.org/10.1111/j.1365-246X.2011.05117.x

Eaton, D.W., Igonin, N., Poulin, A., Weir, R., Zhang, H., Pellegrino, S., and G., Rodriguez (2018). Induced Seismicity

Characterization during Hydraulic-­‐Fracture Monitoring with a Shallow-­‐Wellbore Geophone Array and Broadband Sensors. Seismological Research Letters 89, 1641–1651.

Elbanna, A. E., and J.M, Carlson, (2014). A two-scale model for sheared fault gouge: Competition between macroscopic

disorder and local viscoplasticity. Journal of Geophysical Research: Solid Earth, 119(6), 4841–4859 Elkhoury, J. E., Brodsky, E. E. and D. C . Agnew (2006), Seismic waves increase permeability, Nature, 459 441(7097), 1135–1138. Elliott, A. J., J. F. Dolan, and D. D. Oglesby (2009), "Evidence from coseismic slip gradients for dynamic control on rupture

propagation and arrest through stepovers." Journal of Geophysical Research: Solid Earth 114, no. B2. Ellsworth, W. L. (2013), Injection-Induced Earthquakes, Science, 341(6142), 142. Ellsworth, W. L., and L. D. Dietz (1990), Repeating earthquakes: Characteristics and implications, in Proceedings of

Workshop XLVI: The 7th U.S.-Japan Seminar on Earthquake Prediction, U.S. Geological Survey. Open File Rep., 90 – 98, 226 – 245.

Ellsworth, W.L., Celebi, M., Evans, J.R., Jensen, E.G., Kayen, R., Metz, M.C., Nyman, D.J., Roddick, J.W., Spudich, P.,

and C.D. Stephens (2004). Near-field ground motion of the 2002 Denali fault, Alaska, earthquake recorded at Pump Station 10. Earthquake Spectra 20 (3), 597–615.

Ellsworth, W. L., Yuan, S., Karrenbach, M., and M., Zumberge, (2018). Distributed acoustic sensing of the seismic

wavefield at SAFOD (abs.), Seismological Research Letters, v. 89, no. 2B, p.867. Elsworth, D., Fang, Y., Gan, Q., Im, K.J., Ishibashi, T. and Y. Guglielmi (2016), Induced seismicity in the development of

EGS-benefits and drawbacks, 13-24 pp. Ely, G.P., Day, S.M. and J.-B. Minster (2009); A support-operator method for 3-D rupture dynamics, Geophysical Journal

International, Volume 177, Issue 3, 1, Pages 1140–1150, https://doi.org/10.1111/j.1365-246X.2009.04117.x. Engelder, J. T. (1974) Cataclasis and the generation of fault gouge, Geological Society of America Bulletin v. 85, n. 10,

1515-1522. Erickson, B.A. and E.M., Dunham (2014), An efficient numerical method for earthquake cycles in heterogeneous media:

Alternating sub-basin and surface-rupturing events on faults crossing a sedimentary basin, Journal of Geophysical Research, doi:10.1002/2013JB010614.

Erickson, B. A., Dunham, E.M., and A. Khosravifar (2017), A finite difference method for off-fault plasticity throughout the

earthquake cycle, J. Mech. Phys. Solids, 109, 50–77, doi:10.1016/j.jmps.2017.08.002. Erickson, B. A., Jiang, J., Barall, M., Lapusta, N., Dunham, E M., Harris, R A., Abrahams, L., Allison, K L., Ampuero, J P,

Barbot, S D., Cattania, C., Elbanna, A E., Fialko, Y., Zabala, B I., Kozdon, J E., Lambert, V R., Liu, Y., Luo, Y., Ma, X., Segall, P., Shi, P., and Wei, M. (2018). The Community Code Verification Exercise for Simulating Sequences of Earthquakes and Aseismic Slip (SEAS): Initial Benchmarks and Future Directions, 2018 Annual Meeting of the Southern California Earthquake Center. n.d. https://www.scec.org/publication/8214.

Eshelby, J.D. (1957). The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems. Proceedings

of the Royal Society of London. Series A, 241, 376-396. http://dx.doi.org/10.1098/rspa.1957.0133 Estrin, Y., and Y. Bréchet (1996), On a model of frictional sliding, Pure and Applied Geophysics 147, 745–762. Evans, M. D. (1966), Man-made earthquakes in Denver, Geotimes, 10, 11-17.

17

Evans, J. P., Forster, C. B. and J. V. Goddard (1997), Permeability of fault-related rocks, and implications for hydraulic

structure of fault zones, Journal of Structural Geology, 19(11), 1393-1404. Faccenda, M., Gerya, T. V., Mancktelow, N. S., and L., Moresi (2012). Fluid flow during slab unbending and dehydration:

Implications for intermediate-depth seismicity, slab weakening and deep water recycling. Geochemistry, Geophysics, Geosystems, 13(1), n/a-n/a. doi:10.1029/2011gc003860

Fagereng, Å., and S. A. M. den Hartog (2017), Subduction megathrust creep governed by pressure solution and frictional-

viscous flow, Nature Geoscience, 10(1), 51-57, doi:10.1038/ngeo2857. Fagereng, Å., Remitti, F., and R.H. Sibson (2010), Shear veins observed within anisotropic fabric at high angles to the

maximum compressive stress. Nature Geoscience, 3, DOI:10.1038/NGEO898. Fan, W., and J.J., McGuire (2018). Investigating microearthquake finite source attributes with IRIS Community Wavefield

Demonstration Experiment in Oklahoma. Geophysical Journal International, 214(2), 1072–1087. https://doi.org/10.1093/gji/ggy203

Fang, Z., Dieterich, J. H. and G. Xu (2010), Effect of initial conditions and loading path on earthquake nucleation, Journal

of Geophysical Research, 115, B06313, doi:10.1029/2009JB006558. Fang, Z., Dieterich, J. H. , Richards-­‐Dinger, K. B., and G. Xu (2011), Earthquake nucleation on faults with nonconstant

normal stress, Journal of Geophysical Research, 116, B09307, doi:10.1029/2011JB008196. Fang, Z. and E.M., Dunham (2013) Additional shear resistance form fault roughness and stress levels on geometrically

complex faults. Journal of Geophysical Research, 118, n. 7, 3642-3654. Faulkner, D. R., and E. H. Rutter (2001), Can the maintenance of overpressured fluids in large strike-slip fault zones

explain their apparent weakness? Geology, 29, 503–506, doi:10.1130/0091- 7613(2001)029<0503:CTMOOF>2.0.CO;2.

Faulkner, D. R., Jackson, C. A. L., Lunn, R. J. R., Schlische, W., Shipton, Z. K., Wibberley, C. A. J. and M. O. Withjack

(2010), A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones, Journal of Structural Geology, 32(11), 1557-1575.

Faulkner, D. R., Lewis, A. C., and E.H., Rutter (2003). On the internal structure and mechanics of large strike-slip fault

zones: field observations of the Carboneras fault in southeastern Spain. Tectonophysics, 367(3), 235–251. https://doi.org/10.1016/S0040-1951(03)00134-3

Faulkner, D. R., Mitchell, T. M., Healy, D. and M. J. Heap (2006), Slip on weak faults by the rotation of regional stress in

the fracture damage zone, Nature, 444(7121), 922–925, doi:10.1038/nature05353. Faulkner, D. R., Mitchell, T. M. , Jensen, E. and J. Cembrano (2011a), Scaling of fault damage zones with displacement

and the implications for fault growth processes, Journal of Geophysical Research Solid Earth, 116(5), 1–11, doi:10.1029/2010JB007788.

Faulkner, D. R, Mitchell, T. M., Rutter, E.H. and J. Cembrano (2008), On the structure and mechanical properties of large

strike-slip faults, Geol. Soc. London, Spec. Publ., 299(1), 139–150, doi:10.1144/SP299.9. Faulkner, D. R., Sanchez-­‐Roa, C., Boulton, C., and Hartog, S. A. M. den. (2018). Pore Fluid Pressure Development in

Compacting Fault Gouge in Theory, Experiments, and Nature. Journal of Geophysical Research: Solid Earth, 123(1), 226–241. https://doi.org/10.1002/2017JB015130

Faulkner, D. R., Mitchell, T. M., Behnsen, J., Hirose, T. and T., Shimamoto, (2011b). Stuck in the mud? Earthquake

nucleation and propagation through accretionary forearcs. Geophysical Research Letters 38,L18303. Fay, N., and E. D. Humphreys (2006), Dynamics of the Salton block: Absolute fault strength and crust-mantle coupling in

southern California, Geology, 34, 261–264, doi:10.1130/G22172.1. Felzer, K. R., and E. E. Brodsky (2006). Decay of Aftershock Density with Distance Indicates Triggering by Dynamic

Stress. Nature 441 (7094): 735–38.

18

Ferdowsi, B., Griffa, M., Guyer, R. A., Johnson, P. A., Marone, C., and J., Carmeliet (2015). Acoustically induced slip in sheared granular layers: Application to dynamic earthquake triggering. Geophysical Research Letters, 42(22), 9750-9757.

Fialko, Y. (2004), Evidence of fluid-filled upper crust from observations of postseismic deformation due to the 1992 Mw7.3

Landers earthquake, J. Geophys. Res., 109, B08401, doi:10.1029/2004JB002985 Fialko, Y. (2006). Interseismic strain accumulation and the earthquake potential on the southern San Andreas fault system.

Nature, 441(7096), 968–971. https://doi.org/10.1038/nature04797. Fialko, Y. (2015). Fracture and Frictional Mechanics: Theory, Treatise of Geophysics, 2nd ed., vol.4, Earthquake

Seismology, pp. 73-91, Academic Press, Elsevier. Fialko, Y. and A.M. Rubin (1997). Numerical simulation of high-pressure rock tensile fracture experiments: Evidence of an

increase in fracture energy with pressure? Journal of Geophysical Research, 102, B3, 5231-5242. Fialko, Y., and M. Simons (2000), Deformation and seismicity in the Coso geothermal area, Inyo County, California:

Observations and modeling using satellite radar interferometry, Journal of Geophysical Research-Solid Earth, 105(B9), 21781-21793.

Fialko, Y., Sandwell, D., Simons, M., and P., Rosen (2005). Three-dimensional deformation caused by the Bam, Iran,

earthquake and the origin of shallow slip deficit. Nature, 435(7040), 295–299. http://dx.doi.org/10.1038/nature03425 Fialko, Y., Sandwell, D., Agnew, D., Simons, M., Shearer, P. and B. Minster (2002). Deformation on nearby faults induced

by the 1999 Hector Mine earthquake. Science, 297, 5588, 1858-1862. Field, E.H., Jackson, D.D. and Dolan, J.F., (1999). A mutually consistent seismic-hazard source model for southern

California. Bulletin of the Seismological Society of America, 89(3), pp.559-578. Field, E. H., Arrowsmith, R. J., Biasi, G. P., Bird, P., Dawson, T. E., Felzer, K. R., et al. (2014). Uniform California

Earthquake Rupture Forecast, version 3 (UCERF3) -The time-independent model. Bulletin of the Seismological Society of America,104(3), 1122–1180. https://doi.org/10.1785/0120130164.

Field, E. H., Biasi, G. P., Bird, P., Dawson, T. E., Felzer, K. R., Jackson, D. D., et al. (2015). Long-­‐Term Time-­‐Dependent

Probabilities for the Third Uniform California Earthquake Rupture Forecast (UCERF3). Bulletin of the Seismological Society of America, 105(2A), 511–543. https://doi.org/10.1785/0120140093.

Field, E. H., Milner, K. R., Hardebeck, J. L., Page, M. T., van der Elst, N., Jordan, T. H., et al. (2017). A Spatiotemporal

Clustering Model for the Third Uniform California Earthquake Rupture Forecast (UCERF3-­‐ETAS): Toward an Operational Earthquake Forecast. Bulletin of the Seismological Society of America, 107(3), 1049–1081. https://doi.org/10.1785/0120160173

Finzi, Y., E. H. Hearn, Y. Ben-Zion and V. Lyakhovsky (2009). Structural properties and deformation patterns of evolving

strike-slip faults: Numerical simulations incorporating damage rheology, Pure Applied Geophysics, 166, 1537–1573, doi: 10.1007/s00024-009-0522-1.

Flinn, D. (1977). Transcurrent faults and associated cataclasis in Shetland. Journal of the Geological Society, 133(3), 231–

247. https://doi.org/10.1144/gsjgs.133.3.0231. Foxall, W., Michelini, A., and T.V., McEvilly (1993) Earthquake travel time tomography of the southern Santa Cruz

Mountains: Control of fault rupture by lithological heterogeneity of the San Andreas Fault Zone. Journal of Geophysical Research 98, B10, 17691-17710.

Freed, A. M., and R. Burgmann (2004), Evidence of power-law flow in the Mojave desert mantle, Nature, 430, 548-551,

doi:10.1038/nature02784. Freed, A. M., and J. Lin. (2001). Delayed Triggering of the 1999 Hector Mine Earthquake by Viscoelastic Stress Transfer.

Nature 411 (6834): 180–83. Freed, A. M. (2005), Earthquake triggering by static, dynamic, and post- seismic stress transfer, Annu. Rev. Earth Planet.

Sci., 33, 335–367, doi:10.1146/annurev.earth.33.092203.122505.

19

French, M. E. and W. Zhu (2017). Slow fault propagation in serpentinite under conditions of high pore fluid pressure, Earth and Planetary Science Letters, 473, 134-140, doi:10.1016/j.epsl.2017.06.009.

French, M. E., Zhu, W., and J. Banker, (2016), Fault slip controlled by stress path and fluid pressurization rate,

Geophysical Research Letters, 43, doi:10.1002/2016GL068893. Freund, L. B. (1979), The mechanics of dynamic shear crack propagation, Journal of Geophysical Research, 84(B5),

2199–2209, doi:10.1029/JB084iB05p02199. Freund, L. (1990). Dynamic Fracture Mechanics (Cambridge Monographs on Mechanics). Cambridge: Cambridge

University Press. doi:10.1017/CBO9780511546761 Frost, E., J. Dolan, L. Ratschbacher, B. Hacker, and G. Seward (2011), Direct observation of fault zone structure at the

brittle-ductile transition along the Salzach-Ennstal-Mariazell-Puchberg fault system, Austrian Alps, J. Geophys. Res., 116, B02411, doi:10.1029/2010JB007719.

Fujiwara T, Kodaira S, No T, Kaiho Y, Takahashi N, and Y., Kaneda (2011). The 2011 Tohoku-Oki earthquake:

Displacement reaching the trench axis. Science., 334(6060):1240-. Fukuyama, E., et al. (2014), Large-scale biaxial friction experiments using a NIED large-scale shaking table—Design of

apparatus and preliminary results, Report National Research Institute for Earth Science Disaster Prevention, 81, 15–35

Fuller, C. W., Willett, S.,D., and M.T. Brandon (2006). Formation of forearc basins and their influence on subduction zone

earthquakes. Geology ; 34 (2): 65–68. doi: https://doi.org/10.1130/G21828.1. Fulton, P.M., Schmalzle, G., Harris, R.N. and T. Dixon (2010). Reconciling patterns of interseismic strain accumulation with

thermal observations across the Carrizo segment of the San Andreas Fault, Earth and Planetary Science Letters 300 (3-4), 402-406.

Fulton, P.M., Brodsky, E.E., Kano, Y., Mori, J., Chester, F., Ishikawa, T., Harris, R.N., Lin, W., Eguchi, N.,Toczko, S. and

the Expedition 343, 343T, and KR13-08 Scientists (2013). Low Coseismic Friction on the Tohoku-Oki Fault Determined from Temperature Measurements, Science, 342, pp 1214-1217.

Fulton, P. M., and Brodsky, E. E. (2016). In situ observations of earthquake-driven fluid pulses within the Japan Trench

plate boundary fault zone. Geology, 44(10), 851–854. https://doi.org/10.1130/G38034.1 Gabriel, A. A., Ampuero, J. P., Dalguer, L.A. and P. M. Mai (2012), The transition of dynamic rupture styles in elastic media

under velocity-weakening friction, Journal of Geophysical Research, 117, B09311, doi:10.1029/2012JB009468. Gabriel, A. A., Ampuero, J. P., Dalguer, L.A., and P. M. Mai (2013), Source properties of dynamic rupture pulses with off-

fault plasticity, Journal of Geophysical Research Solid Earth, 118(8), 4117–4126, doi:10.1002/jgrb.50213. Gabriel, A.-A., Behrens, J., Bader, M., van Dinther, Y., Gunawan, T., Madden, E.H., Rannabauer, L., Rettenberger, S.,

Ulrich, T., Uphoff, C., Vater, S., Wollherr, S. and I. van Zelst (2018), Coupled Seismic Cycle - Earthquake Dynamic Rupture - Tsunami Models, AGU18 Fall Meeting, abstract ID S21E-0492.

Gabuchian, V. A., Rosakis, A. J., Lapusta, N. and D. D. Oglesby (2013), Experimental investigation of strong ground

motion due to thrust-fault earthquakes, Journal of Geophysical Research, 119, 1316-1336, doi:10.1002/2013JB010409.

Gabuchian, V. A., Rosakis, A. J., Bhat, H.S., Madariaga, R., and H. Kanamori. (2017). Experimental evidence that thrust

earthquake ruptures might open faults, Nature, Vol. 545, pp. 336-339. doi:101038/nature22045 Galis, M., J. P. Ampuero, P. M. Mai, and F. Cappa (2017), Induced seismicity provides insight into why earthquake

ruptures stop, Science Advances, 3(12). Gallovic, F., Gabriel, A. A., and Valentova, L. (2018). Dynamic source inversion of the 2016 Mw6 Amatrice earthquake. In

EGU General Assembly Conference Abstracts, Vol. 20, p. 8581.

20

Galvez, P., Ampuero, J.-P., Dalguer, L.A., Somala, S.N. and T. Nissen-Meyer (2014). Dynamic earthquake rupture modelled with an unstructured 3-D spectral element method applied to the 2011 M9 Tohoku earthquake. Geophysical Journal International 198, 2 (2014), 1222–1240.

Gao, H., D. A. Schmidt, and R. J. Weldon (2012), Scaling relationships of source parameters for slow slip events, Bull.

Seismol. Soc. Am., 102(1), 352–360, doi:10.1785/0120110096. Gardner, J. K., and L. Knopoff (1974). Is the Sequence of Earthquakes in Southern California, with Aftershocks Removed,

Poissonian? Bulletin of the Seismological Society of America 64 (5): 1363–67. Ge, S., M. Liu, N. Lu, J. W. Godt, and G. Luo (2009), Did the Zipingpu Reservoir trigger the 2008 Wenchuan earthquake?

Geophysical Research Letters, 36, L20315, doi:10.1029/2009GL040349. Geller, R. J., Mulargia, F. and P. B. Stark (2015). Why We Need a New Paradigm of Earthquake Occurrence. In

Subduction Dynamics: From Mantle Flow to Mega Disasters, 211:183. American Geophysical Union Washington, DC, USA.

Gerya, T.V. and D.A. Yuen, (2007). Robust characteristics method for modelling multiphase visco-elastic-plastic thermos-

mechanical problems. Physics of the Earth and Planetary Interiors, 163, 1-4, 83-105. Gibbons, S. J. and F., Ringdal (2006). The detection of low magnitude seismic events using array-based waveform

correlation. Geophysical Journal International, 165(1):149–166. Gilbert, G. K. (1884). A Theory of the Earthquakes of the Great Basin, with a Practical Application. American Journal of

Science Series 327 (157): 49–53. Goebel, T.H.W., and E.E., Brodsky (2018). The spatial footprint of injection wells in a global compilation of induced

earthquake sequences. Science 361, 899–904. Goebel, T.H.W, Hauksson, E., Shearer, P.M., and J.P. Ampuero (2015). Stress-drop heterogeneity within tectonically

complex regions: a case study of San Gorgonio Pass, southern California, Geophysical Journal International, Volume 202, Issue 1, Pages 514–528, https://doi.org/10.1093/gji/ggv160

Goebel, T.H.W., Kwiatek, G., Becker, T. W., Brodsky, E. E. and G. Dresen (2017), What allows seismic events to grow

big?: Insights from b-value and fault roughness analysis in laboratory stick-slip experiments, Geology, 45(9), 815–818, doi:10.1130/G39147.1.

Goebel, T. H. W., Schorlemmer, D., Becker, T. W., Dresen, G., and C.G. Sammis (2013). Acoustic emissions document

stress changes over many seismic cycles in stick-­‐slip experiments. Geophysical Research Letters, 40(10), 2049-2054. Goebel, T. H. W., Weingarten, M., Chen, X., Haffener, J. and E. E. Brodsky (2017), The 2016 Mw5.1 Fairview, Oklahoma

earthquakes: Evidence for long-range poroelastic triggering at > 40 km from fluid disposal wells, Earth and Planetary Science Letters, 472, 50-61.

Goldfinger, C., Nelson, C.H. and Johnson, J.E., (2003). Deep-water turbidites as Holocene earthquake proxies: the

Cascadia subduction zone and northern San Andreas fault systems. Annals of Geophysics, 46(5). Goldfinger, C., et al., (2012), Turbidite event history: Methods and implications for Holocene paleoseismicity of the

Cascadia subduction zone: U.S. Geological Survey Professional Paper 1661-F , 170 p.,https://pubs.usgs.gov/pp/pp1661f/.

Goldsby, D.L., and T.E. Tullis (2002), Low frictional strength of quartz rocks at subseismic slip rates: Geophysical

Research Letters, v. 29, p. 1844, doi:10.1029/2002GL015240. Goldsby, D. L., and T.E. Tullis (2011). Flash heating leads to low frictional strength of crustal rocks at earthquake slip rates.

Science, 334(6053), 216-218. Gomberg, J., and P. Bodin (1994). Triggering of the Ms = 5.4 Little Skull Mountain, Nevada, earthquake with dynamic

strains, Bulletin of the Seismological Society of America, 84(3), 844-853. Gomberg, J., Reasenberg, P.A., Bodin, P. and R.A. Harris (2001). Earthquake triggering by seismic waves following the

Landers and Hector Mine earthquakes, Nature, 411(6836), 462-466.

21

Gomberg, J., P. Bodin, and P. A. Reasenberg (2003), Observing earthquakes triggered in the near field by dynamic

deformations, Bull. Seismol. Soc. Am., 93, 118–138. Gomberg, J., P. Reasenberg, M. Cocco, and M. E. Belardinelli (2005), A frictional population model of seismicity rate

change, J. Geophys. Res., 110, B05S03, doi:10.1029/2004JB003404. Gomberg, J., A. Wech, K. Creager, K. Obara, and D. Agnew (2016), Reconsidering earthquake scaling, Geophysical

Research Letters, 43, 6243–6251, doi:10.1002/2016GL069967. Goodfellow, S. D., and R. P. Young (2014), A laboratory acoustic emission experiment under in situ conditions, Geophys.

Res. Lett., 41, 3422–3430, doi:10.1002/2014GL059965. Gori, M., Rubino, V., Rosakis, A. J. and N. Lapusta (2018) Pressure shock fronts formed by ultra-fast shear cracks in

viscoelastic materials. Nature Communications, 9 . Art. No. 4754. ISSN 2041-1723. Gori M., Rubino, V., Rosakis, A. J. and N. Lapusta, (2019), Earthquake nucleation influenced by fluid pore-pressure rate: a

laboratory investigation, 7th International Conference on Coupled THMC Processes, GeoProc2019: Earthquake and Faulting Mechanics, Utrecht, The Netherlands.

Grady, D. E. (1998), Shock-wave compression of brittle solids, Mech. Mater., 29(3–4), 181–203, doi:10.1016/S0167-

6636(98)00015-5. Grant, L.B. and Sieh, K., (1994). Paleoseismic evidence of clustered earthquakes on the San Andreas fault in the Carrizo

Plain, California. Journal of Geophysical Research: Solid Earth, 99(B4), pp.6819-6841. Graves R, and A. Pitarka (2016). Kinematic ground-­‐motion simulations on rough faults including effects of 3D stochastic

velocity perturbations. Bulletin of the Seismological Society of America, 106(5):2136-53. Graves, R., Jordan, T.H., Callaghan, S., Deelman, E., Field, E., Juve, G., Kesselman, C., Maechling, P., Mehta, G., Milner,

K. and D. Okaya (2011). CyberShake: A physics-based seismic hazard model for southern California. Pure and Applied Geophysics, 168(3-4), pp.367-381.

Griffith, W. A., Rosakis, A. J., Pollard, D.D., and C.W Ko (2009a) Dynamic Rupture Experiments Elucidate tensile crack

development during propagating earthquake ruptures, Geology, Vol. 37, No. 9, pp-795-798. Griffith, W. A., P. F. Sanz, and D. D. Pollard (2009b), Influence of outcrop scale fractures on the effective stiffness of fault

damage zone rocks, Pure and Applied Geophysics 166(10–11), 1595–1627, doi:10.1007/s00024-009-0519-9. Grigoli, F., Cesca, S., Priolo, E., Rinaldi, A.P., Clinton, J.F., Stabile, T.A., Dost, B. Fernandez, M.G., Wiemer, S. and T.

Dahm (2017), Current challenges in monitoring, discrimination, and management of induced seismicity related to underground industrial activities: A European perspective, Reviews of Geophysics, 55(2), 310-340.

Grigoli, F., Cesca, S., Rinaldi, A.P., Manconi, A., Lopez-Comino, J.A., Clinton, J.F., Westaway, R., Cauzzi, C., Dahm, T.,

and S. Wiemer (2018), The November 2017 M-w 5.5 Pohang earthquake: A possible case of induced seismicity in South Korea, Science, 360(6392), 1003-1006.

Gross, S., and R. Burgmann (1998), Rate and state of background stress estimated from the aftershocks of the 1989 Loma

Prieta, California, earth-quake, J. Geophys. Res., 103, 4915–4927. Guatteri, M., Mai, P. M., and G.C. Beroza (2004). A pseudo-dynamic approximation to dynamic rupture models for strong

ground motion prediction. Bulletin of the Seismological Society of America, 94(6), 2051–2063. Gueydan, F., Leroy, Y. M., Jolivet, L., and P Agard (2003). Analysis of continental midcrustal strain localization induced by

microfracturing and reaction B Bsoftening. Journal of Geophysical Research: Solid Earth, 108(B2). Guglielmi, Y., Cappa, F., Avouac, J.-P., Henry, P., and D. Elsworth (2015), Seismicity triggered by fluid injection-induced

aseismic slip, Science, 348(6240), 1224-1226.

22

Gupta, H., Rao, N. P., Roy, S., Arora, K., Tiwari, V. M., Patro, P.K., Satyanarayana, H.V.S., Shashidhar, D., Mallika, K., Akkiraju, V.V. and Goswami, D. (2015). Investigations related to scientific deep drilling to study reservoir-triggered earthquakes at Koyna, India. International Journal of earth sciences, 104(6), 1511-1522.

Gupta, H. K. (2017). 50 years of 10 December 1967 M 6.3 Koyna earthquake. Journal of the Geological Society of India,

90(6), 641-644. Gutenberg, R. and C.F. Richter (1944). Frequency of earthquakes in California, Bulletin of the Seismological Society of

America, 34, 185-188. Gutenberg, B., and C. F. Richter (1955). Magnitude and Energy of Earthquakes. Nature 176 (4486): 795–795. Hadley, K. (1976), The effect of cyclic stress on dilatancy: Another look, J. Geophys. Res., 81(14), 2471–2474,

doi:10.1029/JB081i014p02471. Hajarolasvadi, S., and A. E., Elbanna (2017). A new hybrid numerical scheme for modelling elastodynamics in unbounded

media with near-source heterogeneities. Geophysical Journal International, 211(2), 851–864. Hamiel, Y., and Y. Fialko (2007), Structure and mechanical properties of faults in the North Anatolian Fault system from

InSAR observations of coseismic deformation due to the 1999 Izmit (Turkey) earthquake, Journal of Geophysical Res., 112, B07412, doi:10.1029/2006JB004777.

Hamiel, Y., O. Katz, V. Lyakhovsky, Z. Reches, and Y. Fialko (2006), Stable and unstable damage evolution in rocks with

implications to fracturing of granite, Geophysical Journal International, 167(2), 1005–1016, doi:10.1111/j.1365-246X.2006.03126.x.

Hamiel, Y., Liu, Y., Lyakhovsky, V., Ben-Zion, Y., and D., Lockner (2004). A viscoelastic damage model with applications to

stable and unstable fracturing. Geophysical Journal International, 159(3), 1155-1165. Hamiel, Y., Amit, R., Begin, Z.B., Marco, S., Katz, O., Salamon, A., Zilberman, E. and Porat, N., (2009). The seismicity

along the Dead Sea fault during the last 60,000 years. Bulletin of the Seismological Society of America, 99(3), pp.2020-2026.

Hamling, I. J., S. Hreinsdóttir, K. Clark, J. Elliott, C. Liang, E. Fielding, N. Litchfield, P. Villamor, L. Wallace, T. J. Wright, E.

D'Anastasio, S. Bannister, D. Burbidge, P. Denys, P. Gentle, J. Howarth, C. Mueller, N. Palmer, C. Pearson, W. Power, P. Barnes, D. J. A. Barrell, R. Van Dissen, R. Langridge, T. Little, A. Nicol, J. Pettinga, J. Rowland and M. Stirling (2017). Complex multifault rupture during the 2016 M<inf>w</inf> 7.8 Kaikōura earthquake, New Zealand, Science, 356(6334).

Han, R., Shimamoto, T., Hirose, T., Ree, J. H., and J. I., Ando (2007). Ultralow friction of carbonate faults caused by thermal decomposition. Science, 316(5826), 878-881.

Hanaor, D. A. H., Gan, Y., Revay, M., Airey, D. W., and I., Einav (2016). 3D printable geomaterials. Géotechnique, 66(4),

323-332. Hanks, T. C., and H. Kanamori (1979). A Moment Magnitude Scale. Journal of Geophysical Research 84 (B5): 2348. Hardebeck, J. (2013). Geometry and Earthquake Potential of the Shoreline Fault, Central California. Bulletin of the

Seismological Society of America ; 103 (1): 447–462. doi: https://doi.org/10.1785/0120120175 Harbord, C.W.A., Nielsen, S.B., De Paola, N., Holdsworth, R.E., (2017). Earthquake nucleation on rough faults. Geology

45, 931–934. https://doi .org /10 .1130 /G39181.1. Hardebeck, J., and E. Hauksson (2001), Crustal stress field in southern California and its implications for fault mechanics,

J. Geophys. Res., 106, 21,859–21,882. Hardebeck, J. L., and P. M. Shearer (2003), Using S/P amplitude ratios to constrain the focal mechanisms of small

earthquakes, Bull. Seismol. Soc. Am., 93, 2434–2444. Harris, R.A. (2017), Large earthquakes and creeping faults, Reviews of Geophysics, 55, 169-198,

doi:10.1002/2016RG000539.

23

Harris, R. A., R. J. Archuleta, and S. M. Day (1991), Fault Steps and the Dynamic Rupture Process - 2-D Numerical

Simulations of a Spontaneously Propagating Shear Fracture, Geophysical Research Letters, 18(5), 893-896. Harris, R. A., and S. M. Day (1993), Dynamics of Fault Interaction - Parallel Strike-Slip Faults, Journal of Geophysical

Research, 98(B3), 4461-4472. Harris, R. A., and S. M. Day (1997), Effects of a low-velocity zone on a dynamic rupture, Bulletin of the Seismological

Society of America , 87(5), 1267–1280. Harris, R. A., and S. M. Day (1999), Dynamic 3D simulations of earthquakes on en echelon faults, Geophysical Research

Letters, 26(14), 2089-2092. Harris, R.A., and R.W. Simpson (1992). Changes in static stress on southern California faults after the 1992 Landers

earthquake, Nature, 360, 251-254. Harris, R.A., Dolan, J.F., Hartleb, R. and S.M. Day (2002). The 1999 Izmit, Turkey earthquake: A 3D dynamic stress

transfer model of intra earthquake triggering, Bulletin of the Seismological Society of America, 92, 245-255, doi:10.1785/0120000825.

Harris, R.A., Barall, M., Aagaard, B., Ma, S., Roten, D., Olseni, K.B., Duan, B., Liu, D., Luo, B., Bai, K., Ampuero, J.-P.,

Kaneko, Y., Gabriel, A.-A., Duru, K., Ulrich, T., Wollherr, S., Shi, Z., Dunham, E., Bydlon, S., Zhang, Z., Chen, X., Somala, S.N., Pelties, C., Tago, J., Cruz-Atienza, V.M., Kozdon, J., Daub, E., Aslam, K., Kase, Y., Withers, K., and L. Dalguer (2018). A Suite of Exercises for Verifying Dynamic Earthquake Rupture Codes, Seismological Research Letters, 89, 1146-1162. doi: https://doi.org/10.1785/0220170222.

Hashimoto, C. and M. Matsu'ura (2002) : 3-D simulation of earthquake generation cycles and evolution of fault constitutitve

properties. Pure and Applied Geophysics 159, 2175-2199. Hashimoto, C., Fukuyama, E., and M. Matsu'ura (2014), Physics-based 3-D simulation for earthquake generation cycles at

plate interfaces in subduction zones, Pure and Applied Geophysics, 171, 1705-1728, doi:10.1007/s00024-013-0716-4. Hatakeyama, N., N. Uchida, T. Matsuzawa, and W. Nakamura (2017), Emergence and disappearance of interplate

repeating earthquakes following the 2011M9.0 Tohoku-oki earthquake: Slip behavior transition between seismic and aseismic depending on the loading rate, Journal of Geophysical Research: Solid Earth, 122, doi:10.1002/2016JB013914.

Hauksson, E., & Shearer, P. M. (2006). Attenuation models (QP and QS) in three dimensions of the southern California

crust: Inferred fluid saturation at seismogenic depths. Journal of Geophysical Research, 111, B05302. https://doi.org/10.1029/2005JB003947

Hauksson, E., Yang, W., and P.M., Shearer (2012). Waveform relocated earthquake catalog for Southern California (1981

to June 2011). Bulletin of the Seismological Society of America, 102(5), 2239–2244. https://doi.org/10.1785/0120120010.

Hawthorne, J.C., Bartlow, N.M., (2018). Observing and modeling the spectrum of a slow slip event. J. Geophys. Res., Solid

Earth 123. https://doi.org/10.1029 /2017JB015124. Hayes, G. P. (2017), The finite, kinematic rupture properties of great-sized earthquakes since 1990, Earth Planet. Sc. Lett.,

468, 94–100, https://doi.org/10.1016/j.epsl.2017.04.003. Hayes, G. P., Moore, G. L., Portner, D. E., Hearne, M., Flamme, H., Furtney, M., and G.M. Smoczyk (2018). Slab2, a

comprehensive subduction zone geometry model. Science (New York, N.Y.), 362(6410), 58–61. https://doi.org/10.1126/science.aat4723

Heap, M. J., Faulkner, D. R., Meredith, P. G., and S. Vinciguerra (2010), Elastic moduli evolution and accompanying stress

changes with increasing crack damage: implications for stress changes around fault zones and volcanoes during deformation, Geophysical Journal International, 183, 225–236, doi:10.1111/j.1365-246X.2010.04726.x.

Hearn, E. H., and W. R. Thatcher (2015), Reconciling viscoelastic models of postseismic and interseismic deformation:

Effects of viscous shear zones and finite length ruptures, Journal of Geophysical Research, 120(4), 2794–2819.

24

Hearn, E.H., R. Burgmann, and R. Reilinger (2002), Dynamics of Izmit earthquake postseismic deformation and loading of

the Duzce earthquake hypocenter, Bulletin of the Seismological Society of America, 92, 172–193. Heaton, T. H. (1990). Evidence for and implications of self-healing pulses of slip in earthquake rupture. Physics of the Earth

and Planetary Interiors, 64(1), 1-20. Heidarzadeh, M. and Kijko, A., (2011). A probabilistic tsunami hazard assessment for the Makran subduction zone at the

northwestern Indian Ocean. Natural hazards, 56(3), pp.577-593. Heimisson, E. R., Dunham, E. M., & Almquist, M. (2018). Nucleation and propagation of slow slip pulses on rate-

strengthening faults. Poster Presentation at 2018 SCEC Annual Meeting; manuscript in preparation. Heinecke, A., Breuer, A., Rettenberger, S., Bader, M., Gabriel, A.A., Pelties, C., Bode, A., Barth, W., Liao, X.K.,

Vaidyanathan, K. and M., Smelyanskiy (2014). Petascale high order dynamic rupture earthquake simulations on heterogeneous supercomputers. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC14, (pp. 3-14). IEEE. Gordon Bell Prize Finalist. doi: 10.1109/SC.2014.6

Helmstetter, A., and D. Sornette (2003), Importance of direct and indirect triggered seismicity in the ETAS model of

seismicity, Geophys. Res. Lett., 30, 1576, doi:10.1029/2003GL017670, 11. Henyey, T. L., and G. J. Wasserburg (1971). Heat Flow near Major Strike-Slip Faults in California, Journal of Geophysical

Research, 76(32), 7924–7946. Heimisson, E. R., Dunham, E. M., & Almquist, M. (2018). Nucleation and propagation of slow slip pulses on rate-

strengthening faults. Poster Presentation at 2018 SCEC Annual Meeting. Herrendörfer, R., Gerya, T.V., and Y., van Dinther (2018). An Invariant Rate-­‐ and State-­‐Dependent Friction Formulation for

Viscoeastoplastic Earthquake Cycle Simulations. Journal of Geophysical Research, 123, 6, 5018-5051, doi.org/10.1029/2017JB015225

Herrendörfer, R., van Dinther, Y., Gerya, T., and L.A. Dalguer (2015) Earthquake supercycle in subduction zones

controlled by the width of the seismogenic zone, Nature Geoscience, 8, p. 471–474, doi:10.1038/ngeo2427. Heslot, F., T. Baumberger, B. Perrin, B. Caroli, and C. Caroli (1994), Creep, stick-­‐slip, and dry-­‐friction dynamics:

Experiments and a heuristic model, Physics Review E, 49, 4973–4987. Hetland, E. A., and B. H. Hager (2003), Postseismic relaxation across the Central Nevada Seismic Belt, J. Geophys. Res.,

108(B8), 2394, doi:10.1029/2002JB002257. Hetland, E. A., and B. H. Hager (2005), Postseismic and interseismic displacements near a strike-slip fault: A two-

dimensional theory for general linear viscoelastic rheologies, J. Geophys. Res., 110, B10401, doi:10.1029/ 2005JB003689.

Hetland, E. A., and M. Simons (2010), Post-seismic and interseismic fault creep II: Transient creep and interseismic stress

shadows on megathrusts, Geophys. J. Int., 181(1), 99–112. Hickman, S. H., and B. Evans (1987), Influence of geometry upon crack healing rate in calcite, Physics and Chemistry of

Minerals, 15, 91–102. Hickman, S. H., and B. Evans (1992), Implications for diagenesis, lithification and strength recovery, in Fault Mechanics

and Transport Properties of Rocks, in International Geophysical Series, edited by B. Evans and T. F. Wong, pp. 187–211, Academic Press, London.

Hickman, S., and M. Zoback (2004), Stress orientations and magnitudes in the SAFOD pilot hole, Geophysical Research

Letters, 31, L15S12, doi:0.1029/2004GL020043. Hill, D.P., and S.G. Prejean (2014). Dynamic triggering, Chapter 4.11, Treatise on Geophysics (Second Edition),

https://doi.org/10.1016/B978-0-444-53802-4.00078-6.

25

Hill, D.P., Reasenberg, P.A., Michael, A., Arabaz, W.J., Beroza, G.C., Brumbaugh, D., Brune, J.N., Castro, R., Davis, S., Ellsworth, et al. (1993), Seismicity remotely triggered by the magnitude 7.3 Landers, California, earthquake, Science, 260(5114), 1617-1623, doi: 10.1126/science.260.5114.1617.

Hillers, G., Ben-Zion, Y. and P.M. Mai (2006). Seismicity on a fault controlled by rate- and state dependent friction with

spatial variations of the critical slip distance, Journal of Geophysical Research, 111, B01403, doi:10.1029/2005JB003859.

Hillers, G., Mai, P.M., Ben-Zion, Y. and J.-P. Ampuero (2007). Statistical Properties of Seismicity Along Fault Zones at

Different Evolutionary Stages, Geophysical Journal International, 169, 515–533, doi: 10.1111/j.1365-246X.2006.03275.x.

Hillers G, Roux P, Campillo M, and Y. Ben-­‐Zion (2016). Focal spot imaging based on zero lag cross-­‐correlation amplitude

fields: Application to dense array data at the San Jacinto fault zone. Journal of Geophysical Research: Solid Earth, 121(11):8048-67.

Hirakawa, E., and S. Ma (2018). Undrained gauge plasticity stabilizes rupture dynamics of rough faults, Bulletin of the

Seismological Society of America 108, 6, 3160-3168. Hirose, T., and T. Shimamoto (2005), Growth of molten zone as a mechanism of slip weakening of simulated faults in

gabbro during frictional melting, Journal of Geophysical Research, 110, B05202, doi:10.1029/2004JB003207. Hirth, G., and N.M. Beeler (2015). The role of fluid pressure on frictional behavior at the base of the seismogenic zone.

Geology, 43(3), 223-226. Hirth, G., and D.L., Kohlstedt (1995). Experimental constraints on the dynamics of the partially molten upper mantle:

Deformation in the diffusion creep regime. Journal of Geophysical Research: Solid Earth, 100(B2), 1981-2001. Hirth, G., and D.L., Kohlstedt (1996). Water in the oceanic upper mantle: implications for rheology, melt extraction and the

evolution of the lithosphere. Earth and Planetary Science Letters, 144(1-2), 93-108. Hirth, G., and D.L., Kohlstedt (2004). Rheology of the upper mantle and the mantle wedge: A view from the

experimentalists. Inside the subduction Factory, 138, 83-105. Hirth, G., and D.L., Kohlstedt. (2015). The stress dependence of olivine creep rate: Implications for extrapolation of lab data

and interpretation of recrystallized grain size. Earth and Planetary Science Letters, 418, 20-26. Hirth, G., C. Teyssier, and W.J. Dunlap (2001), An evaluation of quartzite flow laws based on comparisons between

experimentally and naturally deformed rocks, Int. J. Earth Sci., 90, 77-87. Hirose, H., Kimura, H., Enescu, B., and S. Aoi (2012). Recurrent slow slip event likely hastened by the 2011 Tohoku

earthquake. Proceedings of the National Academy of Sciences, 109(38), 15157-15161. Hobbs B.E., Ord A., Teyssier C., (1986), Earthquakes in the ductile regime? Pure and Appl. Geophys., 124:309-336 Holdsworth, R. E., van Diggelen, E. W. E., Spiers, C. J., de Bresser, J. H. P., Walker, R. J. and L. Bowen (2011), Fault

rocks from the SAFOD core samples: Implications for weakening at shallow depths along the San Andreas Fault, California, Journal of Structural Geology, 33(2), 132–144, doi:10.1016/j.jsg.2010.11.010.

Hollis D., Cox, C., Clayton, R., Lin, F., L,i D., and L., Schmandt (2013). Long Beach 3D Seismic Survey: Data Mining

Continuous Passive Seismic Data. In4th EAGE Passive Seismic Workshop. Hori, T., Kato, N., Hirahara, K., Bada, T. and Y. Kaneda (2004), A numerical simulation of earthquake cycles along the

Nankai trough, southwest Japan: Lateral variation in frictional property due to slab geometry controls the nucleation position, Earth and Planetary Science Letters 228, 215– 226, doi:10.1016/j.epsl.2004.09.033.

Howarth, J. D., U. A. Cochran, R. M. Langridge, K. Clark, S. J. Fitzsimons, K. Berryman, P. Villamor and D. T. Strong

(2018). Past large earthquakes on the Alpine Fault: paleoseismological progress and future directions AU - Howarth, Jamie D. New Zealand Journal of Geology and Geophysics 61(3): 309-328.

26

Hsu, Y. J., Simons, M., and Williams, C. (2011). Three-dimensional FEM derived elastic Green’s functions for the coseismic deformation of the 2005 Mw 8.7 Nias-Simeulue, Sumatra earthquake. Geochemistry, Geophysics, Geosystems, 12, Q07013, https://doi.org/10.1029/2011GC003553

Hu C Z, Yang P X, Li Z M, Huang S T, Zhao Y, Chen D, Xiong R W, Chen Q Y. (2016). Seismogenic mechanism of the 21

January 2016 Menyuan, Qinghai MS6.4 earthquake (in Chinese). Chin J Geophys, 59: 1637–1646. Huang, H., W. Xu, L. Meng, R. Bürgmann, and J. C. Baez (2017), Early aftershocks and afterslip surrounding the 2015 Mw

8.4 Illapel rupture, Earth Planet. Sci. Lett., 457, 282–291. Huang, Y., L. Meng, and J.-P. Ampuero (2012), A dynamic model of the frequency-dependent rupture process of the 2011

Tohoku-Oki earthquake, Earth Planets Space, 64, 1061-1066, doi:10.5047/eps.2012.05.011. Huang, Y., J.-P. Ampuero, and D. V. Helmberger (2014), Earthquake ruptures modulated by waves in damaged fault

zones, Journal of Geophysical Research Solid Earth, 119, 3133–3154, doi:10.1002/2013JB010724. Huang, Y., J.-P. Ampuero, and D. V. Helmberger (2016), The potential for supershear earthquakes in damaged fault zones

– Theory and observations, Earth and Planetary Science Letters 433, 109-115, doi: 10.1016/j.epsl.2015.10.046. Hubbard, J., Almeida, R., Foster, A., Sapkota, S. N., Bürgi, P., and P. Tapponnier (2016). Structural segmentation

controlled the 2015 Mw 7.8 Gorkha earthquake rupture in Nepal. Geology ; 44 (8): 639–642. doi: https://doi.org/10.1130/G38077.1

Hubbert, K. M., and W. W. Rubey (1959). Role of fluid pressure in mechanics of overthrust faulting: I. Mechanics of fluid-

filled porous solids and its application to overthrust faulting. Geological Society of America Bulletin 70.2, 115-166. Hulbert, C., Rouet-Leduc, B., Johnson, P. A., Ren, C. X., Rivière, J., Bolton, D. C., and C., Marone (2018). Similarity of fast

and slow earthquakes illuminated by machine learning. Nature Geoscience, 12, 69-74. Hulikal, S., Lapusta, N., and K., Bhattacharya (2018). Static and sliding contact of rough surfaces: Effect of asperity-scale

properties and long-range elastic interactions. Journal of the Mechanics and Physics of Solids, 116, 217-238. Hummel, N., and S. A. Shapiro (2013), Nonlinear diffusion-based interpretation of induced microseismicity: A Barnett Shale

hydraulic fracturing case study, Geophysics, 78(5), B211-B226. Huntington, K.W., Klepeis, K.A., and 66 community contributors (2018), Challenges and opportunities for research in

tectonics: Understanding deformation and the processes that link Earth systems, from geologic time to human time. A community vision document submitted to the U.S. National Science Foundation. University of Washington, 84 pp., https://doi.org/10.6069/H52R3PQ5.

Hurd O., Zoback M.D. (2012), Intraplate earthquakes, regional stress and fault mechanics in the central and eastern US

and southeastern Canada. Tectonophysics 581:182–192 Hyndman, R. D. and Shearer, P. M. (1989), Water in the lower continental crust: modelling magnetotelluric and seismic

reflection results*. Geophysical Journal International, 98: 343-365. doi:10.1111/j.1365-246X.1989.tb03357.x Hyndman. R. D. and S. M. Peacock (2003), Serpentinization of the forearc mantle, Earth and Planetary Science Letters,

212, 417-432. Hyndman, R. D., Yamano, M., and Oleskevich, D. A. (1997). The seismogenic zone of subduction thrust faults. Island Arc,

6(3), 244-260. Hyodo, M. and Hori, T., (2013). Re-examination of possible great interplate earthquake scenarios in the Nankai Trough,

southwest Japan, based on recent findings and numerical simulations. Tectonophysics, 600, pp.175-186. Ichimura, T., K. Fujita, P. E. B. Quinay, L. Maddegedara, M. Hori, S. Tanaka, Y. Shizawa, H. Kobayashi, and K. Minami

(2015). Implicit Nonlinear Wave Simulation with 1.08T DOF and 0.270T Unstructured Finite Elements to Enhance Comprehensive Earthquake Simulation. In Proc. Int. Conf. for High Performance Computing, Networking, Storage and Anal. (SC ’15). ACM, New York, 4:1–4:12.

Ida, Y. (1972), Cohesive force across the tip of a longitudinal shear crack and Griffith's specific surface energy, Journal of

Geophysical Research, 77, 3796-3805.

27

Ide S, and G.C. Beroza (2001). Does apparent stress vary with earthquake size?. Geophysical Research Letters,

28(17):3349-52. Ide, S., Beroza, G.C., Shelly, D.R., and T. Uchide (2007), A scaling law for slow earthquakes, Nature, 447(7140), 76-79,

doi:10.1038/nature05780. Igarashi, T., Matsuzawa, T.,and A. Hasegawa (2003), Repeating earthquakes and interplate aseismic slip in the

northeastern Japan subduction zone, Journal of Geophysical Research, 108(B5), 2249, doi:10.1029/2002JB001920. Iinuma, T., 2018. Monitoring of the spatio-temporal change in the interplate coupling at northeastern Japan subduction

zone based on the spatial gradients of surface velocity field. Geophysical Journal International 213, 30–47. Ikari, M. J., Carpenter, B. M. and C. Marone (2016), A microphysical interpretation of rate-­‐ and state-­‐dependent friction for

fault gouge, Geochemistry Geophysics Geosystems, 17, 1660–1677, doi:10.1002/2016GC006286. Ikari, M. J., Saffer, D. M., and C. Marone (2009) Frictional and hydrologic properties of clay-rich fault gouge. Journal of

Geophysical Research 114, B05409, doi:10.1029/2008JB006089. Ikeda, R., Iio, Y. and K. Omura (2001), In situ stress measurements in NIED boreholes in and around the fault zone near

the 1995 Hyogo-ken Nanbu earthquake, Japan, Island Arc, 10(3-4), 252-260. Imanishi, K., W. L. Ellsworth, and S. G. Prejean (2004), Earthquake source parameters determined by the SAFOD Pilot

Hole seismic array, Geophys. Res. Letters, 31, L12S09, doi:10.1029/2004GL019420. Inbal A., Clayton, R.W., and J.P. Ampuero (2015). Imaging widespread seismicity at midlower crustal depths beneath Long

Beach, CA, with a dense seismic array: Evidence for a depth-­‐dependent earthquake size distribution. Geophysical Research Letters, 42(15):6314-23.

Ingleby, T., and Wright, T. J. (2017). Omori-­‐like decay of postseismic velocities following continental earthquakes.

Geophysical Research Letters, 44(7), 3119-3130. Ishii, M., Shearer, P. M., Houston, H., and J.E. Vidale (2005). Extent, duration and speed of the 2004 Sumatra-Andaman

earthquake imaged by the Hi-Net array. Nature. https://doi.org/10.1038/nature03675 Ito, Y., Hino, R., Kido, M., Fujimoto, H., Osada, Y., Inazu, D., Ohta, Y. et al. (2013), Episodic slow slip events in the Japan

subduction zone before the 2011 Tohoku-Oki earthquake, Tectonophysics, 600, 14–26, doi:10.1016/j.tecto.2012.08.022.

Jackson, D. D., and Y. Y. Kagan (2006). The 2004 Parkfield Earthquake, the 1985 Prediction, and Characteristic

Earthquakes: Lessons for the Future. Bulletin of the Seismological Society of America 96 (4B): S397–409. Jaeger, J. C, Cook, N.G.W., and R. Zimmerman (1979), Fundamentals of Rocks Mechanics, 3rd ed ed., Chapman and

Hall, London. Janku-Capova, L., R. Sutherland, J. Townend, M. L. Doan, C. Massiot, J. Coussens and B. Célérier (2018). Fluid Flux in

Fractured Rock of the Alpine Fault Hanging-Wall Determined from Temperature Logs in the DFDP-2B Borehole, New Zealand. Geochemistry, Geophysics, Geosystems 19(8): 2631-2646.

Jaquet, Y., and S.M., Schmalholz (2018). Spontaneous ductile crustal shear zone formation by thermal softening and

related stress, temperature and strain rate evolution. Tectonophysics, 746, 384-397. Jha, B., and R. Juanes (2014), Coupled multiphase flow and poromechanics: A computational model of pore pressure

effects on fault slip and earthquake triggering, Water Resource Research, 50, 3776–3808, doi:10.1002/2013WR015175.

Jha, B., F. Bottazzi, R. Wojcik, M. Coccia, N. Bechor, D. McLaughlin, T. Herring, B. H. Hager, S. Mantica, and R. Juanes

(2015), Reservoir characterization in an underground gas storage field using joint inversion of flow and geodetic data, International Journal for Numerical and Analytical Methods in Geomechanics, 39(14), 1619-1638.

Jiang, J., and Y. Fialko (2016). Reconciling seismicity and geodetic locking depths on the Anza section of the San Jacinto

fault. Geophysical Research Letters, 43(20), 10663-10671.

28

Jiang, J., and N. Lapusta (2016). Deeper penetration of large earthquakes on seismically quiescent faults. Science,

352(6291), 1293-1297. Jiang, J., and N. Lapusta (2017). Connecting depth limits of interseismic locking, microseismicity, and large earthquakes in

models of long-term fault slip. Journal of Geophysical Research: Solid Earth, 122(8), 6491–6523. https://doi.org/10.1002/2017JB014030.

Jiang, J., and M. Simons (2016). Probabilistic imaging of tsunamigenic seafloor deformation during the 2011 Tohoku-oki

Earthquake. Journal of Geophysical Research: Solid Earth, 121(12), 9050–9076. https://doi.org/10.1002/2016JB013760

Jing, L. A. (2003), A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and

rock engineering, International. Journal Rock Mechanics and Mineral Science, 40, 283–353. Johnson, C.W., Bürgmann, R. and F.F. Pollitz (2015). Rare dynamic triggering of remote M≥5.5 earthquakes from global

catalog analysis, Journal of Geophysical Research Solid Earth, 120, 1748–1761, doi:10.1002/2014JB011788. Johnson, K. M., Fukuda, J. I. and P. Segall (2012), Challenging the rate-state asperity model: Afterslip following the 2011

M9 Tohoku-oki, Japan, earthquake, Geophysical Research Letters, 39, L20302, doi:10.1029/2012GL052901. Johri, M., Dunham, E. M., Zoback, M.D., and Z. Fang (2014), Predicting fault damage zones by modeling dynamic rupture

propagation and comparison with field observations, Journal of Geophysical Research, 119, 1251–1272, doi:10.1002/2013JB010335.

Jolivet R., Burgmann R., Houlie N. (2009), Geodetic exploration of the elastic properties across and within the northern San

Andreas Fault zone. Earth Planet Sci Lett 288:126–131, doi: 10.1016/j.epsl.2009.09.014 Jolivet, R., Simons, M., Agram, P.S., Duputel, Z., and Z.-K. Shen (2015) Aseismlic slip and seismogenic coupling along the

central San Andreas Fault. Geophysical Research Letters, 42, doi:10.1002/2014GL062222. Jolivet, R., Lasserre, C., Doin, M.P., Guillaso, S., Peltzer, G., Dailu, R., Sun, J., Shen, Z.K., and X. Xu (2012). Shallow

creep on the Haiyuan Fault (Gansu, China) revealed by SAR, interferometry. Journal of Geophysical Research, 117, B06401. https://doi.org/10 .1029 /2011jb008732.

Jones, L. M., and P. Molnar (1976), Frequency of foreshocks, Nature, 262, pp. 677–679. Jones, L. M., and P. Molnar (1979), Some characteristics of foreshocks and their possible relationship to earthquake

prediction and premonitory slip on faults, J. Geophys. Res., 84, pp. 3596–3608. Jonsson, S., Segall, P., Pedersen, R. and G. Björnsson (2003). Post-earthquake ground movements correlated to pore-

pressure transients. Nature 424.6945, 179. Kachanov, L. M. (1986), Introduction to continuum damage mechanics, Martinus Nijhoff Publishers. Kachanov, M. (1992), Effective Elastic Properties of Cracked Solids: Critical Review of Some Basic Concepts, Applied

Mechancs. Review, 45(8), 304, doi:10.1115/1.3119761. Kagan, Y. Y., Jackson, D.D. and R. J. Geller (2012). Characteristic Earthquake Model, 1884–2011, R.I.P. Seismological

Research Letters 83 (6): 951–53. Kame, N., J.R. Rice, and R. Dmowska (2003). Effects of prestress and rupture velocity on dynamic fault branching, Journal

of Geophysical Research 108, B5, 2265, doi:10.1029/2002JB002189. Kammer, D. S., Radiguet, M., Ampuero, J.-P., and J.-F. Molinari (2015). Linear elastic fracture mechanics predicts the

propagation distance of frictional slip. Tribology Letters, 57(3), 23. https://doi.org/10.1007/s11249-014-0451-8. Kanamori, H., and E. E., Brodsky (2004). The physics of earthquakes, Reports of Progress in Physics. 67 1429-1496 doi:

10.1088/0034-4885/67/8/R03 Kanamori H, and L. Rivera (2006) . Energy Partitioning During an Earthquake. Earthquakes: Radiated Energy and the

Physics of Faulting. Geophysical Monograph Series, 170, 3-13.

29

Kanaya, T., and G. Hirth (2018). Brittle to Semibrittle Transition in Quartz Sandstone: Energetics. Journal of Geophysical

Research: Solid Earth, 123(1), 84–106. https://doi.org/10.1002/2017JB014682 Kaneko, Y., and Y. Fialko (2011), Shallow slip deficit due to large strike-slip earthquakes in dynamic rupture simulations

with elasto-plastic off-fault response, Geophysical Journal International, Volume 186, Issue 3, Pages 1389–1403, https://doi.org/10.1111/j.1365-246X.2011.05117.x

Kaneko, Y., and N. Lapusta (2008), Variability of earthquake nucleation in continuum models of rate-and-state faults and

implications for aftershock rates, Journal of Geophysical Research, 113, B12312, doi:10.1029/ 2007JB005154. Kaneko, Y. and P. M. Shearer (2014), Seismic source spectra and estimated stress drop derived from cohesive-zone

models of circular subshear rupture, Geophysical Journal International, Volume 197, Issue 2, Pages 1002–1015, https://doi.org/10.1093/gji/ggu030.

Kaneko, Y., and P. M. Shearer (2015), Variability of seismic source spectra, estimated stress drop and radiated energy,

derived from cohesive-zone models of symmetrical and asymmetrical circular and elliptical ruptures, J. Geophys. Res. Solid Earth, 120, 1053–1079, doi:10.1002/2014JB011642.

Kaneko, Y., J. P. Ampuero, and N. Lapusta (2011), Spectral-element simulations of long-term fault slip: Effect of low-rigidity

layers on earthquake-cycle dynamics, Journal of Geophysical Research Solid Earth, 116(10), 1–18, doi:10.1029/2011JB008395.

Kaneko, Y., Avouac, J.-P. and N. Lapusta (2010), Towards inferring earthquake patterns from geodetic observations of

interseismic coupling, Nature Geoscience, 3, 363, doi:10.1038/ngeo843 Kaneko, Y., Carpenter, B. M., and Nielsen, S. B. (2017). Nucleation process of magnitude 2 repeating earthquakes on the

San Andreas Fault predicted by rate-and-state fault models with SAFOD drill core data. Geophysical Research Letters, 44(1), 162–173. https://doi.org/10.1002/2016GL071569

Kaneko, Y., Fialko, Y., Sandwell, D. T., Tong, X., and M., Furuya (2013). Interseismic deformation and creep along the

central section of the North Anatolian Fault (Turkey): InSAR observations and implications for rate-and-state friction properties. Journal of Geophysical Research: Solid Earth, 118(1), 316–331. https://doi.org/10.1029/2012JB009661

Kaneko, Y., Fukuyama, E., and I.J. Hamling (2017) Slip-weakening distance and energy budget inferred from near-fault

ground deformation during the 2016 Mw7.8 Kaikoura earthquake. Geophysical Research Letters, 44(10): 4765-4773; doi: 10.1002/2017GL073681

Kaneko, Y., N. Lapusta, and J.-­‐P. Ampuero (2008), Spectral element modeling of spontaneous earthquake rupture on rate

and state faults: Effect of velocity-­‐strengthening friction at shallow depths, Journal of Geophysical Research, 113, B09317, doi:10.1029/2007JB005553.

Kano, Y., Mori, J., Fujio, R., Ito, H., Yanagidani, T., Nakao, S., & Ma, K.-F. (2006). Heat Signature on the Chelungpu fault

associated with the 1999 Chi-Chi, Taiwan earthquake. Geophysical Research Letters, 33, L14306. https://doi.org/10.1029/2006GL026733

Kaproth, B.M. and Marone,C. (2013), Slow earthquakes, preseismic velocity changes, and the origin of slow frictional stick-

slip. Science 341, 1229–1232. Karner, S. L., and C., Marone (1998). The effect of shear load on frictional healing in simulated fault gouge. Geophysical

research letters, 25(24), 4561-4564. Karner, S. L., and C., Marone (2001). Fractional restrengthening in simulated fault gouge: Effect of shear load

perturbations. Journal of Geophysical Research: Solid Earth, 106(B9), 19319-19337. Kato, N. (2004), Interaction of slip on asperities: Numerical simulation of seismic cycles on a two-dimensional planar fault

with nonuniform frictional property, Journal of Geophysical Research, 109, B12306, doi:10.1029/2004JB003001. Kato, N. (2016). Earthquake Cycles in a Model of Interacting Fault Patches: Complex Behavior at Transition from Seismic

to Aseismic Slip. Bulletin of the Seismological Society of America, 106(4), pp.1772-1787.

30

Kato, N., and T. E. Tullis (2003), Numerical simulation of seismic cycles with a composite rate- and state-dependent friction law, Bulletin of the Seismological Society of America , 93(2), 841– 853, doi:10.1785/0120020118.

Kato, A., Obara, K., Igarashi, T., Tsuruoka, H., Nakagawa, S., and N. Hirata (2012), Propagation of slow slip leading up to

the 2011 Mw9.0 Tohoku-Oki earthquake, Science, 335(6069), doi:10.1126/science.1215141.

Katz O, Reches Z. (2002), Pre-failure damage, time-dependent creep and strength variations of a brittle granite. In: Proc fifth International conference on anal discontinuous deformation. Ben-Gurion University. Rotterdam: Balkema.

Kawamoto, E., and T. Shimamoto (1997), Mechanical behavior of halite and calcite shear zones from brittle to fully-­‐plastic deformation and a revised fault model, in Proceedings of the 30th International Geological Congress, Beijing, China, 4–14 August 1996, vol. 14, pp. 89–105, VSP, Utrecht, Netherlands.

Ke, C.-Y., McLaskey, G. C., and D.S., Kammer (2018). Rupture termination in laboratory-generated earthquakes.

Geophysical Research Letters, 45. https://doi.org/10.1029/2018GL080492 Kelly, C. M., A. Rietbrock, D. R. Faulkner, and R. M. Nadeau (2013), Temporal changes in attenuation associated with the

2004  M6.0 Parkfield earthquake, J. Geophys. Res. Solid Earth, 118, 630–645, doi:10.1002/jgrb.50088. Keranen, K. M., Weingarten, M., Abers, G.A., Bekins, B.A. and S. Ge (2014), Sharp increase in central Oklahoma

seismicity since 2008 induced by massive wastewater injection, Science, 345(6195), 448-451. Keren, T. T. and J.D. Kirkpatrick (2016). The damage is done: low fault friction recorded in the damage zone of the shallow

Japan Trench décollement. Journal of Geophysical Research, 121(5) 3804-3824. Khamrat, S., Thongprapha, T., and Fuenkajorn, K. (2018). Thermal effects on shearing resistance of fractures in Tak

granite. Journal of Structural Geology, 111, 64-74. Kilb, D., Gomberg, J. and P. Bodin (2000). Triggering of earthquake aftershocks by dynamic stresses, Nature, 408(6812),

570-574. Kim, K. H., Ree, J. H., Kim, Y., Kim, S., Kang, S.Y. and W. Seo (2018), Assessing whether the 2017 M-w 5.4 Pohang

earthquake in South Korea was an induced event, Science, 360(6392), 1007-1009. Kimberley, J., Ramesh, K.T., and N.P. Daphalapurkar (2013), A scaling law for the dynamic strength of brittle solids, Acta

Materialia, Vol. 61, 9, 3509-3521.doi.org/10.1016/j.actamat.2013.02.045 Kimura, G., Yamaguchi, A., Hojo, M., Kitamura, Y. Kameda, Y., Ujiie, K., Hamada, Y. Hamahashi, M. and S. Hina (2012).

Tectonic mélange as fault rock of subduction plate boundary, Tectonophysics, 568, 25-38. King, G. C. P, Stein, R.S. and J. Lin (1995). Static Stress Changes and the Triggering of Earthquakes, Bulletin of the

Seismological Society of America. 84(3), 1994, Pp 935–953. Kirby, S. H. (1980). Tectonic stresses in the lithosphere: Constraints provided by the experimental deformation of rocks.

Journal of Geophysical Research: Solid Earth, 85(B11), 6353-6363. Kirkpatrick, J.D., Rowe, C., White, J.C. and E.E. Brodsky (2013), Silica gel formation during fault slip: Evidence from the

rock record. Geology ; 41 (9): 1015–1018. doi: https://doi.org/10.1130/G34483.1. Kiser E and M. Ishii (2012) .The March 11, 2011 Tohoku-oki earthquake and cascading failure of the plate interface.

Geophysical Research Letters 39(7):L00G25, 10.1029/2012GL051170. Kitajima, H., Chester, J. S., Chester, F. M., and T. Shimamoto (2010). High-­‐speed friction of disaggregated ultracataclasite

in rotary shear: Characterization of frictional heating, mechanical behavior, and microstructure evolution. Journal of Geophysical Research: Solid Earth, 115(B8).

Kitajima, H., and D.M. Saffer (2012). Elevated pore pressure and anomalously low stress in regions of low frequency

earthquakes along the Nankai Trough subduction megathrust. Geophysical Research Letters, 39(23). Klinger, Y., Sieh, K., Altunel, E., Akoglu, A., Barka, A., Dawson, T., Gonzalez, T., Meltzner, A. and T. Rockwell (2003);

Paleoseismic Evidence of Characteristic Slip on the Western Segment of the North Anatolian Fault, Turkey. Bulletin of the Seismological Society of America ; 93 (6): 2317–2332. doi: https://doi.org/10.1785/0120010270.

31

Klinger, Y., Okubo, K., Vallage, A., Champenois, J., Delorme, A., Rougier, E., Lei, Z., Knight, E.E., Munjiza, A., Satriano, C.

and S. Baize (2018). Earthquake damage patterns resolve complex rupture processes. Geophysical Research Letters, 45(19), pp.10-279.

Kneafsey, T. J., Dobson, P., Blankenship, D., Morris, J., Knox, H., Schwering, P., and Podgorney, R (2018), An Overview

of the EGS Collab Project: Field Validation of Coupled Process Modeling of Fracturing and Fluid Flow at the Sanford Underground Research Facility,Lead, SD, in 43rd Workshop on Geothermal Reservoir Engineering, Stanford University, edited, pp. 1-10, Stanford University, Stanford.

Kohler, M.D., Cochran, E.S., Given, D., Guiwits, S., Neuhauser, D., Henson, I., Hartog, R., Bodin, P., Kress, V., Thompson,

S. and C. Felizardo (2018). Earthquake early warning ShakeAlert system: West coast wide production prototype. Seismological Research Letters, 89(1), pp.99-107.

Kohlstedt, D.L., Evans, B., Mackwell, S.J., (1995). Strength of the lithosphere - constraints imposed by laboratory

experiments. Journal of Geophysical Research: Solid Earth 100 (B9), 17587-17602 Komatitsch, D., and J. Tromp (1999), Introduction to the spectral element method for three-­‐dimensional seismic wave

propagation, Geophysical Journal International, 139, 806–822, doi:10.1046/j.1365-246x.1999.00967.x. Konca, A. O., Avouac, J.-P., Sladen, A., Meltzner, A. J., Sieh, K. E., Fang, P., et al. (2008). Partial rupture of a locked patch

of the Sumatra megathrust during the 2007 earthquake sequence. Nature, 456(7222), 631–635. Konca, A.O., Leprince, S., Avouac, J.P., and D.V. Helmberger (2010). Rupture process of 2010, Mw= 7.1 Düzce

earthquake from joint analysis of SPOT, GPS, InSAR, strong-motion and teleseismic data: a super-shear rupture with variable rupture velocity. Bulletin of the Seismological Society of America 100, 267–288

Kong, Q., Trugman, D. T., Ross, Z. E., Bianco, M. J., Meade, B. J., and P. Gerstoft (2018) Machine learning in seismology

- Turning data into insights. Seismological Research Letters. 90 (1): 3–14. doi: https://doi.org/10.1785/0220180259 Kothari, K. R., and A. E., Elbanna (2017). Localization and instability in sheared granular materials: Role of friction and

vibration. Physics Review E, 95(2), 22901. Kozdon, J. E. and E. M. Dunham (2013), Rupture to the trench: Dynamic rupture simulations of the 11 March 2011 Tohoku

earthquake, Bulletin of the Seismological Society of America, 103(2B), 1275-1289, doi:10.1785/0120120136. Krajcinovic, D. (1996), Damage Mechanics, Elsevier, Amsterdam. Kronenberg, A.K., Segall, P. and G.H. Wolf (1990), Hydrolytic weakening and penetrative deformation within a natural

shear zone, Geophysical Monograph 56, 21-36 Kumamoto, K. M., Thom, C. A., Wallis, D., Hansen, L. N., Armstrong, D. E., Warren, J. M., et al. (2017). Size effects

resolve discrepancies in 40 years of work on low-temperature plasticity in olivine. Science advances, 3(9), e1701338. Kumar, S., Wesnousky, S.G., Rockwell, T.K., Briggs, R.W., Thakur, V.C. and Jayangondaperumal, R., (2006).

Paleoseismic evidence of great surface rupture earthquakes along the Indian Himalaya. Journal of Geophysical Research: Solid Earth, 111(B3).

Kurzon, I., Lyakhovsky, V. and Y. Ben-Zion (2019). Dynamic rupture and seismic radiation in a damage-breakage rheology

model, 176, Pure and Applied Geophysics, doi: 10.1007/s00024-018-2060-1. Kwiatek, G., Saarno, T., Bluemle, F., Ader, T. J., Bohnhoff, M., Chendorain, M., Dresen, G., Heikkinen, P. J., Kukkonen, I.

T., Leary, P., Malin, P. E., Martinez-Garzon, P., Wollin, C., and S.G. Valenzuela (2018), Controlling induced seismicity during hydraulic stimulation of a 6-km deep EGS in Finland, paper presented at American Geophysical Union Fall Meeting Washington, DC.

Lachenbruch, A. H. (1980). Frictional heating, fluid pressure, and the resistance to fault motion. Journal of Geophysical

Research: Solid Earth, 85(B11), 6097-6112. Lachenbruch, A.H., and J. H. Sass (1973). Thermo-mechanical aspects of the San Andreas fault system, in Kovach, R L.,

and Nur, Amos, eds., Proceedings of the conference on tectonic problems of the San Andreas fault system: Stanford, Calif., Stanford University Publications in the Geological Sciences, 13, 190-205.

32

Lachenbruch, A. H., and J. H. Sass (1980). Heat flow and Energetics of the San Andreas Fault Zone. Journal of

Geophysical Research 85, B11, 6185-6222. Lambert, V. and S. Barbot (2016). Contribution of viscoelastic flow in earthquake cycles within the lithosphere-­‐

asthenosphere system. Geophysical Research Letters, 43(19), pp.10-142. Lambert, V., Perry, S., and N. Lapusta (2018). Energy budget of earthquakes: Connecting remote observations with local

physical behavior. 2018 AGU FAll Meeting Abstract, S13A-04. Lapusta, N. and S. Barbot (2012). Models of earthquakes and aseismic slip based on laboratory-derived rate-and-state

friction laws, in The Mechanics of Faulting: From Laboratory to Real Earthquakes, edited by A. Bizzarri and H. S. Bhat, pp. 153–207, Research Signpost, Kerala, India.

Lapusta, N. and Y. Liu (2009). Three-dimensional boundary integral modeling of spontaneous earthquake sequences and

aseismic slip. Journal of Geophysical Research B, 114 (B9). B09303. ISSN 01480227. Lapusta, N., and J, R., Rice (2003). Nucleation and early seismic propagation of small and large events in a crustal

earthquake model. Journal of Geophysical Research: Solid Earth, 108(B4). Lapusta, N., Rice, J. R., Ben-­‐Zion, Y., and G. Zheng (2000). Elastodynamic analysis for slow tectonic loading with

spontaneous rupture episodes on faults with rate-­‐and state-­‐dependent friction. Journal of Geophysical Research: Solid Earth, 105(B10), 23765-23789.

Larochelle, S., Gualandi, A., Chanard, K., and J.-P. Avouac (2018). Identification and extraction of seasonal geodetic

signals due to surface load variations. Journal of Geophysical Research: Solid Earth, 123(12), 11031-11047, doi:10.1029/2018JB016607.

Latour, S., A. Schubnel, S. Nielsen, R. Madariaga, and S. Vinciguerra (2013), Characterization of nucleation during

laboratory earthquakes, Geophysical Research Letters, 40, 5064–5069, doi:10.1002/grl.50974. Lavier, L. L., Bennett, R. A. and R. Duddu (2013). Creep events at the brittle ductile transition. Geochemistry, Geophysics,

Geosystems, 14, 3334–3351. Lay, T. (2015). The surge of great earthquakes from 2004 to 2014. Earth and Planetary Science Letters, 409, 133-146. Lay, T., Kanamori, H., Ammon, C. J., Nettles, M., Ward, S. N., Aster, R., Beck, S. L., Bilek, S. L., Brudzinski, M. R., Butler,

R., DeShon, H. R., Ekstrom, G., Satake, K, and S. Sipkin (2005) The great Sumatra-Andaman earthquake of 26 December 2004, Science, 308, 1127-1133.

Lay, T., Kanamori, H., Ammon, C. J., Koper, K. D., Hutko, A. R., Ye, L., Yue, H., andT.M Rushing (2012). Depth-varying

rupture properties of subduction zone megathrust faults, Journal Geophysical Research, 117, B04311. Leeman, J. R., Saffer, D. M., Scuderi, M. M., and C. Marone (2016). Laboratory observations of slow earthquakes and the

spectrum of tectonic fault slip modes. Nature communications, 7, 11104.

Leonard, L.J., Currie, C.A., Mazzotti, S., Hyndman, R.D., (2010). Rupture area and displacement of past Cascadia great earthquakes from coastal coseismic subsidence. Geol. Soc. Am. Bull. 122, 2079-2096.

Le Pichon, X., C. Kreemer, and N. Chamot-Rooke (2005), Asymmetry in elastic properties and the evolution of large

continental strike-slip faults, Journal of Geophysical Research, 110, B03405, doi:10.1029/2004JB003343. Li, Y.-G., Ellsworth, W.L., Thurber, C.H., Malin, P.E., Aki, K., (1997). Fault-zone guided waves from explosions in the San

Andreas fault at Parkfield and Cienega Valley, California. Bull. Seismol. Soc. Am. 87, 210–221. Li, Y-.G., P. Chen, E. Cochran, J. Vidale, and T. Burdette (2006), Seismic evidence for rock damage and healing on the

San Andreas Fault associated with the 2004 M6 Parkfield earthquake, Bull. Seismol. Soc. Am.,96, 349–363. Li, Y., G. P., De Pascale, M. C. Quigley, and D. M. Gravley (2014), Fault damage zones of the M 7.1 Darfield and M 6.3

Christchurch earthquakes characterized by fault zone trapped waves, Tectonophysics, 618, 79–101, doi:10.1016/j.tecto.2014.01.029.

33

Li, B. Q., and H. H. Einstein (2017), Comparison of Visual and Acoustic Emission Observations in a Four Point Bending Experiment on Barre Granite, Rock Mechanics Rock Engineering, 50(9), 2277–2296, doi:10.1007/s00603-017-1233-z.

Li, D. and Y. Liu (2016). Spatiotemporal evolution of slow slip events in a nonplanar fault model for northern Cascadia

subduction zone. Journal of Geophysical Research: Solid Earth, 121(9), pp.6828-6845. Li, D., and Y. Liu (2017), Modeling slow-­‐slip segmentation in Cascadia subduction zone constrained by tremor locations

and gravity anomalies, Journal of Geophysical Research Solid Earth, 122, 3138–3157, doi:10.1002/2016JB013778. Li, H., Wang, H., Xu, Z., Si, J., Pei, J., Li, T., Huang, Y. et al. (2013), Characteristics of the fault-related rocks, fault zones

and the principal slip zone in the Wenchuan Earthquake Fault Scientific Drilling Project Hole-1 (WFSD-1), Tectonophysics, 584, 23-42.

Li, Y. G., Vidale, J. E., Day, S. M., Oglesby, D. D., and E. Cochran (2003). Postseismic fault healing on the rupture zone of

the 1999 M 7.1 Hector Mine, California, earthquake. Bulletin of the Seismological Society of America, 93(2), 854-869. Li, Z. and Z. Zhan (2018). Pushing the limit of earthquake detection with distributed acoustic sensing and template

matching: a case study at the Brady geothermal field. Geophysical Journal International, 215(3), pp.1583-1593. Lieou, C. K. C., Elbanna, A. E., and J.M., Carlson (2013). Sacrificial bonds and hidden length in biomaterials: A kinetic

constitutive description of strength and toughness in bone. Physics Review E, 88(1), 12703 Lieou, C. K. C., Elbanna, A. E., and J.M., Carlson (2014). Grain fragmentation in sheared granular flow: Weakening effects,

energy dissipation, and strain localization. Physics Review E, 89(2), 22203 Lieou, C. K. C., Elbanna, A. E., and J.M., Carlson (2016). Dynamic friction in sheared fault gouge: Implications of acoustic

vibration on triggering and slow slip. Journal of Geophysical Research: Solid Earth, 121(3), 1483–1496 Lin, W., Conin, M., Moore, J.C., Chester, F.M., Nakamura, Y., Mori, J. et al. (2013), Stress state in the largest displacement

area of the 2011 Tohoku-Oki earthquake, Science, 339(6120), 687-690. Lin, Y. N., Sladen, A., Ortega-Culaciati, F., Simons, M., Avouac, J.-P., Fielding, E.J. et al. (2013), Coseismic and

postseismic slip associated with the 2010 Maule earthquake, Chile: Characterizing the Arauco Peninsula barrier effect, Journal of Geophysical Research Solid Earth, 118, 3142–3159, doi:10.1002/jgrb.50207

Lin, Y.-Y., and N. Lapusta (2018). Microseismicity Simulated on Asperity-Like Fault Patches: On Scaling of Seismic

Moment With Duration and Seismological Estimates of Stress Drops. Geophysical Research Letters, 45(16), 8145–8155. https://doi.org/10.1029/2018GL078650

Lindsey, E. O., and Y. Fialko (2016). Geodetic constraints on frictional properties and earthquake hazard in the Imperial

Valley, Southern California. Journal of Geophysical Research: Solid Earth, 121(2), 1097-1113. Lindsey, E. O., Fialko, Y., Bock, Y., Sandwell, D. T., and R. G. Bilham (2014a). Localized and distributed creep along the

southern San Andreas Fault. Journal of Geophysical Research, 119(10), 7909–7922. https://doi.org/10.1002/2014JB011275

Lindsey, E., V. Sahakian, Y. Fialko, Y. Bock, S. Barbot, and T. Rockwell (2014b), Interseismic Strain Localization in the

San Jacinto Fault Zone, Pure and Appl. Geophys., 171, 2937-2954, doi:10.1007/s00024-013-0753-z. Lindsey, N.J., Martin, E.R., Dreger, D.S., Freifeld, B., Cole, S., James, S.R., Biondi, B.L. and J.B., Ajo-­‐Franklin, (2017).

Fiber-­‐Optic Network Observations of Earthquake Wavefields. Geophysical Research Letters, 44(23), pp.11-792. Linker, M.F., Dieterich, J.H., 1992. Effects of variable normal stress on rock friction: Observations and constitutive

equations. J. Geophys. Res. 97, 4923–4940 Lipovsky B.P. and E.M. Dunham (2016). Tremor during ice-stream stick slip. The Cryosphere, 10(1):385-99. Lister, G. S., and P.F., Williams (1979). Fabric development in shear zones: theoretical controls and observed phenomena.

Journal of Structural Geology, 1(4), 283-297.

34

Liu, Y., and J. R., Rice (2005). Aseismic slip transients emerge spontaneously in three-dimensional rate and state modeling of subduction earthquake sequences. Journal of Geophysical Research: Solid Earth, 110(8), 1–14. https://doi.org/10.1029/2004JB003424

Liu, Y., and J. R. Rice (2007), Spontaneous and triggered aseismic deformation transients in a subduction fault model,

Journal of Geophysical Research, 112, B09404, doi:10.1029/2007JB004930. Liu, Y., and N. Lapusta (2008), Transition of mode II cracks from sub-Rayleigh to intersonic speeds in the presence of

favorable heterogeneity, Journal of Mechanics and Physics of Solids, 56, 25–50, doi:10.1016/j.jmps.2007.06.005. Liu, Y., and A. M. Rubin (2010). Role of fault gouge dilatancy on aseismic deformation transients. Journal of Geophysical

Research: Solid Earth 115.B10. Lockner, D. A., and J. D. Byerlee (1994), Dilatancy In Hydraulically Isolated Faults And The Suppression Of Instability,

Geophysical Research Letters, 21(22), 2353–2356. Lockner, D., Walsh, J. and J. Byerlee (1977). Changes in Seismic Velocity and Attenuation During Deformation of Granite,

Journal of Geophysical Research, 82, 5374-5378. Lockner, D.A., Morrow, C., Moore, D., and S. Hickman (2011). Low strength of deep San Andreas fault gouge from SAFOD

core. Nature, 472, 82-85. https://doi.org/10.1038/nature09927. Lockner, D. A., J. D. Byerlee, V. Kuksenko, A. Ponomarev, and A. Sidorin (1992), Observations of quasi-static fault growth

from acoustic emissions, in Fault Mechanics and Transport Properties of Rocks, edited by B. Evans and T. F. Wong, pp. 3–31, Academic, San Diego.

Lockner, D. A., Kilgore, B. D., Beeler, N. M. and Moore, D. E. (2017). The Transition From Frictional Sliding to Shear

Melting in Laboratory Stick-Slip Experiments, in Fault Zone Dynamic Processes: Evolution of Fault Properties During Seismic Rupture (eds M. Y. Thomas, T. M. Mitchell and H. S. Bhat), John Wiley & Sons, Inc., Hoboken, NJ, USA. doi: 10.1002/9781119156895.ch6.

Lotto, G. C., and E. M. Dunham (2015), High-order finite difference modeling of tsunami generation in a compressible

ocean from offshore earthquakes, Computational Geosciences, 19(2), 327-340, doi:10.1007/s10596-015-9472-0. Lotto, G. C., E. M. Dunham, T. N. Jeppson, and H. J. Tobin (2017), The effect of compliant prisms on subduction zone

earthquakes and tsunamis, Earth and Planetary Science Letters, 458, 213-222, doi:10.1016/j.epsl.2016.10.050. Lotto, G. C., T. N. Jeppson, and E. M. Dunham (2018), Fully-coupled simulations of megathrust earthquakes and tsunamis

in the Japan Trench, Nankai Trough, and Cascadia Subduction Zone, Pure and Applied Geophysics, doi:10.1007/s00024-018-1990-y

Loveless, J.P., Meade, B., (2011). Spatial correlation of interseismic coupling and coseismic rupture extent of the 2011 MW

= 9.0 Tohoku-oki earthquake. Geophys. Res. Lett. 38 (17). Lozos, J. C., J. H. Dieterich, and D. D. Oglesby (2014), The effects of d0 on rupture propagation on fault stepovers, Bulletin

of the Seismological Society of America, 104(4), doi:10.1785/0120130305. Lozos, J., D.D. Oglesby, J. Brune, and K.B. Olsen (2015). Rupture and Ground Motion Models on the Northern San Jacinto

Fault, Incorporating Realistic Complexity, Bulletin of the Seismological Society of America 105, 1931-1946, doi: 10.1785/0120140327

Lozos, J., K.B. Olsen, J. Brune, R. Takedatsu, R. Brune, and D.D. Oglesby (2015). Broadband ground motions from

dynamic models of rupture on the northern San Jacinto fault, and comparison with precariously balanced rocks, Bulletin of the Seismological Society of America 105, 1947-1960, doi: 10.1785/0120140328.

Lu, X., Lapusta, N.and A.J. Rosakis (2007) Pulse-like and crack-like dynamic shear ruptures on frictional interfaces:

experimental evidence, numerical modeling, and implications. International Journal of Fracture, 163 (1-2). pp. 27-39. ISSN 0376-9429.

Lu, X., Rosakis, A. J., and N. Lapusta (2010a). Rupture modes in laboratory earthquakes: Effect of fault prestress and

nucleation conditions. Journal of Geophysical Research: Solid Earth, 115(B12). https://doi.org/10.1029/2009JB006833.

35

Lu, Xiao and Lapusta, Nadia and Rosakis, Ares J. (2010b) Pulse-like and crack-like dynamic shear ruptures on frictional

interfaces: experimental evidence, numerical modeling, and implications. International Journal of Fracture, 163 (1-2). Luen, B., and P. B. Stark (2012). Poisson Tests of Declustered Catalogues. Geophysical Journal International 189 (1):

691–700. Lui, S. K. Y., and N. Lapusta (2018), Modeling high stress drops, scaling, interaction, and irregularity of repeating

earthquake sequences near Parkfield, J. Geophys. Res., 123. Luo, Y. and J.-P. Ampuero (2017), Stability of faults with heterogeneous friction properties and effective normal stress,

Tectonophysics, doi:10.1016/j.tecto.2017.11.00 Lyakhovsky, V., Ben-­‐Zion, Y., and A. Agnon (1997). Distributed damage, faulting, and friction. Journal of Geophysical

Research: Solid Earth, 102(B12), 27635-27649. Lyakhovsky, V., Y. Ben-Zion and A. Agnon (2001). Earthquake Cycle, Fault Zones, and Seismicity Patterns in a

Rheologically Layered Lithosphere, Journal of Geophysical Research, 106, 4103-4120. Lyakhovsky, V., Hamiel, Y. and Y. Ben-Zion (2011), A non-local visco-elastic damage model and dynamic fracturing,

Journal of Mechanics and Physical Solids, 59(9), 1752–1776, doi:10.1016/j.jmps.2011.05.016. Ma, K. F., Tanaka, H., Song, S.-R., Wang, C.-Y., Hung, J.-H., Tsai, Y.-B., Mori, J., Song, Y.-F., Yeh, E.-C., Soh, W., Sone,

H., Kuo, L.-W. and H.-Y. Wu. (2006), Slip zone and energetics of a large earthquake from the Taiwan Chelungpu-fault Drilling Project, Nature, 444(7118), 473–476.

Ma, S., and D. J. Andrews (2010), Inelastic off-fault response and three-dimensional earthquake rupture dynamics on a

strike-slip fault, Journal of Geophysical Research, 115, B04304, doi:10.1029/2009JB006382. Ma, S. and G. C. Beroza (2008), Rupture dynamics on a bi-material interface for dipping faults, Bulletin of the

Seismological Society of America , 98, 1642 – 1658, doi: 10.1785/0120070201. Ma, S., S. Custódio, R. J. Archuleta, and P. Liu (2008). Dynamic modeling of the 2004 Mw 6.0 Parkfield, California,

earthquake, Journal of Geophysical Research 113, no. B02301, doi: 10.1029/2007JB005216. Ma, S., and E. T. Hirakawa (2013), Dynamic wedge failure reveals anomalous energy radiation of shallow subduction

earthquakes, Earth Planet. Sci. Lett., 375, 113 - 122, doi: 10.1016/j.epsl.2013.05.016. Ma, X., and A.E. Elbanna (2018), Strain Localization in Dry Sheared Fault Gouge: A Compactivity based approach.

Physics Review Letters E. Ma, X., Hajarolasvadi S, Albertini G, Kammer D, Elbanna A. (2018) A hybrid finite element-­‐spectral boundary integral

approach: Applications to dynamic rupture modeling in unbounded domains. Int J Numer Anal Methods Geomech. 1-­‐22.

Madariaga, R. (1976), Dynamics of an expanding circular crack, Bull. Seismol. Soc. Am., 66, 639–666. Mai, P.M. and G. C. Beroza (2000). Source Scaling Properties from Finite-Fault-Rupture Models. Bulletin of the

Seismological Society of America ; 90 (3): 604–615. doi: https://doi.org/10.1785/0119990126 Mai, P. M., and G. C. Beroza (2002), A spatial random field model to characterize complexity in earthquake slip, Journal of

Geophysical Research, 107(B11), 2308, doi:10.1029/2001JB000588. Mai, P. M., and K.K.S. Thingbaijam (2014). SRCMOD: An online database of finite-fault rupture models. Seismological

Research Letters, 85(6), 1348–1357. https://doi.org/10.1785/0220140077. Mai P.M., Galis M., Thingbaijam, K.K.S., Vyas J.C., and E.M., Dunham (2017) Accounting for Fault Roughness in Pseudo-

Dynamic Ground-Motion Simulations. Pure and Applied Geophysics. http://dx.doi.org/10.1007/s00024-017-1536-8. Mai, P. M., Schorlemmer, D., Page, M., Ampuero, J., Asano, K., Causse, M., et al. (2016). The Earthquake-­‐Source

Inversion Validation (SIV) Project. Seismological Research Letters, 87(3), 690–708. https://doi.org/10.1785/0220150231

36

Majer, E. L., Baria, R., Stark, M., Oates, S., Bommer, J., Smith, B. and H. Asanuma (2007), Induced seismicity associated

with enhanced geothermal systems, Geothermics, 36(3), 185-222. Manga, M., I. Beresnev, E.E. Brodsky, J.E. Elkhoury, D. Elsworth, S.E. Ingebritsen, D.C. Mays, and C.-Y. Wang (2012).

Changes in permeability caused by transient stresses: Field observations, experiments, and mechanisms. Review of Geophysics 50, RG2004, https://doi.org/10.1029/2011RG000382.

Manning, C. E., and S. E. Ingebritsen (1999). Permeability of the continental crust: Implications of geothermal data and

metamorphic systems. Reviews of Geophysics 37.1, 127-150. Marone, C. (1998a). Laboratory-derived friction laws and their application to seismic faulting. Annual Review of Earth and

Planetary Sciences, 26(1), 643-696. Marone, C. (1998b). The effect of loading rate on static friction and the rate of fault healing during the earthquake cycle.

Nature, 391(6662), 69. Marone, C., and C. H. Scholz (1988), The depth of seismic faulting and the upper transition from stable to unstable slip

regimes, Geophysical Research Letters, 15(6), 621-624, doi:10.1029/GL015i006p00621. Marone, C., C. B. Raleigh, and C. H. Scholz (1990), Frictional Behavior And Constitutive Modeling Of Simulated Fault

Gouge, Journal of Geophysical Research, 95(B5), 7007–7025. Marone, C. J., Scholz, C. H. & Bilham, R. (1991), On the mechanics of earthquake afterslip. J. Geophys. Res. 96, 8441 –

8452. Marone, C., Vidale, J. E., and W. L. Ellsworth (1995). Fault healing inferred from time dependent variations in source

properties of repeating earthquakes. Geophysical Research Letters, 22(22), 3095-3098. Martin, E.R. and B.L Biondi (2018). Eighteen months of continuous near-surface monitoring with DAS data collected under

Stanford University. In SEG Technical Program Expanded Abstracts 2018 (pp. 4958-4962). Society of Exploration Geophysicists.

Mase, C. W., and L. Smith (1985), Pore – fluid pressures and frictional heating on a fault surface, Pure and Applied

Geophysics 122, 583– 607. Mase, C. W., and L. Smith (1987), Effects of frictional heating on the thermal, hydrologic, and mechanical response of a

fault, Journal of Geophysical Research, 92, 6249– 6272. Masuti, S., Barbot, S. D., Karato, S. I., Feng, L., and P. Banerjee (2016). Upper-mantle water stratification inferred from

observations of the 2012 Indian Ocean earthquake. Nature, 538(7625), 373. Matsubara, M., Y. Yagi, and K. Obara (2005), Plate boundary slip associated with the 2003 off-Tokachi earthquake based

on small repeating earthquake data, Geophys. Res. Lett., 32, L08316, doi:10.1029/2004GL022310. Matsu'ura, M., Kataoka, H., and B. Shibazaki (1992), Slip-dependent friction law and nucleation processes in earthquake

rupture, Tectonophysics, Volume 211, Issues 1–4, Pages 135-148. Matsuzawa, T., H. Hirose, B. Shibazaki, and K. Obara (2010), Modeling short- and long-term slow slip events in the

seismic cycles of large subduction earthquakes, Journal of Geophysical Research, 115, B12301, doi:10.1029/ 2010JB007566

Maurer, J. and P. Segall (2018); Magnitudes of Induced Earthquakes in Low-­‐Stress Environments. Bulletin of the

Seismological Society of America ; 108 (3A): 1087–1106. doi: https://doi.org/10.1785/0120170295 Mavrommatis, A. P., Segall, P., and K.M. Johnson (2014). A decadal-­‐scale deformation transient prior to the 2011 Mw 9.0

Tohoku-­‐oki earthquake. Geophysical Research Letters, 41(13), 4486-4494. McCann, W.R., S.P. Nishenko, L.R. Sykes, and J. Krause (1979), Seismic gaps and plate tectonics: Seismic potential for

major boundaries, Pure and Applied Geophysics, 117(6), 1082–1147, doi: https://doi.org/10.1007/BF00876211.

37

McCaffrey, R., L. M. Wallace, and J. Beavan (2008), Slow slip and frictional transition at low temperature at the Hikurangi subduction zone, Nature Geoscience 1, 316–320, doi:10.1038/ngeo178.

McClure, M. and R. Horne (2011), Pressure Transient Analysis of Fracture Zone Permeability at Soultz-sous-Forêts, GRC

Transactions, Vol. 35, 2011.

McGuire, J. J. (2008). Seismic Cycles and Earthquake Predictability on East Pacific Rise Transform Faults. Bulletin of the Seismological Society of America 98 (3): 1067–84.

McGuire, J. J., M. S. Boettcher, and T. H. Jordan (2005), Foreshock sequences and short-term earthquake predictability on

East Pacific rise transform faults, Nature, 434, pp. 457–461. McGuire, J. J., and Y. Kaneko (2018), Directly estimating earthquake rupture area using second moments to reduce the

uncertainty in stress drop, Geophysical Journal International, 214(3), https://doi.org/10.1093/gji/ggy201. McGuire, J. J., Zhao, L., and T.H. Jordan (2002), Predominance of unilateral rupture for a global catalog of large

earthquakes, Bulletin of the Seismological Society of America 92 (8), 3309-3317, 2002. McLaskey, G. C. and B.D. Kilgore (2013). Foreshocks during the nucleation of stick-slip instability. Journal of Geophysical

Research, Volume 118, pp. 2982-2997. Mclaskey, G. C., and F. Yamashita (2017), Slow and fast ruptures on a laboratory fault controlled by loading

characteristics, Journal of Geophysical Research Solid Earth, 122, doi:10.1002/2016JB013681 McLaskey, G.C., B.D. Kilgore, and N.M. Beeler (2015), Slip-pulse rupture behavior on a 2 m granite fault, Geophysical

Research Letters, 42, 7039–7045, doi:10.1002/2015GL065207. McLaskey, G. C., Kilgore, B. D., Lockner, D. A., and N. M. Beeler (2014). Laboratory generated M-6 earthquakes. Pure

and Applied Geophysics; 171 (10), 2601-15. McLaskey, G. C., and D. A. Lockner (2014), Preslip and cascade processes initiating laboratory stick slip, J. Geophys. Res.

Solid Earth, 119, 6323–6336, doi:10.1002/2014JB011220. McLaskey, G. C., Lockner, D. A.,Kilgore, B. D., and N. M. Beeler (2015), A robust calibration technique for acoustic

emission systems based on momentum transfer from a ball drop, Bulletin of the Seismological Society of America , 105(1), 257–271, doi:10.1785/0120140170.

Meade, B. J. (2010). The signature of an unbalanced earthquake cycle in Himalayan topography? Geology, 38(11), 987–

990. Meade, B.J., Klinger, Y., and E.A. Hetland (2013). Inference of multiple earthquake-cycle relaxation timescales from

irregular geodetic sampling of interseismic deformation. Bulletin of the Seismological Society of America 103, 2824–2835. doi:10.1785/0120130006.

Meier, M.-A., Ampuero, J. P., and T. H., Heaton (2017). The hidden simplicity of subduction megathrust earthquakes.

Science, 357(6357), 1277–1281. https://doi.org/10.1126/science.aan5643 Meier, M.A., Heaton, T. and J., Clinton (2016). Evidence for universal earthquake rupture initiation behavior. Geophysical

Research Letters, 43(15), pp.7991-7996. Meissner, R., and J. Strehlau (1982). Limits of stresses in continental crusts and their relation to the depth-frequency

distribution of shallow earthquakes. Tectonics, 1(1), 73-89. Melgar D, and G.P. Hayes (2017). Systematic observations of the slip pulse properties of large earthquake ruptures.

Geophysical Research Letters 44(19):9691-8. Melgar, D., Fan, W., Riquelme, S., Geng, J., Liang, C., Fuentes, M., et al. (2016). Slip segmentation and slow rupture to

the trench during the 2015, Mw8.3 Illapel, Chile earthquake. Geophysical Research Letters, 43(3), 961–966. https://doi.org/10.1002/2015GL067369.

Mello, M., Bhat, H. S., Rosakis, A. J. and H. Kanamori (2010). Identifying the unique ground motion signatures of

supershear earthquakes: Theory and experiments. Tectonophysics, 493 (3-4). pp. 297-326. ISSN 0040-1951.

38

Mello, M., Bhat, H. S., Rosakis, A. J. and H. Kanamori (2014). Reproducing the supershear portion of the 2002 Denali

earthquake rupture in laboratory. Earth and Planetary Science Letters 387, 89-96. https://doi.org/10.1016/j.epsl.2013.11.030.

Melosh, H. J. (1979). Acoustic fluidization: A new geologic process?. Journal of Geophysical Research: Solid Earth,

84(B13), 7513-7520. Melosh, H. J. (1996). Dynamical weakening of faults by acoustic fluidization. Nature, 379(6566), 601. Melosh, B. J., Rowe, C. D., Gerbi, C., Smit, L. and P. Macey (2018) Seismic cycle feedbacks in a mid-crustal shear zone.

Journal of Structural Geology 112, 95-111. Meng, H., and Ben-Zion, Y. (2017). Detection of small earthquakes with dense array data: Example from the San Jacinto

fault zone, southern California. Geophysical Journal International, 212(1), 442-457. Meng L, Inbal A, and J.-P. Ampuero (2011) A window into the complexity of the dynamic rupture of the 2011 Mw 9 Tohoku-­‐

Oki earthquake. Geophysical Research Letters 38(7):L00G07, 10.1029/2011GL048118. Meng, L., Ampuero, J.-P., Stock, J., Duputel, Z., Luo, Y. and V. C. Tsai (2012), Earthquake in a maze: compressional

rupture branching during the 2012 Mw 8.6 Sumatra Earthquake, Science, 337(6095), 724-726, doi:10.1126/science.1224030.

Meng, L., Huang, H., Bürgmann, R.,. Ampuero, J.-P. and A. Strader (2015), Dual megathrust slip behaviors of the 2014

Iquique Earthquake sequence, Earth and Planetary Science Letters 411, 177–187, doi:10.1016/j.epsl.2014.11.041. Meng, X., and Z. Peng (2014) Seismicity rate changes in the Salton Sea Geothermal Field and the San Jacinto Fault Zone

after the 2010 Mw 7.2 El Mayor-Cucapah earthquake, Geophysical Journal International(2014) 197, 1750–1762, doi: 10.1093/gji/ggu085.

Messen, Y. H., Corfdir, A., and Schmittbuhl, J. (2013). Mechanical healing of simulated fault gouge, Geophysical Journal

International, 193(1), 252-262. https://doi.org/10.1093/gji/ggs082 Michel, S., Avouac, J.-P., Lapusta, N., and J. Jiang (2017). Pulse-like partial ruptures and high-frequency radiation at

creeping-locked transition during megathrust earthquakes. Geophysical Research Letters, 44(16), 8345–8351. https://doi.org/10.1002/2017GL074725

Mikumo, T., and T. Miyatake (1995), Heterogeneous distribution of dynamic stress dop and relative fault strength

recovered from the results of waveform inversion: the 1984 Morgan Hill, California, earthquake, Bulletin of the Seismological Society of America, 85, 178-193.

Milliner C.W., Dolan, J.F., Hollingsworth, J., Leprince, S., Ayoub, F., and C.G. Sammis (2015). Quantifying near-­‐field and

off-­‐fault deformation patterns of the 1992 Mw 7.3 Landers earthquake. Geochemistry, Geophysics, Geosystems,16(5):1577-98.

Minson, S. E., Simons, M., and J. L. Beck (2014a). Bayesian inversion for finite fault earthquake source models I---theory

and algorithm. Geophysical Journal International, 194(3), 1701–1726. https://doi.org/10.1093/gji/ggt180. Minson, S. E., Simons, M., Beck, J. L., Ortega, F., Jiang, J., Owen, S. E., et al. (2014b). Bayesian inversion for finite fault

earthquake source models - II: The 2011 great Tohoku-oki, Japan earthquake. Geophysical Journal International, 198(2), 922–940. https://doi.org/10.1093/gji/ggu170

Mitchell, T. M., and D. R. Faulkner (2009), The nature and origin of off-fault damage surrounding strike-slip fault zones with

a wide range of displacements: A field study from the Atacama fault system, northern Chile, Journal of Structural. Geology, 31(8), 802–816, doi:10.1016/j.jsg.2009.05.002.

Mitchell, E. K., Fialko, Y., and K.M. Brown (2016). Velocity-­‐weakening behavior of Westerly granite at temperature up to

600° C. Journal of Geophysical Research: Solid Earth, 121(9), 6932-6946.

39

Mitsui, Y., Iio, Y. and Y. Fukahata (2012). A scenario for the generation process of the 2011 Tohoku earthquake based on dynamic rupture simulation: Role of stress concentration and thermal fluid pressurization. a Earth Planet Space, 64, 1177-1187. https://doi.org/10.5047/eps.2012.05.016

Mizoguchi, K., T. Hirose, T. Shimamoto, and E. Fukuyama (2009), High-velocity frictional behavior and microstructure

evolution of fault gouge obtained from Nojima fault, southwest Japan. Tectonophysics, 471, 285-296. Montesi, L. G. J., and G. Hirth (2003), Grain size evolution and the rheology of ductile shear zones: From laboratory

experiments to postseismic creep, Earth and Planetary Science Letters 211, 97-110, doi:10.1016/S0012-821X(03) 00196-1.

Montesi, L. G. (2013). Fabric development as the key for forming ductile shear zones and enabling plate tectonics. Journal

of Structural Geology, 50, 254-266. Moore, D. E., D. A. Lockner, and J. D. Byerlee (1994), Reduction of permeability in granite at elevated-temperatures,

Science, 265, 1558– 1561. Moore, D. E and M.J. Rymer (2007) Talc-bearing serpentinite and the creeping section of the San Andreas fault. Nature

448, n. 7155. 795. Morgan, P. and K. Felzer (2015). Southern San Andreas Fault Seismicity Is Consistent with the Gutenberg–Richter

Magnitude–Frequency Distribution Bulletin of the Seismological Society of America 105 (4): 2070–80. Mori, N., Takahashi, T., Yasuda, T. and Yanagisawa, H., (2011). Survey of 2011 Tohoku earthquake tsunami inundation

and run-­‐up. Geophysical research letters, 38(7). Mousavi, S. M., Horton, S. P., Langston, C.A. and B. Samei (2016) Seismic features and automatic discrimination of deep

and shallow induced-microearthquakes using neural network and logistic regression, Geophysical Journal International, 207 (1), 29-46.

Mousavi, S. M., Zhu, W., Sheng, Y. and G. C. Beroza (2019) CRED: A Deep Residual Network of Convolutional and

Recurrent Units for Earthquake Signal Detection, Scientific Reports (submitted). Mueller, C. S. (1985), Source pulse enhancement by deconvolution of anempirical Green’s function,Geophys. Res.

Lett.,12, 33–36 Muhuri, S. K., Dewers, T. A., Scott Jr, T. E., and Z. E. Reches (2003). Interseismic fault strengthening and earthquake-slip

instability: Friction or cohesion?. Geology, 31(10), 881-884. Mulargia, F., Stark, P.B., and R. J. Geller. 2017. Why Is Probabilistic Seismic Hazard Analysis (PSHA) Still Used? Physics

of the Earth and Planetary Interiors 264 (March): 63–75. Mulyukova, E. and D. Bercovici (2018). Collapse of passive margins by lithospheric damage and plunging grain size. Earth

and Planetary Science Letters, 484, 341-352. Murray, J., and J. Langbein (2006), Slip on the San Andreas Fault at Parkfield, California, over Two Earthquake Cycles,

and the Implications for Seismic Hazard, Bulletin of the Seismological Society of America, 96(B4), S283 - S303. Muto, J., B. Shibazaki, T. Iinuma, Y. Ito,Y. Ohta, S. Miura, and Y. Nakai (2016), Heterogeneous rheology controlled

postseismic deformation of the 2011 Tohoku-Oki earthquake, Geophys. Res. Lett.,43, 4971–4978, doi:10.1002/2016GL068113.

Myers, C. R., B. E. Shaw, and J. S. Langer (1996), Slip complexity in a crustal-plane model of an earthquake fault, Phys.

Rev. Lett., 77, 972-975, Nachlas, W.O., Teyssier, C., Whitney, D.L., and G. Hirth (2018). Diffusion geospeedometry in natural and experimental

shear zones. Earth and Planetary Science Letters, 498, 129-139. https://doi.org/10.1016/j.epsl.2018.06.025 Nadeau, R. and D. Dolenc (2005). Nonvolcanic tremors deep beneath the San Andreas Fault, Science, 21, 307, 5708, 389.

DOI: 10.1126/science.1107142.

40

Nadeau, R. M., and A. Guilhem (2009). Nonvolcanic tremor evolution and the San Simeon and Parkfield, California, earthquakes. science, 325(5937), 191-193.

Nadeau, R. M., and L. R. Johnson (1998). Seismological Studies at Parkfield VI: Moment Release Rates and Estimates of

Source Parameters for Small Repeating Earthquakes. Bulletin of the Seismological Society of America 88 (3): 790–814.

Nagata, K., M. Nakatani, and S. Yoshida (2012), A revised rate- and state-dependent friction law obtained by constraining

constitutive and evolution laws separately with laboratory data, Journal of Geophysical Research, 117, B02314, Nakai J. S., M. Weingarten, A.F. Sheehan, S.L. Bilek, and S. Ge (2017). A possible causative mechanism of Raton Basin,

New Mexico and Colorado earthquakes using recent seismicity patterns and pore pressure modeling. Journal of Geophysical Research: Solid Earth, 122. doi.org/10.1002/2017JB014415

Nakata, N., and R. Snieder (2011). Near-­‐surface weakening in Japan after the 2011 Tohoku-­‐Oki earthquake, Geophysical

Research Letters, 38, L17302, doi:10.1029/2011GL048800. Nakatani, M. (2001). Conceptual and physical clarification of rate and state friction: Frictional sliding as a thermally

activated rheology. Journal of Geophysical Research: Solid Earth, 106(B7), 13347–13380. https://doi.org/10.1029/2000JB900453

Naliboff, J.B., Lithgow-­‐Bertelloni, C., Ruff, L.J. and N. de Koker (2012).The effects of lithospheric thickness and density

structure on Earth's stress field, Geophysical Journal International, 35. Nankali, H., (2011). Slip rate of the Kazerun Fault and Main Recent Fault (Zagros, Iran) from 3D mechanical modeling.

Journal of Asian Earth Sciences 41, 89–98. National Research Council (2013). Induced Seismicity Potential in Energy Technologies. Washington, DC: The National

Academies Press. https://doi.org/10.17226/13355. Nazareth, J. J., and E. Hauksson (2004), The seismogenic thickness of the southern California crust, Bulletin of the

Seismological Society of America , 94(3), 940-960. Nemat-Nasser, S., and H. Horii (1982), Compression-induced nonplanar crack extension with application to splitting,

exfoliation, and rockburst., Journal of Geophysical Research, 87(B8), 6805–6821, doi:10.1029/JB087iB08p06805. Nezami, E. G., Hashash, Y. M., Zhao, D., and J. Ghaboussi (2004). A fast contact detection algorithm for 3-D discrete

element method. Computers and geotechnics, 31(7), 575-587. Ni, S., Kanamori, H. and Helmberger, D., (2005). Seismology: Energy radiation from the Sumatra earthquake. Nature,

434(7033), p.582. Nicholson, C. Plesch, A., Sorlien, C. C., Shaw, J. H., and E. Hauksson (2014). The SCEC 3D Community Fault Model

(CFM-v5): An updated and expanded fault set of oblique crustal deformation and complex fault interaction for southern California American Geophysical Union, Fall Meeting 2014, abstract id. T31B-4584

Nielsen, S.B. and J. M. Carlson (2000). Rupture Pulse Characterization: Self-Healing, Self-Similar, Expanding Solutions in

a Continuum Model of Fault Dynamics. Bulletin of the Seismological Society of America ; 90 (6): 1480–1497. doi: https://doi.org/10.1785/0120000021

Nielsen, S. B., and L. Knopoff (1998), The equivalent strength of geometrical barriers to earthquakes, Journal of

Geophysical Research, 103(B5), 9953-9965. Nielsen, S., Taddeucci, J., and Vinciguerra, S. (2010). Experimental observation of stick-slip instability fronts. Geophysical

Journal International, 180(2), 697–702. https://doi.org/10.1111/j.1365-246X.2009.04444.x Nielsen S, Di Toro G, Hirose T and Shimamoto T (2008). Frictional melt and seismic slip. J Geophys Res 113: B01308,

doi:10.1029/2007JB005122. Nielsen, S., Spagnuolo, E., Smith, S. A. F., Violay, M., Di Toro, G., and A. Bistacchi(2016). Scaling in natural and

laboratory earthquakes. Geophysical Research Letters, 43(4), 1504-1510.

41

Niemeijer, A., Di Toro, G., Griffith, W.A., Bistacchi, A., Smith, S.A., and S. Nielsen (2012), Inferring earthquake physics and chemistry using an integrated field and laboratory approach: Journal of Structural Geology, v. 39, p. 2–36, doi:10.1016/j.jsg.2012.02.018.

Niemeijer, A., Marone, C. and D. Elsworth (2008), Healing of simulated fault gouges aided by pressure solution: results

from rock analogue experiments, Journal of Geophysical Research, 113, B04204, 10.1029/2007JB005376 Niemeijer, A. Marone, C. and D. Elsworth (2010a). Frictional strength and strain weakening in simulated fault gouge:

competition between geometrical weakening and chemical strengthening, Journal of Geophysical Research, 115, B10207, 10.1029/2009JB000838.

Niemeijer, A., Marone, C. and D. Elsworth (2010b). Fabric induced weakness of tectonic faults, Geophysical Research

Letters, 37, L03304, 10.1029/2009GL041689. Niemeijer, A., Spiers, C. J., and B. Bos (2002), Compaction creep of quartz sand at 400–600 C: Experimental evidence for

dissolution-controlled pressure solution. Earth and Planetary Science Letters, 195(3-4), 261-275. Niemeijer, A. R., C. Boulton, V. G. Toy, J. Townend, and R. Sutherland (2016), Large-displacement, hydrothermal frictional

properties of DFDP-1 fault rocks, Alpine Fault, New Zealand: Implications for deep rupture propagation, Journal of Geophysical Research, 121, 624–647, doi:10.1002/2015JB012593.

Ngo, D, Huang, Y., Rosakis, A.J., Griffith, W.A., and D.D Pollard (2012). Off-fault tensile cracks: A link between geological

fault observations, lab experiments and dynamic rupture models, Journal of Geophysical Research , Vol. 117, B01307, DOI: 10.1029/ 2011JB008577.

Noda, H., Dunham, E. M., and J.R. Rice (2009). Earthquake ruptures with thermal weakening and the operation of major

faults at low overall stress levels. Journal of Geophysical Research: Solid Earth, 114(B7). Noda, H., and N. Lapusta (2010). Three-­‐dimensional earthquake sequence simulations with evolving temperature and pore

pressure due to shear heating: Effect of heterogeneous hydraulic diffusivity. Journal of Geophysical Research: Solid Earth, 115(B12).

Noda, H., and N. Lapusta (2013). Stable creeping fault segments can become destructive as a result of dynamic

weakening. Nature, 493(7433), 518. Noda, H., Lapusta, N. and H. Kanamori (2013), Comparison of average stress drop measures for ruptures with

heterogeneous stress change and implications for earthquake physics, Geophysical Journal International, doi: 10.1093/gji/ggt074.

Noda, H., and M. Takahashi (2016). The effective stress law at a brittle-plastic transition with a halite gouge layer.

Geophysical Research Letters, 43(5), 1966–1972. https://doi.org/10.1002/2015GL067544. Noda H, Sawai M., and B. Shibazaki (2017). Earthquake sequence simulations with measured properties for JFAST core

samples, Phil. Trans. R. Soc. A 375: 20160003. http://dx.doi.org/10.1098/rsta.2016.0003 Norris, R. J., and A. F. Cooper (2003), Very high strains recorded in mylonites along the Alpine fault, New Zealand:

Implications for the deep structure of plate boundary faults, Journal of Structural Geology25, 2141-2157, doi:10.1016/S0191-8141(03)00045-2.

Nur, A., and J. R. Booker (1972), Aftershocks caused by pore fluid flow?, Science, 175, 885–887. Obara, K., (2002). Nonvolcanic deep tremor associated with subduction in Southwest Japan. Science 296, 1679–1681.

https://doi.org /10.1126 /science.1070378. Obara, K., Kato, A., (2016). Connecting slow earthquakes to huge earthquakes. Science 353, 253–257. https://doi.org

/10.1126 /science.aaf1512. O'Brien, G. A., S. C. Cox and J. Townend (2016). Spatially and temporally systematic hydrologic changes within large

geoengineered landslides, Cromwell Gorge, New Zealand, induced by multiple regional earthquakes. Journal of Geophysical Research: Solid Earth 121(12): 8750-8773.

42

Oda, M., Takemura, T., Aoki, T., (2002). Damage growth and permeability change in triaxial compression tests of Inada granite. Mechanics of Materials 34 (6), 313e331

Oden, J. T., and C. A. Duarte (1997). Clouds, cracks and FEM’s. Recent developments in computational and applied

mechanics, 302-321. Oglesby, D. D., Archuleta, R. J. & Nielsen (1998), S. B. Earthquakes on dipping faults: the e ects of broken symmetry.

Science 280, 1055–1059. Oglesby, D. D. (2008), Rupture termination and jump on parallel offset faults, Bulletin of the Seismological Society of

America, 98(1), 440-447. Oglesby, D. D., and S. M. Day (2002), Stochastic fault stress: Implications for fault dynamics and ground motion, Bulletin of

the Seismological Society of America v. 92 p. 3006-3021. Oglesby, D.D., Dreger, D.S., Harris, R.A., Ratchkovski, N. and R. Hansen (2004). Inverse kinematic and forward dynamic

models of the 2002 Denali, Alaska, earthquake, Bulletin of the Seismological Society of America, 94(6B), 214-233. Ohnaka, M., Kuwahara, Y. and K. Yamamoto (1987). Constitutive relations between dynamic physical parameters near a

tip of the propagating slip zone during stick-slip shear failure. Tectonophysics, 144: 109-125. Ohnaka, M., and Y. Kuwahara (1990), Characteristic features of local breakdown near a crack-tip in the transition zone

from nucleation to unstable rupture during stick-slip shear failure, Tectonophysics, 175, 197–220. Ohnaka, M., and L. Shen (1999). Scaling of the shear rupture process from nucleation to dynamic propagation:

Implications of geometric irregularity of the rupturing surfaces. Journal of Geophysical Research: Solid Earth, 104(B1), 817–844. https://doi.org/10.1029/1998JB900007

Ohtani, T., Tanaka, H., Fujimoto, K., Higuchi, T., Tomida, N., and H. Ito (2001), Internal structure of the Nojima Fault zone

from the Hirabayashi GSJ drill core, Island Arc, 10(3-4), 392-400. Okubo, P. G. (1989), Dynamic rupture modeling with laboratory-derived constitutive relations, Journal of Geophysical

Research, 94, 12,321-12,335,

Okubo, P. G. and K. Aki (1987) Fractal geometry in the San Andreas Fault System. Journal of Geophysical Research 92, B1 345-355.

Okubo, P. G., and J. H. Dieterich (1984), Effects of physical fault properties on frictional instabilities produced on simulated

faults, Journal of Geophysical Research, 89, 5817–5827. Okubo, P. G., and J. H. Dietrich (1986), State variable fault constitutive relations for dynamic slip, in Earthquake Source

Mechanics, Geophysical Monographs, edited by Das, S., J. Boatwright, and C. H. Scholz, vol. 6, American Geophysical Union, Washington D.C, 25–35.

Olami, Z., H. J. Feder, and K. Christensen (1992). Self-Organized Criticality in a Continuous, Nonconservative Cellular

Automaton Modeling Earthquakes. Physics Review Letters 68 (8): 1244–47. Olsen, K.B., R. Madariaga, and R.J. Archuleta (1997). Three-dimensional dynamic simulation of the 1992 Landers

earthquake, Science 278, 834-838. Olson, E.L. and R.M. Allen (2005). The deterministic nature of earthquake rupture. Nature, 438(7065), p.212. Ong, S.Q.M., Barbot, S. and J. Hubbard (2019), Physics-Based Scenario of Earthquake Cycles on the Ventura Thrust

System, California: The Effect of Variable Friction and Fault Geometry. Pure and Applied Geophysics, pp.1-15. Oth, A. (2013). On the characteristics of earthquake stress release variations in Japan. Earth and Planetary Science

Letters, 377, 132-141. Outerbridge, K. C., T. H. Dixon, S. Y. Schwartz, J. I. Walter, M. Protti, V. Gonzalez, J. Biggs, M. Thorwart, and W. Rabbel

(2010), A tremor and slip event on the Cocos-­‐Caribbean subduction zone as measured by a global positioning system (GPS) and seismic network on the Nicoya Peninsula, Costa Rica, Journal of Geophysical Research, 115, B10408,

43

doi:10.1029/2009JB006845.

Oye V, et al. (2013) Microseismic monitoring and interpretation of injection data from the In Salah CO2 storage site (Krechba), Algeria. Energy Procedia 37:4191–4198.

Ozawa, S. W., Hatano, T., and N. Kame (2019). Longer migration and spontaneous decay of aseismic slip pulse caused by

fault roughness. Geophysical Research Letters, 46. https://doi.org/10.1029/2018GL081465. Pacheco, J. F., Sykes, L. R., and C.H. Scholz (1993). Nature of seismic coupling along simple plate boundaries of the

subduction type. Journal of Geophysical Research: Solid Earth, 98(B8), 14133-14159. Page, M. T., D. Alderson, and J. Doyle (2011), The magnitude distribution of earthquakes near Southern California faults,

J. Geophys. Res., 116, B12309, doi:10.1029/2010JB007933. Page, M. and K. Felzer (2015). Southern San Andreas Fault Seismicity is Consistent with the Gutenberg-Richter

Magnitude-Frequency Distribution. Bulletin of the Seismological Society of America, 105(4). DOI: 10.1785/0120140340.

Palmer, A. C., and J. R. Rice (1973), The growth of slip surfaces in the progressive failure of overconsolidated clay,

Proceedings of the Royal Society of London, A332, 527-548. Peltzer, G., Rosen, P., Rogez, F., and K. Hudnut (1998). Poroelastic rebound along the Landers 1992 earthquake surface

rupture. Journal of Geophysical Research: Solid Earth 103.B12 (1998): 30131-30145. Panet, I., Bonvalot, S., Narteau, C., Remy, D., and J.M. Lemoine (2018). Migrating pattern of deformation prior to the

Tohoku-Oki earthquake revealed by GRACE data. Nature Geoscience, 11(5), 367. Parsons, T. (2008). Earthquake Recurrence on the South Hayward Fault Is Most Consistent with a Time Dependent,

Renewal Process. Geophysical Research Letters 35 (21): B08313. Parsons, T., Geist, E. L., Console, R., and Carluccio, R. (2018). Characteristic earthquake magnitude frequency

distributions on faults calculated from consensus data in California. Journal of Geophysical Research: Solid Earth, 123, 10,761–10,784. https://doi.org/10.1029/2018JB016539

Passelègue, F. X., A. Schubnel, S. Nielsen, H. S. Bhat, and R. Madariaga (2013), From sub-­‐Rayleigh to supershear

ruptures during stick-­‐slip experiments on crustal rocks, Science, 340(6137), 1208–1211. Paterson, M. S., and T. F. Wong (2005), Experimental Rock Deformation—The Brittle Field, second., Springer, New York. Pelties, C., Gabriel, A.-A., and J.-P. Ampuero (2014). Verification of an ADER-DG method for complex dynamic rupture

problems, Geoscience Model Development, 7, 847-866, https://doi.org/10.5194/gmd-7-847-2014. Peng, Z., and Y. Ben-Zion (2005), Spatiotemporal variations of crustal anisotropy from similar events in aftershocks of the

1999 M7.4 Izmit and M7.1 Düzce, Turkey, earthquake sequences, Geophysical Journal International, 160, 1027 – 1043.

Peng, Z. and Y. Ben-Zion (2006). Temporal changes of shallow seismic velocity around the Karadere-Duzce branch of the

north Anatolian fault and strong ground motion, Pure Applied Geophysics, 163, 567-600, DOI 10.1007/s00024-005-0034-6.

Peng, Z., Gomberg, J., (2010). An integrated perspective of the continuum between earthquakes and slow-slip

phenomena. Nat. Geosci.3. https://doi.org /10.1038 /ngeo940 Peng, Z., Vidale, J. E., Marone, C., and A. Rubin, (2005). Systematic variations in recurrence interval and moment of

repeating aftershocks. Geophysical Research Letters, 32(15). Peng, Z., Vidale, J.E., Creager, K.C., Rubinstein, J.L., Gomberg, J. and P. Bodin (2008). Strong tremor near Parkfield, CA,

excited by the 2002 Denali Fault earthquake, Geophysical Research Letters, 35, L23305, doi:10.1029/2008GL036080. Perfettini, H., and J-P Avouac (2004). Postseismic Relaxation Driven by Brittle Creep: A Possible Mechanism to Reconcile

Geodetic Measurements and the Decay Rate of Aftershocks, Application to the Chi-Chi Earthquake, Taiwan. Journal of Geophysical Research 109 (B2).

44

Perfettini, H., and J. P. Avouac (2014), The seismic cycle in the area of the 2011 Mw9.0 Tohoku-Oki earthquake, Journal of

Geophysical Research Solid Earth, 119, 4469–4515, doi:10.1002/2013JB010697 Perfettini, H., Avouac, J.-P., Tavera, H., Kositsky, A., Nocquet, J.-M., Bondoux, F., et al. (2010). Seismic and aseismic slip

on the Central Peru megathrust. Nature, 465(7294), 78–81. Retrieved from http://dx.doi.org/10.1038/nature09062 Perol, T., and H. S. Bhat (2016), Micromechanics-Based Permeability Evolution in Brittle Materials at High Strain Rates,

Pure and Applied Geophysics173(8), 2857–2868, doi:10.1007/s00024-016-1354-4. Perol, T., M. Gharbi, and M. A. Denolle (2018) Convolutional neural network for earthquake detection and locations,

Science Advances, 4, 2. Perrin, C., Manighetti, I., Ampuero, J.P., Cappa, F. and Y., Gaudemer (2016). Location of largest earthquake slip and fast

rupture controlled by along-­‐strike change in fault structural maturity due to fault growth. Journal of Geophysical Research, 121(5), pp.3666-3685.

Peyrat, S., Olsen, K.B. and R. Madariaga (2001). Dynamic modeling of the 1992 Landers earthquake, Journal of

Geophysical Research 106, 26,467-26,482. Peyrat, S., and K.B. Olsen (2004). Nonlinear dynamic inversion of the 2000 Western Tottori, Japan, earthquake,

Geophysical Research Letters 31, doi:10.1029/2003GL019058.

P.J. Phillips, M.F. Wheeler, (2007), A coupling of mixed and continuous Galerkin finite element methods for poroelasticity I: the continuous-in-time case, Comput.Geosci. 11, 131–144.

Platt, J. D., Rudnicki, J. W., and Rice, J. R. (2014). Stability and localization of rapid shear in fluid-­‐saturated fault gouge: 2.

Localized zone width and strength evolution. Journal of Geophysical Research: Solid Earth, 119(5), 4334-4359. Platt, J. D., N. Brantut, and J. R. Rice (2015), Strain Localization Driven by Thermal Decomposition During Seismic Shear,

Journal of Geophysical Research, 120, doi: 10.1002/2014JB011493. Platt, J. D., N. Brantut, and J. R. Rice (2015). Strain localization driven by thermal decomposition during seismic shear, J.

Geophys. Res. 120, no. 6, 4405–4433, doi: 10.1002/2014JB011493 Plesch, A., Shaw, J. H., Benson, C., Bryant, W. A., Carena, S., Cooke, M., et al. (2007). Community Fault Model (CFM) for

southern California. Bulletin of the Seismological Society of America, 97(6), 1793–1802. https://doi.org/10.1785/0120050211

Poirier, J. P. (1980), Shear localization and shear instability in materials in the ductile field, Journal of Structural Geology 2,

135-142, doi:10.1016/0191-8141(80) 90043-7. Ponson, L., Bonamy, D., and Bouchaud, E. (2006) Two-dimensional scaling properties of experimental fracture surfaces.

Physics Review Letters 93, n. 3, 035506. Poliakov, A. N. B., Dmowska, R. and J. R. Rice (2002), Dynamic shear rupture interactions with fault bends and off-­‐axis

secondary faulting, Journal of Geophysical Research, 107(B11), 2295, doi:10.1029/2001JB000572. Pollard, D. D., and P. Segall (1987), Theoretical displacements and stresses near fractures in rock with applications to

faults, joints, veins, dikes, and solution surface, in Fracture Mechanics of Rock, edited by B. K. Atkinson, pp. 277–349, Academic, San Diego.

Pollitz, F. F. (2012). ViscoSim Earthquake Simulator. Seismological Research Letters, 83(6), 979-982. doi:

10.1785/0220120050. Pollitz, F.F., Stein, R.S., Sevilgen, V. and R. Bürgmann (2012). The 11 April 2012 east Indian Ocean earthquake triggered

large aftershocks worldwide, Nature, 490,250–253, doi: 10.1038/nature11504. Power, W. L., Tullis, T. E., Brown, S. R., Boitnott, G. N., and C.H Scholz (1987) Roughness of natural fault surfaces.

Geophysical Research Letters 14, n. 1, 29-32.

45

Power, W. L., Tullis, T. E., and J.D. Weeks (1988). Roughness and wear during brittle faulting. Journal of Geophysical Research, 93(B12), 15268. https://doi.org/10.1029/JB093iB12p15268

Prakash, V., Clifton, R.J., 1992. Pressure-shear plate impact measurement of dynamic friction for high speed machining

applications.Proceedings of the Seventh International Congress on Experimental Mechanics. Society of Experimental Mechanics, Bethel, Conn., pp. 556 –564

Preuss, S., Herrendörfer, R., Gerya, T., Ampuero, J.-P. and Y. van Dinther (2019). Seismic and Aseismic Fault Growth

Lead to Different Fault Orientations. EarthArXiv. January 10. doi:10.31223/osf.io/an92e. Priest, G.P., Goldfinger, C., Wang, K., Witter, R.C., Zhang, Y., and Baptista, A.M. (2010). Confidence levels for tsunami-

inundation limits in northern Oregon inferred from a 10,000-year history of great earthquakes at the Cascadia subduction zone. Nat. Hazards 54 (1), 27–73, http://dx.doi.org/10.1007/s11069-009-9453-5.

Prieto GA, Shearer PM, Vernon FL, and D. Kilb (2004). Earthquake source scaling and self-­‐similarity estimation from

stacking P and S spectra. Journal of Geophysical Research: Solid Earth,109(B8). Pritchard, M. E., and M. Simons (2006), An aseismic slip pulse in northern Chile and along-strike variations in seismogenic

behavior, Journal of Geophysical Research, 111, B08405, doi:10.1029/2006JB004258. Proctor, B. and G. Hirth (2015), Role of pore fluid pressure on transient strength changes and fabric development during

serpentine dehydration at mantle conditions: Implications for subduction- zone seismicity, Earth Planetary Science Letters, 42, 1–12.

Proctor, B., T.M. Mitchell, G. Hirth, D. Goldsby, F. Zorzi, and G. Di Toro (2014), Dynamic weakening of serpentinite gouges

and bare-surfaces at seismic slip rates, J. Geophys. Res., 119, 8107-8131, DOI: 10.1002/2014JB011057. Protti, M., González, V., Newman, A.V., Dixon, T., Schwartz, S.Y., Marshall, J.S., Feng, L., Walter, J.I., Malservisi, R. and

S.E. Owen (2014). Nicoya earthquake rupture anticipated by geodetic measurement of the loecked plate interface. Nature Geoscience, 7, 117-121.

Qiu, H., Y. Ben-Zion, Z.E. Ross, P.-E. Share and F. L. Vernon (2017). Internal structure of the San Jacinto fault zone at

Jackass Flat from data recorded by a dense linear array, Geophysical Journal International, 209, 1369-1388, doi: 10.1093/gji/ggx096.16.x.

Qiu, Q., Hill, E. M., Barbot, S., Hubbard, J., Feng, W., Lindsey, E. O., Feng, L., Dai, K., Samsonov, S.V., and P. Tapponnier

(2016), The mechanism of partial rupture of a locked megathrust: The role of fault morphology. Geology ; 44 (10): 875–878. doi: https://doi.org/10.1130/G38178.1

Rabinowitz, H. S., Savage, H., Plank, T., Polissar, P.J., Kirkpatrick, J.D., and C. Rowe (2015), Multiple major faults at the

Japan Trench: Chemostratigraphy of the plate boundary at IODP Expedition 343: JFAST. Earth and Planetary Science Letters v. 423, 57-66

Radiguet, M., Perfettini, H., Cotte, N., Gualandi, A., Valette, B., Kostoglodov, V., Lhomme, T., Walpersdorf, A., Cabral

Cano, E. and M. Campillo (2016), Triggering of the 2014 Mw7.3 Papanoa earthquake by a slow slip event in Guerrero, Mexico, Nature Geoscience, 9(11), 829-833, doi:10.1038/ngeo2817.

Ragon, T., Sladen, A., and M. Simons (2018). Accounting for uncertain fault geometry in earthquake source inversions – I:

theory and simplified application. Geophysical Journal International, 214(2), 1174–1190. https://doi.org/10.1093/gji/ggy187

Raleigh, C. B., Healy, J. H., and J. D. Bredehoeft (1976). An experiment in earthquake control at Rangely, Colorado.

Science, 191(4233), 1230-1237. Rannabauer, L., Duru, K. C., Gabriel, A.-A., Ling, A. O. K., Bader, M. and T. Ulrich (2018), The ExaHyPE Hyperbolic PDE-

Engine: Novel DG Methods for Seismic Wave Propagation in Alpine Regional Areas, AGU18 Fall Meeting, abstract ID DI31B-0006.

Ray, S., and R.C. Viesca (2017). Earthquake nucleation on faults with heterogeneous frictional properties, normal stress.

Journal of Geophysical Research: Solid Earth,122, 8214-8240.

46

Regalla, C., Rowe, C. D., Harrichhausen, N., Tarling, M., and J. Singh (2018). Styles of underplating in the Marin Headlands Terrane, Franciscan Complex, California. Geological Society of America Special Publications v. 534, 19 p.

Reid, H.F. (1910), The Mechanics of the Earthquake, The California Earthquake of April 18, 1906; Report of the State

Investigation Commission, Vol.2, Carnegie Institution of Washington, Washington, D.C. Renard, F., Voisin, C., Marsan, D., and Schmittbuhl, J., (2006), High resolution 3D laser scanner measurements of a strike-

slip fault quantify its morphological anisotropy at all scales: Geophysical Research Letters, v. 33, L04305, doi:10.1029/2005GL025038.

Renard, F., Cordonnier, B., Kobchenko, M., Kandula, N., Weiss, J., & Zhu, W. (2017). Microscale characterization of

rupture nucleation unravels precursors to faulting in rocks. Earth and Planetary Science Letters, 476, 69-78. Renard, F., Weiss, J., Mathiesen, J., Ben Zion, Y., Kandula, N. and B. Cordonnier(2018a), Critical evolution of damage

towards system-size failure in crystalline rock, Journal of Geophysical Research, 123, 1969-1986 , doi:10.1002/2017JB014964.

Renard, F. McBeck, J., Cordonnier, B., Zheng, X., Kandula, N., Sanchez, J., Kobchenko, M., Noiriel, C., Zhu, W., Meakin,

P., Fusseis, F., and D.K Dysthe (2018b), Dynamic In Situ Three-Dimensional Imaging and Digital Volume Correlation Analysis to Quantify Strain Localization and Fracture Coalescence in Sandstone, Pure and Applied Geophysics C, doi:10.1007/s00024-018-2003-x.

Rettenberger, S., Meister, O., Bader, M. and A.A. Gabriel (2016). Asagi: A parallel server for adaptive geoinformation. In

Proceedings of the Exascale Applications and Software Conference 2016 (p. 2). ACM. doi:10.1145/2938615.2938618. Rice, J.R. (1980). The Mechanics of Earthquake Rupture, in Physics of the Earth's Interior (Proc. International School of

Physics 'Enrico Fermi', Course 78, 1979; ed. A. M. Dziewonski and E. Boschi), Italian Physical Society and North-Holland Publ. Co, pp. 555-649.

Rice, J. R. (1992), Fault stress states, pore pressure distributions, and the weakness of the San Andreas Fault, in Fault

Mechanics and Transport Properties of Rocks, edited by B. Evans and T.-F. Wong, chap. 20, pp. 475–503, Academic Press, San Diego.

Rice, J. R. (1993). Spatio-Temporal Complexity of Slip on a Fault. Journal of Geophysical Research, 98 (B6): 9885. Rice, J. R. (1999). Flash heating at asperity contacts and rate-dependent friction. Eos Trans. AGU, 80(46), F471. Rice, J. R. (2006). Heating and weakening of faults during earthquake slip. Journal of Geophysical Research: Solid Earth,

111(B5). Rice, J. R., and A. L. Ruina (1983). Stability of steady frictional slipping. Journal of applied mechanics, 50(2), 343-349. Rice, J. R., Lapusta, N., and K. Ranjith (2001). Rate and state dependent friction and the stability of sliding between

elastically deformable solids. Journal of the Mechanics and Physics of Solids, 49(9), 1865–1898. https://doi.org/10.1016/S0022-5096(01)00042-4

Rice, J. R., Sammis, C. G. and R. Parsons (2005), Off-fault secondary failure induced by a dynamic slip pulse, Bulletin of

the Seismological Society of America , 95(1), 109–134, doi:10.1785/0120030166. Rice, J.R., J. W. Rudnicki, and J. D. Platt (2014), Stability and Localization of Rapid Shear in Fluid-Saturated Fault Gouge,

1. Linearized stability analysis, Journal of Geophysical Research - Solid Earth, vol. 119, doi:10.1002/2013JB010710. Richard, J., Doan, M.L., Gratier, J.P., and F. Renard (2015), Microstructures Induced in Porous Limestone by Dynamic

Loading, and Fracture Healing: An Experimental Approach, Pure and Applied Geophysics172(5), 1269–1290, doi:10.1007/s00024-014-0958-9.

Richards-Dinger, K. B., and J. H. Dieterich (2012), RSQSim earthquake simulator, Seismological Research Letters, 83(6),

983-990, doi:10.1785/0220120105. Richardson, E., Marone, C., 1999. Effects of normal force vibrations on frictional healing. J. Geophys. Res. 104, 28,859–

28,878

47

Rivière, J., Lv, Z., Johnson, P. A., and C. Marone (2018). Evolution of b-value during the seismic cycle: Insights from laboratory experiments on simulated faults. Earth and Planetary Science Letters, 482, 407-413.

Rockwell, T. K., and Y. Ben-Zion (2007), High localization of primary slip zones in large earthquakes from paleoseismic

trenches: Observations and implications for earthquake physics, Journal of Geophysical Research Solid Earth, 112(10), 1–12, doi:10.1029/2006JB004764.

Rockwell, T. K., Dawson, T. E., Young Ben-Horin, J., and G. Seitz (2015). A 21-Event, 4,000-Year History of Surface

Ruptures in the Anza Seismic Gap, San Jacinto Fault, and Implications for Long-term Earthquake Production on a Major Plate Boundary Fault. Pure and Applied Geophysics, 172(5), 1143–1165. https://doi.org/10.1007/s00024-014-0955-z

Rockwell, T., M. Sisk, G. Girty, O. Dor, N. Wechsler and Y. Ben-Zion (2009). Chemical and Physical Characteristics of

Pulverized Tejon Lookout Granite Adjacent to the San Andreas and Garlock Faults: Implications for Earthquake Physics, Pure and Applied Geophysics, 166, 1725–1746, doi: 10.1007/s00024-009-0514-1.

Rodgers, A. J., Pitarka, A., Petersson, N. A., Sjögreen, B., & McCallen, D. B. (2018). Broadband (0–4 Hz) ground motions

for a magnitude 7.0 Hayward fault earthquake with three-­‐dimensional structure and topography. Geophysical Research Letters, 45(2), 739-747.

Rogers, G., Dragert, H., (2003). Episodic tremor and slip on the Cascadia subduction zone: the chatter of silent slip.

Science 300, 1942–1943. https://doi.org /10.1126 /science.1084783. Rolandone, F., Burgmann, R. & Nadeau, R.M., (2004). The evolution of the seismic-aseismic transition during the

earthquake cycle: constraints from the time-dependent depth distribution of aftershocks, Geophys. Res. Lett., 31, L23610, doi:10.1029/2004GL021379.

Rolandone, F., Nocquet, J.-M., Mothes, P.A., Jarrin, P., Vallée, M., Cubas, N., Hernandez, S., Plain, M., Vaca, S., and Y.

Font (2018). Areas prone to slow slip events impede earthquake rupture propagation and promote afterslip. Science Advances, Vol. 4, no. 1, eaao6596. DOI: 10.1126/sciadv.aao6596

Rollins, C., Avouac, J. P., Landry, W., Argus, D. F., and S. Barbot (2018). Interseismic Strain Accumulation on Faults

Beneath Los Angeles, California. Journal of Geophysical Research: Solid Earth, 123(8), 7126–7150. https://doi.org/10.1029/2017JB015387

Romanet, P., Bhat, H. S., Jolivet, R., and Madariaga, R. (2018). Fast and slow slip events emerge due to fault geometrical

complexity. Geophysical Research Letters, 45(10), 4809–4819. https://doi.org/10.1029/2018GL077579 Romanowicz B., and L.J. Ruff (2002). On moment-­‐length scaling of large strike slip earthquakes and the strength of faults.

Geophysical Research Letters, (12):45-1. Rong, Y., Jackson, D.D., and Y. Y. Kagan (2003). Seismic Gaps and Earthquakes. Journal of Geophysical Research 108

(B10): 11. Rosakis, A.J. (2002), Intersonic Shear Cracks and Fault Ruptures, Advances in Physics, 51, 1189-1257. Rosakis, A. J., Lykotrafitis, G., Xia, K. and H. Kanamori (2007), Dynamic shear rupture in frictional interfaces: speeds,

directionality and modes. Treatise in Geophysics 4 - Earthquake Seismology, Elsevier, G. Schubert, Editor-in-Chief. Ross, Z. E. and Y., Ben-­‐Zion (2016). Toward reliable automated estimates of earthquake source properties from body

wave spectra. Journal of Geophysical Research, 121(6):4390-407. Ross, Z. E., Hauksson, E., and Ben-Zion, Y. (2017). Abundant off-fault seismicity and orthogonal structures in the San

Jacinto fault zone. Science Advances, 3(3), e1601946. https://doi.org/10.1126/sciadv.1601946 Ross, Z. E., Meier, M.-A., Hauksson, E., and T. H. Heaton (2018) Generalized Seismic Phase Detection with Deep

Learning, Bulletin of the Seismological Society of America , doi: 10.1785/0120180080. Ross, Z. E., Yue, Y., Meier, M.-A., Hauksson, E., and T. H. Heaton (2019) PhaseLink: A Deep Learning Approach to

Seismic Phase Association, Journal of Geophysical Research (submitted).

48

Ross, Z. E., Rollins, C., Cochran, E. S., Hauksson, E., Avouac, J.-P., and Y. Ben-Zion (2017) Aftershocks driven by afterslip and fluid pressure sweeping through a fault-fracture mesh, Geophysical Research Letters, 44, doi:10.1002/2017GL074634.

Roten, D., Y. Cui, K.B. Olsen, S.M. Day, K. Withers, W.H. Savran, P. Wang, and D. Mu (2016). High-Frequency Nonlinear

Earthquake Simulations on Petascale Heterogeneous Supercomputers, Procs. Supercomputing Conference, Salt Lake City, November 2016.

Roten, D., K. B. Olsen, and Y. Cui (2018). A multi-surface plasticity model for 3D wave propagation using AWP, Final

Report for project # 17162, Southern California Earthquake Center. Roten, D., K. B. Olsen, and S. M. Day (2017), Off-fault deformations and shallow slip deficit from dynamic rupture

simulations with fault zone plasticity, Geophysical Research Letters, 44(15), 7733–7742, doi:10.1002/2017GL074323. Roten D., Olsen K .B., Day S. M., and Y. Cui (2018). Quantification of fault-zone plasticity effects with spontaneous rupture

simulations. In Best Practices in Physics-based Fault Rupture Models for Seismic Hazard Assessment of Nuclear Installations, (pp. 45-67). Birkhäuser, Cham.

Rothé, J. P. (1970), MAN-MADE EARTHQUAKES, Tectonophysics, 9(2-3), 215. Rouet-­‐Leduc, B., Hulbert, C., Lubbers, N., Barros, K., Humphreys, C.J. and P.A. Johnson (2017). Machine learning

predicts laboratory earthquakes. Geophysical Research Letters, 44(18), pp.9276-9282. Rouet-Leduc, B. et al. (2018), Estimating fault friction from seismic signals in the laboratory. Geophys. Res. Lett. 45, 1321–

1329 (2018). Rousset, B., R. Bürgmann, and M. Campillo (2018), Slow slip events in the roots of the San Andreas fault, Science

Advances, 5(2), doi:10.1126/sciadv.aav3274. Rousset, B., Jolivet, R., Simons, M., Lasserre, C., Riel, B., Milillo, P., et al. (2016). An aseismic slip transient on the North

Anatolian Fault. Geophysical Research Letters, 43(7), 3254–3262. https://doi.org/10.1002/2016GL068250 Rowe, C. D., and W. A. Griffith (2015), Do faults preserve a record of seismic slip: A second opinion, Journal of Structural

Geology, 78, 1-26. Rowe, C. D., F. Meneghini, and J. C. Moore (2011), Textural record of the seismic cycle: strain-rate variation in an ancient

subduction thrust, Geological Society, London, Special Publications, 359, 77-95, doi:10.1144/SP359.5. Rowe, C. D., J. C. Moore, F. Meneghini, and A. W. McKeirnan (2005), Large-scale pseudotachylytes and fluidized

cataclasites from an ancient subduction thrust fault, Geology, 33(12), 937-940. Rowe, C. D., C. H. Ross, M. T. Swanson, et al. (2018) Geometric complexity of earthquake rupture surfaces preserved in

pseudotachylyte networks. Journal of Geophysical Research - Solid Earth v. 123 http://doi.org/10.1029/2018JB016192 Rowe, C. D., Moore, J. C., Remitti, F., and the IODP Expedition 343 Science Party (2013) The thickness of subduction

plate boundary faults from the seafloor into the seismogenic zone. Geology v. 41 n. 9, 991-994 Rowe, C., Ross, C., Swanson, M.T., Pollock, S., et al. (2018) Geometric complexity of earthquake rupture surfaces

preserved in pseudotachylyte networks. Journal of Geophysical Research v. 123 n. 9 7998-8015 Rubin, C.M., Lindvall, S.C. and Rockwell, T.K., (1998). Evidence for large earthquakes in metropolitan Los Angeles.

Science, 281(5375), pp.398-402. Rubin, A. M., D. Gillard, and J.-L. Got (1999). Streaks of microearthquakes along creeping faults, Nature 400, 635–641, doi

10.1038/23196. Rubin, A. M., and J.-P. Ampuero (2005). Earthquake nucleation on (aging) rate and state faults. Journal of Geophysical

Research: Solid Earth, 110(B11). Rubin, A. M. and J.-P. Ampuero (2007). Aftershock asymmetry on a bimaterial interface. Journal of Geophysical Research:

Solid Earth 112 (B5), 2007.

49

Rubin, A. M. (2008), Episodic slow slip events and rate-and-state friction, J. Geophys. Res., 113, B11414, doi:10.1029/2008JB005642.

Rubin, C.M., Horton, B.P., Sieh, K., Pilarczyk, J.E., Daly, P., Ismail, N. and Parnell, A.C., (2017). Highly variable recurrence

of tsunamis in the 7,400 years before the 2004 Indian Ocean tsunami. Nature communications, 8, p.16019. Rubinstein, S. M., G. Cohen, and J. Fineberg (2004), Detachment fronts and the onset of dynamic friction, Nature, 430,

1005–1009. Rubinstein, J.L., La Rocca, M., Vidale, J.E., Creager, K.C. and A.G. Wech (2008), Tidal modulation of nonvolcanic tremor,

Science 319 (5860), 186-189. Rubinstein, J.L., Shelly, D.R., and W.L., Ellsworth (2010). Non-volcanic tremor: a window into the roots of fault zones. In:

Cloetingh, S., Negendank, J. (Eds.), New Frontiers in Integrated Solid Earth Sciences. Springer Netherlands, Dordrecht, pp. 287–314

Rubinstein, J. L., Ellsworth, W. L., Chen, K. H., & Uchida, N. (2012). Fixed recurrence and slip models better predict

earthquake behavior than the time- and slip-predictable models: 1. Repeating earthquakes. Journal of Geophysical Research, 117.

Rubinstein, J.L., and Mahani, A.B. (2015). Myths and facts on wastewater injection, hydraulic fracturing, enhanced oil

recovery, and induced seismicity. Seismological Research Letters ; 86 (4): 1060–1067. doi: https://doi.org/10.1785/0220150067

Rubino, V., A. J. Rosakis, and N. Lapusta (2017), Understanding dynamic friction through spontaneously evolving

laboratory earthquakes, Nature Communications, 8, doi:10.1038/ncomms15991. Rudnicki, J. W. and J. R. Rice (1975), Conditions for the Localization of Deformation in Pressure-Sensitive Dilatant

Materials, Journal of the Mechanics and Physics of Solids, 23, 1975. Ruina, A. (1983). Slip instability and state variable friction laws. Journal of Geophysical Research: Solid Earth, 88(B12),

10359-10370. Ruiz, S., and R. Madariaga (2011). Determination of the friction law parameters of the Mw 6.7 Michilla earthquake in

northern Chile by dynamic inversion, Geophysical Research Letters 38, L09317, doi:10.1029/2011GL047147. Ruiz, S. and R. Madariaga (2013) Kinematic and Dynamic Inversion of the 2008 Northern Iwate Earthquake. Bulletin of the

Seismological Society of America. Vol. 103, No. 2A, pp. 694-708, 2013,doi: 10.1785/010120056 Ruiz S., Metois, M., Fuenzalida, A., Ruiz, J., Leyton, F., Grandin, R., Vigny, C., Madariaga, R., and J. Campos (2014).

Intense foreshocks and a slow slip event preceded the 2014 Iquique Mw 8.1 earthquake. Science, 345(6201):1165-9. Ruiz, S., Aden-Antoniow, F., Baez, J.C., Otarola, C., Potin, B., del Campo, F., Poli, P., Flores, C., Satriano, C., Leyton, F.,

Madariaga, R., Bernard, P., (2017). Nucleation phase and dynamic inversion of the Mw 6.9 Valparaíso 2017 earthquake in Central Chile. Geophys. Res. Lett. http://dx.doi.org/10.1002/2017GL075675.

Rundle, J. B. (1989). Derivation of the Complete Gutenberg-Richter Magnitude-Frequency Relation Using the Principle of

Scale Invariance. Journal of Geophysical Research, [Solid Earth] 94 (B9): 12337–42. Rutledge, J.T., and W.S. Phillips (2003). Hydraulic stimulation of natural fractures as revealed by induced

microearthquakes, Carthage Cotton Valley gas field, east Texas. Geophysics 68, 441–452. Rutter, E. H. (1999), On the relationship between the formation of shear zones and the form of the flow law for rocks

undergoing dynamic recrystallization, Tectonophysics, 303, 147-158, doi:10.1016/S0040-1951(98) 00261-3. Ryan, K. J., and D. D. Oglesby (2014), Dynamically modeling fault step overs using various friction laws, Journal of

Geophysical Research, 119, 5814-5829, doi:10.1002/2014JB011151. Ryan, K. J., E. L. Geist, M. Barall, and D. D. Oglesby (2015), Dynamic models of an earthquake and tsunami offshore

Ventura, California, Geophys. Res. Lett., 42, 6599–6606, doi:10.1002/2015GL064507.

50

Ryan, K. J., and D. D. Oglesby (2017), Modeling the effects of a normal-stress-dependent state variable, with the rate- and state-dependent framework, at stepovers and dip-slip faults, Pure and Applied Geophysics, 174, 1361-1383, doi:doi:10.1007/s00024-017-1469-2.

Ryan, K. L., Rivière, J. and C. Marone (2018), The role of shear stress in fault healing and frictional aging, Journal of

Geophysical Research Solid Earth, 123, 10.1029/2018JB016296. Rybacki, E., and G. Dresen (2004). Deformation mechanism maps for feldspar rocks. Tectonophysics, 382(3-4), 173-187. Sachs, M., B. Yikilmaz, E. Heien, J. Rundle, D. L. Turcotte, and L. Kellogg (2012). Virtual California earthquake simulator,

Seismological Research Letters 83. Saffer, D. M., and H.J. Tobin (2011). Hydrogeology and mechanics of subduction zone forearcs: Fluid flow and pore

pressure. Annual Review of Earth and Planetary Sciences, 39, 157-186. Sagy, A., and E. E. Brodsky (2009). Geometric and rheological asperities in an exposed fault zone, Journal of Geophysical

Research 114, no. B2, B02301, doi 10.1029/2008JB005701. Sagy, A., Brodsky, E. E., and G.J., Axen (2007) Evolution of fault-surface roughness with slip. Geology 35, n. 3, 283-286. Saichev, A., and D. Sornette (2007), Theory of earthquake recurrence times, J. Geophys. Res., 112, B04313,

doi:10.1029/2006JB004536 Saillard, M., L. Audin, B. Rousset, J.-­‐P. Avouac, M. Chlieh, S. R. Hall, L. Husson, and D. L. Farber (2017), From the

seismic cycle to long-­‐term deformation: linking seismic coupling and Quaternary coastal geomorphology along the Andean megathrust, Tectonics, 36, 241–256, doi:10.1002/2016TC004156.

Saito, T., Y. Ito, D. Inazu, and R. Hino (2011), Tsunami source of the 2011 Tohoku-­‐Oki earthquake, Japan: Inversion

analysis based on dispersive tsunami simulations, Geophys. Res. Lett., 38, L00G19, doi:10.1029/2011GL049089. Salman, R., Hill, E.M., Feng, L., Lindsey, E.O., Mele Veedu, D., Barbot, S., Banerjee, P., Hermawan, I. and Natawidjaja,

D.H., (2017). Piecemeal Rupture of the Mentawai Patch, Sumatra: The 2008 Mw 7.2 North Pagai Earthquake Sequence. Journal of Geophysical Research: Solid Earth, 122(11), pp.9404-9419.

Sambridge, M. (1999), Geophysical Inversion with a Neighbourhood Algorithm-I. Searching a parameter space,

Geophysical Journal International, 138, 479–494. Sammis, C. G., Rosakis A. J and H.S. Bhat (2009), Effects of Off-Fault Damage on Earthquake Rupture Propagation:

Experimental Studies, Pure and Applied Geophysics, Vol. 166, pp. 1629-1648. Samuelson, J., Elsworth, D. and C. Marone (2009), Shear-induced dilatancy of fluid-saturated faults: Experiment and

theory, Journal of Geophysical Research Earth, 114, doi:10.1029/2008jb006273. Satake, K., Wang, K. and B. F. Atwater (2003), Fault slip and seismic moment of the 1700 Cascadia earthquake inferred

from Japanese tsunami descriptions, Journal of Geophysical Research, 108, 2535, doi:10.1029/2003JB002521, B11. Savage, H. M., and E. E. Brodsky (2011). Collateral damage: Evolution with displacement of fracture distribution and

secondary fault strands in fault damage zones. Journal of Geophysical Research: Solid Earth, 116(B3). Savage, H.M., Kirkpatrick, J.D., Mori, J.J., Brodsky, E.E., Ellsworth, W.L., Carpenter, B.M., Chen, X., Cappa, F., and Y.

Kano (2017). Scientific Exploration of Induced SeisMicity and Stress (SEISMS). Sci. Drill. 23, 57–63. Schaal, N., and N. Lapusta (2019). Microseismicity on patches of higher compression during larger-scale earthquake

nucleation in a rate-and-state fault model. Journal of Geophysical Research: Solid Earth, 124. https://doi.org/10.1029/2018JB016395.

Schaff, D. P., Beroza, G.C. and B. E. Shaw. (1998). Postseismic Response of Repeating Aftershocks. Geophysical

Research Letters, U.S. Geological Survey. Professional Papers, 25 (24): 4549–52. Schaff, D.P. and Beroza, G.C. (2004), Coseismic and postseismic velocity changes measured by repeating earthquakes, J.

Geophys. Res. 109, B10302, doi:10.1029/2004JB003011.

51

Scharer, K. M., Biasi, G.P., Weldon, R.J. and T. E. Fumal (2010). Quasi-Periodic Recurrence of Large Earthquakes on the Southern San Andreas Fault. Geology 38 (6): 555–58.

Scharer, K., Weldon, R., Streig, A., and T. Fumal (2014). Paleoearthquakes at Frazier Mountain, California delimit extent

and frequency of past San Andreas Fault ruptures along 1857 trace. Geophysical Research Letters, 41(13), 4527–4534. https://doi.org/10.1002/2014GL060318

Schleicher, A. M., van der Pluijm, B. A., Solum, J.G., and L. N. Warr (2006), Origin and significance of clay-coated

fractures in mudrock fragments of the SAFOD borehole (Parkfield, California), Geophysical Research Letters, 33, L16313.

Schleicher, A. M., van der Pluijm, B. A.,and L. N. Warr (2010), Nanocoatings of clay and creep of the San Andreas fault at

Parkfield, California, Geology, 38(7), 667–670. Scibek, J., Gleeson, T. and J. M. McKenzie (2016). The biases and trends in fault zone hydrogeology conceptual models:

global compilation and categorical data analysis. Geofluids 16, 782–798. Schmalzle, G. M., R. McCaffrey, and K. C. Creager (2014), Central Cascadia subduction zone creep, Geochemistry,

Geophysics, Geosystems, 15, 1515–1532, doi:10.1002/2013GC005172. Schmalzle, G., Dixon, T., Malservisi, R. and R. Govers (2006). Strain accumulation across the Carrizo segment of the San

Andreas Fault, California: Impact of laterally varying crustal properties. Journal of Geophysical Research: Solid Earth 111 (B5).

Schmedes, J., R. J. Archuleta, and D. Lavallée (2010), Correlation of earthquake source parameters inferred from dynamic

rupture simulations, J. Geophys. Res., 115, B03304, doi:10.1029/2009JB006689. Schmedes, J., Archuleta, R. J., and D., Lavallee (2013). A kinematic rupture model generator incorporating spatial inter-

dependency of earthquake source parameters. Geophysical Journal International, 192, 1116–1131. doi:10.1093/gji/ggs02.

Schmitt, S. V., P. Segall, and E. M. Dunham (2015), Nucleation and dynamic rupture on weakly stressed faults sustained

by thermal pressurization, Journal of Geophysical Research Solid Earth, 120, doi:10.1002/2015JB012322. Schoenball, M. and W. L. Ellsworth (2017). A systematic assessment of the spatiotemporal evolution of fault activation

through induced seismicity in Oklahoma and Southern Kansas. Journal of Geophysical Research: Solid Earth 122(12): 10,189-110,206.

Scholz, C.H. (1990) The Mechanics of Earthquakes and Faulting: Cambridge, UK, Cambridge University Press, 471 Scholz, C.H., (1998). Earthquakes and friction laws. Nature 391 (6662), 37-42 Scholz, C. H. (2000). Evidence for a strong San Andreas fault. Geology, v. 28, 163-166. Scholz, C. H. (2002). The mechanics of earthquakes and faulting. Cambridge university press. Scholz, C. H. (2013). The Strength of the San Andreas Fault: A Critical Analysis. In Earthquakes: Radiated Energy and the

Physics of Faulting (eds R. Abercrombie, A. McGarr, G. Di Toro and H. Kanamori). doi:10.1029/170GM30. Scholz, C. H., Aviles, C. A., and S. G. Wesnousky (1986). Scaling differences between large interplate and intraplate

earthquakes. Bulletin of the Seismological Society of America, 76(1), 65-70. Scholz, C.,H. Molnar, P. and T. Johnson (1972), Detailed studies of frictional sliding of granite and implications for the

earthquake mechanism, Journal of Geophysical Research, 77(32), 6392–6406, doi:10.1029/JB077i032p06392. Schorlemmer, D., Wiemer, S. and M. Wyss (2005). Variations in Earthquake-Size Distribution across Different Stress

Regimes. Nature 437 (7058): 539–42. Schubnel, A., Benson, P.M., Thompson, B.D., Hazzard, J.F. and R.P. Young (2006). Quantifying damage, saturation and

anisotropy in cracked rocks by inverting elastic wave velocities. Rock Damage and Fluid Transport, Part I, 947-973

52

Schwartz, D. P., and K. J. Coppersmith (1984). Fault Behavior and Characteristic Earthquakes: Examples from the Wasatch and San Andreas Fault Zones. Journal of Geophysical Research, Stanford Univ. Publ. Geol. Sci., 89 (B7): 5681–98.

Schwartz, S.Y., and J.M. Rokosky (2007). Slow slip events and seismic tremor at circum-Pacific subduction zones.

Reviews of Geophysics, 45. https://doi.org/10.1029/ 2006rg000208 Scuderi, M. M., and C. Collettini (2016), The role of fluid pressure in induced vs. triggered seismicity: insights from rock

deformation experiments on carbonates, Scientific Reports, 6. Scuderi, M. M., Carpenter, B. M., and C. Marone (2014). Physicochemical processes of frictional healing: Effects of water

on stick-­‐slip stress drop and friction of granular fault gouge. Journal of Geophysical Research: Solid Earth, 119(5), 4090-4105.

Scuderi, M. M., C. Collettini, C. Viti, E. Tinti, and C. Marone (2017), Evolution of shear fabric in granular fault gouge from

stable sliding to stick slip and implications for fault slip mode, Geology, 45(8), 731-734. Segall, P. (1989). Earthquakes triggered by fluid extraction. Geology 17, 942. Segall, P. and A. M. Bradley (2012). Slow-slip evolves into megathrust earthquakes in 2D numerical simulations.

Geophysical Research Letters, 39, 18, doi:10.1029/2012GL052811. Segall, P., and Lu, S. (2015). Injection-induced seismicity: Poroelastic and earthquake nucleation effects. Journal of

Geophysical Research 120, 5082–5103. Segall, P., and Rice, J. R. (1995). Dilatancy, compaction, and slip instability of a fluid-­‐infiltrated fault. Journal of

Geophysical Research: Solid Earth, 100(B11), 22155–22171. https://doi.org/10.1029/95JB02403 Segall, P., Grasso, J. R. and A. Mossop (1994), Poroelastic stressing and induced seismicity near the Lacq gas-field,

southwestern France, Journal of Geophysical Research-Solid Earth, 99(B8), 15423-15438. Segall, P., Rubin, A. M., Bradley, A. M., and Rice, J. R. (2010). Dilatant strengthening as a mechanism for slow slip events.

Journal of Geophysical Research: Solid Earth, 115(B12). Shapiro, S. A., Audigane, P. and J. J. Royer (1999), Large-scale in situ permeability tensor of rocks from induced

microseismicity, Geophysical Journal International, 137(1), 207-213. Shapiro, S. A., Kruger, O. S., Dinske, C. and C. Langenbruch (2011), Magnitudes of induced earthquakes and geometric

scales of fluid-stimulated rock volumes, Geophysics, 76(6), WC55-WC63. Share, P.-E. and Y. Ben-Zion (2018). A bimaterial interface along the northern San Jacinto fault through Cajon Pass,

Geophysical Research Letters, 45, 11,622–11,631, doi: 10.1029/2018GL079834. Shaw, B.E. and J. R. Rice (2000), Existence of continuum complexity in the elastodynamics of repeated fault ruptures,

Journal of Geophysical Research, vol. 105, pp. 23,791-23,810. Shaw, B. E., Milner, K. R., Field, E. H., Richards-Dinger, K., Gilchrist, J. J., Dieterich, J. H., and T. H. Jordan (2018). A

physics-based earthquake simulator replicates seismic hazard statistics across California. Science Advances, 4(8), eaau0688. https://doi.org/10.1126/sciadv.aau0688

Shaw, B. E., Richards-­‐Dinger, K. and J. H. Dieterich (2015), Deterministic model of earthquake clustering shows reduced

stress drops for nearby aftershocks, Geophysical Research Letters, 42, 9231–9238, doi:10.1002/2015GL066082. Shearer, P. M., G. A. Prieto, and E. Hauksson (2006), Comprehensive analysis of earthquake source spectra in southern

California, J. Geophys. Res., 111, B06303, doi:10.1029/2005JB003979. Shelly, D. R. (2010a), Migrating tremors illuminate complex deformation beneath the seismogenic San Andreas Fault,

Nature, 463(7281), 648-652. Shelly, D. R. (2010b), Periodic, chaotic, and doubled earthquake recurrence intervals on the deep San Andreas fault,

Science, 328, 1385, doi:10.1126/science.1189741.

53

Shelly, D. R. (2017), A 15 year catalog of more than 1 million low-frequency earthquakes: Tracking tremor and slip along the deep San Andreas Fault, Journal of Geophysical Research Solid Earth, 122, 3739–3753, doi:10.1002/2017JB014047.

Shelly, D. R., Beroza, G.C. and S. Ide (2007) Non-volcanic tremor and low frequency earthquake swarms, Nature, 446,

doi:10.1038/nature05666. Shelly, D. R., Beroza, G. C., Ide, S. and S. Nakamura (2006), Low frequency earthquakes in Shikoku, Japan, and their

relationship to episodic tremor and slip, Nature, 442, 188 – 191, doi:10.1038/nature04931. Shervais, K. A. H. and J. D. Kirkpatrick (2016) Smoothing and re-roughening processes: The geometric evolution of a

single fault zone. Journal of Structural Geology 91, 130-143. Shi, Z., and S. M. Day (2013) Rupture dynamics and ground motion from 3-D rough-fault simulations. Journal of

Geophysical Research 118, n. 3, 1122-1141. Shibazaki, B., and Y. Iio (2003), On the physical mechanism of silent slip events along the deeper part of the seismogenic

zone, Geophysical Research Letters, 30(9), 4, doi:10.1029/2003GL017047. Shibazaki, B., and M. Matsu’ura (1992), Spontaneous processes for nucleation, dynamic propagation, and stop of

earthquake rupture, Geophysical Research Letters, 19, 1189-1192. Shibazaki, B., and T. Shimamoto (2007), Modelling of short-interval silent slip events in deeper subduction interfaces

considering the frictional properties at the unstable-stable transition regime, Geophysical Journal International, 171(1), 191–205, doi:10.1111/j.1365-246X.2007.03434.x

Shibazaki, B., S. Bu, T. Matsuzawa, and H. Hirose (2010), Modeling the activity of short-term slow slip events along deep

subduction interfaces beneath Shikoku, southwest Japan, Journal of Geophysical Research, 115, B00A19, doi:10.1029/2008JB006057.

Shimamoto, T., and H. Noda (2014). A friction to flow constitutive law and its application to a 2-­‐D modeling of earthquakes.

Journal of Geophysical Research: Solid Earth, 119(11), 8089-8106. Shimazaki, K., and T. Nakata (1980). Time-Predictable Recurrence Model for Large Earthquakes. Geophysical Research

Letters 7 (4): 279–82. Shipton, Z. K., and P. Cowie, (2003), A conceptual model for the origin of fault damage zone structures in high-porosity

sandstone: Journal of Structural Geology , v. 25, p. 333–344. Shipton, Z. K., Soden, A., Kirkpatrick, J. D., Bright, A. M. and R. J. Lunn (2006), How thick is a fault? Fault displacement

thickness scaling revisited, Earthquakes: Radiated Energy and the Physics of Faulting. Geophysics Monograph Series, vol. 170, edited by R. Abercrombie et al., pp. 193-198, AGU, Washington, D. C.

Shirzaei, M., Ellsworth, W. L., Tiampo, K. F., Gonzalez, P.J., and M. Manga (2016), Surface uplift and time-dependent

seismic hazard due to fluid injection in eastern Texas, Science, 353(6306), 1416-1419. Shlomai, H. and Fineberg, J., 2016. The structure of slip-pulses and supershear ruptures driving slip in bimaterial friction,

Nature Communications, 7, 11787, doi:10.1038/ncomms11787. Sibson, R. H. (1973). Interactions between temperature and pore-fluid pressure during earthquake faulting and a

mechanism for partial or total stress relief. Nature Physical Science, 243(126), 66-68. Sibson, R. H. (1975). Generation of Pseudotachylyte by Ancient Seismic Faulting. Geophysical Journal International, 43(3),

775–794. https://doi.org/10.1111/j.1365-246X.1975.tb06195.x. Sibson, R. H. (1977). Kinetic shear resistance, fluid pressures and radiation efficiency during seismic faulting. Pure and

Applied Geophysics, 115(1), 387–400. https://doi.org/10.1007/BF01637116 Sibson, R. H. (1982). Fault zone models, heat flow, and the depth distribution of earthquakes in the continental crust of the

United States. Bulletin of the Seismological Society of America, 72(1), 151-163.

54

Sibson, R. H. (1985), A note on fault reactivation, Journal of Structural Geology7(6), 751–754, doi:10.1016/0191-8141(85)90150-6.

Sibson, R. H. (1992), Implications of fault-valve behaviour for rupture nucleation and recurrence, Tectonophysics, 211,

283–293. Sibson, R. H. (1994), An assessment of field evidence for ‘Byerlee’ friction, Pure and Applied Geophysics 142, 645–662,

doi:10.1007/BF00876058. Sibson, R. H. (1996) - Structural permeability of fluid-driven fault-fracture meshes, Journal of Structural Geology 18(8), 1–

12, doi:10.1016/0191-8141(96)00032-6. Sibson, R. H., and G. Xie (1998), Dip range for intracontinental reverse fault ruptures: Truth not stranger than friction? Bull.

Seism. Soc. Am., 88(4), 1014–1022. Sibson, R. H. (2003). Thickness of the Seismic Slip Zone. Bulletin of the Seismological Society of America, 93(3), 1169–

1178. https://doi.org/10.1785/0120020061 Sibson, R. H., and V. G. Toy (2006). The habitat of fault-generated pseudotachylyte: presence vs. absence of friction-melt.

In, R. Abercrombie, A. McGarr, H. Kanamori, and G. Di Toro (eds.), Radiated Energy and the Physics of Faulting, AGU Geophysical Monograph 170, 153-166.

Sibson, R. H., Robert, F. and K. H. Poulsen (1988), High-angle reverse faults, fluid-pressure cycling, and mesothermal

gold-quartz deposits, Geology, 16(6), 551-555. Sieh, K., Natawidjaja, D. H., Meltzner, A. J., Shen, C.-C., Cheng, H., Li, K.-S., et al. (2008). Earthquake Supercycles

Inferred from Sea-Level Changes Recorded in the Corals of West Sumatra. Science, 322(5908), 1674–1678. https://doi.org/10.1126/SCIENCE.1163589.

Simons, M., Fialko, Y., and L. Rivera, (2002). Coseismic deformation from the 1999 Mw 7.1 Hector Mine, California,

earthquake as inferred from InSAR and GPS observations. Bulletin of the Seismological Society of America, 92(4), 1390–1402. https://doi.org/10.1785/0120000933.

Simons, M., Minson, S. E., Sladen, A., Ortega, F., Jiang, J., Owen, S. E., et al. (2011). The 2011 magnitude 9.0 Tohoku-

Oki earthquake: Mosaicking the megathrust from seconds to centuries. Science, 332(6036), 1421–1425. https://doi.org/10.1126/science.1206731

Simpson G. (2018). What do earthquakes reveal about ambient shear stresses in the upper crust? Geology,46(8):703-6. Singh, S.K., Astiz, L. and Havskov, J., (1981). Seismic gaps and recurrence periods of large earthquakes along the

Mexican subduction zone: a reexamination. Bulletin of the Seismological Society of America, 71(3), pp.827-843. Skarbek, R. M., and A. W. Rempel (2016). Dehydration-induced porosity waves and episodic tremor and slip.

Geochemistry, Geophysics, Geosystems, 17(2), 442-469. Skoumal, R. J., Brudzinski, M. and B. Currie (2016) An efficient repeating signal detector to investigate earthquake

swarms. Journal of Geophysical Research, 121(8), doi:10.1002/2016JB012981. Skoumal, R. J., Dawson, P., Hickman, S. and J. Kaven (2018). Microseismic events associated with the Oroville Dam

spillway, Bulletin of the Seismological Society of America, 109 (1): 387-394. Sleep, N. H. (2005), Physical basis of evolution laws for rate and state friction, Geochem. Geophys. Geosyst., 6, Q11008,

doi:10.1029/2005GC000991. Sleep, N. H. and M.L. Blanpied (1992) Creep, compaction and the weak rheology of major faults. Nature 359, 687-692. Smith, D. L., and B. Evans (1984), Diffusional Crack Healing in Quartz of the gold Owing ami6ild ’ nt, Journal of

Geophysical Research, 89(1), 4125–4135. Smith, S. A. F., R. E. Holdsworth, C. Collettini, and J. Imber (2007), Using footwall structures to constrain the evolution of

low-angle normal faults, J. Geol. Soc. London., 164, 1187–1191.

55

Sobolev, S. V., A. Petrunin, Z. Garfunkel, and A. Y. Babeyko (2005), Thermo-mechanical model of the Dead Sea Transform, Earth Planet. Sci. Lett., 238, 78–95, doi:10.1016/j.epsl.2005.06.058.

Sobolev, S. V. and I.A. Muldashev (2017). Modeling seismic cycles of great megathrust earthquakes across the scales with

focus at postseismic phase. Geochemistry, Geophysics, Geosystems, 18, 4387–4408. https://doi.org/10.1002/2017GC007230

Socquet, A., J. P. Valdes, J. Jara, F. Cotton, A. Walpersdorf, N. Cotte, S. Specht, F. Ortega-Culaciati, D. Carrizo, and E.

Norabuena (2017), An 8 month slow slip event triggers progressive nucleation of the 2014 Chile megathrust, Geophysical Research Letters, 44(9), 4046-4053, doi:10.1002/2017GL073023.

Song, T.-R. A., and M. Simons (2003). Large Trench-Parallel Gravity Variations Predict Seismogenic Behavior in

Subduction Zones, Science, 301, 5633, 630-633. S. G. Song, G. C. Beroza, P. Segall, A unified source model for the 1906 San Francisco earthquake. Bull. Seismol. Soc.

Am. 98, 823–831 (2008). doi:10.1785/0120060402 Spiers, C.J., Schutjens, P.M.T.M., Brzesowsky, R.H., Peach, C.J., Liezenberg, J.L. and H.J Zwart (1990), Experimental

determination of constitutive parameters governing creep of rock salt by pressure solution, Geological Society Special Publication No. 54: Deformation Mechanisms, Rheology and Tectonics, pp. 215-27.

Spray, J. G. (1995), Pseudotachylyte controversy: fact or friction?, Geology, 23(12), 1119-1122. Stanchits, S.,Vinciguerra, S. and G. Dresen (2006). Ultrasonic velocities, acoustic emission characteristics and crack

damage of basalt and granite, Pure and Applied Geophysics, 163, 975-994. Stein, S. and Okal, E.A., (2005). Seismology: Speed and size of the Sumatra earthquake. Nature, 434(7033), p.581. Stesky, R. M. (1975). The mechanical behavior of faulted rock at high temperature and pressure, Ph.D. thesis,

Massachusetts Institute of Technology, Cambridge, Massachusetts Strasser, M., Moore, G., Kimura, G., Kitamura, Y., Kopf, A. J., Lallemant, S., Park, J.-O., Screaton, E.J., Su, X.,

Underwood, M.B., and X. Zhao (2009), Origin and evolution of a splay fault in the Nankai accretionary wedge. Nature Geoscience, 2, DOI: 10.1038/NGEO609.

Suito, H., Nishimura, T., Tobita, M., Imakiire, T., and S. Ozawa (2011). Interplate fault slip along the Japan Trench before

the occurrence of the 2011 off the Pacific coast of Tohoku Earthquake as inferred from GPS data. Earth Planets Space 63, 615–619.

Suppe, J. (2007). Absolute fault and upper crustal strength from wedge tapers, Geology, 35, 1127-1130. Suppe, J., (2014). Fluid overpressures and strength of the sedimentary upper crust, Journal of Structural Geology, 69B,

481-492. doi:10.1016/2014JSG07009 Sutherland, R., J. Townend, V. G. Toy, Upton, P., Coussens, J., Allen, M. et al. (2017), Extreme hydrothermal conditions at

an active plate-bounding fault, Nature, doi: 10.1038/nature22355. Sutherland, R., V. G. Toy, J. Townend, S. C. Cox, J. D. Eccles, D. R. Faulkner, D. J. Prior, R. J. Norris, E. Mariani, C.

Boulton, B. M. Carpenter, C. D. Menzies, T. A. Little, M. Hasting, G. P. De Pascale, R. M. Langridge, H. R. Scott, Z. R. Lindroos, B. Fleming and A. J. Kopf (2012). Drilling reveals fluid control on architecture and rupture of the Alpine fault, New Zealand. Geology 40(12): 1143-1146.

Suzuki, T. (2012), Understanding of dynamic earthquake slip behavior using damage as a tensor variable: Microcrack

distribution, orientation, and mode and secondary faulting, Journal of Geophysical Research Solid Earth, 117(5), 1–20, doi:10.1029/2011JB008908.

Svetlizky, I., Pino Munoz, D., Radiguet, M., Kammer, D. S., Molinari, J.-F., and J. Fineberg (2016). Properties of the shear

stress peak radiated ahead of rapidly accelerating rupture fronts that mediate frictional slip. Proceedings of the National Academy of Sciences, 113, 542-547.

56

Sweet J.R., Anderson, K.R., Bilek, S., Brudzinski, M., Chen, X., DeShon, H., Hayward, C., Karplus, M., Keranen, K., Langston, C., and F.C Lin (2018). A community experiment to record the full seismic wavefield in Oklahoma. Seismological Research Letters 89(5):1923-30.

Tadokoro, K., and M. Ando (2002). Evidence for rapid fault healing derived from temporal changes in S wave splitting.

Geophysical Research Letters, 29(4). Tago, J., V. M. Cruz-­‐Atienza, J. Virieux, V. Etienne, and F. J. Sánchez-­‐Sesma (2012), A 3D hp-­‐adaptive discontinuous

Galerkin method for modeling earthquake dynamics, Journal of Geophysical Research, 117, B09312, doi:10.1029/2012JB009313.

Takemura, T., and M. Oda (2004), Stereology-based fabric analysis of microcracks in damaged granite, Tectonophysics,

387, 131–150. Takeuchi, C., and Y. Fialko (2012), Dynamic models of interseismic deformation and stress transfer from plate motion to

continental transform faults, Journal of Geophysical Research, 117, B05403, doi:10.1029/2011JB009056. Takeuchi, C. and Y. Fialko. (2013). On the effects of thermally weakened ductile shear zones on postseismic deformation,

Journal of Geophysical Research, 118, 6295-6310, doi:10.1002/2013JB010215. Tal, Y., and B.H. Hager (2018), The Slip Behavior and Source Parameters for Spontaneous Slip Events on Rough Faults

Subjected to Slow Tectonic Loading, Journal of Geophysical Research: Solid Earth, 1810 - 1823. Tal, Y., Evans, B. and U. Mok (2016), Direct observations of damage during unconfined brittle failure of Carrara marble,

Journal of Geophysical Research, 121, 1584–1609, doi:10.1002/2015JB012749. Tanikawa, W., and T. Shimamoto (2009). Frictional and transport properties of the Chelungpu fault from shallow borehole

data and their correlation with seismic behavior during the 1999 Chi-Chi earthquake. Journal of Geophysical Research, 114(B1). doi:10.1029/2008JB005750.

Thatcher, W. (1975). Strain accumulation on the northern San Andreas fault zone since 1906, J. Geophys. Res., 80, 4873–

4880. Thatcher, W. (1984). The Earthquake Deformation Cycle, Recurrence, and the Time-Predictable Model. Journal of

Geophysical Research 89 (B7): 5674–80. Templeton, E. L., and J.R. Rice (2008). Off-­‐fault plasticity and earthquake rupture dynamics: 1. Dry materials or neglect of

fluid pressure changes. Journal of Geophysical Research: Solid Earth, 113(B9). Tenthorey, E., Cox, S. F., and H.F. Todd (2003). Evolution of strength recovery and permeability during fluid–rock reaction

in experimental fault zones. Earth and Planetary Science Letters, 206(1-2), 161-172. Thomas, M. Y., and H. S. Bhat (2018), Dynamic evolution of off-fault medium during an earthquake: A micromechanics

based model, Geophysical Journal International, 214(2), 1267–1280, doi:10.1093/GJI/GGY129. Thomas M.Y., Bhat, H.S., and Y. Klinger (2017). Effect of Brittle Off-­‐Fault Damage on Earthquake Rupture Dynamics. In

Fault Zone Dynamic Processes (eds M. Y. Thomas, T. M. Mitchell and H. S. Bhat). doi:10.1002/9781119156895.ch14 Thomas, M.Y., Lapusta, N., Noda, H. and J.-P. Avouac (2014). Quasi-dynamic versus fully-dynamic simulations of

earthquakes and aseismic slip with and without enhanced coseismic weakening, Journal of Geophysical Research-Solid Earth, v. 119, p. 1986-2004

Toda, S., R. S. Stein, P. A. Reasenberg, J. H. Dieterich, and A. Yoshida (1998), Stress transferred by the 1995 Mw = 6.9

Kobe, Japan, shock: Effect on aftershocks and future earthquake probabilities, J. Geophys. Res., 103, 24,543–24,565.

Toda, S., R. S. Stein, K. Richards-Dinger, and S. B. Bozkurt (2005), Forecasting the evolution of seismicity in southern

California: Animations built on earthquake stress transfer, J. Geophys. Res., 110, B05S16, doi:10.1029/2004JB003415.

Tong, X. and L. Lavier (2018). Simulation of slip transients and earthquakes in finite thickness shear zones with plastic

formulation, Nature Communications, DOI: 10.1038/s41467-018-06390-z

57

Torberntsson, K., Stiernström, V., Mattsson, K. and E. M. Dunham (2018). A finite difference method for earthquake

sequences in poroelastic solids. Computational Geosciences, 22: 1351. https://doi.org/10.1007/s10596-018-9757-1 Townend, J., R. Sutherland, V. G. Toy, J. D. Eccles, C. Boulton, S. C. Cox, and D. McNamara (2013), Late-­‐interseismic

state of a continental plate-­‐bounding fault: Petrophysical results from DFDP-­‐1 wireline logging and core analysis, Alpine Fault, New Zealand, Geochemistry, Geophysics, Geosystems, 14(9), 3801-3820.

Townend, J., Sutherland, R., Toy, V.G., Doan, M.-L., Célérier, B., Massiot, C., et al. (2017), Petrophysical, Geochemical,

and Hydrological Evidence for Extensive Fracture-Mediated Fluid and Heat Transport in the Alpine Fault's Hanging-Wall Damage Zone, Geochemistry, Geophysics, Geosystems, 18(12), 4709-4732.

Townend, J., and M. D. Zoback (2000), How faulting keeps the crust strong, Geology, 28, 399–402, doi:10.1130/0091-

7613(2000)28<399:HFKTCS>2.0.CO;2. Townend, J., and M. D. Zoback (2004), Regional tectonic stress near the San Andreas Fault in central and Southern

California, Geophysical Research Letters, 31, L15S11, doi:10.1029/ 2003GL018918. Toy, V. G., Boulton, C. J., Sutherland, R., Townend, J., Norris, R.J., Little, T.A., Prior, D.J., Mariani, E. Faulkner, D.R. and

C. D. Menzies (2015), Fault rock lithologies and architecture of the central Alpine fault, New Zealand, revealed by DFDP-1 drilling, Lithosphere, 7(2), 155-173.

Tse, S. T., and J.R. Rice (1986). Crustal earthquake instability in relation to the depth variation of frictional slip properties.

Journal of Geophysical Research: Solid Earth, 91(B9), 9452-9472. Tsutsumi, A., and T. Shimamoto (1997). High-­‐velocity frictional properties of gabbro. Geophysical Research Letters, 24(6),

699-702. Trippetta, F., Collettini, C., Meredith, P.G. and S. Vinciguerra (2013), Evolution of the elastic moduli of seismogenic Triassic

Evaporites subjected to cyclic stressing, Tectonophysics, 592, 67–79, doi:10.1016/j.tecto.2013.02.011. Trugman, D. T., and P. M. Shearer (2017), Application of an improved spectral decomposition method to examine

earthquake source scaling in Southern California, Journal of Geophysical Research Solid Earth, 122, 2890–2910, doi:10.1002/2017JB013971.

Tullis, T. E. (2015). Mechanisms for Friction of Rock at Earthquake Slip Rates, 2nd edn., Vol. 4. In Treatise on Geophysics

(ed. Schubert, G.) 139–159, Elsevier, doi:10.1016/b978-0-444-53802-4.00073-7 Tullis, T. E., and D. L. Goldsby (2003), Flash melting of crustal rocks at almost seismic slip rates, Eos Transactions AGU,

84(46), Fall Meet. Suppl., Abstract S51B-05. Tullis, T. E., and J.D. Weeks (1986). Constitutive behavior and stability of frictional sliding of granite. Pure and Applied

Geophysics, 124(3), 383-414. Tullis, J., and R. A. Yund (1985). Dynamic recrystallization of feldspar: a mechanism for ductile shear zone formation.

Geology, 13(4), 238-241. Tullis, T. E., Richards-Dinger, K., Barall, M., Dieterich, J. H., Field, E. H., Heien, E. M., Kellog, L.H., Pollitz, F., Rundle, J.,

Sachs, M., Turcotte, D.L., Ward, S.N., and B. Yikilmaz. (2012a). Generic Earthquake Simulator. Seismological Research Letters, 83(6), 959–963. https://doi.org/10.1785/0220120093

Tullis, T. E.,Richards-Dinger, K., Barall, M. Dieterich, J. H., Field, E.H., Heien, E., Kellogg, L.H., Pollitz, F., Rundle, J.,

Sachs, M., Turcotte, D.L., Ward, S.,N., and B. Yikilmaz (2012b). Comparison among observations and earthquake simulator results for the allcal2 California fault model, Seismological Research Letters 83 (6): 994–1006. doi: https://doi.org/10.1785/0220120094.

Tung, S., and T. Masterlark (2016). Coseismic slip distribution of the 2015 Mw 7.8 Gorkha, Nepal, earthquake from joint

inversion of GPS and InSAR data for slip within a 3-D heterogeneous Domain. Journal of Geophysical Research: Solid Earth, 121(5), 3479–3503. https://doi.org/10.1002/2015JB012497

Uchida, N., Iinuma, T., Nadeau, R. M., Bürgmann, R., and R. Hino (2016). Periodic slow slip triggers megathrust zone

earthquakes in northeastern Japan. Science, 351(6272), 488-492.6

58

Uchida, N., and T. Matsuzawa (2013), Pre- and postseismic slow slip surrounding the 2011 Tohoku-oki earthquake rupture,

Earth and Planetary Science Letters 374, 81–91. Uchide, T., P. M. Shearer, and K. Imanishi (2014), Stress drop variations among small earthquakes before the 2011

Tohoku-­‐oki, Japan, earthquake and implications for the main shock, Journal of Geophysical Research Solid Earth, 119, 7164–7174, doi:10.1002/2014JB010943.

Uchide, T., and K. Imanishi (2016), Small earthquakes deviate from the omega-square model as revealed by multiple

spectral ratio analysis, Bulletin of the Seismological Society of America, 106, 1357-1363, doi:10.1785/0120150322. Uhl, J. T., Pathak, S., Schorlemmer, D., Liu, X., Swindeman, R., Brinkman, B.A.W., LeBlanc, M. et al. (2015). Universal

Quake Statistics: From Compressed Nanocrystals to Earthquakes. Scientific Reports 5 (November): 16493. Ulrich, T., Gabriel, A.-A., Ampuero, J.-P., and W., Xu, (2018). Dynamic viability of the 2016 Mw 7.8 Kaikōura earthquake

cascade on weak crustal faults, Nature Communications, in press, , EarthArxiv preprint doi:10.31223/osf.io/aed4b. Ulrich, T., Vater, S., Madden, E., Behrens, J., van Dinther, Y., van Zelst, I., Fielding, E.J. et al. (2019). Coupled, Physics-

based Modeling Reveals Earthquake Displacements Are Critical to the 2018 Palu, Sulawesi Tsunami. EarthArXiv. doi:10.31223/osf.io/3bwqa.

Uphoff, C., Rettenberger, S., Bader, M., Madden, E.H., Ulrich, T., Wollherr, S. and A.-A. Gabriel (2017). Extreme Scale

Multi-Physics Simulations of the Tsunamigenic 2004 Sumatra Megathrust Earthquake. In SC '17: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, November 2017. Finalist for Best Paper Award. doi:10.1145/3126908.3126948.

Utsu, T., and A. Seki (1955). A Relation between the Area of After-Shock Region and the Energy of Main-Shock. Zisin,

Journal of the Seismological Society of Japan. 2nd Ser) 7 (4): 233–40. Utsu, T., Ogata, Y., Ritsuko S., and M. Matsu’ura (1995). The Centenary of the Omori Formula for a Decay Law of

Aftershock Activity. Journal of Physics of the Earth 43 (1): 1–33. Vallée, M., M. Landès, N. M. Shapiro, and Y. Klinger (2008), The 14 November 2001 Kokoxili (Tibet) earthquake: High-­‐

frequency seismic radiation originating from the transition between sub-­‐Rayleigh and super- shear rupture velocity regimes, J. Geophys. Res., 113, B07305, doi:10.1029/2007JB005520.

Vallée M (2013). Source time function properties indicate a strain drop independent of earthquake depth and magnitude.

Nature communications, 4:2606. Vallée, M. and E.M. Dunham (2012). Observation of far-field Mach waves generated by the 2001 Kokoxili supershear

earthquake,. Geophysical Research Letters, American Geophysical Union , 39 (5), pp.L05311. Vallee M, and K. Juhel (2019). Multiple Observations of the Prompt Elastogravity Signals Heralding Direct Seismic Waves.

Journal of Geophysical Research: Solid Earth. 124. https://doi.org/10.1029/2018JB017130 Vallée M., Ampuero, J.P., Juhel, K., Bernard, P., Montagner, J.P., and M. Barsuglia (2017). Observations and modeling of

the elastogravity signals preceding direct seismic waves. Science 358(6367):1164-8. van den Ende, M. P. A., J. Chen, J-P. Ampuero, and A. R. Niemeijer (2018). A comparison between rate-and-state friction

and microphysical models, based on numerical simulations of fault slip. Tectonophysics 733 (2018): 273-295, doi:10.1016/j.tecto.2017.11.040

van der Elst, N. J., Page, M. T., Weiser, D. A., Goebel, T. H. W. and S. M. Hosseini (2016), Induced earthquake

magnitudes are as large as (statistically) expected, Journal of Geophysical Research-Solid Earth, 121(6), 4575-4590. van Dinther, Y., Gerya, T.V., Dalguer, L.A., Corbi, F., Funiciello, F. and P.M. Mai (2013a). The seismic cycle at subduction

thrusts: 2. Dynamic implications of geodynamic simulations validated with laboratory models. Journal of Geophysical Research: Solid Earth, 118(4), pp.1502-1525.

van Dinther, Y., Gerya, T.V., Dalguer, L.A., Mai, P.M., Morra, G., and D. Giardini (2013b). The seismic cycle at subduction

thrusts: Insights from seismo-thermo-mechanical models. Journal of Geophysical Research: Solid Earth, 118, 6183-6202, doi:10.1002/2013JB010380.

59

van Dinther, Y., Künsch, H.R., and A. Fichtner (2019). Ensemble data assimilation for earthquake sequences: probabilistic

estimation and forecasting of fault stresses, Geophysics Journal International, doi: 10.1093/gji/ggz063 van Dinther, Y., Preiswerk, L., and T. Gerya (2019). A Secondary Zone of Uplift Due to Megathrust Earthquakes.

EarthArXiv. doi:10.31223/osf.io/efgd6. van Dinther, Y., Mai, P.M., Dalguer, L.A. and Gerya, T.V. (2014). Modeling the seismic cycle in subduction zones: The role

and spatiotemporal occurrence of off-­‐megathrust earthquakes. Geophysical Research Letters, 41(4), pp.1194-1201. van Dissen, R.J. and Berryman, K.R., (1996). Surface rupture earthquakes over the last∼ 1000 years in the Wellington

region, New Zealand, and implications for ground shaking hazard. Journal of Geophysical Research: Solid Earth, 101(B3), pp.5999-6019.

Vanorio, T., and W. Kanitpanyacharoen (2015). Rock physics of fibrous rocks akin to Roman concrete explains uplifts at

Campi Flegrei Caldera. Science, 349(6248), 617-621. van Stiphout, T., Zhuang, T. and D. Marsan (2012). Seismicity Declustering. Community Online Resource for Statistical

Seismicity Analysis 10: 1. van Zelst, I., Wollherr, S., Gabriel, A.A., Madden, E., van Dinther, Y. (in revision). A cross-scale framework coupling

geodynamics, seismic cycles and dynamic earthquake ruptures, Geophysical Journal International. van Zelst, I., Wollherr, S., Gabriel, A.-A., Madden, E. and Y. van Dinther (2019). Modelling Coupled Subduction and

Earthquake Dynamics. EarthArXiv. February 15. doi:10.31223/osf.io/f6ng5. van Zelst, I., S. Wollherr, E. H. Madden, A.-A. Gabriel and Y. van Dinther (2018), A coupled method using long-term

subduction models to provide realistic conditions for dynamic earthquake models, AGU18 Fall Meeting, abstract ID S43A-07. To be submitted to GJI.

Veedu, D. M., and S. Barbot (2016), The Parkfield tremors reveal slow and fast ruptures on the same asperity, Nature, 532,

361–365, doi:10.1038/nature17190. B. Verberne, J. Chen, A. Niemeijer, J. de Bresser, G. Pennock, M. Drury, C.Spiers (2017), Microscale cavitation as a

mechanism for nucleating earthquakes at the base of the seismogenic zone, Nat. Commun., 8, 10.1038/s41467-017-01843-3.

Vermilye, J. M., and C. H. Scholz (1998), The process zone: A microstructural view of fault growth, Journal of Geophysical

Research, 103(B6), 12223–12237. Vidale, J. E., ElIsworth, W. L., Cole, A., and C. Marone (1994). Variations in rupture process with recurrence interval in a

repeated small earthquake. Nature, 368(6472), 624. Vidale, J.E., and Y.-G. Li (2003). Damage to the shallow Landers fault from the nearby Hector Mine earthquake. Nature,

421, 524–526, https://doi.org/10.1038/nature01354. Viesca, R. C., and D.I., Garagash (2015). Ubiquitous weakening of faults due to thermal pressurization. Nature

Geoscience, 8(11), 875–879. https://doi.org/10.1038/ngeo2554 Voosen, P. (2018), Moments to spare. Science, Vol. 362, Issue 6414, pp. 514-517. DOI: 10.1126/science.362.6414. Voss, N. K., R. Malservisi, T. H. Dixon, and M. Protti (2017), Slow slip events in the early part of the earthquake cycle,

Journal of Geophysical Research Solid Earth, 122, 6773–6786, doi:10.1002/2016JB013741. Vyas, J.C., Mai P.M, Galis, M. and E.M. Dunham (2018), W Imperatori; Mach wave properties in the presence of source

and medium heterogeneity, Geophysical Journal International, Volume 214, Issue 3, 1, Pages 2035–2052, https://doi.org/10.1093/gji/ggy219.

Wald, D.J., T.H. Heaton, and K.W. Hudnut. (1996). The slip history of the 1994 Northridge, California, earthquake

determined from strong-motion, teleseismic, GPS, and leveling data, Bulletin of the Seismological Society of America 86, 1B, S49-S70.

60

Waldhauser, F. (2001), hypoDD: A program to compute double-difference hypocenter locations (hypoDD version 1.0,

3/2001), U.S. Geol. Surv. Open File Rep., 01-113. Waldhauser, F., and Ellsworth, W.L. (2002), Fault structure and mechanics of the Hayward Fault, California, from double-

difference earthquake locations, J. Geophys. Res. 107:10.1029/2000JB000084. Waldhauser, F., and D. P. Schaff (2008), Large-scale relocation of two decades of northern California seismicity using

cross-correlation and double-difference methods, J. Geophys. Res., 113, B08311, doi:10.1029/ 2007JB005479. Walsh, J. B. (1965), The effect of cracks on the compressibility of rock, Journal of Geophysical Research, 70(2), 381–389,

doi:10.1029/JZ070i002p00381. Wang, H. F. (2000). Theory of linear poroelasticity with applications to geomechanics and hydrogeology. Princeton

University Press, c2000, ISBN:0691037469 Wang, K., and T. Dixon (2004), “Coupling” semantics and science in earthquake research, Eos Trans. AGU, 85(18), 180. Wang, D., J. Mori, and T. Uchide (2012), Supershear rupture on multiple faults for the Mw 8.6 Off Northern Sumatra,

Indonesia earthquake of April 11, 2012, Geophys. Res. Lett., 39, L21307, doi:10.1029/2012GL053622. Wang, K. and S. L. Bilek, (2014). Invited review paper: Fault creep caused by subduction of rough seafloor relief,

Tectonophysics, 610, 124,doi.org/10.1016/j.tecto.2013.11.024. Wang, K., and W. Sun (2017). Data-Driven Discrete-Continuum Method for Partially Saturated Micro-Polar Porous Media.

In Poromechanics VI (pp. 571-578). Wang, K., and W. Sun (2018a). A multiscale multi-permeability poroplasticity model linked by recursive homogenizations

and deep learning. Computer Methods in Applied Mechanics and Engineering, 334, 337-380. Wang, K., and W. Sun (2018b). Meta-modeling game for deriving theory-consistent, microstructure-based traction-

separation laws via deep reinforcement learning. Computer Methods in Applied Mechanics and Engineering. https://doi.org/10.1016/j.cma.2018.11.026

Wang., K., and A. M. Tréhu (2016). Invited review paper: Some outstanding issues in the study of great megathrust

earthquakes - The Cascadia example. Journal of Geodynamics, 98, p.1-18. http://dx.doi.org/10.1016/j.jog.2016.03.010.

Wang, Y., and S.M. Day (2017). Seismic source spectral properties of crack-like and pulse-like modes of dynamic rupture.

Journal of Geophysical Research: Solid Earth, 122(8), 6657–6684. https://doi.org/10.1002/2017JB014454 Wang, Y., Day, S.M. and P.M. Shearer (2014). Far-field seismic spectral response resulting from complex rupture

behaviors, S12C-06, AGU Fall Meeting, San Francisco 15-19. Ward, S. N. (2012). ALLCAL earthquake simulator. Seismological Research Letters, 83(6), 964. Warr, L. N., J. Wojatschke, B. M. Carpenter, C. Marone, A. M. Schleicher, and B. A. van der Pluijm (2014), A ‘‘slice-and-

view’’ (FIB-SEM) study of clay gouge from the SAFOD creeping section of the San Andreas Fault at 2.7 km depth, Journal of Structural Geology69, 234–244.

Weaver, K. C., M.-L. Doan, S. C. Cox, J. Townend and C. Holden (2019). Tidal behavior and water-level changes in gravel

aquifers in response to multiple earthquakes: a case study from New Zealand. Water Resources Research. Wech, A. G., and N. M. Bartlow (2014), Slip rate and tremor genesis in Cascadia, Geophysical Research Letters, 41, 392–

398, doi:10.1002/2013GL058607. Wechsler, N., Rockwell, T.K., Ben-Zion, Y., (2009). Application of high resolution DEM data to detect rock damage from

geomorphic signals along the central San Jacinto Fault. Geomorphology 113, 82–96. Weeks, J. D. (1993), Constitutive laws for high-velocity frictional sliding and their influence on stress drop during unstable

slip, Journal of Geophysical Research, 98(B10), 17,637–17,648, doi:10.1029/93JB00356.

61

Wei, M., Kaneko, Y., Liu, Y., and J.J. McGuire (2013). Episodic fault creep events in California controlled by shallow frictional heterogeneity. Nature Geoscience, 6(7), 566–570. https://doi.org/10.1038/ngeo1835

Wei, S., J.-P. Avouac, K. W. Hudnut, A. Donnellan, J. W. Parker, R. W. Graves, D. Helmberger, E. Fielding, Z. Liu, F.

Cappa, and M. Eneva (2015), The 2012 Brawley swarm triggered by injection-induced aseismic slip, Earth and Planetary Science Letters, 422, 115-125.

Weingarten, M., and S. Ge (2014), Insights into water level response to seismic waves: A 24 year high-fidelity record of

global seismicity at Devils Hole, Geophys. Res. Lett., 41, 74–80, doi:10.1002/2013GL058418. Weingarten, M., Ge, S., Godt, J.W., Berkins, B. A., and J. L. Rubinstein (2015). High-rate injection is associated with the

increase in the U.S. mid-continent seismicity. Science, 348(6241), 1336-1340. doi: 10.1126/science.aab1345. Weldon, R.J., Fumal, T.E., Biasi, G.P., and K.M. Scharer (2005) Past and future earthquakes on the San Andreas fault,

Science 308 (5724), 966-967. Wells, R. E., R. J. Blakely, Y. Sugiyama, D. W. Scholl, and P. A. Dinterman (2003), Basin-­‐centered asperities in great

subduction zone earthquakes: A link between slip, subsidence, and subduction erosion? Journal of Geophysical. Research, 108, 2507, doi:10.1029/2002JB002072, B10.

Wendt, J., Oglesby, D. D., and E.L. Geist (2009). Tsunamis and splay fault dynamics. Geophysical Research Letters,

36(15). doi: 10.1029/2009GL038295. Weng H., and H. Yang (2017). Seismogenic width controls aspect ratios of earthquake ruptures. Geophysical Research

Letters 44(6):2725-32. Wesnousky, S. G. (1994). The Gutenberg-Richter or Characteristic Earthquake Distribution, Which Is It? Bulletin of the

Seismological Society of America 84 (6): 1940–59. Wesnousky, S. G. (2008), Displacement and geometrical characteristics of earthquake surface ruptures: Issues and

implications for seismic-hazard analysis and the process of earthquake rupture, Bulletin of the Seismological Society of America, 98(4), 1609-1632, doi:10.1785/0120070111.

Wetzler, N., Lay, T., Brodsky, E.E. and H. Kanamori (2018). Systematic deficiency of aftershocks in areas of high

coseismic slip for large subduction zone earthquakes. Science Advances, 4, eaao3225. White, J. A., and R. I. Borja (2008), Stabilized low-order finite elements for coupled solid-deformation/fluid-diffusion and

their application to fault zone transients. Computer Methods in Applied Mechanics and Engineering, 197, Iss. 49-50, 4353-4366.

White, S. H., S. E. Burrows, J. Cabreras, N. D. Shaw, and F. J. Humphreys (1980), On mylonites in ductile shear zones,

Journal of Structural Geology2, 175-187, doi:10.1016/0191-8141(80)90048-6. Wibberley, C. A. J., and T. Shimamoto (2003). Internal structure and permeability of major strike-slip fault zones: the

Median Tectonic Line in Mie Prefecture, Southwest Japan. Journal of Structural Geology, 25(1), 59–78. https://doi.org/10.1016/S0191-8141(02)00014-7

Wibberley, C. A. J., and T. Shimamoto (2005), Earthquake slip weakening and asperities explained by thermal

pressurization, Nature, 436, 689–692, doi:10.1038/nature03901. Wiemer, S. and M. Wyss. (2002). Mapping Spatial Variability of the Frequency-Magnitude Distribution of Earthquakes. In

Advances in Geophysics, edited by Renata Dmowska and Barry Saltzman, 45:259 – V. Elsevier. Wilson, J.E., Chester, J.S., Chester, F.M., (2003). Microfracture analysis of fault growth and wear processes, Punchbowl

Fault, San Andreas System, California. J. Struct. Geol. 25, 1855–1873. Winberry J.P., Anandakrishnan, S., Wiens, D.A., and R.B. Alley (2013). Nucleation and seismic tremor associated with the

glacial earthquakes of Whillans Ice Stream, Antarctica. Geophysical Research Letters, 40(2):312-5. Withers, K.W., K.B. Olsen, Z. Shi, and S.M. Day (2018). Ground Motion and Intra-event Variability from 3-D Deterministic

Broadband (0-7.5 Hz) Simulations along a Non-planar Strike-slip Fault, Bulletin of the Seismological Society of America, 109 (1): 229–250. doi: https://doi.org/10.1785/0120180006

62

Wojatschke, J., Scuderi, M. M., Warr, L. N., Carpenter, B. M., Saffer, D., and C. Marone (2016), Experimental constraints on the relationship between clay abundance, clay fabric and frictional behavior for the Central Deforming Zone of the San Andreas Fault, Geochemistry Geophysics Geosystems, 10.1002/2016GC006500.

Wollherr, S., Gabriel, A.A. and P.M. Mai (2018). Landers 1992 reloaded: an integrative dynamic earthquake rupture model,

Journal of Geophysical Research Solid Earth, Submitted. EarthArxiv preprint doi:10.31223/osf.io/kh6j9. Wu, Y. and X., Chen (2014). The scale-­‐dependent slip pattern for a uniform fault model obeying the rate-­‐and state-­‐

dependent friction law. Journal of Geophysical Research: Solid Earth, 119(6), pp.4890-4906. Wu, Q., Chapman, M., and X. Chen (2018). Stress-­‐Drop Variations of Induced Earthquakes in Oklahoma. Bulletin of the

Seismological Society of America,108 (3A): 1107–1123. Doi: 10.1785/0120170335. Wu, Y.-H., Yeh, E.-C.,Dong, J.-J., Kuo, L.-W., Hsu, J.-Y. and J.-H. Hung (2008), Core-log integration studies in hole-A of

Taiwan Chelungpu-fault Drilling Project, Geophysical Journal International, 174(3), 949-965. Wu Q., Chapman, M., and X. Chen (2018). Stress-­‐Drop Variations of Induced Earthquakes in Oklahoma. Bulletin of the

Seismological Society of America, 108(3A):1107-23. Xia, K. , Rosakis, A. and H., Kanamori (2004), Supershear and subrayliehg to supershear transition observed in laboratory

earthquake experiments. Experimental Techniques, 29: 63-66. doi:10.1111/j.1747-1567.2005.tb00220.x Xu, S., Y. Ben-Zion, J.-P. Ampuero and V. Lyakhovsky (2015). Dynamic ruptures on a frictional interface with off-fault brittle

damage: Feedback mechanisms and effects on slip and near-fault motion, Pure and Applied Geophysics, 172, 1243-1267, doi: 10.1007/s00024-014-0923-7.

Xue, L., Li, H.-B., Brodsky, E.E., Xu, Z.-Q., Kano, Y., Wang, H., Mori, J.J., Si, J.-L., Pei, J.-L., Zhang, W., Yang, G., Sun,

Z.-M., and Y. Huang (2013), Continuous permeability measurements record healing inside the Wenchuan earthquake fault zone, Science, 340(6140), 1555-1559.

Xue, L., E. E. Brodsky, J. Erskine, P. M. Fulton, and R. Carter (2016). A permeability and compliance contrast measured

hydrogeologically on the San Andreas fault, Geochem. Geophys. Geosys. 17, no. 3, 858–871, doi: 10.1002/2015GC006167.

Yamagiwa S., Miyazaki, S.I., Hirahara, K., and Y. Fukahata (2015). Afterslip and viscoelastic relaxation following the 2011

Tohoku-­‐oki earthquake (Mw9. 0) inferred from inland GPS and seafloor GPS/Acoustic data. Geophysical Research Letters, 42(1):66-73.

Yamashita, F., Fukuyama, E., Mizoguchi, K., Takizawa, S., Xu, S., and H. Kawakata (2015). Scale dependence of rock

friction at high work rate, Nature, 528, 7582, 254-257. Doi:10.1038/nature16138. Yamashita, F., Fukuyama, E., Xu, S., Mizoguchi, K., Kawakata, H., and S. Takizawa (2018). Rupture preparation process

controlled by surface roughness on meter-scale laboratory fault. Tectonophysics. 733 (2018) 193–208 http://dx.doi.org/10.1016/j.tecto.2018.01.034.

Yang, H., Liu, Y. and J. Lin (2012), Effects of subducted seamounts on megathrust earthquake nucleation and rupture

propagation, Geophysical Research Letters, 39, L24302, doi:10.1029/2012GL053892. Yang, H., Liu, Y., and J. Lin (2013). Geometrical effects of a subducted seamount on stopping megathrust ruptures.

Geophysical Research Letters, 40, 2011–2016. https://doi.org/10.1002/grl.50509 Yang, S., P. G. Ranjith, Y. Huang, P. Yin, H. Jing, Y. Gui, and Q. Yu (2015), Experimental investigation on mechanical

damage characteristics of sandstone under triaxial cyclic loading, Geophysical Journal International, 201, 662–682, doi:10.1093/gji/ggv023.

Yang, T., Dekkers, M.J., and B. Zhang (2016). Seismic heating signatures in the Japan Trench subduction plate-boundary

fault zone: evidence from a preliminary rock magnetic ‘geothermometer.’ Geophysical Journal International205, 332-344.

Yang, W., Z. Peng, B. Wang, Z. Li, and S. Yuan (2015), Velocity contrast along the rupture zone of the 2010 Mw6. 9

Yushu, China, earthquake from fault zone head waves, Earth and Planetary Science Letters, 416, 91–97.

63

Yao, H., Shearer, P., and P. Gerstoft (2013). Compressive sensing of frequency-dependent seismic radiation from subduction zone megathrust ruptures. Proceedings of the National Academy of Sciences, 110, 12, 4512-4517, doi:10.1073/pnas.1212790110.

Yao, Q. (2017). Dynamic Modeling of Earthquake Sources on Rough Faults, PhD Thesis, August 2017, SDSU. Yarushina, V. M., and Y. Y. Podladchikov (2015), (De)compaction of porous viscoelastoplastic media: Model formulation.

Journal of Geophysical Research Solid Earth, 120, 4146–4170. doi: 10.1002/2014JB011258. Ye, L., Kanamori, H., and T. Lay (2018). Global variations of large megathrust earthquake rupture characteristics. Science

Advances, 4, eaao4915, doi:10.1126/sciadv.aao4915. Ye, L., Lay, T., Kanamori, H., and L. Rivera (2016a). Rupture characteristics of major and great (Mw  ≥  7.0) megathrust

earthquakes from 1990 to 2015: 1. Source parameter scaling relationships. Journal of Geophysical Research: Solid Earth, 121(2), 826–844. https://doi.org/10.1002/2015JB012426

Ye, L., Lay, T., Kanamori, H., and L. Rivera (2016b). Rupture characteristics of major and great (Mw ≥  7.0) megathrust

earthquakes from 1990 to 2015: 2. Depth dependence. Journal of Geophysical Research: Solid Earth, 121(2), 845–863. https://doi.org/10.1002/2015JB012427

Yin, L., Andrews, J. and T. Heaton (2018). Rapid Earthquake Discrimination for Earthquake Early Warning: A Bayesian

Probabilistic Approach Using Three-­‐Component Single-­‐Station Waveforms and Seismicity Forecast. Bulletin of the Seismological Society of America.

Yokota Y, Ishikawa T, Watanabe SI, Tashiro T, and A. Asada (2016). Seafloor geodetic constraints on interplate coupling

of the Nankai Trough megathrust zone. Nature, 534(7607):374. Yoon, C. E., O’Reilly, O., Bergen, K. J., and Beroza, G. C. (2015). Earthquake detection through computationally efficient

similarity search. Science advances, 1(11), e1501057. Yoon, C. E., Huang, Y., Ellsworth, W. L., and Beroza, G. C. (2017). Seismicity during the initial stages of the Guy-­‐

Greenbrier, Arkansas, earthquake sequence. Journal of Geophysical Research: Solid Earth, 122(11), 9253-9274. Yoshida, K., Hasegawa, A., Okada, T., Iinuma, T., Ito, Y., and Y. Asano (2012). Stress before and after the 2011 great

Tohoku-­‐oki earthquake and induced earthquakes in inland areas of eastern Japan. Geophysical Research Letters, 39(3).

Yu, C., Zhan, Z., Lindsey, N.J., Ajo-Franklin, J.B., and M. Robertson (2019). The potential of distributed acoustic sensing

(DAS) in teleseismic studies: insights from the Goldstone experiment. Geophysical Research Letters, 46, 1320–1328. https://doi.org/10.1029/2018GL081195

Yue, H., Lay, T., and K. D., Koper (2012). En échelon and orthogonal fault ruptures of the 11 April 2012 great intraplate

earthquakes. Nature, 490(7419), 245–249. https://doi.org/10.1038/nature11492. Yue, H., Lay, T., Freymueller, J.T., Ding, K., Rivera, L., Ruppert, N.A. and K. D. Koper (2013), Supershear rupture of the 5

January 2013 Craig, Alaska (Mw 7.5) earthquake, Journal of Geophysical Research Solid Earth, 118, 5903–5919, doi:10.1002/2013JB010594.

Yue, H., Simons, M., Duputel, Z., Jiang, J., Fielding, E., Liang, C., et al. (2017). Depth varying rupture properties during the

2015 Mw 7.8 Gorkha (Nepal) earthquake. Tectonophysics, 714–715, 44–54. https://doi.org/10.1016/j.tecto.2016.07.005

Yuen, D. A., L. Fleitout, G. Schubert, and C. Froidevaux (1978), Shear deformation zones along major transform faults and

subducting slabs, Geophysical Journal of the Royal Astronomy Society, 54, 93-119, doi:10.1111/j.1365-246X. 1978.tb06758.x.

Zanzerkia, E. E., G. C. Beroza, and J. E. Vidale (2003), Waveform analysis of the 1999 Hector Mine foreshock sequence,

Geophys. Res. Lett., 30, pp. 1429. Zhang, X., and C. J. Spiers (2005), Compaction of granular calcite by pressure solution at room temperature and effects of

the pore fluid chemistry, International Journal of Rock Mechanics and Mining Science, 42(7 – 8), 950 – 960.

64

Zhang X, J. Zhang, C. Yuan, S. Liu, Z. Chen, and W. Li (2018) Locating earthquakes with a network of seismic stations via a deep learning method. arXiv preprint arXiv:1808.09603.

Zhang, Q. B., and J. Zhao (2014), A review of dynamic experimental techniques and mechanical behaviour of rock

materials, Rock Mechanics and Rock Engineering, 47(4), 1411–1478, doi:10.1007/s00603-013-0463-y. Zhao, D., Nezami, E. G., Hashash, Y. M., and J. Ghaboussi (2006). Three-dimensional discrete element simulation for

granular materials. Engineering Computations, 23(7), 749-770. Zheng, G., and J. R. Rice (1998), Conditions under which velocity- weakening friction allows a self-healing versus a

cracklike mode of rupture, Bulletin of the Seismological Society of America, 88(6), 1466–1483. Zhu, W. and G. C. Beroza (2019), PhaseNet: A Deep-Neural-Network-Based Seismic Arrival Time Picking Method,

Geophysical Journal International(in press). Zhu, W., A. M. Mousavi, Y. Sheng, and G. C. Beroza (2019), Seismic Signal Denoising and Decomposition Using Deep

Neural Networks IEEE Transactions on Geoscience and Remote Sensing (submitted). Zhu, W., Allison, K. L., & Dunham, E. M. (2018). Coupled interactions of fluid-pressure and earthquake cycles: Numerical

simulations of fault-valve behaviour. Poster Presentation at 2018 SCEC Annual Meeting. Zielke, O., and J. R. Arrowsmith (2008), Depth variation of coseismic stress drop explains bimodal earthquake magnitude-­‐

frequency distribution, Geophysical Research Letters, 35, L24301, doi:10.1029/2008GL036249. Zielke, O., Galis, M., and P.M. Mai (2017) Fault roughness and strength heterogeneity control earthquake size and stress

drop. Geophysical Research Letters 44, 777-783. Ziv, A., and A. Cochard (2006), Quasi-dynamic modeling of seismicity on a fault with depth-variable rate- and state-

dependent friction, Journal of Geophysical Research, 111, B08310, doi:10.1029/2005JB004189. Zoback, M. D., and S. M. Gorelick (2012), Earthquake triggering and large-scale geologic storage of carbon dioxide,

Proceedings of the National Academy of Sciences of the United States of America, 109(26), 10164-10168. Zoback, M.D., Zoback, M.L., Mount V.S. , Suppe, J., Eaton, J.P., Healy, J.H., Oppenheimer, D., Reasenberg, P., Jones, L.,

Raleigh, C.B., Wong, I. G. . Scotti, O. and C. Wentworth (1987).New Evidence on the State of Stress of the San Andreas Fault System. Science, Vol. 238, No. 4830, pp. 1105-1111

Zoback, M. L. (1992), Stress field constraints on intra-­‐plate seismicity in eastern North America, J. Geophys. Res., 97,

11,761–11,782. Zoback, M. D., and H. P. Harjes (1997), Injection-induced earthquakes and crustal stress at 9 km depth at the KTB deep

drilling site, Germany, Journal of Geophysical Research-Solid Earth, 102(B8), 18477-18491. Zoback, M. D. and J. Townend (2001). Implications of hydrostatic pore pressures and high crustal strength for the

deformation of intraplate lithosphere. Tectonophysics 336(1-4): 19-30. Zoback, M. D., Hickman, S.H. and W.L. Ellsworth (2007), The role of fault zone drilling, in Treatise on Geophysics, edited

by G. Schubert, pp. 649–674, Elsevier, Amsterdam. Zoback, M. D., Hickman, S.H. and W. L. Ellsworth (2010), Scientific drilling into the San Andreas Fault zone, Eos

Transactions. AGU, 91, 197–199, doi:10.1029/2010EO220001. Zöller, G., Ben-Zion, Y. and M. Holschneider, (2007). Estimating recurrence times and seismic hazard of large earthquakes

on an individual fault, Geophysics Journal International, 170, 1300–1310, doi: 10.1111/j.1365-246X.2007.03480.x. Zöller, G., S. Hainzl, M. Holschneider and Y. Ben-Zion (2005). Aftershocks resulting from creeping sections in a

heterogeneous fault, Geophysical Research Letters, 32, L03308, doi:10.1029/2004GL021871.