modeling an optical black hole with true gaussian beam ... modeling an optical “black hole” with...

20
Birck Nanotechnology Center http://web.ics.purdue.edu/~xni/home 1 October 8, 2010 http://web.ics.purdue.edu/~xni/home October 8, 2010 1 Modeling an Optical “Black Hole” with True Gaussian Beam Illumination Xingjie Ni 1 , Ludmila Prokopeva 2 , Alexander Kildishev 1 , and Evgenii Narimanov 1 1 Birck Nanotechnology Center, School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907 2 Institute of Computational Technologies, Russian Academy of Sciences, Novosibirsk, Russia COMSOL Conference 2010 Boston Presented at the

Upload: others

Post on 12-Aug-2020

12 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Modeling an Optical Black Hole with True Gaussian Beam ... Modeling an Optical “Black Hole” with True Gaussian Beam Illumination. Xingjie Ni1, Ludmila Prokopeva2, Alexander Kildishev

Birck Nanotechnology Center

http://web.ics.purdue.edu/~xni/home 1October 8, 2010 http://web.ics.purdue.edu/~xni/homeOctober 8, 2010 1

Modeling an Optical “Black Hole” with True Gaussian Beam Illumination

Xingjie Ni1, Ludmila Prokopeva2,

Alexander Kildishev1, and Evgenii Narimanov1

1 Birck Nanotechnology Center, School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907

2 Institute of Computational Technologies, Russian Academy of Sciences, Novosibirsk, Russia

COMSOL Conference 2010 Boston Presented at the

Page 2: Modeling an Optical Black Hole with True Gaussian Beam ... Modeling an Optical “Black Hole” with True Gaussian Beam Illumination. Xingjie Ni1, Ludmila Prokopeva2, Alexander Kildishev

Birck Nanotechnology Center

http://web.ics.purdue.edu/~xni/home 2October 8, 2010

Nanophotonics and Metamaterial Group

Birck Nanotechnology Center

Page 3: Modeling an Optical Black Hole with True Gaussian Beam ... Modeling an Optical “Black Hole” with True Gaussian Beam Illumination. Xingjie Ni1, Ludmila Prokopeva2, Alexander Kildishev

Birck Nanotechnology Center

http://web.ics.purdue.edu/~xni/home 3October 8, 2010

Nanophotonics and Metamaterial Group

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, Nature466, 735-738 (2010)

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, Nature Photonics 1, 224-27 (2007)

• Q. Song, et al, Opt. Lett. 35(15), 2624-2626 (2010)

• Y. Sivan, et al, Opt. Express 17(26), 24060-24074 (2009)

• S. Xiao, et al, Opt. Lett. 34(22), 3478-80 (2009)

• J. Borneman, et al, Opt. Express, 17(14), 11607-17 (2009)

• Z. Liu, et al, Metamaterials 2, 45-51 (2008)

• ...

Page 4: Modeling an Optical Black Hole with True Gaussian Beam ... Modeling an Optical “Black Hole” with True Gaussian Beam Illumination. Xingjie Ni1, Ludmila Prokopeva2, Alexander Kildishev

Birck Nanotechnology Center

http://web.ics.purdue.edu/~xni/home 4October 8, 2010

A Black Hole

Page 5: Modeling an Optical Black Hole with True Gaussian Beam ... Modeling an Optical “Black Hole” with True Gaussian Beam Illumination. Xingjie Ni1, Ludmila Prokopeva2, Alexander Kildishev

Birck Nanotechnology Center

http://web.ics.purdue.edu/~xni/home 5October 8, 2010

Optical “Black Hole”

• broadband omnidirectional light absorber

• absorbs surrounding light like a real black hole

• already made experimentally in microwave region

E. E. Narimanov and A. V. Kildishev, Appl. Phys. Lett. 95, 041106 (2009)

Page 6: Modeling an Optical Black Hole with True Gaussian Beam ... Modeling an Optical “Black Hole” with True Gaussian Beam Illumination. Xingjie Ni1, Ludmila Prokopeva2, Alexander Kildishev

Birck Nanotechnology Center

http://web.ics.purdue.edu/~xni/home 6October 8, 2010

Modeling the Materials

A. V. Kildishev, L. J. Prokopeva, et al, Opt. Express 18, 16646-16662, (2010)

Page 7: Modeling an Optical Black Hole with True Gaussian Beam ... Modeling an Optical “Black Hole” with True Gaussian Beam Illumination. Xingjie Ni1, Ludmila Prokopeva2, Alexander Kildishev

Birck Nanotechnology Center

http://web.ics.purdue.edu/~xni/home 7October 8, 2010

Modeling the Materials

A. V. Kildishev, L. J. Prokopeva, et al, Opt. Express 18, 16646-16662, (2010)

1

2

3

Page 8: Modeling an Optical Black Hole with True Gaussian Beam ... Modeling an Optical “Black Hole” with True Gaussian Beam Illumination. Xingjie Ni1, Ludmila Prokopeva2, Alexander Kildishev

Birck Nanotechnology Center

http://web.ics.purdue.edu/~xni/home 8October 8, 2010

Modeling the Gaussian Beam

Page 9: Modeling an Optical Black Hole with True Gaussian Beam ... Modeling an Optical “Black Hole” with True Gaussian Beam Illumination. Xingjie Ni1, Ludmila Prokopeva2, Alexander Kildishev

Birck Nanotechnology Center

http://web.ics.purdue.edu/~xni/home 9October 8, 2010

However …

total field scattered field

Page 10: Modeling an Optical Black Hole with True Gaussian Beam ... Modeling an Optical “Black Hole” with True Gaussian Beam Illumination. Xingjie Ni1, Ludmila Prokopeva2, Alexander Kildishev

Birck Nanotechnology Center

http://web.ics.purdue.edu/~xni/home 10October 8, 2010

However …

total field scattered field

Page 11: Modeling an Optical Black Hole with True Gaussian Beam ... Modeling an Optical “Black Hole” with True Gaussian Beam Illumination. Xingjie Ni1, Ludmila Prokopeva2, Alexander Kildishev

Birck Nanotechnology Center

http://web.ics.purdue.edu/~xni/home 11October 8, 2010

Plane Wave Expansion

• Helmholtz wave equation

A. V. Kildishev, L. J. Prokopeva, et al, Opt. Express 18, 16646-16662, (2010)

Page 12: Modeling an Optical Black Hole with True Gaussian Beam ... Modeling an Optical “Black Hole” with True Gaussian Beam Illumination. Xingjie Ni1, Ludmila Prokopeva2, Alexander Kildishev

Birck Nanotechnology Center

http://web.ics.purdue.edu/~xni/home 12October 8, 2010

Plane Wave Expansion

• Helmholtz wave equation

A. V. Kildishev, L. J. Prokopeva, et al, Opt. Express 18, 16646-16662, (2010)

Page 13: Modeling an Optical Black Hole with True Gaussian Beam ... Modeling an Optical “Black Hole” with True Gaussian Beam Illumination. Xingjie Ni1, Ludmila Prokopeva2, Alexander Kildishev

Birck Nanotechnology Center

http://web.ics.purdue.edu/~xni/home 13October 8, 2010

Plane Wave Expansion

• Helmholtz wave equation

A. V. Kildishev, L. J. Prokopeva, et al, Opt. Express 18, 16646-16662, (2010)

Page 14: Modeling an Optical Black Hole with True Gaussian Beam ... Modeling an Optical “Black Hole” with True Gaussian Beam Illumination. Xingjie Ni1, Ludmila Prokopeva2, Alexander Kildishev

Birck Nanotechnology Center

http://web.ics.purdue.edu/~xni/home 14October 8, 2010

Improved Modeling

total field scattered field

Page 15: Modeling an Optical Black Hole with True Gaussian Beam ... Modeling an Optical “Black Hole” with True Gaussian Beam Illumination. Xingjie Ni1, Ludmila Prokopeva2, Alexander Kildishev

Birck Nanotechnology Center

http://web.ics.purdue.edu/~xni/home 15October 8, 2010

Improved Modeling

total field scattered field

Page 16: Modeling an Optical Black Hole with True Gaussian Beam ... Modeling an Optical “Black Hole” with True Gaussian Beam Illumination. Xingjie Ni1, Ludmila Prokopeva2, Alexander Kildishev

Birck Nanotechnology Center

http://web.ics.purdue.edu/~xni/home 16October 8, 2010

Model the Optical “Black Hole” in COMSOL

Scattering BC

Incident field

• Scattered field formulation

• Material mapping

• Background field mapping

Page 17: Modeling an Optical Black Hole with True Gaussian Beam ... Modeling an Optical “Black Hole” with True Gaussian Beam Illumination. Xingjie Ni1, Ludmila Prokopeva2, Alexander Kildishev

Birck Nanotechnology Center

http://web.ics.purdue.edu/~xni/home 17October 8, 2010

Optical “Black Hole” with Gaussian Beam

(a) (b) (c) (d)

Simulation results of an ideal optical black hole with outer radius R = 20 μm, and inner radius Rc = 8.367 μm. The Gaussian beam with free-space wavelength λ = 1.5 μm and minimum waist width w = 2λ is focused at x0

= 0, and (a) y0 = 1.5R; (b) y0 = R; (c) y0 = 0.75R, and (d) y0 = 0.

Page 18: Modeling an Optical Black Hole with True Gaussian Beam ... Modeling an Optical “Black Hole” with True Gaussian Beam Illumination. Xingjie Ni1, Ludmila Prokopeva2, Alexander Kildishev

Birck Nanotechnology Center

http://web.ics.purdue.edu/~xni/home 18October 8, 2010

Optical “Black Hole” with Gaussian Beam

(a) (b) (c) (d)

Simulation results of an ideal optical black hole with outer radius R = 20 μm, and inner radius Rc = 8.367 μm. The Gaussian beam with free-space wavelength λ = 1.5 μm and minimum waist width w = 2λ is focused at x0

= 0, and (a) y0 = 1.5R; (b) y0 = R; (c) y0 = 0.75R, and (d) y0 = 0.

Page 19: Modeling an Optical Black Hole with True Gaussian Beam ... Modeling an Optical “Black Hole” with True Gaussian Beam Illumination. Xingjie Ni1, Ludmila Prokopeva2, Alexander Kildishev

Birck Nanotechnology Center

http://web.ics.purdue.edu/~xni/home 19October 8, 2010

Another Application –Negative Index Metamaterials

Page 20: Modeling an Optical Black Hole with True Gaussian Beam ... Modeling an Optical “Black Hole” with True Gaussian Beam Illumination. Xingjie Ni1, Ludmila Prokopeva2, Alexander Kildishev

Birck Nanotechnology Center

http://web.ics.purdue.edu/~xni/home 20October 8, 2010

Summary

• modeled an ideal optical “black hole” device

• used a new method to precisely model the Gaussian beam illumination

• the simulation results of the optical “black hole” device shows expected performance