modeling diffusion: fluxmatclass/101/pdffiles/lecture_12.pdfmodeling diffusion: flux ... nash (ed.),...

40
Modeling Diffusion: Flux Flux (#/area/time): J = 1 A dM dt kg m 2 s or atoms m 2 s Directional Quantity Flux can be measured for: --vacancies and interstitials --host (A) atoms --impurity (B) atoms J x J y J z x y z x-direction Unit area A through which atoms move.

Upload: phamdan

Post on 01-Jul-2018

223 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Modeling Diffusion: Fluxmatclass/101/pdffiles/Lecture_12.pdfModeling Diffusion: Flux ... Nash (Ed.), ASM International, Materials Park, OH, 1991). Phase Diagrams: Composition of Phases

Modeling Diffusion: Flux

• Flux (#/area/time):

J =

1A

dMdt

⇒kg

m2s

⎣ ⎢

⎦ ⎥ or

atoms

m2s

⎣ ⎢

⎦ ⎥

• Directional Quantity

• Flux can be measured for:--vacancies and interstitials--host (A) atoms--impurity (B) atoms

Jx

Jy

Jz x

y

z

x-direction

Unit area A through which atoms move.

Page 2: Modeling Diffusion: Fluxmatclass/101/pdffiles/Lecture_12.pdfModeling Diffusion: Flux ... Nash (Ed.), ASM International, Materials Park, OH, 1991). Phase Diagrams: Composition of Phases

Non Steady State Diffusion

• Concentration profile,C(x), changesw/ time.

• To conserve matter: • Fick's First Law:

• Governing Eqn.:

Concentration, C, in the box

J(right)J(left)

dx

dCdt

= Dd2C

dx2

−dx

= −dC

dtJ = −D

dC

dxor

J(left)J(right)

dJ

dx= −

dC

dt

dJ

dx= −D

d2C

dx2

(if D does not vary with x)

equate

Page 3: Modeling Diffusion: Fluxmatclass/101/pdffiles/Lecture_12.pdfModeling Diffusion: Flux ... Nash (Ed.), ASM International, Materials Park, OH, 1991). Phase Diagrams: Composition of Phases

Ex: Non Steady State Diffusion

• Copper diffuses into a bar of aluminum.

• General solution:

"error function"Values calibrated in Table 5.1, Callister 6e.

C(x, t) − Co

Cs − Co

= 1− erfx

2 Dt

⎛ ⎝ ⎜

⎞ ⎠ ⎟

pre-existing conc., Co of copper atoms

Surface conc., Cs of Cu atoms bar

Co

Cs

position, x

C(x,t)

tot1

t2t3 Adapted from

Fig. 5.5, Callister 6e.

Page 4: Modeling Diffusion: Fluxmatclass/101/pdffiles/Lecture_12.pdfModeling Diffusion: Flux ... Nash (Ed.), ASM International, Materials Park, OH, 1991). Phase Diagrams: Composition of Phases

Diffusion and Temperature

xi ∝ Dti

Make simple estimatesfor ‘diffusion lengths’ xi

1 sec100 sec (1.667 min)10,000 sec (2.7 hrs)100,000 sec (1.15 days)1,000,000 sec (11.6 days)

Page 5: Modeling Diffusion: Fluxmatclass/101/pdffiles/Lecture_12.pdfModeling Diffusion: Flux ... Nash (Ed.), ASM International, Materials Park, OH, 1991). Phase Diagrams: Composition of Phases

Summary:Structure & Diffusion

Diffusion FASTER for...

• open crystal structures

• lower melting T materials

• materials w/secondarybonding

• smaller diffusing atoms

• cations

• lower density materials

Diffusion SLOWER for...

• close-packed structures

• higher melting T materials

• materials w/covalentbonding

• larger diffusing atoms

• anions

• higher density materials

Page 6: Modeling Diffusion: Fluxmatclass/101/pdffiles/Lecture_12.pdfModeling Diffusion: Flux ... Nash (Ed.), ASM International, Materials Park, OH, 1991). Phase Diagrams: Composition of Phases

Example of Diffusion Studies:Using Secondary Ion Mass Spectroscopy

Measure secondary ions inmass spectrometer

Incident sputter ions

e.g.O2+, Cs+, Ar+, Ga+

Breaks bondsSputters sample

Measure:Secondary ions

Page 7: Modeling Diffusion: Fluxmatclass/101/pdffiles/Lecture_12.pdfModeling Diffusion: Flux ... Nash (Ed.), ASM International, Materials Park, OH, 1991). Phase Diagrams: Composition of Phases

Example: SIMS Study of Self-DiffusionNatural GaSb

69Ga121Sb 71Ga123Sb

As-grown

Annealed105 min

Annealed18 days

Natural isotope abundance

Ga: 69Ga (60.1%) and 71Ga (39.9%)Sb: 121Sb (57.4%) and 123Sb (42.6%)

Which diffuses faster: Ga or Sb? Why?

Page 8: Modeling Diffusion: Fluxmatclass/101/pdffiles/Lecture_12.pdfModeling Diffusion: Flux ... Nash (Ed.), ASM International, Materials Park, OH, 1991). Phase Diagrams: Composition of Phases

Example: SIMS Study of Self-Diffusion

dCdt

= Dd2C

dx2

Solve diffusion equation

Fit expt. C(t,x) to solutionDetermine DD(T) → activation energy

Page 9: Modeling Diffusion: Fluxmatclass/101/pdffiles/Lecture_12.pdfModeling Diffusion: Flux ... Nash (Ed.), ASM International, Materials Park, OH, 1991). Phase Diagrams: Composition of Phases

Chapter 9: Phase Diagrams

ISSUES TO ADDRESS...

• When we combine two elements or compounds ...what equilibrium state do we get?

• In particular, if we specify...--a composition (e.g., wt%Cu - wt%Ni), and--a temperature (T)then...

How many phases do we get?What is the composition of each phase?How much of each phase do we get?

Phase BPhase A

Nickel atomCopper atom

Page 10: Modeling Diffusion: Fluxmatclass/101/pdffiles/Lecture_12.pdfModeling Diffusion: Flux ... Nash (Ed.), ASM International, Materials Park, OH, 1991). Phase Diagrams: Composition of Phases

The Solubility Limit

• Solubility Limit:Max concentration forwhich only a solutionoccurs.

• Ex: Phase Diagram:Water-Sugar System

Question: What is thesolubility limit at 20 °C?

Answer: 65 wt% sugar.If Co < 65 wt% sugar: sugarIf Co > 65 wt% sugar: syrup + sugar.

• Solubility limit increases with T:e.g., if T = 100 °C, solubility limit = 80wt% sugar.

Pu

re

Su

ga

r

Te

mp

era

ture

(°C

)

0 20 40 60 80 100Co=Composition (wt% sugar)

L (liquid solution

i.e., syrup)

Solubility Limit L

(liquid)

+ S

(solid sugar)

65

20

40

60

80

100

Pu

re

Wa

ter

Adapted from Fig. 9.1, Callister 6e.

Page 11: Modeling Diffusion: Fluxmatclass/101/pdffiles/Lecture_12.pdfModeling Diffusion: Flux ... Nash (Ed.), ASM International, Materials Park, OH, 1991). Phase Diagrams: Composition of Phases

Components and Phases

• Components:The elements or compounds which are mixed initially

(e.g., Al and Cu)• Phases:

The physically and chemically distinct material regionsthat result (e.g., α and β).

Aluminum-CopperAlloy

α (darker phase)

β (lighter phase)

Adapted from Fig. 9.0, Callister 3e.

Page 12: Modeling Diffusion: Fluxmatclass/101/pdffiles/Lecture_12.pdfModeling Diffusion: Flux ... Nash (Ed.), ASM International, Materials Park, OH, 1991). Phase Diagrams: Composition of Phases

Effect of T and Composition (Co)

• Changing T can change # of phases: path A to B. • Changing Co can change # of phases: path B to D.

• water-sugarsystem

70 80 1006040200

Te

mp

era

ture

(°C

)

Co=Composition (wt% sugar)

L (liquid solution

i.e., syrup)

A(70,20) 2 phases

B(100,70) 1 phase

20

100

D(100,90) 2 phases

40

60

80

0

L (liquid)

+ S

(solid sugar)

Adapted from Fig. 9.1, Callister 6e.

Page 13: Modeling Diffusion: Fluxmatclass/101/pdffiles/Lecture_12.pdfModeling Diffusion: Flux ... Nash (Ed.), ASM International, Materials Park, OH, 1991). Phase Diagrams: Composition of Phases

Phase Diagrams

• Tells us about phases as function of T, Co, P. • For this course:

--binary systems: just 2 components.--independent variables: T and Co (P = 1 atm is used here).

• 2 phases: L (liquid) α (FCC solid solution)

• 3 phase fields: L L + αα

wt% Ni20 40 60 80 10001000

1100

1200

1300

1400

1500

1600T(°C)

L (liquid)

α (FCC solid solution)

L + αliquidus

solidus

Adapted from Fig. 9.2(a), Callister 6e.(Fig. 9.2(a) is adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash (Ed.), ASM International, Materials Park, OH (1991).

• PhaseDiagramfor Cu-Nisystem

Page 14: Modeling Diffusion: Fluxmatclass/101/pdffiles/Lecture_12.pdfModeling Diffusion: Flux ... Nash (Ed.), ASM International, Materials Park, OH, 1991). Phase Diagrams: Composition of Phases

Phase Diagrams: # and Types of Phases

• Rule 1: If we know T and Co, then we know:--the # and types of phases present.

• Examples:

wt% Ni20 40 60 80 10001000

1100

1200

1300

1400

1500

1600T(°C)

L (liquid)

α (FCC solid solution)

L + α

liquidus

solidus

A(1100,60)B

(12

50

,35

) Cu-Niphase

diagram

A(1100, 60): 1 phase: α

B(1250, 35): 2 phases: L + α

Adapted from Fig. 9.2(a), Callister 6e.(Fig. 9.2(a) is adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash (Ed.), ASM International, Materials Park, OH, 1991).

Page 15: Modeling Diffusion: Fluxmatclass/101/pdffiles/Lecture_12.pdfModeling Diffusion: Flux ... Nash (Ed.), ASM International, Materials Park, OH, 1991). Phase Diagrams: Composition of Phases

Phase Diagrams: Composition of Phases

• Rule 2: If we know T and Co, then we know:--the composition of each phase.

• Examples:

wt% Ni20

1200

1300

T(°C)

L (liquid)

α(solid)L + α

liquidus

solidus

30 40 50

TAA

DTD

TBB

tie line

L + α

433532CoCL Cα

Cu-Ni system

At TA:

Only Liquid (L) CL = Co ( = 35wt% Ni)

At TB:

Both α and L CL = Cliquidus ( = 32wt% Ni here)

Cα = Csolidus ( = 43wt% Ni here)

At TD:

Only Solid (α) Cα = Co ( = 35wt% Ni)

Co = 35wt%Ni

Adapted from Fig. 9.2(b), Callister 6e.(Fig. 9.2(b) is adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash (Ed.), ASM International, Materials Park, OH, 1991.)

Page 16: Modeling Diffusion: Fluxmatclass/101/pdffiles/Lecture_12.pdfModeling Diffusion: Flux ... Nash (Ed.), ASM International, Materials Park, OH, 1991). Phase Diagrams: Composition of Phases

Phase Diagrams: Weight Fractions of Phases

• Rule 3: If we know T and Co, then we know:--the amount of each phase (given in wt%).

Cu-Nisystem• Examples:

At TB: Both α and L

At TA: Only Liquid (L)

WL = 100wt%, Wα = 0At TD: Only Solid (α)

WL = 0, Wα = 100wt%

Co = 35wt%Ni

WL = SR + S

Wα = RR + S

=

43 − 3543 − 32

= 73wt %

= 27wt%wt% Ni

20

1200

1300

T(°C)

L (liquid)

α (solid)

L + α

liquidus

solidus

30 40 50

TAA

DTD

TBB

tie line

L + α

433532CoCL Cα

R S

Adapted from Fig. 9.2(b), Callister 6e.(Fig. 9.2(b) is adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash (Ed.), ASM International, Materials Park, OH, 1991.)

Lever rule (or inverse lever rule!)

Page 17: Modeling Diffusion: Fluxmatclass/101/pdffiles/Lecture_12.pdfModeling Diffusion: Flux ... Nash (Ed.), ASM International, Materials Park, OH, 1991). Phase Diagrams: Composition of Phases

The Lever Rule: A Proof

• Sum of weight fractions: WL + Wα = 1• Conservation of mass (Ni): Co = WLCL + WαCα• Combine above equations:

= RR + S

Wα =Co − CLCα − CL

= SR + S

WL= Cα − Co

Cα − CL

• A geometric interpretation:Co

R S

WαWL

CL Cαmoment equilibrium:

1− Wα

solving gives Lever Rule

WLR = WαS

Page 18: Modeling Diffusion: Fluxmatclass/101/pdffiles/Lecture_12.pdfModeling Diffusion: Flux ... Nash (Ed.), ASM International, Materials Park, OH, 1991). Phase Diagrams: Composition of Phases

Ex: Cooling in a Cu-Ni Binary

• Phase diagram:Cu-Ni system.

• System is:--binary

i.e., 2 components:Cu and Ni.

--isomorphousi.e., completesolubility of onecomponent inanother; α phasefield extends from0 to 100wt% Ni.

wt% Ni20

1200

1300

30 40 501100

L (liquid)

α (solid)

L + α

L + α

T(°C)

A

D

B

35Co

L: 35wt%Ni

α: 46wt%Ni

C

E

L: 35wt%Ni

464332

24

35

36α: 43wt%Ni

L: 32wt%Ni

L: 24wt%Ni

α: 36wt%Ni

Adapted from Fig. 9.3, Callister 6e.

• ConsiderCo = 35wt%Ni.

Cu-Nisystem

Page 19: Modeling Diffusion: Fluxmatclass/101/pdffiles/Lecture_12.pdfModeling Diffusion: Flux ... Nash (Ed.), ASM International, Materials Park, OH, 1991). Phase Diagrams: Composition of Phases

Cored vs. Equilibrium Phases

Page 20: Modeling Diffusion: Fluxmatclass/101/pdffiles/Lecture_12.pdfModeling Diffusion: Flux ... Nash (Ed.), ASM International, Materials Park, OH, 1991). Phase Diagrams: Composition of Phases

Cored vs. Equilibrium Phases

• Cα changes as we solidify.• Cu-Ni case:

• Fast rate of cooling:Cored structure

• Slow rate of cooling:Equilibrium structure

First α to solidify has Cα = 46wt%Ni.Last α to solidify has Cα = 35wt%Ni.

First α to solidfy: 46wt%Ni

Uniform Cα:

35wt%Ni

Last α to solidfy: < 35wt%Ni

Page 21: Modeling Diffusion: Fluxmatclass/101/pdffiles/Lecture_12.pdfModeling Diffusion: Flux ... Nash (Ed.), ASM International, Materials Park, OH, 1991). Phase Diagrams: Composition of Phases

Mechanical Properties: Cu-Ni System

• Effect of solid solution strengthening on:

--Tensile strength (TS) --Ductility (%EL,%AR)

Adapted from Fig. 9.5(a), Callister 6e. Adapted from Fig. 9.5(b), Callister 6e.

Elo

ng

ati

on

(%

EL

)Composition, wt%Ni

Cu Ni0 20 40 60 80 10020

30

40

50

60

%EL for pure Ni

%EL for pure Cu

Te

nsi

le S

tre

ng

th (

MP

a)

Composition, wt%NiCu Ni0 20 40 60 80 100

200

300

400

TS for pure Ni

TS for pure Cu

--Peak as a function of Co --Min. as a function of Co

Page 22: Modeling Diffusion: Fluxmatclass/101/pdffiles/Lecture_12.pdfModeling Diffusion: Flux ... Nash (Ed.), ASM International, Materials Park, OH, 1991). Phase Diagrams: Composition of Phases

Binary Eutectic Systems

2 componentsHas a special compositionwith a min. melting T.

• 3 single phase regions (L, α, β) • Limited solubility: α: mostly Cu β: mostly Ni • TE: No liquid below TE

• CE: Min. melting T

composition

Ex.: Cu-Ag system L (liquid)

α L + α L+β β

α + β

Co, wt% Ag 20 40 60 80 100 0

200

1200 T(°C)

400

600

800

1000

CE

TE 8.0 71.9 91.2 779°C

Adapted from Fig. 9.6, Callister 6e. (Fig. 9.6 adaptedfrom Binary Phase Diagrams, 2nd ed., Vol. 1, T.B. Massalski (Editor-in-Chief), ASM International, Materials Park, OH, 1990.)

Cu-Agsystem

Eutectic ReactionL(CE) ↔ α(CαE) + β(CβE)

Page 23: Modeling Diffusion: Fluxmatclass/101/pdffiles/Lecture_12.pdfModeling Diffusion: Flux ... Nash (Ed.), ASM International, Materials Park, OH, 1991). Phase Diagrams: Composition of Phases

Phase Diagrams: Labeling the Lines and Fields

Page 24: Modeling Diffusion: Fluxmatclass/101/pdffiles/Lecture_12.pdfModeling Diffusion: Flux ... Nash (Ed.), ASM International, Materials Park, OH, 1991). Phase Diagrams: Composition of Phases

Gibbs Phase RuleP + F = C + 2

P: # of phasesF: Degrees of freedomC: # of components

Normally, pressure = 1 atm

P + F = C + 1

or

F = C - P + 1Apply to eutectic phase diagram

1 phase field: F = 2 – 1 + 1 = 2 Change T and C independently in phase field

2 phase field: F = 2 – 2 + 1 = 1 C depends on T – not independent

3 phase point: F = 2 – 3 +1 = 0 C and T defined only at one point(Eutectic point) (no degrees of freedom)

Page 25: Modeling Diffusion: Fluxmatclass/101/pdffiles/Lecture_12.pdfModeling Diffusion: Flux ... Nash (Ed.), ASM International, Materials Park, OH, 1991). Phase Diagrams: Composition of Phases

Ex: Pb-Sn Eutectic System (1)

• For a 40wt%Sn-60wt%Pb alloy at 150 °C, find...--the phases present:

α + β--the compositions of

the phases:

Pb-Snsystem

Adapted from Fig. 9.7, Callister 6e. (Fig. 9.7 adaptedfrom Binary Phase Diagrams, 2nd ed., Vol. 3, T.B. Massalski (Editor-in-Chief), ASM International, Materials Park, OH, 1990.)

L + α L+β

α + β

200

T(°C)

18.3

Co, wt% Sn 20 40 60 80 100 0

Co

300

100

β

L (liquid)

α 183°C 61.9 97.8

150

Page 26: Modeling Diffusion: Fluxmatclass/101/pdffiles/Lecture_12.pdfModeling Diffusion: Flux ... Nash (Ed.), ASM International, Materials Park, OH, 1991). Phase Diagrams: Composition of Phases

Ex: Pb-Sn Eutectic System (2)

• For a 40wt%Sn-60wt%Pb alloy at 150 °C, find...--the phases present: α + β--the compositions of

the phases:Cα = 11wt%SnCβ = 99wt%Sn

--the relative amountsof each phase:

W α = 59 88

= 67 wt %

W β = 29 88

= 33 wt %

Pb-Snsystem

Adapted from Fig. 9.7, Callister 6e. (Fig. 9.7 adaptedfrom Binary Phase Diagrams, 2nd ed., Vol. 3, T.B. Massalski (Editor-in-Chief), ASM International, Materials Park, OH, 1990.)

L + α L+β

α + β

200

T(°C)

18.3

Co, wt% Sn 20 40 60 80 100 0

Co

300

100

L (liquid)

α 183°C 61.9 97.8

150

11 99

R S

β

Page 27: Modeling Diffusion: Fluxmatclass/101/pdffiles/Lecture_12.pdfModeling Diffusion: Flux ... Nash (Ed.), ASM International, Materials Park, OH, 1991). Phase Diagrams: Composition of Phases

Microstructures in Eutectic Systems (1)

L + α200

T(°C)

Co, wt% Sn10

2

200Co

300

100

L

α

30

L: Cowt%Sn

αL

α: Cowt%Sn

α + β

400

(room T solubility limit)

TE(Pb-Sn System)

• Co < 2wt%Sn• Result:

--polycrystal of α grains.

Adapted from Fig. 9.9, Callister 6e.

Page 28: Modeling Diffusion: Fluxmatclass/101/pdffiles/Lecture_12.pdfModeling Diffusion: Flux ... Nash (Ed.), ASM International, Materials Park, OH, 1991). Phase Diagrams: Composition of Phases

Microstructures in Eutectic Systems (2)

• 2wt%Sn < Co < 18.3wt%Sn• Result:

--α polycrystal with fineβ crystals.

α: Cowt%SnL + α

200

T(°C)

Co, wt% Sn10

18.3

200Co

300

100

L

α

30

L: Cowt%Sn

α + β

400

(sol. limit at TE)

TE

2(sol. limit at Troom)

αβ

Pb-Snsystem

Adapted from Fig. 9.10, Callister 6e.

Page 29: Modeling Diffusion: Fluxmatclass/101/pdffiles/Lecture_12.pdfModeling Diffusion: Flux ... Nash (Ed.), ASM International, Materials Park, OH, 1991). Phase Diagrams: Composition of Phases

Microstructures in Eutectic Systems (3)

L + α200

T(°C)

Co, wt% Sn

20 400

300

100

L

α

60

L: Cowt%Sn

α + β

TE

α: 18.3wt%Sn

β

080 100

L + β

CE18.3 97.861.9

183°C

β: 97.8wt%Sn160µm

Micrograph of Pb-Sn eutectic microstructure

• Co = CE• Result: Eutectic microstructure

--alternating layers of α and β crystals.

Pb-Snsystem

Adapted from Fig. 9.11, Callister 6e.

Adapted from Fig. 9.12, Callister 6e.(Fig. 9.12 from Metals Handbook, Vol. 9, 9th ed., Metallography and Microstructures, American Society for Metals, Materials Park, OH, 1985.)

Page 30: Modeling Diffusion: Fluxmatclass/101/pdffiles/Lecture_12.pdfModeling Diffusion: Flux ... Nash (Ed.), ASM International, Materials Park, OH, 1991). Phase Diagrams: Composition of Phases

Microstructures in Eutectic Systems (4)

• 18.3wt%Sn < Co < 61.9wt%Sn• Result: α crystals and a eutectic microstructure

L + α200

T(°C)

Co, wt% Sn

20 400

300

100

L

α

60

L: Cowt%Sn

α + β

TEβ

080 100

L + β

Co18.3 61.9

primary α

97.8

S

S

RR

eutectic αeutectic β

Pb-Snsystem

• Just above TE:

WL = (1-Wα) =50wt%

Cα = 18.3wt%Sn

CL = 61.9wt%SnS

R + SWα = =50wt%

• Just below TE:Cα = 18.3wt%Sn

Cβ = 97.8wt%SnS

R + SWα = =73wt%

Wβ = 27wt%Adapted from Fig. 9.14, Callister 6e.

Page 31: Modeling Diffusion: Fluxmatclass/101/pdffiles/Lecture_12.pdfModeling Diffusion: Flux ... Nash (Ed.), ASM International, Materials Park, OH, 1991). Phase Diagrams: Composition of Phases

Hypoeutectic & Hypereutectic

T(°C)

(Pb-Sn System)

L + α200

Co, wt% Sn20 400

300

100

L

α

60

α + β

TE β

080 100

L + β

18.361.9

97.8

Cohypoeutectic

Cohypereutectic

eutectic

hypereutectic: (illustration only)

160µm

eutectic: Co=61.9wt%Sn

175µm

β

ββ

ββ

β

α

α

α

αα

α

hypoeutectic: Co=50wt%Sn

eutectic micro-constituent

Adapted from Fig. 9.7, Callister 6e. (Fig. 9.7 adapted from Binary Phase Diagrams, 2nd ed., Vol. 3, T.B. Massalski (Editor-in-Chief), ASM International, Materials Park, OH, 1990.)

(Figs. 9.12 and 9.15 from Metals Handbook, 9th ed.,Vol. 9, Metallography and Microstructures, American Society for Metals, Materials Park, OH, 1985.)

Adapted from Fig. 9.15, Callister 6e. Adapted from Fig. 9.12,

Callister 6e.

Adapted from Fig. 9.15, Callister 6e. (Illustration only)

Page 32: Modeling Diffusion: Fluxmatclass/101/pdffiles/Lecture_12.pdfModeling Diffusion: Flux ... Nash (Ed.), ASM International, Materials Park, OH, 1991). Phase Diagrams: Composition of Phases

Eutectic Microstructure Formation

Elemental partitioningα-phase: Pb-rich – rejects Snβ-phase: Sn-rich – rejects Pb

Higher cooling rateLess time for elemental redistributionFiner microstructure … greater strength … less ductility …

Page 33: Modeling Diffusion: Fluxmatclass/101/pdffiles/Lecture_12.pdfModeling Diffusion: Flux ... Nash (Ed.), ASM International, Materials Park, OH, 1991). Phase Diagrams: Composition of Phases

Phase Diagrams with Intermediate Phases/Compounds

Example: Cu-Zn binary phase diagramTerminal phases/solid solutions: α and ηIntermediate phases/solid solutions: β, β’. γ, and ε

Page 34: Modeling Diffusion: Fluxmatclass/101/pdffiles/Lecture_12.pdfModeling Diffusion: Flux ... Nash (Ed.), ASM International, Materials Park, OH, 1991). Phase Diagrams: Composition of Phases

Phase Diagrams with Intermediate Phases/Compounds

Example: Mg-Pb binary phase diagramTerminal phases/solid solutions: α and βIntermediate compound: Mg2Pb (line compound)

Page 35: Modeling Diffusion: Fluxmatclass/101/pdffiles/Lecture_12.pdfModeling Diffusion: Flux ... Nash (Ed.), ASM International, Materials Park, OH, 1991). Phase Diagrams: Composition of Phases

Eutectoid and Peritectic Reactions

Eutectoid

δ ↔ γ + ε

Pertectic

δ + L ↔ ε

Section of Cu-Zn Phase Diagram

Page 36: Modeling Diffusion: Fluxmatclass/101/pdffiles/Lecture_12.pdfModeling Diffusion: Flux ... Nash (Ed.), ASM International, Materials Park, OH, 1991). Phase Diagrams: Composition of Phases

Congruent Phase Transformations

Congruent transformations

No composition changefor phase transformation

e.g.,

L ↔ γ(for 44.9% Ti in Ni-Ti system)

Incongruent transformations

Composition changefor at least one phasefor phase transformation

Section of Ni-Ti Phase Diagram

Page 37: Modeling Diffusion: Fluxmatclass/101/pdffiles/Lecture_12.pdfModeling Diffusion: Flux ... Nash (Ed.), ASM International, Materials Park, OH, 1991). Phase Diagrams: Composition of Phases

Iron-Carbon (Fe-C) Phase Diagram

Adapted from Fig. 9.21,Callister 6e. (Fig. 9.21 adapted from Binary Alloy Phase Diagrams, 2nd ed.,Vol. 1, T.B. Massalski (Ed.-in-Chief), ASM International, Materials Park, OH, 1990.)

(Adapted from Fig. 9.24, Callister 6e. (Fig. 9.24 from Metals Handbook, 9th ed., Vol. 9, Metallography and Microstructures, American Society for Metals, Materials Park, OH, 1985.)

Result: Pearlite = alternating layers of α and Fe3C phases.

120µm

• 2 important points

-Eutectic (A):

-Eutectoid (B): L ⇒ γ + Fe3C

γ ⇒ α +Fe3C

Fe

3C

(c

em

en

tite

)

1600

1400

1200

1000

800

600

4000 1 2 3 4 5 6 6.7

L

γ (austenite)

γ+L

γ+Fe3C

α+Fe3C

α+γ

L+Fe3C

δ

(Fe) Co, wt% C0.77 4.30

727°C = Teutectoid

1148°C

T(°C)

A

B

SR

R S

γ γγγ

Fe3C (cementite-hard)α (ferrite-soft)

αC

eu

tec

toid

Page 38: Modeling Diffusion: Fluxmatclass/101/pdffiles/Lecture_12.pdfModeling Diffusion: Flux ... Nash (Ed.), ASM International, Materials Park, OH, 1991). Phase Diagrams: Composition of Phases

Hypoeutectoid Steel

Adapted from Figs. 9.21 and 9.26,Callister 6e. (Fig. 9.21 adapted from Binary Alloy Phase Diagrams, 2nd ed., Vol. 1, T.B. Massalski (Ed.-in-Chief), ASM International, Materials Park, OH, 1990.)

Adapted fromFig. 9.27,Callister6e. (Fig. 9.27 courtesy Republic Steel Corporation.)

(Fe-C System)

Co

Fe

3C

(c

em

en

tite

)

1600

1400

1200

1000

800

600

4000 1 2 3 4 5 6 6.7

L

γ (austenite)

γ+L

γ+Fe3C

α+Fe3C

L+Fe3C

δ

Co, wt% C0.7

7

727°C

1148°C

T(°C)

R S

γ γγγ

α

γγγ γ

γγ γ

γ r s

wα =s/(r+s)wγ =(1-wα)

wα =S/(R+S)wFe3C =(1-wα)

wpearlite = wγ

α

αα

αα

α pearlite

100µm Hypoeutectoid steel

Page 39: Modeling Diffusion: Fluxmatclass/101/pdffiles/Lecture_12.pdfModeling Diffusion: Flux ... Nash (Ed.), ASM International, Materials Park, OH, 1991). Phase Diagrams: Composition of Phases

Hypereutectoid Steel

(Fe-C System)

Co

Fe

3C

(c

em

en

tite

)

1600

1400

1200

1000

800

600

4000 1 2 3 4 5 6 6.7

L

γ (austenite)

γ+L

γ+Fe3C

α+Fe3C

L+Fe3C

δ

Co, wt% C0.7

71148°C

T(°C)

R S

γ γγγ

αs

wFe3C =r/(r+s)wγ =(1-wFe3C)

wα =S/(R+S)wFe3C =(1-wα)

wpearlite = wγpearlite

60µm Hypereutectoid steel

rγγ

γ γ

γγγ γ

Fe3C

Adapted from Figs. 9.21 and 9.29,Callister 6e. (Fig. 9.21 adapted from Binary Alloy Phase Diagrams, 2nd ed., Vol. 1, T.B. Massalski (Ed.-in-Chief), ASM International, Materials Park, OH, 1990.)

Adapted fromFig. 9.30,Callister6e. (Fig. 9.30copyright 1971 by United States Steel Corporation.)

Page 40: Modeling Diffusion: Fluxmatclass/101/pdffiles/Lecture_12.pdfModeling Diffusion: Flux ... Nash (Ed.), ASM International, Materials Park, OH, 1991). Phase Diagrams: Composition of Phases

Alloying Steel with more ElementsT

Eu

tec

toid

(°C

)

wt. % of alloying elements

Ti

Ni600

800

1000

1200

0 4 8 12

Mo SiW

Cr

Mn

wt. % of alloying elements

Ce

ute

cto

id (

wt%

C)

Ni

Ti

0 4 8 120

0.2

0.4

0.6

0.8

Cr

SiMnW

Mo

• Teutectoid changes: • Ceutectoid changes:

Adapted from Fig. 9.31,Callister 6e. (Fig. 9.31 from Edgar C. Bain, Functions of the Alloying Elements in Steel, American Society for Metals, 1939, p. 127.)

Adapted from Fig. 9.32,Callister 6e. (Fig. 9.32 from Edgar C. Bain, Functions of the Alloying Elements in Steel, American Society for Metals, 1939, p. 127.)