modelaciÓn, anÁlisis no-lineal y disipaciÓn …jcaceres/research/pdfs/jpcaceres... · no-lineal...

150
PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE ESCUELA DE INGENIERIA Departamento de Ingeniería Estructural y Geotécnica MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO CÁCERES CHOMALI Memoria para optar al título de Ingeniero Civil, con Diploma en Ingeniería Estructural Profesor Supervisor: RAFAEL RIDDELL C. Santiago de Chile, 2001

Upload: nguyenkhanh

Post on 04-Oct-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE ESCUELA DE INGENIERIA Departamento de Ingeniería Estructural y Geotécnica

MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS

PLANAS SOMETIDAS A TERREMOTOS

JUAN PABLO CÁCERES CHOMALI

Memoria para optar al título de Ingeniero Civil, con Diploma en Ingeniería Estructural

Profesor Supervisor: RAFAEL RIDDELL C.

Santiago de Chile, 2001

Page 2: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE ESCUELA DE INGENIERIA Departamento de Ingeniería Estructural y Geotécnica

MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE

ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS

JUAN PABLO CÁCERES CHOMALI

Memoria presentada a la Comisión integrada por los profesores:

RAFAEL RIDDELL C.

JUAN CARLOS DE LA LLERA M.

JORGE CREMPIEN L.

Quienes recomiendan que sea aceptada para completar las exigencias del título de Ingeniero Civil, con Diploma en Ingeniería Estructural

Santiago de Chile, 2001

Page 3: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

ii

A mi padre, A mi madre, por la presencia incondicional, y a mis hermanos, Para Aisen, quien me mostró el color de la ternura, A mis amigos de siempre, y a Xenakis, por la música.

Page 4: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

iii

AGRADECIMIENTOS

Gran parte de mi formación como ingeniero se la debo al profesor Juan Carlos De la Llera. Su aporte e interés constante en la investigación y la docencia son de gran inspiración para desarrollar trabajos como este. También quisiera reconocer los aportes realizados por el profesor Rafael Riddell, quien me guió en varios aspectos relacionados con el curso de esta investigación, y la disposición a participar en este trabajo del profesor Jorge Crempien.

Agradezco en especial a mi padre Nivaldo Cáceres por su confianza siempre infinita, a todos mis compañeros y amigos de la universidad, sin los que mi aprendizaje no hubiese sido lo mismo, y en particular el apoyo e interés constante de mi amigo y compañero Eduardo Jahnke.

El desarrollo de esta investigación forma parte del Proyecto FONDECYT 199012, “Demanda de Disipación de Energía Durante Terremotos y Daño Estructural”, el cual es coordinado por el profesor Rafael Riddell.

Page 5: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

INDICE GENERAL

Pág.

DEDICATORIA .......................................................................................................... ii

AGRADECIMIENTOS .............................................................................................. iii

INDICE DE TABLAS ................................................................................................ vi

INDICE DE FIGURAS.............................................................................................. vii

RESUMEN................................................................................................................ xvi

I. INTRODUCCIÓN.............................................................................................. 1 1.1 Motivación y Objetivos.............................................................................. 1 1.2 Contenido del Estudio ................................................................................ 2

II. MODELO DE EDIFICO DE CORTE................................................................ 3 2.1 Sistema Considerado y Ecuación de Movimiento ..................................... 3 2.2 Propiedades del Sistema............................................................................. 6 2.3 Expresiones de Energía .............................................................................. 7 2.4 Ejemplo Numérico ..................................................................................... 8

III. ENERGÍA DISIPADA EN EDIFICIOS DE CORTE ...................................... 15 3.1 Modelos Analizados................................................................................. 15 3.2 Registros de Terremotos Usados.............................................................. 15 3.3 Ductilidad y Disipación de Energía en Altura ......................................... 17 3.4 Espectros de Energía por Histéresis......................................................... 38 3.5 Interpretación de Resultados.................................................................... 43

IV. MODELO DE EDIFICIO DE MARCO FLEXURAL..................................... 45 4.1 Sistema Considerado y Ecuación de Movimiento ................................... 45 4.2 Propiedades del Sistema........................................................................... 47

V. ELEMENTOS NO-LINEALES Y MÉTODO DE INTEGRACIÓN............... 53 5.1 Elemento Elastoplástico ........................................................................... 53

Page 6: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

5.1.1 Modelación del elemento............................................................... 53 5.1.2 Implementación ............................................................................. 54 5.1.3 Ejemplo.......................................................................................... 55

5.2 Elemento Viga con Plastificación en los Extremos ................................. 56 5.2.1 Modelación del elemento............................................................... 56 5.2.2 Implementación ............................................................................. 60 5.2.3 Validación del modelo................................................................... 62 5.2.4 Ejemplo.......................................................................................... 63

5.3 Elemento Columna con Plastificación en los Extremos Definida a través de una Curva de Interacción .......................................................... 66 5.3.1 Modelación del elemento............................................................... 66 5.3.2 Descripción de la rótula pástica con interacción N-M .................. 69 5.3.3 Implementación ............................................................................. 72 5.3.4 Validación del modelo................................................................... 76 5.3.5 Ejemplo.......................................................................................... 78

5.4 Método de Integración ............................................................................. 82 5.4.1 Planteamiento de las ecuaciones.................................................... 82 5.4.2 Propiedades del sistema en tiempo discreto .................................. 83 5.4.3 Implementación ............................................................................. 85

VI. EDIFICIO HOLIDAY INN.............................................................................. 87 6.1 Descripción del Edificio........................................................................... 87 6.2 Modelación del Edificio........................................................................... 90 6.3 Resultados del Análisis ............................................................................ 97 6.4 Interpretación de resultados ................................................................... 126

VII. CONCLUSIONES.......................................................................................... 129

BIBLIOGRAFÍA...................................................................................................... 132

Page 7: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

vi

INDICE DE TABLAS

Pág.

Tabla 2.1: Propiedades edificio de 5 piso .................................................................. 10

Tabla 3.1: Edificios utilizados con sus períodos (T1) y frecuencias (f1) fundamentales ....................................................................................... 15

Tabla 6.1: Propiedades estructurales de los elementos y materiales ......................... 94

Tabla 6.2: Enfierraduras de las columnas .................................................................. 95

Tabla 6.3: Enfierraduras de las vigas ......................................................................... 96

Tabla 6.4: Masas transalcionales del edificio y del marco modelado........................ 96

Tabla 6.5: Períodos y formas modales elásticos del modelo analizado ..................... 98

Page 8: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

vii

INDICE DE FIGURAS

Pág.

Figura 2.1: Modelo de edificio de corte con columnas elastoplásticas........................ 3

Figura 2.2: Deformación lateral de columnas.............................................................. 4

Figura 2.3: Modelo elastoplástico................................................................................ 4

Figura 2.4: Registro Sylmar, componente N00E (1994) ............................................. 8

Figure 2.5: Edificio de corte de cinco pisos con sus propiedades ............................. 10

Figura 2.6: Historia de desplazamientos .................................................................... 11

Figura 2.7: Historia de esfuerzos de corte por piso ................................................... 12

Figura 2.8: Curvas fuerza-deformación por piso ....................................................... 13

Figura 2.9: Ductilidad por piso .................................................................................. 14

Figura 2.10: Energía disipada por histéresis por piso ................................................ 14

Figura 3.1: Registro de El Centro, componente S00E (1940) ................................... 16

Figura 3.2: Registro de Sylmar, componente N00E (1994)....................................... 16

Figura 3.3: Registro de Melipilla, componente N00E (1985).................................... 17

Figura 3.4: Registro de Llolleo, componente N10E (1985)....................................... 17

Figura 3.5: Ductilidad de los edificios de 2, 3, 4, 5, 6 y 7 pisos para El Centro, componente S00E (1940) ................................................................................. 18

Figura 3.6: Energía disipada por histéresis de los edificios de 2, 3, 4, 5, 6 y 7 pisos para El Centro, componente S00E (1940)............................................... 18

Page 9: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

viii

Figura 3.7: Ductilidad de los edificios de 8, 9, 10, 11, 12 y 13 pisos para El Centro, componente S00E (1940) .................................................................... 19

Figura 3.8: Energía disipada por histéresis de los edificios de 8, 9, 10, 11, 12 y 13 pisos para El Centro, componente S00E (1940).......................................... 19

Figura 3.9: Ductilidad de los edificios de 14, 15, 16, 17, 18 y 19 pisos para El Centro, componente S00E (1940) .................................................................... 20

Figura 3.10: Energía disipada por histéresis de los edificios de 14, 15, 16, 17, 18 y 19 pisos para El Centro, componente S00E (1940).................................. 20

Figura 3.11: Ductilidad de los edificios de 21, 24, 28, 33, 39 y 45 pisos para El Centro, componente S00E (1940) .................................................................... 21

Figura 3.12: Energía disipada por histéresis de los edificios de 21, 24, 28, 33, 39 y 45 pisos para El Centro, componente S00E (1940).................................. 21

Figura 3.13: Ductilidad de los edificios de 53, 62, 73, 85 y 100 pisos para El Centro, componente S00E (1940) .................................................................... 22

Figura 3.14: Energía disipada por histéresis de los edificios de 53, 62, 73, 85 y 100 pisos para El Centro, componente S00E (1940)........................................ 22

Figura 3.15: Ductilidad de los edificios de 2, 3, 4, 5, 6 y 7 pisos para Sylmar, componente N00E (1994)................................................................................. 23

Figura 3.16: Energía disipada por histéresis de los edificios de 2, 3, 4, 5, 6 y 7 pisos para Sylmar, componente N00E (1994) .................................................. 23

Figura 3.17: Ductilidad de los edificios de 8, 9, 10, 11, 12 y 13 pisos para Sylmar, componente N00E (1994) ................................................................... 24

Figura 3.18: Energía disipada por histéresis de los edificios de 8, 9, 10, 11, 12 y 13 pisos para Sylmar, componente N00E (1994) .......................................... 24

Page 10: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

ix

Figura 3.19: Ductilidad de los edificios de 14, 15, 16, 17, 18 y 19 pisos para Sylmar, componente N00E (1994) ................................................................... 25

Figura 3.20: Energía disipada por histéresis de los edificios de 14, 15, 16, 17, 18 y 19 pisos para Sylmar, componente N00E (1994) ..................................... 25

Figura 3.21: Ductilidad de los edificios de 21, 24, 28, 33, 39 y 45 pisos para Sylmar, componente N00E (1994) ................................................................... 26

Figura 3.22: Energía disipada por histéresis de los edificios de 21, 24, 28, 33, 39 y 45 pisos para Sylmar, componente N00E (1994) ..................................... 26

Figura 3.23: Ductilidad de los edificios de 53, 62, 73, 85 y 100 pisos para Sylmar, componente N00E (1994) ................................................................... 27

Figura 3.24: Energía disipada por histéresis de los edificios de 53, 62, 73, 85 y 100 pisos para Sylmar, componente N00E (1994) ........................................... 27

Figura 3.25: Ductilidad de los edificios de 2, 3, 4, 5, 6 y 7 pisos para Melipilla, componente N00E (1985)................................................................................. 28

Figura 3.26: Energía disipada por histéresis de los edificios de 2, 3, 4, 5, 6 y 7 pisos para Melipilla, componente N00E (1985)............................................... 28

Figura 3.27: Ductilidad de los edificios de 8, 9, 10, 11, 12 y 13 pisos para Melipilla, componente N00E (1985) ................................................................ 29

Figura 3.28: Energía disipada por histéresis de los edificios de 8, 9, 10, 11, 12 y 13 pisos para Melipilla, componente N00E (1985)....................................... 29

Figura 3.29: Ductilidad de los edificios de 14, 15, 16, 17, 18 y 19 pisos para Melipilla, componente N00E (1985) ................................................................ 30

Figura 3.30: Energía disipada por histéresis de los edificios de 14, 15, 16, 17, 18 y 19 pisos para Melipilla, componente N00E (1985).................................. 30

Page 11: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

x

Figura 3.31: Ductilidad de los edificios de 21, 24, 28, 33, 39 y 45 pisos para Melipilla, componente N00E (1985) ................................................................ 31

Figura 3.32: Energía disipada por histéresis de los edificios de 21, 24, 28, 33, 39 y 45 pisos para Melipilla, componente N00E (1985).................................. 31

Figura 3.33: Ductilidad de los edificios de 53, 62, 73, 85 y 100 pisos para Melipilla, componente N00E (1985) ................................................................ 32

Figura 3.34: Energía disipada por histéresis de los edificios de 53, 62, 73, 85 y 100 pisos para Melipilla, componente N00E (1985)........................................ 32

Figura 3.35: Ductilidad de los edificios de 2, 3, 4, 5, 6 y 7 pisos para Llolleo, componente N10E (1985)................................................................................. 33

Figura 3.36: Energía disipada por histéresis de los edificios de 2, 3, 4, 5, 6 y 7 pisos para Llolleo, componente N10E (1985) .................................................. 33

Figura 3.37: Ductilidad de los edificios de 8, 9, 10, 11, 12 y 13 pisos para Llolleo, componente N10E (1985) ................................................................... 34

Figura 3.38: Energía disipada por histéresis de los edificios de 8, 9, 10, 11, 12 y 13 pisos para Llolleo, componente N10E (1985) .......................................... 34

Figura 3.39: Ductilidad de los edificios de 14, 15, 16, 17, 18 y 19 pisos para Llolleo, componente N10E (1985) ................................................................... 35

Figura 3.40: Energía disipada por histéresis de los edificios de 14, 15, 16, 17, 18 y 19 pisos para Llolleo, componente N10E (1985) ..................................... 35

Figura 3.41: Ductilidad de los edificios de 21, 24, 28, 33, 39 y 45 pisos para Llolleo, componente N10E (1985) ................................................................... 36

Figura 3.42: Energía disipada por histéresis de los edificios de 21, 24, 28, 33, 39 y 45 pisos para Llolleo, componente N10E (1985) ..................................... 36

Page 12: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

xi

Figura 3.43: Ductilidad de los edificios de 53, 62, 73, 85 y 100 pisos para Llolleo, componente N10E (1985) ................................................................... 37

Figura 3.44: Energía disipada por histéresis de los edificios de 53, 62, 73, 85 y 100 pisos para Llolleo, componente N10E (1985) ........................................... 37

Figura 3.45: Espectro de energía por histéresis para El Centro, componente S00E (1940) ...................................................................................................... 39

Figura 3.46: Espectro de energía por histéresis para Sylmar, componente N00E (1994)................................................................................................................ 40

Figura 3.47: Espectro de energía por histéresis para Melipilla, componente N00E (1985) ..................................................................................................... 41

Figura 3.48: Espectro de energía por histéresis para Llolleo, componente N10E (1985)................................................................................................................ 42

Figura 4.1: Modelo de edificio de marco flexural ..................................................... 46

Figura 4.2: Curva de interacción................................................................................ 47

Figura 4.3: Largo de plastificación de las vigas ........................................................ 48

Figura 4.4: Largo de plastificación de las columnas.................................................. 48

Figura 4.5: Definición de deformaciones de las rótulas de las columnas .................. 49

Figura 4.6: Definición del elemento elástico de largo Lp .......................................... 49

Figura 4.7: Curva de interacción típica de una sección de hormigón armado........... 51

Figura 4.8: Procedimiento para obtener la curva de interacción de una sección de hormigón armado para ser utilizada en el modelo de marco flexural.......... 52

Figura 5.1: Definición del elemento elastoplástico................................................... 53

Figura 5.2: Relación fuerza-deformación elastoplástica............................................ 54

Page 13: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

xii

Figura 5.3: Historia de deformaciones del elemento elastoplástico .......................... 55

Figura 5.4: Historia de fuerzas del elemento elastoplástico ...................................... 55

Figura 5.5: Curva fuerza-deformación elemento elastoplástico ................................ 56

Figura 5.6: Definición del macro-elemento viga ....................................................... 57

Figura 5.7: Deformación de la rótula ......................................................................... 58

Figura 5.8: Relación fuerza-deformación de la rótula en vigas ................................. 59

Figura 5.9: Definición del elemento elástico interno de la viga ................................ 62

Figura 5.10: Historia de deformaciones del macro-elemento viga ............................ 64

Figura 5.11: Historia de fuerzas del macro-elemento viga ........................................ 65

Figura 5.12: Curvas de momento-rotación para las rótulas elastoplásticas ............... 65

Figura 5.13: Definición del macro-elemento columna .............................................. 66

Figura 5.14: Definición de la rótula de las columnas ................................................ 67

Figura 5.15: Deformación elástica de la rótula con interacción ................................ 70

Figura 5.16: Deformación elástica y plástica de la rótula con interacción ................ 71

Figura 5.17: Vértice en la curva de interacción ......................................................... 72

Figura 5.18: Definición del macro-elemento columna para ser utilizado como macro-elemento viga ........................................................................................ 75

Figura 5.19: Obtención de momento plástico (Mp) de las rótulas para utilizar el macro-elemento viga ........................................................................................ 76

Figura 5.20: Geometría del elemento elástico interno viga ....................................... 77

Figura 5.21: Historia de deformaciones del macro-elemento columna ..................... 79

Page 14: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

xiii

Figura 5.22: Historia de fuerzas del macro-elemento columna ................................. 80

Figura 5.23: Curvas de interacción e historias de fuerzas M-N de las rótulas plásticas ............................................................................................................ 81

Figura 5.24: Curvas fuerzas-deformaciones de las rotulas plásticas ......................... 82

Figura 6.1: Planta típica del edificio .......................................................................... 89

Figura 6.2: Elevación transversal típica..................................................................... 90

Figura 6.3: Modelación geométrica del marco resistente correspondiente al eje transversal A: numeración de elementos .......................................................... 93

Figura 6.4: Dimensiones de elementos y extremos rígidos ....................................... 94

Figura 6.5: Disposición geométrica de las enfierraduras de las columnas ................ 95

Figura 6.6: Registro medido en la base del edificio (Northridge, 1994) ................... 97

Figura 6.7: Formas modales elásticas del modelo analizado ..................................... 99

Figura 6.8: Historias de desplazamientos relativos a la base................................... 100

Figura 6.9: Historia de deformaciones de entrepisos (drifts)................................... 101

Figura 6.10: Historia de esfuerzos de corte por piso ............................................... 102

Figura 6.11: Curvas de interacción, historias de esfuerzos axial y momento en el extremo inferior de las columnas del 1º piso.............................................. 103

Figura 6.12: Curvas de interacción, historias de esfuerzos axial y momento en el extremo superior de las columnas del 1º piso............................................. 104

Figura 6.13: Curvas de interacción, historias de esfuerzos axial y momento en el extremo inferior de las columnas del 2º piso.............................................. 105

Figura 6.14: Curvas de interacción, historias de esfuerzos axial y momento en el extremo superior de las columnas del 2º piso............................................. 106

Page 15: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

xiv

Figura 6.15: Curvas de interacción, historias de esfuerzos axial y momento en el extremo inferior de las columnas del 3º piso.............................................. 107

Figura 6.16: Curvas de interacción, historias de esfuerzos axial y momento en el extremo superior de las columnas del 3º piso............................................. 108

Figura 6.17: Curvas de interacción, historias de esfuerzos axial y momento en el extremo inferior de las columnas del 4º piso.............................................. 109

Figura 6.18: Curvas de interacción, historias de esfuerzos axial y momento en el extremo superior de las columnas del 4º piso............................................. 110

Figura 6.19: Curvas de interacción, historias de esfuerzos axial y momento en el extremo inferior de las columnas del 5º piso.............................................. 111

Figura 6.20: Curvas de interacción, historias de esfuerzos axial y momento en el extremo superior de las columnas del 5º piso............................................. 112

Figura 6.21: Curvas de interacción, historias de esfuerzos axial y momento en el extremo inferior de las columnas del 6º piso.............................................. 113

Figura 6.22: Curvas de interacción, historias de esfuerzos axial y momento en el extremo superior de las columnas del 6º piso............................................. 114

Figura 6.23: Curvas de interacción, historias de esfuerzos axial y momento en el extremo inferior de las columnas del 7º piso.............................................. 115

Figura 6.24: Curvas de interacción, historias de esfuerzos axial y momento en el extremo superior de las columnas del 7º piso............................................. 116

Figura 6.25: Curvas de momento-deformación en rótulas de vigas del 1º piso....... 117

Figura 6.26: Curvas de momento-deformación en rótulas de vigas del 2º piso....... 118

Figura 6.27: Curvas de momento-deformación en rótulas de vigas del 3º piso....... 119

Figura 6.28: Curvas de momento-deformación en rótulas de vigas del 4º piso....... 120

Page 16: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

xv

Figura 6.29: Curvas de momento-deformación en rótulas de vigas del 5º piso....... 121

Figura 6.30: Curvas de momento-deformación en rótulas de vigas del 6º piso....... 122

Figura 6.31: Curvas de momento-deformación en rótulas de vigas del 7º piso....... 123

Figura 6.32: Energía disipada en cada piso por hitéresis de las columnas .............. 124

Figura 6.33: Energía disipada en cada piso por hitéresis de las vigas ..................... 124

Figura 6.34: Energía total disipada por hitéresis en cada piso................................. 125

Figura 6.35: Gráfico comparativo de las energías disipadas por hitéresis en cada piso ......................................................................................................... 125

Figura 6.36: Espectro de energía por histéresis para el registro medido en la base del edificio (Northridge, 1994), componente horizontal; y energía disipada por histéresis para el marco analizado (*)........................................ 128

Page 17: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

xvi

RESUMEN

Diferentes herramientas se han creado para predecir el comportamiento no-lineal de estructuras durante un movimiento sísmico. Este trabajo aborda el problema para estructuras planas, donde se implementan y analizan modelos correspondientes a dos tipos básicos, edificios de corte y marcos flexurales.

El modelo de edificio de corte considera columnas con constitutiva elastoplástica en todos los pisos. Para este tipo estructural se utilizan cuatro registros sísmicos, para los cuales se analizan edificios entre dos y cien pisos. Con esto se obtienen distribución de ductilidades y energía disipada por histéresis en altura para cada modelo. Además se realizan espectros de energía para cada registro, los que se comparan con los espectros correspondientes a sistemas de un grado de libertad.

Por su parte, el modelo de marco flexural se conforma de elementos en los que la plastificación se concentra en rótulas de sus extremos. Las vigas tienen rótulas elastoplásticas, mientras que las columnas poseen rótulas que dan cuanta del estado límite de plastificación. En estas la fluencia ocurre cuando se alcanza alguna de las combinaciones de carga axial y flexural definidas a través de una curva de interacción.

El modelo de marco flexural implementado se utiliza para analizar un marco de un edificio real, el cual sufrió daños estructurales severos durante el terremoto de Northridge. Con los resultados obtenidos se calcula la distribución de energía disipada por histéresis en altura, y así poder compararla con los espectros estudiados para los edificios de corte. Además se muestra que el comportamiento de la estructura analizada predice en forma bastante correcta el comportamiento real, con una modelación sencilla y transparente para el usuario.

Para integrar todos los modelos de este estudio, se ha escogido un método de tipo predictor-corrector orden 2, con las ecuaciones de movimiento expresadas en espacio estado.

Page 18: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

1

I. INTRODUCCIÓN

1.1 Motivación y Objetivos

La filosofía de diseño sísmico en boga establece un marco conceptual de comportamiento, según el cual se generan los códigos y diseñan las estructuras. Este es que para sismos de baja intensidad la estructura debe comportarse en forma elástica, para movimientos moderados a fuertes se admiten incursiones en el rango inelástico y daños no estructurales limitados, mientras que para sismos severos de baja probabilidad de ocurrencia en la vida útil de la estructura se aceptarán daños importantes pero sin colapso.

Por esto, dado que el daño es el parámetro clave de diseño, el análisis no-lineal cobra una importancia fundamental en la predicción del comportamiento de una estructura sometida a un movimiento sísmico.

La presencia de elementos dúctiles permite diseñar estructuras para esfuerzos menores a los que requeriría un diseño elástico. Esto se debe a la capacidad que tienen estos elementos de disipar energía sin llegar a la rotura o al colapso. Por consiguiente un parámetro clave en el diseño y análisis sismorresistente es la predicción y control de la disipación de energía por histéresis. Lo que se busca es establecer cuales son los elementos que disiparán energía para así diseñarlos conforme a ello.

El estudio del comportamiento no-lineal de estructuras puede llevarse a cabo utilizando métodos de variada complejidad, tanto en la modelación como en el análisis. Estos van desde los que utilizan factores de reducción y amplificación de los parámetros de la respuesta elástica de la estructura, hasta la utilización de elementos finitos o elementos fibra.

Los principales objetivos de la presente investigación son:

1. Determinar la distribución de ductilidades y energía disipada por histéresis en altura de varios edificios de corte no-lineales, y además desarrollar espectros de energía disipada por histéresis de estos edificios y compararlos con los de un grado de libertad.

Page 19: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

2

2. Desarrollar e implementar elementos no-lineales para modelar marcos flexurales planos. Estos deben dar cuanta del comportamiento real de un edificio estructurado en basa a marcos con la mayor precisión posible, pero manteniendo una modelación sencilla y transparente para el usuario, además de lograr que la integración numérica sea de bajo costo.

1.2 Contenido del Estudio

El desarrollo de este estudio se divide principalmente en tres bloques temáticos:

1. En el Capítulo II se describen los modelos de edificios de corte utilizados, mientras que la distribución de ductilidades y energía disipada por histéresis en altura, así como los espectros, se muestran y discuten en el Capítulo III.

2. La modelación general de los marcos flexurales se describe en el Capítulo IV. El Capitulo VI contiene un ejemplo para un edificio real, en el cual se utiliza un marco flexural modelado como se explica en el Capítulo IV.

3. En el Capítulo V se explica la modelación e implementación de cada uno de los elementos no-lineales utilizados en el estudio. Este capítulo contiene además el método de integración tipo predictor-corrector orden 2 que se utiliza para analizar todos los modelos, tanto los edificios de corte como los marcos flexurales.

Las principales conclusiones obtenidas, así como algunas sugerencias para investigaciones futuras se incluyen en el Capítulo VII.

Page 20: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

3

II. MODELO DE EDIFICO DE CORTE

El modelo de edifico de corte consiste en un marco en el cual las vigas se suponen infinitamente rígidas, mientras que toda la deformación y ductilidad se concentra en las columnas, las que se consideran axialmente rígidas. Por ello estas columnas son elementos de una deformación, que corresponde a la deformación de entrepiso.

2.1 Sistema Considerado y Ecuación de Movimiento

Los sistemas estudiados son edificios de corte no-lineales de diferentes números de pisos. La Figura 2.1 muestra el típico modelo general utilizado en este estudio.

m

m

m

m

m

u2

un-1

u3

un

u1Vigas Rígidas

( )tgu&&

ColumnasElastoplásticas

h

h

h

h

m

m

m

m

m

u2

un-1

u3

un

u1Vigas Rígidas

( )tgu&&

ColumnasElastoplásticas

h

h

h

h

m

m

m

m

u2

un-1

u3

un

u1Vigas Rígidas

( )tgu&&

ColumnasElastoplásticas

h

h

h

h

Figura 2.1: Modelo de edificio de corte con columnas elastoplásticas

La relación fuerza-deformación para cada piso corresponde a una constitutiva elastoplástica. Esta se define a través de una rigidez elástica inicial total

Page 21: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

4

k y a una fuerza de fluencia total del piso Fy (Figs. 2.2 y 2.3). La deformación lateral de entrepiso se define como “v”.

F

F

k/2 k/2

v F

F

k/2 k/2

v

Figura 2.2: Deformación lateral de columnas

1

k

1

k

1

k

F(v)

v

Fy

-Fy

uy

1

k

1

k

1

k

F(v)

v

Fy

-Fy

uy

Figura 2.3: Modelo elastoplástico

La ecuación del movimiento de este sistema, cuando se le somete a un movimiento sísmico en la base, puede escribirse como

( ) ( ) ( ) ( )ttt gT urMvFLuCuM &&&&& ⋅⋅−=⋅+⋅+⋅ (2.1)

donde M es la matriz de masas; C es la matriz de amortiguamiento; u es el vector de desplazamientos relativos de las masas con respecto al suelo; v=L⋅u, en que L es la matriz de transformación cinemática; F es el vector de fuerzas de los elementos no-lineales; v es el vector de deformaciones de los elementos no-lineales; gu&& es la

aceleración del suelo; y r es el vector de influencia.

Page 22: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

5

El amortiguamiento viscoso, el cual disipa energía durante todas las fases de respuesta (elásticas y plásticas), fue modelado a través de una matriz de amortiguamiento C clásica. El modelo considera una razón de amortiguamiento constante para todos los modos, correspondiente a ξ = 5%.

Para calcular la matriz de amortiguamiento C, se obtiene primero la solución al problema de valores y vectores propios generalizado del par MK, , en

donde la matriz de rigidez K se calcula utilizando las rigideces iniciales (en rango elástico) de cada columna. Para obtener los valores y vectores propios del sistema se resuelve la ecuación

i2ii φ⋅⋅ω=φ⋅ MK (2.2)

donde φi corresponde a la i-ésima forma modal del sistema y ωi a la frecuencia propia del modo.

Conocidas las razones de amortiguamiento modal es posible obtener la matriz C realizando la operación

ΦΦC ⋅

⎥⎥⎥⎥

⎢⎢⎢⎢

⋅ω⋅ξ⋅

⋅ω⋅ξ⋅⋅ω⋅ξ⋅

⋅= −

nnn

222

111

1

M2

M2M2

O (2.3)

donde [ ]n21 φφφ= LΦ es la matriz de formas modales; ξi es la razón de

amortiguamiento del i-ésimo modo y Mi es la masa correspondiente al modo i

Es una conocida propiedad del álgebra lineal que los modos de vibración son ortogonales con respecto a la matrices K y M. Por lo tanto, las masas modales Mi se obtienen de la ecuación

⎥⎥⎥⎥

⎢⎢⎢⎢

=⋅⋅

n

2

1

T

M

MM

OΦMΦ (2.4)

Page 23: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

6

2.2 Propiedades del Sistema

La relación constitutiva fuerza-deformación de cada columna queda definida por su rigidez k en el rango elástico y su fuerza de fluencia Fy.

Los valores iniciales de la rigidez (elástica) se determinan de modo que satisfagan dos condiciones:

(a) se debe obtener un periodo fundamental T1, considerando la masa total del edificio como unitaria. La masa de cada piso es entonces m=1/n, donde ‘n’ es el número de pisos, y

(b) la aplicación de las fuerzas estáticas laterales equivalentes del código UBC-1994 debe producir un incremento lineal en las deformaciones de los pisos, i.e., los drift de entrepiso deben ser iguales en todo el edificio.

La distribución de las fuerzas estáticas laterales equivalentes del código UBC-1994 se determina utilizando la fórmula

( )∑=

⋅−= N

1ijj

jjtbj

hw

hwFVF (2.5)

donde wj es el peso del piso j; hj es la altura del piso j; Vb es el esfuerzo de corte basal; y Ft es la fuerza adicional del último piso. Esta última se define como

6.3T6.3T7.0

7.0T

V25.0VT07.0

0F

1

1

1

b

b1t

≥<<

⎪⎩

⎪⎨

⋅⋅⋅= (2.6)

y su propósito es él de considerar el efecto dinámico de los modos superiores.

En este estudio se ha supuesto que el valor objetivo del periodo fundamental del edificio sea

10nT1 = (2.7)

Page 24: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

7

Las fuerzas de fluencia de los elementos se determinan utilizando el espectro de respuesta no-lineal de un grado de libertad para el registro sísmico requerido. Para esto se elige una ductilidad objetivo de diseño (p.e., µ=5), con lo que se determina la pseudo-aceleración Ay correspondiente al periodo fundamental T1. Consecuentemente, el esfuerzo de corte basal Vby se calcula como

Wg

AV y

by ⋅= (2.8)

donde W es el peso total del edificio y Ay es la pseudo-aceleración del espectro de respuesta inelástico correspondiente al periodo fundamental T1 y a un amortiguamiento viscoso ξ = 5%.

El esfuerzo de corte basal Vby corresponde también a la fuerza de fluencia Fy del primer piso. Para obtener la fuerza de fluencia del resto de los pisos se multiplica este esfuerzo de corte por los factores de esfuerzo de corte en cada piso según la distribución de fuerzas estáticas del UBC (Ecs. (2.5) y (2.6)).

2.3 Expresiones de Energía

Durante un movimiento sísmico, el suelo transmite energía a la estructura a través de su base. Parte de esa energía es almacenada temporalmente en la estructura en forma de energía cinética y de deformación. El resto se disipa por amortiguamiento y deformación inelástica, esta última correspondiente a la energía disipada por la histéresis de las columnas.

La variable estudiada en esta sección es la energía disipada por histéresis EH. El objetivo es hacer una comparación de la energía disipada en sistemas de un grado de libertad con los edificios de múltiples grados de libertad. Para esto se compara la energía disipada en edificios con igual periodo fundamental que los sistemas correspondientes de un grado de libertad. El análisis y estudio de los espectros de energía de los sistemas de un grado de libertad se encuentran en el trabajo de García y Riddell (1995).

Page 25: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

8

La energía disipada por histéresis corresponde a la suma de las áreas encerradas en cada ciclo por las curvas de fuerza-deformación de cada piso de los edificios. La energía disipada por histéresis corresponde a

( ) dtv)v(Fdv)v(FEft

0

u

0

iH ⋅⋅=⋅= ∫∫ & (2.9)

donde ( )iHE es la Energía disipada por histéresis en el piso i; v es la deformación de

entrepiso; y F(v) es la fuerza del elemento en función de su deformación v.

Para obtener la energía disipada por histéresis total ( totHE ) del edificio, se

realiza la sumatoria de las energías disipadas en cada piso

( )∑=

=n

1i

iH

totH EE (2.10)

2.4 Ejemplo Numérico

A continuación se presenta un ejemplo para explicar en detalle el procedimiento por el cual se calculan las propiedades del sistema. Este corresponde a un edificio de corte de 5 pisos con masa total unitaria. Como input se utiliza el registro de Sylmar, componente N00E, terremoto de Northridge, California, 17 de enero de 1994.

0 10 20 30 40 50 60 70-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

tiempo (seg)

acel

erac

ión

(g)

Figura 2.4: Registro Sylmar, componente N00E (1994)

Page 26: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

9

El periodo fundamental objetivo del edificio es

seg 5.0105

10pisosºNT1 ===

con lo que se obtiene del espectro inelástico de Sylmar para una ductilidad objetivo µ=5, una deformación de fluencia

uy = 2.7377 cm.

La pseudo-aceleración correspondiente es

Ay = ω2⋅uy = (2π/0.5)2⋅2.7377 = 0.4407 g

El peso total del edificio con masa unitaria m=1 kgf⋅seg2/cm es

W = m⋅g = g

Y entonces el esfuerzo de corte basal es

Vby= 432.3149 kgf

Para obtener la distribución de las fuerzas laterales estáticas equivalentes del código UBC-1994, se realiza el procedimiento explicado en la Sección 2.2, con lo que se obtienen las fuerzas estáticas equivalentes indicadas en la Tabla 2.1.

La rigidez de cada piso se determina de modo que la aplicación de las fuerzas estáticas equivalentes produzcan un incremento lineal en las deformaciones de los pisos. Es decir, los drift de entrepiso deben ser iguales en todo el edificio. Además el período fundamental del edificio T1 debe ser igual a 0.5 seg. Con esto se obtienen las rigideces indicadas en la Tabla 2.1.

Por último, las fuerzas de fluencia de cada piso se obtienen multiplicando el esfuerzo de corte basal Vby por los factores de esfuerzo de corte en cada piso según la distribución de fuerzas estáticas (Tabla 2.1).

Page 27: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

10

Tabla 2.1: Propiedades edificio de 5 piso

Fj (kgf) kj (kgf/cm) Fjy (kgf)

5º piso 144.1050 157.9137 144.1050

4º piso 115.2840 284.2446 259.3889

3º piso 86.4630 378.9928 345.8519

2º piso 57.6420 442.1583 403.4939

1º piso 28.8210 473.7410 432.3149

m

m

m=1/5 kgf⋅seg2/cm

m

m

u2

u4

u3

u5

u1

432.3473.7

403.5442.2

345.9379.0

259.4284.2

144.1157.9

Fjy (kgf)kj (kgf/cm)

m

m

m=1/5 kgf⋅seg2/cm

m

m

u2

u4

u3

u5

u1

432.3473.7

403.5442.2

345.9379.0

259.4284.2

144.1157.9

Fjy (kgf)kj (kgf/cm)

432.3473.7

403.5442.2

345.9379.0

259.4284.2

144.1157.9

Fjy (kgf)kj (kgf/cm)

403.5442.2

345.9379.0

259.4284.2

144.1157.9

Fjy (kgf)kj (kgf/cm)

Figure 2.5: Edificio de corte de cinco pisos con sus propiedades

En las figuras siguientes se presentan los resultados del análisis del edificio. La respuesta incluye las historias de desplazamientos y fuerzas, las curvas fuerza-deformación, las ductilidades y la energía disipada en cada piso.

Page 28: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

11

-20

-10

0

10

20Piso 5

-20

-10

0

10

20Piso 4

-20

-10

0

10

20Piso 3

Des

plaz

amie

nto

(cm

)

-20

-10

0

10

20Piso 2

0 10 20 30 40 50 60-20

-10

0

10

20Piso 1

Tiempo (seg)

Figura 2.6: Historia de desplazamientos

Page 29: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

12

-500

0

500

Piso 5

-500

0

500

Piso 4

-500

0

500

Piso 3

Esf

uerz

o de

Cor

te (k

gf)

-500

0

500

Piso 2

0 10 20 30 40 50 60-500

0

500

Piso 1

Tiempo (seg)

Figura 2.7: Historia de esfuerzos de corte por piso

Page 30: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

13

-500

0

500

Columnas piso 5

-500

0

500

Columnas piso 4

-500

0

500

Columnas piso 3

Esf

uerz

o de

Cor

te (k

gf)

-500

0

500

Columnas piso 2

-8 -6 -4 -2 0 2 4 6 8-500

0

500

Columnas piso 1

Deformación (cm)

Figura 2.8: Curvas fuerza-deformación por piso

Page 31: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

14

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

Núm

ero

de P

iso

µ (cm)

Figura 2.9: Ductilidad por piso

500 1000 1500 2000 2500 3000 3500 4000 4500 50000

1

2

3

4

5

Núm

ero

de P

iso

EH (kgf cm)

Figura 2.10: Energía disipada por histéresis por piso

Page 32: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

15

III. ENERGÍA DISIPADA EN EDIFICIOS DE CORTE

3.1 Modelos Analizados

Para poder representar una amplia gama de períodos fundamentales, se selecciona una muestra de edificios de corte de diferente número de pisos. En cada uno, el período fundamental corresponde a un décimo del número de pisos, como se explicó en la Sección 2.2. Para cada registro utilizado se analizaron 29 edificios de corte. La selección se realiza de forma que las frecuencias fundamentales se distribuyan en forma aproximadamente equitativa en la escala logarítmica. Los edificios utilizados se muestran en la Tabla 3.1.

Tabla 3.1: Edificios utilizados con sus períodos (T1) y frecuencias (f1) fundamentales

Nº Pisos 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16T1 (seg) 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6f1 (hz) 5.00 3.33 2.50 2.00 1.67 1.43 1.25 1.11 1.00 0.91 0.83 0.77 0.71 0.67 0.63

Nº Pisos 17 18 19 21 24 28 33 39 45 53 62 73 85 100T1 (seg) 1.7 1.8 1.9 2.1 2.4 2.8 3.3 3.9 4.5 5.3 6.2 7.3 8.5 10f1 (hz) 0.59 0.56 0.53 0.48 0.42 0.36 0.30 0.26 0.22 0.19 0.16 0.14 0.12 0.10

El diseño de cada edificio se realizó en la forma explicada en la Sección 2.2. La ductilidad objetivo para todos los modelos es µ=5.

3.2 Registros de Terremotos Usados

Los registros utilizados en este Capítulo corresponden a cuatro acelerogramas, dos de ellos registrados en Chile en 1985 (Melipilla y Llolleo), y los otros dos registrados en California, uno en 1940 (El Centro) y el otro en 1994 (Sylmar).

Para corregir los valores iniciales del movimiento del suelo se prefija un pulso de aceleración de dos segundos para cada registro. Con esto se logra que todas

Page 33: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

16

las condiciones iniciales (aceleración, velocidad y desplazamiento) sean iguales a cero.

En las figuras siguientes se muestran los registros utilizados.

0 10 20 30 40 50 60-0.4

-0.2

0

0.2

0.4

tiempo (seg)

acel

erac

ión

(g)

Figura 3.1: Registro de El Centro, componente S00E (1940)

0 10 20 30 40 50 60 70-1

-0.5

0

0.5

1

tiempo (seg)

acel

erac

ión

(g)

Figura 3.2: Registro de Sylmar, componente N00E (1994)

Page 34: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

17

0 10 20 30 40 50 60 70 80 90-1

-0.5

0

0.5

1

tiempo (seg)

acel

erac

ión

(g)

Figura 3.3: Registro de Melipilla, componente N00E (1985)

0 20 40 60 80 100 120-1

-0.5

0

0.5

1

tiempo (seg)

acel

erac

ión

(g)

Figura 3.4: Registro de Llolleo, componente N10E (1985)

3.3 Ductilidad y Disipación de Energía en Altura

El análisis de los edificios permite obtener los dos parámetros relevantes de esta sección, la ductilidad y la energía disipada por histéresis en cada piso. En esta sección se muestran los gráficos correspondientes a la distribución en altura de las ductilidades y la disipación de energía por histéresis de los 29 edificios de corte analizados con cada registro (Figs. 3.5 a 3.44), lo que resulta en un total de 116 sistemas analizados.

Page 35: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

18

0

0.5

12 pisos 3 pisos

0

0.5

14 pisos

Altu

ra re

lativ

a 5 pisos

0 2 4 6 8 10 120

0.5

16 pisos

Ductilidad µ0 2 4 6 8 10 12

7 pisos

Ductilidad µ

Figura 3.5: Ductilidad de los edificios de 2, 3, 4, 5, 6 y 7 pisos para El Centro, componente S00E (1940)

0

0.5

12 pisos 3 pisos

0

0.5

14 pisos

Altu

ra re

lativ

a 5 pisos

0 1000 2000 3000 4000 5000 6000 7000 80000

0.5

16 pisos

EH (kgf cm)0 1000 2000 3000 4000 5000 6000 7000 8000

7 pisos

EH (kgf cm)

Figura 3.6: Energía disipada por histéresis de los edificios de 2, 3, 4, 5, 6 y 7 pisos para El Centro, componente S00E (1940)

Page 36: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

19

0

0.5

18 pisos 9 pisos

0

0.5

110 pisos

Altu

ra re

lativ

a 11 pisos

0 2 4 6 8 100

0.5

112 pisos

Ductilidad µ0 2 4 6 8 10

13 pisos

Ductilidad µ

Figura 3.7: Ductilidad de los edificios de 8, 9, 10, 11, 12 y 13 pisos para El Centro, componente S00E (1940)

0

0.5

18 pisos 9 pisos

0

0.5

110 pisos

Altu

ra re

lativ

a 11 pisos

0 200 400 600 800 1000 1200 14000

0.5

112 pisos

EH (kgf cm)0 200 400 600 800 1000 1200 1400

13 pisos

EH (kgf cm)

Figura 3.8: Energía disipada por histéresis de los edificios de 8, 9, 10, 11, 12 y 13 pisos para El Centro, componente S00E (1940)

Page 37: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

20

0

0.5

114 pisos 15 pisos

0

0.5

116 pisos

Altu

ra re

lativ

a 17 pisos

0 5 10 15 20 25 300

0.5

118 pisos

Ductilidad µ0 5 10 15 20 25 30

19 pisos

Ductilidad µ

Figura 3.9: Ductilidad de los edificios de 14, 15, 16, 17, 18 y 19 pisos para El Centro, componente S00E (1940)

0

0.5

114 pisos 15 pisos

0

0.5

116 pisos

Altu

ra re

lativ

a 17 pisos

0 200 400 600 800 10000

0.5

118 pisos

EH (kgf cm)0 200 400 600 800 1000

19 pisos

EH (kgf cm)

Figura 3.10: Energía disipada por histéresis de los edificios de 14, 15, 16, 17, 18 y 19 pisos para El Centro, componente S00E (1940)

Page 38: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

21

0

0.5

121 pisos 24 pisos

0

0.5

128 pisos

Altu

ra re

lativ

a 33 pisos

0 10 20 30 40 50 600

0.5

139 pisos

Ductilidad µ0 10 20 30 40 50 60

45 pisos

Ductilidad µ

Figura 3.11: Ductilidad de los edificios de 21, 24, 28, 33, 39 y 45 pisos para El Centro, componente S00E (1940)

0

0.5

121 pisos 24 pisos

0

0.5

128 pisos

Altu

ra re

lativ

a 33 pisos

0 100 200 300 400 500 600 700 8000

0.5

139 pisos

EH (kgf cm)0 100 200 300 400 500 600 700 800

45 pisos

EH (kgf cm)

Figura 3.12: Energía disipada por histéresis de los edificios de 21, 24, 28, 33, 39 y 45 pisos para El Centro, componente S00E (1940)

Page 39: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

22

0

0.5

153 pisos 62 pisos

0

0.5

173 pisos

Altu

ra re

lativ

a

0 50 100 150

85 pisos

Ductilidad µ

0 50 100 1500

0.5

1100 pisos

Ductilidad µ

Figura 3.13: Ductilidad de los edificios de 53, 62, 73, 85 y 100 pisos para El Centro, componente S00E (1940)

0

0.5

153 pisos 62 pisos

0

0.5

173 pisos

Altu

ra re

lativ

a

0 50 100 150 200 250

85 pisos

EH (kgf cm)

0 50 100 150 200 2500

0.5

1100 pisos

EH (kgf cm)

Figura 3.14: Energía disipada por histéresis de los edificios de 53, 62, 73, 85 y 100 pisos para El Centro, componente S00E (1940)

Page 40: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

23

0

0.5

12 pisos 3 pisos

0

0.5

14 pisos

Altu

ra re

lativ

a 5 pisos

0 5 10 150

0.5

16 pisos

Ductilidad µ0 5 10 15

7 pisos

Ductilidad µ

Figura 3.15: Ductilidad de los edificios de 2, 3, 4, 5, 6 y 7 pisos para Sylmar, componente N00E (1994)

0

0.5

12 pisos 3 pisos

0

0.5

14 pisos

Altu

ra re

lativ

a 5 pisos

0 1000 2000 3000 4000 5000 6000 7000 80000

0.5

16 pisos

EH (kgf cm)0 1000 2000 3000 4000 5000 6000 7000 8000

7 pisos

EH (kgf cm)

Figura 3.16: Energía disipada por histéresis de los edificios de 2, 3, 4, 5, 6 y 7 pisos para Sylmar, componente N00E (1994)

Page 41: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

24

0

0.5

18 pisos 9 pisos

0

0.5

110 pisos

Altu

ra re

lativ

a 11 pisos

0 5 10 15 200

0.5

112 pisos

Ductilidad µ0 5 10 15 20

13 pisos

Ductilidad µ

Figura 3.17: Ductilidad de los edificios de 8, 9, 10, 11, 12 y 13 pisos para Sylmar, componente N00E (1994)

0

0.5

18 pisos 9 pisos

0

0.5

110 pisos

Altu

ra re

lativ

a 11 pisos

0 1000 2000 3000 4000 5000 6000 7000 80000

0.5

112 pisos

EH (kgf cm)0 1000 2000 3000 4000 5000 6000 7000 8000

13 pisos

EH (kgf cm)

Figura 3.18: Energía disipada por histéresis de los edificios de 8, 9, 10, 11, 12 y 13 pisos para Sylmar, componente N00E (1994)

Page 42: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

25

0

0.5

114 pisos 15 pisos

0

0.5

116 pisos

Altu

ra re

lativ

a 17 pisos

0 5 10 15 20 250

0.5

118 pisos

Ductilidad µ0 5 10 15 20 25

19 pisos

Ductilidad µ

Figura 3.19: Ductilidad de los edificios de 14, 15, 16, 17, 18 y 19 pisos para Sylmar, componente N00E (1994)

0

0.5

114 pisos 15 pisos

0

0.5

116 pisos

Altu

ra re

lativ

a 17 pisos

0 1000 2000 3000 4000 5000 60000

0.5

118 pisos

EH (kgf cm)0 1000 2000 3000 4000 5000 6000

19 pisos

EH (kgf cm)

Figura 3.20: Energía disipada por histéresis de los edificios de 14, 15, 16, 17, 18 y 19 pisos para Sylmar, componente N00E (1994)

Page 43: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

26

0

0.5

121 pisos 24 pisos

0

0.5

128 pisos

Altu

ra re

lativ

a 33 pisos

0 5 10 15 20 25 30 35 400

0.5

139 pisos

Ductilidad µ0 5 10 15 20 25 30 35 40

45 pisos

Ductilidad µ

Figura 3.21: Ductilidad de los edificios de 21, 24, 28, 33, 39 y 45 pisos para Sylmar, componente N00E (1994)

0

0.5

121 pisos 24 pisos

0

0.5

128 pisos

Altu

ra re

lativ

a 33 pisos

0 500 1000 1500 2000 2500 3000 3500 40000

0.5

139 pisos

EH (kgf cm)0 500 1000 1500 2000 2500 3000 3500 4000

45 pisos

EH (kgf cm)

Figura 3.22: Energía disipada por histéresis de los edificios de 21, 24, 28, 33, 39 y 45 pisos para Sylmar, componente N00E (1994)

Page 44: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

27

0

0.5

153 pisos 62 pisos

0

0.5

173 pisos

Altu

ra re

lativ

a

0 50 100 150

85 pisos

Ductilidad µ

0 50 100 1500

0.5

1100 pisos

Ductilidad µ

Figura 3.23: Ductilidad de los edificios de 53, 62, 73, 85 y 100 pisos para Sylmar, componente N00E (1994)

0

0.5

153 pisos 62 pisos

0

0.5

173 pisos

Altu

ra re

lativ

a

0 100 200 300 400 500 600 700 800

85 pisos

EH (kgf cm)

0 100 200 300 400 500 600 700 8000

0.5

1100 pisos

EH (kgf cm)

Figura 3.24: Energía disipada por histéresis de los edificios de 53, 62, 73, 85 y 100 pisos para Sylmar, componente N00E (1994)

Page 45: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

28

0

0.5

1

2 pisos 3 pisos

0

0.5

1

4 pisos

Altu

ra re

lativ

a

5 pisos

0 5 10 150

0.5

1

6 pisos

Ductilidad µ0 5 10 15

7 pisos

Ductilidad µ

Figura 3.25: Ductilidad de los edificios de 2, 3, 4, 5, 6 y 7 pisos para Melipilla, componente N00E (1985)

0

0.5

12 pisos 3 pisos

0

0.5

14 pisos

Altu

ra re

lativ

a 5 pisos

0 1000 2000 3000 4000 50000

0.5

16 pisos

EH (kgf cm)0 1000 2000 3000 4000 5000

7 pisos

EH (kgf cm)

Figura 3.26: Energía disipada por histéresis de los edificios de 2, 3, 4, 5, 6 y 7 pisos para Melipilla, componente N00E (1985)

Page 46: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

29

0

0.5

18 pisos 9 pisos

0

0.5

110 pisos

Altu

ra re

lativ

a 11 pisos

0 5 10 15 20 250

0.5

112 pisos

Ductilidad µ0 5 10 15 20 25

13 pisos

Ductilidad µ

Figura 3.27: Ductilidad de los edificios de 8, 9, 10, 11, 12 y 13 pisos para Melipilla, componente N00E (1985)

0

0.5

18 pisos 9 pisos

0

0.5

110 pisos

Altu

ra re

lativ

a 11 pisos

0 500 1000 15000

0.5

112 pisos

EH (kgf cm)0 500 1000 1500

13 pisos

EH (kgf cm)

Figura 3.28: Energía disipada por histéresis de los edificios de 8, 9, 10, 11, 12 y 13 pisos para Melipilla, componente N00E (1985)

Page 47: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

30

0

0.5

114 pisos 15 pisos

0

0.5

116 pisos

Altu

ra re

lativ

a 17 pisos

0 10 20 30 40 500

0.5

118 pisos

Ductilidad µ0 10 20 30 40 50

19 pisos

Ductilidad µ

Figura 3.29: Ductilidad de los edificios de 14, 15, 16, 17, 18 y 19 pisos para Melipilla, componente N00E (1985)

0

0.5

114 pisos 15 pisos

0

0.5

116 pisos

Altu

ra re

lativ

a 17 pisos

0 200 400 600 800 1000 12000

0.5

118 pisos

EH (kgf cm)0 200 400 600 800 1000 1200

19 pisos

EH (kgf cm)

Figura 3.30: Energía disipada por histéresis de los edificios de 14, 15, 16, 17, 18 y 19 pisos para Melipilla, componente N00E (1985)

Page 48: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

31

0

0.5

121 pisos 24 pisos

0

0.5

128 pisos

Altu

ra re

lativ

a 33 pisos

0 5 10 15 20 25 30 35 400

0.5

139 pisos

Ductilidad µ0 5 10 15 20 25 30 35 40

45 pisos

Ductilidad µ

Figura 3.31: Ductilidad de los edificios de 21, 24, 28, 33, 39 y 45 pisos para Melipilla, componente N00E (1985)

0

0.5

121 pisos 24 pisos

0

0.5

128 pisos

Altu

ra re

lativ

a 33 pisos

0 200 400 600 800 10000

0.5

139 pisos

EH (kgf cm)0 200 400 600 800 1000

45 pisos

EH (kgf cm)

Figura 3.32: Energía disipada por histéresis de los edificios de 21, 24, 28, 33, 39 y 45 pisos para Melipilla, componente N00E (1985)

Page 49: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

32

0

0.5

153 pisos 62 pisos

0

0.5

173 pisos

Altu

ra re

lativ

a

0 20 40 60 80 100

85 pisos

Ductilidad µ

0 20 40 60 80 1000

0.5

1100 pisos

Ductilidad µ

Figura 3.33: Ductilidad de los edificios de 53, 62, 73, 85 y 100 pisos para Melipilla, componente N00E (1985)

0

0.5

153 pisos 62 pisos

0

0.5

173 pisos

Altu

ra re

lativ

a

0 50 100 150 200 250 300 350

85 pisos

EH (kgf cm)

0 50 100 150 200 250 300 3500

0.5

1100 pisos

EH (kgf cm)

Figura 3.34: Energía disipada por histéresis de los edificios de 53, 62, 73, 85 y 100 pisos para Melipilla, componente N00E (1985)

Page 50: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

33

0

0.5

12 pisos 3 pisos

0

0.5

14 pisos

Altu

ra re

lativ

a 5 pisos

0 5 10 15 200

0.5

16 pisos

Ductilidad µ0 5 10 15 20

7 pisos

Ductilidad µ

Figura 3.35: Ductilidad de los edificios de 2, 3, 4, 5, 6 y 7 pisos para Llolleo, componente N10E (1985)

0

0.5

12 pisos 3 pisos

0

0.5

14 pisos

Altu

ra re

lativ

a 5 pisos

0 2000 4000 6000 8000 10000 120000

0.5

16 pisos

EH (kgf cm)0 2000 4000 6000 8000 10000 12000

7 pisos

EH (kgf cm)

Figura 3.36: Energía disipada por histéresis de los edificios de 2, 3, 4, 5, 6 y 7 pisos para Llolleo, componente N10E (1985)

Page 51: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

34

0

0.5

18 pisos 9 pisos

0

0.5

110 pisos

Altu

ra re

lativ

a 11 pisos

0 5 10 15 20 250

0.5

112 pisos

Ductilidad µ0 5 10 15 20 25

13 pisos

Ductilidad µ

Figura 3.37: Ductilidad de los edificios de 8, 9, 10, 11, 12 y 13 pisos para Llolleo, componente N10E (1985)

0

0.5

18 pisos 9 pisos

0

0.5

110 pisos

Altu

ra re

lativ

a 11 pisos

0 1000 2000 3000 4000 50000

0.5

112 pisos

EH (kgf cm)0 1000 2000 3000 4000 5000

13 pisos

EH (kgf cm)

Figura 3.38: Energía disipada por histéresis de los edificios de 8, 9, 10, 11, 12 y 13 pisos para Llolleo, componente N10E (1985)

Page 52: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

35

0

0.5

1

14 pisos 15 pisos

0

0.5

1

16 pisos

Altu

ra re

lativ

a

17 pisos

0 5 10 15 20 25 300

0.5

1

18 pisos

Ductilidad µ0 5 10 15 20 25 30

19 pisos

Ductilidad µ

Figura 3.39: Ductilidad de los edificios de 14, 15, 16, 17, 18 y 19 pisos para Llolleo, componente N10E (1985)

0

0.5

114 pisos 15 pisos

0

0.5

116 pisos

Altu

ra re

lativ

a 17 pisos

0 500 1000 1500 20000

0.5

118 pisos

EH (kgf cm)0 500 1000 1500 2000

19 pisos

EH (kgf cm)

Figura 3.40: Energía disipada por histéresis de los edificios de 14, 15, 16, 17, 18 y 19 pisos para Llolleo, componente N10E (1985)

Page 53: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

36

0

0.5

1

21 pisos 24 pisos

0

0.5

1

28 pisos

Altu

ra re

lativ

a

33 pisos

0 5 10 15 20 25 30 35 400

0.5

1

39 pisos

Ductilidad µ0 5 10 15 20 25 30 35 40

45 pisos

Ductilidad µ

Figura 3.41: Ductilidad de los edificios de 21, 24, 28, 33, 39 y 45 pisos para Llolleo, componente N10E (1985)

0

0.5

121 pisos 24 pisos

0

0.5

128 pisos

Altu

ra re

lativ

a 33 pisos

0 500 1000 1500 20000

0.5

139 pisos

EH (kgf cm)0 500 1000 1500 2000

45 pisos

EH (kgf cm)

Figura 3.42: Energía disipada por histéresis de los edificios de 21, 24, 28, 33, 39 y 45 pisos para Llolleo, componente N10E (1985)

Page 54: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

37

0

0.5

153 pisos 62 pisos

0

0.5

173 pisos

Altu

ra re

lativ

a

0 10 20 30 40 50 60 70 80

85 pisos

Ductilidad µ

0 10 20 30 40 50 60 70 800

0.5

1100 pisos

Ductilidad µ

Figura 3.43: Ductilidad de los edificios de 53, 62, 73, 85 y 100 pisos para Llolleo, componente N10E (1985)

0

0.5

153 pisos 62 pisos

0

0.5

173 pisos

Altu

ra re

lativ

a

0 100 200 300 400 500 600 700 800

85 pisos

EH (kgf cm)

0 100 200 300 400 500 600 700 8000

0.5

1100 pisos

EH (kgf cm)

Figura 3.44: Energía disipada por histéresis de los edificios de 53, 62, 73, 85 y 100 pisos para Llolleo, componente N10E (1985)

Page 55: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

38

3.4 Espectros de Energía por Histéresis

Para representar en forma conveniente la energía disipada por histéresis por unidad de masa EH para cada uno de los modelos, se utilizan espectros de energía. Un estudio detallado de los espectros de energía para sistemas de un grado de libertad se encuentra en el estudio realizado por García y Riddell (1995). Los espectros de energía se representan mediante un gráfico logarítmico en el que en las ordenadas se muestra la raíz de la energía disipada por histéresis por unidad de masa,

HE . Esta cantidad tiene unidades de velocidad.

El objetivo es hacer una comparación cualitativa entre la energía disipada por histéresis de los edificios de corte de varios pisos con los sistemas de un grado de libertad, analizados en el estudio antes mencionado. Por esto en los espectros de energía se incluyen las curvas correspondientes a ductilidades µ=1.5; µ=2; µ=3; µ=5; µ=10.

Las Figuras 3.45 a 3.48 muestran los espectros de energía para cada uno de los registros analizados.

Page 56: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

39

0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10 20 50 1000.2

0.5

1

2

5

10

20

50

100

200

Edificios (objetivo µ=5)→

µ=1.5

µ=2

µ=3

µ=5

µ=10

Frecuencia (Hz)

Eh1/

2 (cm

/seg

)

Figura 3.45: Espectro de energía por histéresis para El Centro, componente S00E (1940)

Page 57: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

40

0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10 20 50 1000.2

0.5

1

2

5

10

20

50

100

200

Edificios (objetivo µ=5)→

µ=1.5

µ=2

µ=3

µ=5

µ=10

Frecuencia (Hz)

Eh1/

2 (cm

/seg

)

Figura 3.46: Espectro de energía por histéresis para Sylmar, componente N00E (1994)

Page 58: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

41

0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10 20 50 1000.2

0.5

1

2

5

10

20

50

100

200

Edificios (objetivo µ=5)→

µ=1.5

µ=2

µ=3

µ=5

µ=10

Frecuencia (Hz)

Eh1/

2 (cm

/seg

)

Figura 3.47: Espectro de energía por histéresis para Melipilla, componente N00E (1985)

Page 59: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

42

0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10 20 50 1000.2

0.5

1

2

5

10

20

50

100

200

Edificios (objetivo µ=5)→

µ=1.5µ=2

µ=3

µ=5

µ=10

Frecuencia (Hz)

Eh1/

2 (cm

/seg

)

Figura 3.48: Espectro de energía por histéresis para Llolleo, componente N10E (1985)

Page 60: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

43

3.5 Interpretación de Resultados

Los espectros de energía para sistemas de varios grados de libertad (edificios de corte) muestran una tendencia similar a los de un grado de libertad. Esto se aprecia en que la mayor disipación de energía se concentra en la región central de frecuencias, donde los registros tienen mayor potencia en su espectro en frecuencia (Fourier). Para las frecuencias extremas la disipación es menor.

En los registros de carácter impulsivo de las Figuras 3.45 y 3.46 (El Centro y Sylmar), la mayor disipación de energía se concentra entre 0.5 y 3 Hz. En estos registros la curva de varios grados de libertad se aproxima bastante al espectro para µ=5, entre las frecuencias 0.3 y 3 Hz. Esto es particularmente notorio en el espectro de Sylmar (Fig. 3.46), registro que consiste en prácticamente un impulso. Para frecuencias fundamentales correspondientes a los edificios entre 5 y 33 pisos (0.3 y 2 Hz), el espectro de Sylmar de edificios y un grado de libertad con µ=5 son prácticamente coincidentes. En este mismo rango de frecuencias también existe un buen ajuste para El Centro. Esto se debe a que en estos edificios la variación de la disipación de energía en altura es aproximadamente lineal. Esto se puede apreciar claramente en los edificios entre 13 y 18 pisos analizados para el registro de Sylmar (Figs. 3.18 y 3.20). Además para estos mismos edificios la ductilidad en altura se mantiene dentro del mismo rango de valores, con excepción del primer piso (Figs. 3.17 y 3.19). Esto implica que el comportamiento de esto edificios esta regido principalmente por el modo fundamental de la estructura. Como la ductilidad de “diseño” fue escogida a partir de la frecuencia fundamental de cada edificio, es de esperar que si estos se comportan de acuerdo a ese modo, la disipación de energía de los sistemas de un grado de libertad esté en directa correspondencia con los edificios de corte.

Los registros chilenos (Melipilla y Llolleo) concentran su mayor disipación de energía en frecuencias más altas que los registros americanos. El espectro obtenido para el registro de Melipilla (Fig. 3.47) muestra que la mayor disipación de energía se produce en el rango de frecuencias comprendido entre 2 y 5 Hz, mientras que para el registro de Llolleo (Fig. 3.48) concentra su disipación entre 1 y 5 Hz. En esta misma zona de frecuencias, la aproximación del espectro de

Page 61: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

44

edificios con el espectro para µ=5 es adecuada. La zona de buen ajuste corresponde para el registro de Melipilla a los edificios entre 2 y 5 pisos (2 y 5 Hz), mientras que para el registro de Llolleo a los edificios entre 2 y 8 pisos (1.25 y 5 Hz) aproximadamente. Al igual que en el caso de los registros americanos, estos edificios se comportan de acuerdo a su primer modo de vibración, los que se aprecia en la poca variación que tiene la ductilidad en altura (Fig. 3.25 para Melipilla y Fig. 3.35 para Llolleo).

En la zona de frecuencias bajas, correspondiente a los sistemas más flexibles de varios pisos, existe en general una mayor disipación en los edificios que en los sistemas de un grado de libertad. Esto se produce ya que en este rango de frecuencias la influencia de los modos altos se hace cada vez más importante a medida que el edificio crece en altura. Esto se ve, p.e., en la distribución de ductilidades de los edificios de gran altura analizados para Llolleo (Figs. 3.39, 3.41 y 3.43). En estos gráficos se aprecia la desproporción existente entre las ductilidades de los pisos superiores e inferiores en comparación con los pisos intermedios. Por esto la disipación de energía no responde a una distribución correspondiente al modo fundamental, y como el “diseño” se realiza de acuerdo a ese modo, la energía disipada para sistemas de un grado de libertad no corresponde a la de estos edificios.

Page 62: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

45

IV. MODELO DE EDIFICIO DE MARCO FLEXURAL

El modelo de edificio de marco flexural es el que representa en forma más precisa el comportamiento de un marco real de columnas y vigas. La modelación consta de elementos con deformación por corte y flexural (la deformación axial de las vigas está restringida por la losa rígida), y con columnas que además se deforman axialmente.

4.1 Sistema Considerado y Ecuación de Movimiento

Para dar cuenta del comportamiento no-lineal de un marco flexural, se optó por una modelación en la cual la plastificación se concentra en rótulas plásticas que se forman en los extremos de los elementos. Este supuesto se basa en el comportamiento de estructuras reales luego de movimientos sísmicos. En ellas se observa que la rótula se producen general en los extremos de las vigas y columnas, donde se concentra la fluencia del acero y la plastificación del hormigón.

En el caso de las vigas la plastificación ocurre cuando se supera el momento de fluencia en el extremo del elemento. Este momento queda definido por los materiales y la sección de cada viga.

En las columnas de la estructura el efecto de la fuerza axial es considerable, por lo que la rótula plástica debe considerar la interacción entre el momento flector M y la carga axial N. Esto se debe a que un incremento de la carga axial produce una variación en el momento plástico de la sección. Las combinaciones entre carga axial y momento para las cuales se produce la plastificación de la sección se conoce habitualmente como curva de interacción del elemento (superficie de fluencia en el caso tridimensional). Esta superficie queda definida para una sección en base a su geometría y materiales.

La Figura 4.1 muestra el modelo típico de marco flexural considerado en este estudio. En este se aprecia que cada piso tiene un solo grado de libertad horizontal, mientras que el resto de los nodos (achurados) del modelo tienen además grados de libertad verticales y rotacionales. Los nodos no-achurados son nodos internos de los elementos, donde se forman las rótulas plásticas.

Page 63: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

46

Figura 4.1: Modelo de edificio de marco flexural

La ecuación que gobierna el movimiento del marco flexural bajo la acción de un movimiento sísmico en la base, se expresa como

( ) ( ) ( ) ( )ttt gT urMvFLuCuM &&&&& ⋅⋅−=⋅+⋅+⋅ (4.1)

donde M es la matriz de masas; C es la matriz de amortiguamiento; u es el vector de desplazamientos relativos de las masas con respecto al suelo; L es la matriz de transformación cinemática (v = L⋅u); F es el vector de fuerzas de los elementos no-lineales; v es el vector de deformaciones de los elementos no-lineales; gu&& es la

aceleración del suelo, la cual puede tener una componente horizontal y otra vertical; y r es vector de influencia.

Los elementos no-lineales utilizados en la modelación corresponden a vigas y columnas.

Page 64: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

47

Las vigas consideran deformación por corte y flexural. Los extremos del elemento corresponden a rótulas elastoplásticas, en las que se define su rigidez elástica k y su momento de fluencia My.

Por su parte, las columnas consideran deformación axial, flexural y de corte. En sus extremos existen rótulas elastoplásticas, definidas a través de una superficie de interacción (M-N). En la Figura 4.2 se muestra un modelo de curva de interacción.

M

N

Curva de Interacción

M

N

Curva de Interacción

Figura 4.2: Curva de interacción

4.2 Propiedades del Sistema

Los modelos analizados en este estudio corresponden a marcos de hormigón armado. Para ajustar las propiedades de vigas y columnas, es necesario definir un criterio a través del cual asignar las propiedades de las rótulas en los extremos de los elementos.

Para determinar las propiedades de las rótulas plásticas se define un largo de plastificación del elemento, Lp. Este corresponde a la menor de las dimensiones entre el alto y el ancho de la sección del elemento. Con esto se define además L que es la longitud del elemento elástico central, como se muestra en la Figura 4.3.

Page 65: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

48

Lp LpLLp LpL

Figura 4.3: Largo de plastificación de las vigas

Para obtener las propiedades de las columnas, definimos un largo de plastificación del elemento Lp y un largo L del elemento elástico igual al definido para las vigas, como se muestra en la Figura 4.4.

L

Lp

Lp

L

Lp

Lp

Figura 4.4: Largo de plastificación de las columnas

Para determinar las propiedades de rigidez inicial de las rótulas, se analiza primero el caso de las columnas que es más general. De hecho, la rigidez elástica de las vigas se deduce de la misma forma que la de las columnas, sin considerar los esfuerzos axiales, que están desacoplados de los flexurales.

Page 66: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

49

El objetivo es determinar la rigidez elástica de la rótula, definida como se indica en la Figura 4.5, a partir del elemento elástico de largo Lp que se muestra en la Figura 4.6.

θ

δ

θ

δ

Figura 4.5: Definición de deformaciones de las rótulas de las columnas

θ1Lp

θ2

δ1 δ2θ1

Lp

θ2

δ1 δ2

Figura 4.6: Definición del elemento elástico de largo Lp

La matriz de rigidez Kr del elemento de largo Lp resulta

⎥⎥⎥⎥

⎢⎢⎢⎢

θθδδ

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

⋅⋅⋅⋅⋅⋅⋅⋅

⋅⋅−⋅−⋅

=

⎥⎥⎥⎥

⎢⎢⎢⎢

2

1

2

1

pp

pp

pp

pp

2

1

2

1

r

LIE4LIE200LIE2LIE400

00LEALEA00LEALEA

MMNN

444444444 3444444444 21K

(4.2)

Como las rigideces axiales y flexurales están desacopladas, podemos escribir la siguiente relación

⎥⎦

⎤⎢⎣

⎡δδ

⋅⎥⎦

⎤⎢⎣

⎡⋅⋅−⋅−⋅

=⎥⎦

⎤⎢⎣

δ

2

1

pp

pp

2

1

LEALEALEALEA

NN

4444 34444 21K

(4.3)

Una de las posibles relaciones cinemáticas entre las deformaciones de la rótula y las deformaciones del elemento elástico (existen infinitas, sin embargo, todas dan el mismo resultado) es

Page 67: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

50

{

δ⋅⎥⎦

⎤⎢⎣

⎡=⎥

⎤⎢⎣

⎡δδ

r

10

2

1

a

(4.4)

Luego, la rigidez axial de la rótula es

prTr LEAk ⋅=⋅⋅=δ aKa

lo cual es coherente con la rígidez axial de un elemento elástico de largo Lp.

Para determinar la rigidez flexural de la rótula, no es posible realizar un procedimiento similar al caso anterior. Esto se debe a que no existe una relación cinemática inequívoca entre las deformaciones de la rótula y las del elemento elástico que produzca una rigidez desacoplada entre θ1 y θ2. Es por eso que en este caso se utiliza la deformada en la viga que provoca que no exista esfuerzo de corte. Esta es la correspondiente a θ1 = -1 y θ2 = 1. Con esto, la rigidez flexural de la rótula es pLIE2k ⋅⋅=θ .

Resumiendo, las propiedades de los elementos rótula son pLIE2k ⋅⋅=θ para las vigas y pLIE2k ⋅⋅=θ ; pLEAk ⋅=δ para las columnas.

Los momentos de fluencia para las vigas y las curvas de interacción para las columnas se calculan a parir de sus propiedades geométricas y de los materiales utilizados.

En el caso de las columnas, la curva de interacción se define por simplicidad a través de un polígono de seis vértices. En la Figura 4.7 se presenta una curva de interacción típica para una sección de hormigón armado. En ella My corresponde al momento de fluencia con P=0; Pb y Mb a los esfuerzos axial y momento para el balance; Pyc es la carga axial de rotura en compresión; y Pyt es la carga axial de fluencia en tracción.

Page 68: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

51

M

P

Pyc

Pyt

My Mb-Mb -My

Pb

M

P

Pyc

Pyt

My Mb-Mb -My

Pb

Figura 4.7: Curva de interacción típica de una sección de hormigón armado

Para utilizar la curva de interacción en el modelo de marco flexural, es necesario tener en cuenta dos aspectos. Primero, la curva de interacción mostrada en la Figura 4.7 considera la carga de compresión P como positiva en compresión, mientras que en el modelo de la rótula la carga positiva corresponde tracción (Sección 5.3). Por esto es necesario invertir los signos de la carga axial en la curva, como se indica en la Figura 4.8.

Cuando la estructura se encuentra en reposo, las columnas soportan una carga de compresión estática. Esta es la carga inicial con la que la estructura inicia su movimiento durante un terremoto. Para considerar la carga axial de compresión inicial en las columnas, que afecta directamente al momento flector en que la columna se plastifica, se optó por realizar una translación vertical de la curva. La magnitud de esta translación corresponde a la carga inicial N0. Este procedimiento se ilustra esquemáticamente en la Figura 4.8.

Page 69: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

52

M

NCurva de Interacción para ser utilizada en el Modelo de Marco Flexural

Translación Vertical N0

M

NCurva de Interacción para ser utilizada en el Modelo de Marco Flexural

Translación Vertical N0

Curva de Interacción con N= -P

M

NCurva de Interacción para ser utilizada en el Modelo de Marco Flexural

Translación Vertical N0

M

NCurva de Interacción para ser utilizada en el Modelo de Marco Flexural

Translación Vertical N0

Curva de Interacción con N= -P

Figura 4.8: Procedimiento para obtener la curva de interacción de una sección de hormigón armado para ser utilizada en el modelo de marco flexural

Page 70: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

53

V. ELEMENTOS NO-LINEALES Y MÉTODO DE INTEGRACIÓN

En esta investigación se implementaron tres elementos no-lineales. El elemento elastoplástico se utiliza para modelar las columnas en los edificios de corte. Para la modelación de los marcos flexurales se crearon dos macro-elementos, uno utilizado para modelar las vigas y el otro para las columnas.

La implementación computacional se realiza en MATLAB, utilizando algunas rutinas y la estructura organizacional del toolbox de análisis estructural MECANO.

5.1 Elemento Elastoplástico

El primer elemento utilizado en este estudio es el correspondiente al unidimensional elástoplastico. La deformación δ y la fuerza F del elemento pueden corresponder a una geometría axial (N-u), geometría de corte (V-v), a una geometría asociada a momento y giro (M-θ), así como a cualquier relación geométrica de una dimensión.

5.1.1 Modelación del elemento

El elemento elastoplástico puede ser modelado de la siguiente manera:

δδ

Figura 5.1: Definición del elemento elastoplástico

La constitutiva elastoplástica queda definida por una rigidez elástica k y una fuerza de fluencia Fy. Al inicio de la carga el sistema es lineal elástico con rigidez k, mientras no se exceda la fuerza de fluencia Fy. La deformación para la cual la fluencia comienza es δy. Cuando el elemento alcanza Fy fluye, manteniéndose la fuerza constante mientras la deformación avance en la misma dirección. En esta etapa la rigidez tangente es cero.

Page 71: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

54

La Figura 5.2 muestra un ciclo típico de carga, descarga y nueva carga para un elemento elastoplástico. Las cargas y descargas se producen siempre con la misma rigidez elástica k. Además la deformación de fluencia Fy es simétrica, es decir para las dos direcciones de deformación, el elemento fluye con la misma fuerza.

1

k

1

k

1

k

F(δ)

δ

Fy

-Fy

δy

1

k

1

k

1

k

F(δ)

δ

Fy

-Fy

δy

Figura 5.2: Relación fuerza-deformación elastoplástica

5.1.2 Implementación

Se considera que la integración se encuentra en un instante k, en el cual se conoce el estado del elemento, es decir su deformación δk y su fuerza Fk. Interesa conocer el estado del elemento en el instante siguiente k+1, en el que se conoce (a través de un predictor) la deformación δk+1 del elemento. En ese instante se quiere determinar su fuerza Fk+1.

El algoritmo utilizado para calcular la fuerza es el siguiente:

Etapa i): Se evalúa la fuerza tentativa en el instante k+1 tal que 1kF̂ + = Fk + k⋅(δk+1 - δk).

Etapa ii): si 1kF̂ + > Fy, entonces Fk+1 = Fy si 1kF̂ + < -Fy, entonces Fk+1 = -Fy

Page 72: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

55

si -Fy ≤ 1kF̂ + ≤ Fy entonces Fk+1 = Fk + k⋅(δk+1 - δk).

5.1.3 Ejemplo

A continuación se muestra un ejemplo de un elemento elastoplástico con rigidez elástica k=1 y fuerza de fluencia Fy=1. Para eso se le impone una historia de deformaciones, y se evalúan las fuerzas del elemento. Los resultados se presentan en las figuras siguientes.

0 100 200 300 400 500 600 700 800 900 1000-3

-2

-1

0

1

2

3

Def

orm

ació

n ( δ

)

Instante k

Figura 5.3: Historia de deformaciones del elemento elastoplástico

0 100 200 300 400 500 600 700 800 900 1000

-1

-0.5

0

0.5

1

Fuer

za (F

)

Instante k

Figura 5.4: Historia de fuerzas del elemento elastoplástico

Page 73: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

56

-3 -2 -1 0 1 2 3

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1Fu

erza

(F)

Deformación (δ)

Figura 5.5: Curva fuerza-deformación elemento elastoplástico

5.2 Elemento Viga con Plastificación en los Extremos

El macro-elemento viga creado debe dar cuanta del efecto de plastificación en los extremos de las vigas, en los que se produce una relación elastoplástica.

5.2.1 Modelación del elemento

El macro-elemento viga consta de tres elementos ensamblados en serie. El elemento central es una viga flexural, con propiedades elásticas. En los extremos se conectan rótulas (i y j) en las que su relación giro y momento (M-θ) es elastoplástica. La modelación considera la siguiente distribución de grados de libertad (GDLs):

Page 74: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

57

v1

v6v5 v4

v3

v2

i j

v1

v6v5 v4

v3

v2

i j

Figura 5.6: Definición del macro-elemento viga

Los primeros cuatro GDLs corresponden a las deformaciones conocidas e impuestas sobre el elemento, y en los cuales se aplican las fuerzas externas. Estos cuatro GDLs serán llamados GDLs externos. Las deformaciones de los dos GDLs restantes, 5 y 6, son desconocidas y son calculadas a partir de la condensación estática realizada. A estos se les llama GDLs internos.

Las propiedades del elemento central elástico son un largo L, momento de inercia I, módulo de elasticidad E, un módulo de corte G y un área de corte As. La matriz de rigidez elástica del elemento (sin considerar las rigideces de los elementos no-lineales) es

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )( )

( )( )

( )

( ) ( )( )

( )( )

( ) ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

Φ+⋅⋅⋅Φ+

Φ+⋅⋅⋅Φ−

Φ+⋅⋅⋅

−Φ+⋅⋅⋅

Φ+⋅⋅⋅Φ−

Φ+⋅⋅⋅Φ+

Φ+⋅⋅⋅

−Φ+⋅⋅⋅

Φ+⋅⋅⋅

−Φ+⋅⋅⋅

−Φ+⋅⋅⋅

Φ+⋅⋅⋅

Φ+⋅⋅⋅

Φ+⋅⋅⋅

Φ+⋅⋅⋅

−Φ+⋅⋅⋅

=

1LIE4

1LIE20

1LIE60

1LIE6

1LIE2

1LIE40

1LIE60

1LIE6

0000001L

IE61L

IE601L

IE1201L

IE120000001L

IE61L

IE601L

IE1201L

IE12

22

22

2233

2233

elK (5.1)

con 2s LAG

IE12⋅⋅⋅⋅=Φ (5.2)

Los nodos i y j corresponden a rótulas elástoplásticas con un grado de libertad rotacional θ y rigidez en rango elástico k. La deformación de la rótula se define en sentido positivo, como se indica en la Figura 5.7.

Page 75: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

58

θθ

Figura 5.7: Deformación de la rótula

La matriz de transformación cinemática L entre los GDLs del macro-elemento y las rótulas no-lineales es:

⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢

⋅⎥⎦

⎤⎢⎣

⎡−

−=⎥

⎤⎢⎣

⎡θθ

6

5

4

3

2

1

j

i

vvvvvv

101000010010

4444 34444 21L

(5.3)

Cuando el macro-elemento se encuentra en rango elástico, es decir las rótulas plásticas no fluyen, podemos utilizar la matriz de rigidez elástica completa del elemento. Esta se obtiene ensamblando la rigidez de las rótulas ki y kj, de la siguiente forma:

LLKK ⋅⎥⎦

⎤⎢⎣

⎡⋅+=

j

iTel

eltot k0

0k (5.4)

Cuando alguna de las dos rótulas entra en fluencia, se obtiene la matriz de rigidez tangente del macro-elemento. El ensamblaje se realiza de igual forma, utilizando las rigideces tangentes de las rótulas cero cuando plastifica y k cuando se encuentra en rango elástico, i.e.

LLKK ⋅⎥⎥⎦

⎢⎢⎣

⎡⋅+= tan

j

taniT

eltantot k0

0k (5.5)

La relación cinemática para obtener los GLDs internos en función de los externos y de las deformaciones de las rótulas es

Page 76: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

59

⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢

θθ

⋅⎥⎦

⎤⎢⎣

⎡−

=⎥⎦

⎤⎢⎣

j

i

4

3

2

1

6

5

vvvv

101000010010

vv

(5.6)

Es posible obtener la matriz de rigidez condensada a los GDLs externos del macro-elemento de la matriz de rigidez el

totK o tantotK , ya que las fuerzas externas

aplicadas sobre los GDLs internos son nulas. Para esto particionamos la matriz de rigidez entre los GDLs externos (e) e internos (i) como sigue

⎥⎦

⎤⎢⎣

⎡=

iiie

eiee

KKKK

K (5.7)

La matriz de rigidez condensada Kc se obtiene realizando la operación

ie1

iieieec KKKKK ⋅⋅−= − (5.8)

El comportamiento de las rótulas es elastoplástico perfecto y fue explicado en la Sección 5.1. En este caso la relación geométrica corresponde a giro y momento θ-M, y se define un momento de fluencia My, como se muestra en la Figura 5.8.

1

k

1

k

1

k

M(θ)

θ

My

-My

θy

1

k

1

k

1

k

M(θ)

θ

My

-My

θy

Figura 5.8: Relación fuerza-deformación de la rótula en vigas

Page 77: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

60

5.2.2 Implementación

Se considera que la respuesta del sistema se conoce en un instante k, y por ende el estado del elemento (esfuerzos y deformaciones de los GDLs externos y de las rótulas). Interesa conocer el estado del elemento en el instante siguiente k+1 para el cual se conoce (a través de un predictor) sólo las deformaciones externas (GDLs 1 al 4). Es decir en el instante k se conocen las deformaciones externas

( ) ( ) ( ) ( ) ( )[ ]Tk4

k3

k2

k1

k vvvvv = , los esfuerzos conjugados ( ) ( ) ( ) ( ) ( )[ ]Tk4

k3

k2

k1

k ffffF = , las deformaciones de las rótulas ( )k

iθ y ( )kjθ , y los esfuerzos de las rótulas ( )k

iM y ( )kjM . Para el instante k+1 se conoce (a través de un predictor) la deformación

( ) ( ) ( ) ( ) ( )[ ]T1k4

1k3

1k2

1k1

1k vvvvv +++++ = .

El algoritmo utilizado para calcular F(k+1), ( )1ki+θ , ( )1k

j+θ , ( )1k

iM + y ( )1kjM +

considera los siguientes pasos:

Etapa i): Se condensa la matriz de rigidez elástica el

totK , resultando Kc.

Etapa ii): Se evalúa los predictores de los esfuerzos del macro-elemento en k+1 tal que

( ) ( ) ( ) ( )( )k1kc

k1k vvFF̂ −⋅+= ++ K .

Etapa iii): Se obtiene de la condensación el incremento de las deformaciones internas, tal que

( ) ( )

( ) ( )( ) ( )( )k1k

ie1

iik6

1k6

k5

1k5 vv

vvvv

−⋅⋅−=⎥⎦

⎤⎢⎣

−− +−

+

+

KK .

Etapa iv): Se evalúan los predictores de los momentos en las rótulas a través de la matriz de transformación cinemática, de modo que

Page 78: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

61

( )

( )

( )

( )

( )

( )

⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢

⋅=⎥⎥⎦

⎢⎢⎣

⎡+

+

+

+

+

+

00

f̂f̂f̂f̂

M̂M̂

1k4

1k3

1k2

1k1

1kj

1ki L .

Etapa v): Se verifica que los esfuerzos de las rótulas no superen los momentos de fluencia Myi y Myj. Si no se superan,

( ) ( )1k1k F̂F ++ = ; ( )

( )

( )

( )⎥⎥⎦

⎢⎢⎣

⎡=

⎥⎥⎦

⎢⎢⎣

⎡+

+

+

+

1kj

1ki

1kj

1ki

M̂M̂

MM

; ( )

( )

( )

( )

( )

( )

( )

( ) ⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢

⋅=⎥⎥⎦

⎢⎢⎣

θθ

+

+

+

+

+

+

+

+

1k6

1k5

1k4

1k3

1k2

1k1

1kj

1ki

vvvvvv

L .

Etapa vi): Si en alguna de las rótulas se supera My, i.e., ( )

yi1k

i MM >+ o ( )yj

1kj MM >+ , realizamos

lo siguiente: - por interpolación, se obtiene ( )k

intF , vector de fuerzas que se encuentra entre ( )kF y ( )1kF̂ + , y que produce que se inicie la fluencia en alguna de las rótulas, i.e,

( )yi

1k,inti MM =+ con ( )

yj1k

,intj MM ≤+ o ( )

yj1k

,intj MM =+ con ( )yi

1k,inti MM ≤+

El factor para interpolar es rint, de modo que ( ) ( ) ( ) ( )( )k1kint

kkint FF̂rFF −⋅+= +

- con rint se obtiene ( )kintv tal que

( ) ( ) ( ) ( )( )k1kint

kkint vvrvv −⋅+= +

- se calcula la nueva matriz Kc incluyendo la rigidez tangente cero de la o las rótulas que fluyeron (Ec. (5.5)) - se vuelve a la Etapa ii) de la implementación, con ( ) ( )k

intk vv = , ( ) ( )k

intk FF = y la nueva

matriz de rigidez condensada Kc.

Page 79: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

62

5.2.3 Validación del modelo

Se puede hacer una validación del modelo verificando condiciones de equilibrio y compatibilidad de las deformaciones. En el caso del macro-elemento viga, se deben satisfacer tres condiciones:

i) debe cumplirse el equilibrio del macro-elemento ii) los esfuerzos de las rótulas no deben superar los momentos de fluencia iii) los esfuerzos del elemento elástico interno deben ser iguales a los externos

Para calcular los esfuerzos del elemento interno (viga), se utiliza su matriz de rigidez elástica de cuatro GDLs, y sus deformaciones calculadas en función de las deformaciones externas y de las rótulas.

El elemento elástico interno corresponde a:

v1vig ≡ v1

v4vig ≡ v6

v3vig ≡ v3

i jv2

vig ≡ v5

v1vig ≡ v1

v4vig ≡ v6

v3vig ≡ v3

i jv2

vig ≡ v5

Figura 5.9: Definición del elemento elástico interno de la viga

Su matriz de rigidez es:

( ) ( ) ( ) ( )

( )( )

( ) ( )( )

( )

( ) ( ) ( ) ( )

( )( )

( ) ( )( )

( ) ⎥⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢⎢

Φ+⋅⋅⋅Φ+

Φ+⋅⋅⋅

−Φ+⋅⋅⋅Φ−

Φ+⋅⋅⋅

Φ+⋅⋅⋅

−Φ+⋅⋅⋅

Φ+⋅⋅⋅

−Φ+⋅⋅⋅

Φ+⋅⋅⋅Φ−

Φ+⋅⋅⋅

−Φ+⋅⋅⋅Φ+

Φ+⋅⋅⋅

Φ+⋅⋅⋅

Φ+⋅⋅⋅

−Φ+⋅⋅⋅

Φ+⋅⋅⋅

=

1LIE4

1LIE6

1LIE2

1LIE6

1LIE6

1LIE12

1LIE6

1LIE12

1LIE2

1LIE6

1LIE4

1LIE6

1LIE6

1LIE12

1LIE6

1LIE12

22

2323

22

2323

vigelK (5.9)

con Φ definido en la Ecuación (5.2).

Page 80: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

63

Las deformaciones del elemento interno se calculan en función de las externas y la de las rótulas:

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

θ−

θ+=

⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢

θθ⎥

⎥⎥⎥

⎢⎢⎢⎢

=

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

j4

3

i2

1

j

i

4

3

2

1

vig4

vig3

vig2

vig1

vv

vv

vvvv

101000000100010010000001

vvvv

(5.10)

Luego, vigvigel

vig vKF ⋅= , y se debe cumplir en todo instante que

⎥⎥⎥⎥

⎢⎢⎢⎢

=

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

4

3

2

1

vig4

vig3

vig2

vig1

ffff

ffff

(5.11)

5.2.4 Ejemplo

A continuación se presenta un ejemplo de validación del macro-elemento viga. Las propiedades del elemento son E=1, I=1, L=1, ki=1, Myi=1, kj=2, Myj=1.5 . En este caso se impone una historia de deformaciones (Fig. 5.10), y se evalúan las fuerzas del elemento. Los resultados se presentan en las figuras siguientes.

Page 81: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

64

-5

0

5

10

v 1

-2

0

2

v 2

-10

0

10

v 3

0 100 200 300 400 500 600 700 800 900 1000-2

0

2

v 4

Instante k

Figura 5.10: Historia de deformaciones del macro-elemento viga

Page 82: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

65

-5

0

5

f 1

-2

0

2

f 2

-5

0

5

f 3

0 100 200 300 400 500 600 700 800 900 1000-2

0

2

f 4

Instante k

Figura 5.11: Historia de fuerzas del macro-elemento viga

-4 -2 0 2 4-2

-1

0

1

2

Mi

θ-2 0 2 4

-2

-1

0

1

2

Mj

θ

Figura 5.12: Curvas de momento-rotación para las rótulas elastoplásticas

Page 83: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

66

5.3 Elemento Columna con Plastificación en los Extremos Definida a través de una Curva de Interacción

Para modelar en forma inelástica las columnas, es necesario crear un elemento que de cuenta del estado límite de plastificación. En este caso el elemento fluye cuando se sobrepasan las combinaciones de carga máxima (Nmax, Mmax) que resiste el elemento, definidas por su curva de interacción. Para dar cuenta de este comportamiento, se creó un macro-elemento en el que la plastificación del elemento se concentra en las rótulas de los extremos.

5.3.1 Modelación del elemento

El macro-elemento columna consta de tres elementos ensamblados en serie. El elemento central es una columna axial-flexural, con propiedades elásticas. En los extremos se conectan rótulas elatoplásticas (i y j) con deformaciones axial y rotacional. La modelación considera la siguiente definición de GDLs

v2

v10v8 v6

v5

v3

v9v7 v4v1

i j

v2

v10v8 v6

v5

v3

v9v7 v4v1

i j

Figura 5.13: Definición del macro-elemento columna

Los primeros seis GDLs corresponden a las deformaciones conocidas e impuestas sobre el elemento, y en los cuales se aplican las fuerzas externas. Estos seis GDLs serán llamados GDLs externos. Las deformaciones de los cuatro GDLs restantes, 7 al 10, son desconocidas y son calculadas a partir de la condensación. A estos se les llama GDLs internos.

Las propiedades del elemento central son un largo L, área A, momento de inercia I y módulo de elasticidad E, un módulo de corte G y un área de corte As. La matriz de rigidez elástica del elemento (sin considerar las rigideces de los elementos no-lineales) es:

Page 84: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

67

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )( )

( )( )

( )

( ) ( )( )

( )( )

( ) ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

Φ+⋅⋅⋅Φ+

Φ+⋅⋅⋅Φ−

Φ+⋅⋅⋅

−Φ+⋅⋅⋅

⋅⋅−Φ+⋅⋅⋅Φ−

Φ+⋅⋅⋅Φ+

Φ+⋅⋅⋅

−Φ+⋅⋅⋅

⋅−⋅

Φ+⋅⋅⋅

−Φ+⋅⋅⋅

−Φ+⋅⋅⋅

Φ+⋅⋅⋅

Φ+⋅⋅⋅

Φ+⋅⋅⋅

Φ+⋅⋅⋅

−Φ+⋅⋅⋅

=

1LIE40

1LIE200

1LIE600

1LIE60

0LEA0LEA0000001L

IE201L

IE4001L

IE6001L

IE60

0LEA0LEA00000000000000001L

IE601L

IE6001L

IE12001L

IE120000000000000000000001L

IE601L

IE6001L

IE12001L

IE1200000000000

22

22

2233

2233

elK

(5.12)

con Φ definido en la Ecuación (5.2).

Los nodos i y j corresponden a rótulas elástoplásticas con dos grados de libertad, θ y δ (Fig. 5.14). El comportamiento de la rótula está regido por su superficie de interacción, la cual puede ser definida por un polígono arbitrario con el número de vértices que se desee. Esta rótula consta además de una llave de corte, es decir transmite todo el corte entre los dos nodos de ella.

θ

δ

θ

δ

Figura 5.14: Definición de la rótula de las columnas

En el rango elástico las rigideces axiales y flexurales de la rótula están desacopladas. La matriz de rigidez elástica de la rótula, antes de que exista fluencia es

⎥⎦

⎤⎢⎣

⎡=

δ

θ

k00kel

rotk (5.13)

La Matriz de transformación cinemática L entre los GDLs del macro-elemento y las rótulas no-lineales es

Page 85: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

68

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥

⎢⎢⎢⎢

−−

−−

=

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

δθδθ

10

9

8

7

6

5

4

3

2

1

j

j

i

i

vvvvvvvvvv

01000010001000100000

00010000010010000100

4444444 34444444 21L

(5.14)

Cuando el macro-elemento se encuentra en rango elástico, es decir las rótulas plásticas no fluyen, podemos utilizar la matriz de rigidez elástica completa del elemento. Esta se obtiene adicionando por ensamblaje las rigideces elásticas de las rótulas al macro-elemento

LLKLk0

0kLKK

rot

roti ⋅

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

⋅+=⋅⎥⎥⎦

⎢⎢⎣

⎡⋅+=

δ

θ

δ

θ

j

j

i

i

j

k0000k0000k0000k

Telel

elT

eleltot (5.15)

En el caso de que alguna de las dos rótulas entre en fluencia, podemos obtener su matriz de rigidez tangente elastoplástica y ensamblarla de igual forma para obtener la matriz de rigidez total. Si sólo una de las rótulas entra en rango elástico, en la otra se utiliza la matriz de rigidez elástica

Lk0

0kLKK

rot

rot ⋅⎥⎥⎦

⎢⎢⎣

⎡⋅+= ep

epT

eleptot

j

i (5.16)

La relación para obtener los GLDs internos en función de los externos y de los giros de las rótulas es

Page 86: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

69

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

δθδθ

⎥⎥⎥⎥

⎢⎢⎢⎢

−−

=

⎥⎥⎥⎥

⎢⎢⎢⎢

j

j

i

i

6

5

4

3

2

1

10

9

8

7

vvvvvv

01001000001000001000

00010001000010000001

vvvv

(5.17)

Podemos obtener la matriz de rigidez condensada a los GDLs externos del macro-elemento de la matriz de rigidez el

totK o eptotK , ya que sabemos que las

fuerzas externas aplicadas a los GDLs internos son nulas. Para ello particionamos la matriz de rigidez entre los GDLs externos (e) e internos (i)

⎥⎦

⎤⎢⎣

⎡=

iiie

eiee

KKKK

K (5.18)

La matriz de rigidez condensada Kc se obtiene realizando la siguiente operación

ie1

iieieec KKKKK ⋅⋅−= − (5.19)

5.3.2 Descripción de la rótula pástica con interacción N-M

Las rótulas presentes en los extremos del macro-elemento columna fluyen cuando sus esfuerzos (la pareja N-M) alcanza la curva de interacción definida para la rótula.

Se considera que la integración se encuentra en un instante k, para el cual

se conoce el vector de deformaciones ⎥⎦

⎤⎢⎣

⎡δθ

=k

kkv y de fuerzas ⎥

⎤⎢⎣

⎡=

k

kk N

MF . Interesa

conocer el vector de fuerzas en el instante k+1, conociendo un predictor de su

deformación vk+1. Mientras el vector ( )k1kk1k vvk00k

elrot

−⋅⎥⎦

⎤⎢⎣

⎡+= +

δ

θ+

43421k

FF se mantenga

Page 87: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

70

dentro de la curva de interacción, toda la deformación del elemento es lineal elástica, como se muestra en la Figura 5.15.

M

N

Fk

Fk+1

Curva de Interacción ( )k1kelrot vvk −⋅ +

M

N

Fk

Fk+1

Curva de Interacción ( )k1kelrot vvk −⋅ +

Figura 5.15: Deformación elástica de la rótula con interacción

Si Fk+1 calculada en forma elástica cae fuera de la curva de interacción, la deformación del elemento contiene una componente elástica y otra plástica. En este caso se hace necesario recalcular Fk+1 para asegurar que se mantenga sobre la curva. La expresión para obtener esta fuerza es

( ) ( )∑=

+−+++ ⋅−⋅⋅+−⋅⋅+=bN

1m1k1m1km

eprotk1k0

elrotk1k rrr vvkvvkFF (5.20)

donde Nb es el número de ramas visitadas por la rótula entre k y k+1; rm representa los factores de evento cuando se pasa de una rama de la curva de interacción a otra rama.

Page 88: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

71

M

N

Fk+1

Fk

( )∑=

+−+ ⋅−⋅⋅bN

1m1k1m1km

eprot rr vvk

( )k1k0elrot r vvk −⋅⋅ +

M

N

Fk+1

Fk

( )∑=

+−+ ⋅−⋅⋅bN

1m1k1m1km

eprot rr vvk

( )k1k0elrot r vvk −⋅⋅ +

Figura 5.16: Deformación elástica y plástica de la rótula con interacción

La matriz de rigidez elastoplástica resulta

( ) ( )( ) ( )mel

rotTm

elrot

Tmm

elrotel

roteprot FΦkFΦ

kFΦFΦkkk

∂∂⋅⋅∂∂⋅∂∂⋅∂∂⋅

−= (5.21)

donde Φ es la forma funcional de la curva de interacción; y ( )mFΦ ∂∂ representa el

gradiente de la rama m de la curva.

Cuando se llega a un vértice, se evalúa el incremento de la fuerza 1kˆ

+∆F con la matriz de rigidez tangente en uso (esta puede ser plástica o elástica). Si 1k

ˆ+∆F

se encuentra entre los dos gradientes de las ramas contiguas al vértice, como se muestra en la Figura 5.17, 0k =ep

rot . Esto significa que las fuerzas de la rótula (Fk+1)

permanecen en el vértice para el incremento de deformación.

Page 89: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

72

segmento 1

segmento 2

( )1FΦ ∂∂

( )2FΦ ∂∂

1kˆ

+∆F

segmento 1

segmento 2

( )1FΦ ∂∂

( )2FΦ ∂∂

1kˆ

+∆F

Figura 5.17: Vértice en la curva de interacción

5.3.3 Implementación

Se asume que se conoce la respuesta para un instante k, en el cual se conoce el estado del elemento (esfuerzos y deformaciones de los GDLs externos y de las rótulas). Interesa conocer el estado del elemento en el instante siguiente k+1 para el cual se conocen sólo sus deformaciones externas (GDLs 1 al 6). Es decir en el instante k se conocen las deformaciones externas

( ) ( ) ( ) ( ) ( ) ( )[ ]Tk6

k5

k4

k3

k2

k1k vvvvvvv = ; los esfuerzos conjugados ( ) ( ) ( ) ( ) ( ) ( )[ ]Tk

6k

5k

4k

3k

2k

1k ffffffF = ; las deformaciones de las rótulas ( ) ( )[ ]Tki

ki δθ y

( ) ( )[ ]Tkj

kj δθ ; y sus esfuerzos conjugados ( ) ( )[ ]Tk

ik

i NM y ( ) ( )[ ]Tkj

kj NM . A través de un

predictor, se asume que se conoce ( ) ( ) ( ) ( ) ( ) ( )[ ]T1k6

1k5

1k4

1k3

1k2

1k11k vvvvvvv ++++++

+ = .

El algoritmo utilizado para calcular F(k+1), ( ) ( )[ ]T1ki

1ki

++ δθ , ( ) ( )[ ]T1kj

1kj

++ δθ , ( ) ( )[ ]T1k

i1k

i NM ++ , ( ) ( )[ ]T1kj

1kj NM ++ tiene los siguientes pasos:

Etapa i): Se condensa la matriz de rigidez elástica del elemento el

totK , resultando Kc.

Page 90: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

73

Etapa ii): Se evalúan los predictores de los esfuerzos del macro-elemento en k+1 tal que

( ) ( ) ( ) ( )( )k1kc

k1k vvFF̂ −⋅+= ++ K .

Etapa iii): Se obtienen a partir de la condensación el incremento de las deformaciones internas,

tal que

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )( )k1kie

1ii

k10

1k10

k9

1k9

k8

1k8

k7

1k7

vv

vvvvvvvv

−⋅⋅−=

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

−−−−

+−

+

+

+

+

KK .

Etapa iv): Se evalúan los predictores de los esfuerzos en las rótulas a través de la matriz de transformación cinemática

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⋅=

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

+

+

+

+

+

+

+

+

+

+

0000

f̂f̂f̂f̂f̂f̂

N̂M̂N̂M̂

1k6

1k5

1k4

1k3

1k2

1k1

1kj

1kj

1ki

1ki

L .

Etapa v): Se verifica que los esfuerzos de las rótulas no salgan fuera de la curva de interacción definida para cada rótula. Si estos se encuentran dentro de la curva,

Page 91: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

74

( ) ( )1k1k F̂F ++ = ;

( )

( )

( )

( )

( )

( )

( )

( ) ⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

=

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

+

+

+

+

+

+

+

+

1kj

1kj

1ki

1ki

1kj

1kj

1ki

1ki

N̂M̂N̂M̂

NMNM

;

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( ) ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⋅=

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

δθδθ

+

+

+

+

+

+

+

+

+

+

+

+

+

+

1k10

1k9

1k8

1k7

1k6

1k5

1k4

1k3

1k2

1k1

1kj

1kj

1ki

1ki

vvvvvvvvvv

L

Etapa vi): Si una o las dos rótulas alcanzan la curva de interacción, o alcanza un nuevo vértice de ella en caso de que estuviese sobre la curva, se procede como sigue: - por interpolación, se obtiene ( )k

intF , vector de fuerzas que se encuentra entre ( )kF y ( )1kF̂ + , y que produce que se alcance una nueva rama de la curva de interacción en

alguna de las rótulas, i.e., la fuerza para la cual cambia la rigidez tangente en alguna de las rótulas ep

rotk . El factor para interpolar es rint, de modo que ( ) ( ) ( ) ( )( )k1k

intkk

int FF̂rFF −⋅+= + - con rint se obtiene ( )k

intv tal que ( ) ( ) ( ) ( )( )k1k

intkk

int vvrvv −⋅+= +

Etapa vii): Se calcula el determinante de Kii. Si este es diferente de cero: - se calcula la nueva matriz Kc incluyendo la rigidez elastoplástica tangente ep

rotk

determinadas en la Etapa vi) (Ec. (5.16)) - volvemos a la etapa ii) de la implementación, con ( ) ( )k

intk vv = , ( ) ( )k

intk FF = y la nueva

matriz de rigidez condensada Kc. Si el determinante de Kii es igual a cero, se pasa a la Etapa viii) Etapa viii): Cuando el determinante de Kii es igual a cero, la matriz es singular. Esto significa que la rigidez axial en las dos rótulas es igual a cero. En este caso el incremento de

Page 92: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

75

deformaciones axiales en los GDLs internos es cero, por lo que todo este incremento de la deformación axial de las rótulas se asocia a los GDLs 1 y 4 (Fig. 5.13). Cuando esto sucede (det(Kii) = 0), el elemento macro-columna se comporta como el macro-elemento viga, ya que las deformaciones de los GDLs 1, 4, 7 y 9 ya fueron asociadas (Fig. 5.18).

v2

v10v8 v6

v5

v3

v9v7 v4v1

i j

v2

v10v8 v6

v5

v3

v9v7 v4v1

i j

Figura 5.18: Definición del macro-elemento columna para ser utilizado como macro-elemento viga

Para obtener el incremento de las deformaciones internas rotacionales, utilizamos la implementación del macro-elemento viga, asociando las deformaciones ( ) ( )k

intk vv = y

v(k+1) como se muestra en la Figura 5.18. Es necesario además determinar los momentos plásticos de las rótulas Mp para utilizarlos en la implementación del macro-elemento viga. Estos corresponden al vértice que se intersecta cuando se recorre la arista horizontal de la curva de interacción en la dirección de la deformación rotacional, partiendo del esfuerzo axial actual de la rótula (Fig. 5.19). Si está sobre un vértice, Mp es el asociado a ese vértice.

Page 93: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

76

M

N

Dirección de la Deformación Rotacional

Mp

Curva de Interacción

.

Esfuerzos Actuales

M

N

Dirección de la Deformación Rotacional

Mp

Curva de Interacción

.

Esfuerzos Actuales

Figura 5.19: Obtención de momento plástico (Mp) de las rótulas para utilizar el macro-elemento viga

5.3.4 Validación del modelo

Se puede hacer una validación del modelo verificando condiciones de equilibrio y compatibilidad de las deformaciones. En el caso del macro-elemento columna, se deben satisfacer tres condiciones:

i) debe cumplirse el equilibrio del macro-elemento ii) los esfuerzos de las rótulas no deben salir fuera de la curva de interacción iii) los esfuerzos del elemento elástico interno deben ser iguales a los externos

Para calcular los esfuerzos del elemento interno (columna), se utiliza su matriz de rigidez elástica de seis GDLs, y sus deformaciones calculadas en función de las deformaciones externas y de las rótulas.

El elemento elástico interno corresponde a

Page 94: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

77

v6col ≡ v10

v5col ≡ v5

i jv3

col ≡ v8

v1col ≡ v7 v4

col ≡ v9

v2col ≡ v2

v6col ≡ v10

v5col ≡ v5

i jv3

col ≡ v8

v1col ≡ v7 v4

col ≡ v9

v2col ≡ v2

Figura 5.20: Geometría del elemento elástico interno viga

Su matriz de rigidez es

( ) ( ) ( ) ( )

( )( )

( ) ( )( )

( )

( ) ( ) ( ) ( )

( )( )

( ) ( )( )

( ) ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

Φ+⋅⋅⋅Φ+

Φ+⋅⋅⋅

−Φ+⋅⋅⋅Φ−

Φ+⋅⋅⋅

Φ+⋅⋅⋅

−Φ+⋅⋅⋅

Φ+⋅⋅⋅

−Φ+⋅⋅⋅

⋅⋅−Φ+⋅⋅⋅Φ−

Φ+⋅⋅⋅

−Φ+⋅⋅⋅Φ+

Φ+⋅⋅⋅

Φ+⋅⋅⋅

Φ+⋅⋅⋅

−Φ+⋅⋅⋅

Φ+⋅⋅⋅

⋅−⋅

=

1LIE4

1LIE60

1LIE2

1LIE60

1LIE6

1LIE120

1LIE6

1LIE120

00LEA00LEA1L

IE21L

IE601L

IE41L

IE60

1LIE6

1LIE120

1LIE6

1LIE120

00LEA00LEA

22

2323

22

2323

colelK (5.22)

con Φ definido en la Ecuación (5.2).

Las deformaciones del elemento interno se calculan en función de las externas y la de las rótulas

⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢

θ−

δ−θ+

δ+

=

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

δθδθ

⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢

−=

⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢

j5

5

j4

i3

2

i1

j

j

i

i

6

5

4

3

2

1

col6

col5

col4

col3

col2

col1

vv

vv

vv

vvvvvv

010010000000000100001000001000

000100010000000000100010000001

vvvvvv

(5.23)

Luego, colcolel

col vKF ⋅= , y se debe cumplir en todo instante que,

Page 95: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

78

⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢

=

⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢

6

5

4

3

2

1

col6

col5

col4

col3

col2

col1

ffffff

ffffff

(5.24)

5.3.5 Ejemplo

A continuación se presenta un ejemplo de validación del macro-elemento columna. Las propiedades del elemento son A=1, E=1, I=1, L=1. Las rigideces elásticas para las rótulas son kθi =1, kδi =1, kθj =1.5, kδj =1.5. Las curvas de interacción para cada una de las rótulas se muestran en la Figura 5.23. En este caso se impone una historia de deformaciones (Fig. 5.21), y se evalúan las fuerzas del elemento. Los resultados se presentan en las figuras siguientes.

Page 96: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

79

-5

0

5

v 1

-10

0

10

v 2

-2

0

2

v 3

-5

0

5

v 4

-10

0

10

v 5

0 100 200 300 400 500 600 700 800 900 1000-2

0

2

v 6

Instante k

Figura 5.21: Historia de deformaciones del macro-elemento columna

Page 97: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

80

-0.5

0

0.5f 1

-5

0

5

f 2

-5

0

5

f 3

-0.5

0

0.5

f 4

-5

0

5

f 5

0 100 200 300 400 500 600 700 800 900 1000-5

0

5

f 6

Instante k

Figura 5.22: Historia de fuerzas del macro-elemento columna

Page 98: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

81

-3 -2 -1 0 1 2 3-3

-2

-1

0

1

2

3

Mi

Ni

Nodo i

-4 -2 0 2 4-3

-2

-1

0

1

2

3

Mj

Nj

Nodo j

Figura 5.23: Curvas de interacción e historias de fuerzas M-N de las rótulas plásticas

Page 99: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

82

-4 -2 0 2 4-2

-1

0

1

2

θi

Mi

Nodo i

-1 -0.5 0 0.5-0.4

-0.2

0

0.2

0.4

0.6

δi

Ni

-2 -1 0 1 2 3-3

-2

-1

0

1

2

3

θj

Mj

Nodo j

-0.4 -0.2 0 0.2 0.4-0.4

-0.2

0

0.2

0.4

0.6

δj

Nj

Figura 5.24: Curvas fuerzas-deformaciones de las rotulas plásticas

5.4 Método de Integración

Los modelos analizados en este estudio corresponden a sistemas rígidos constituidos enteramente por elementos no-lineales. Para que el método utilizado sea lo suficientemente preciso y estable, se ha escogido un método de tipo predictor-corrector de orden 2.

5.4.1 Planteamiento de las ecuaciones

La ecuación general de movimiento para cualquier estructura no-lineal es

( ) ( ) ( ) ( )( ) ( )ttttt wT wLvFLuKuCuM ⋅=⋅+⋅+⋅+⋅ &&& (5.25)

Page 100: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

83

donde M es la matriz de masas; C es la matriz de amortiguamiento; K es la matriz de rigidez; u es el vector de desplazamientos relativos de las masas con respecto al sistema de referencia; L es la matriz de transformación cinemática (v = L⋅u); F es el vector de fuerzas de los elementos no-lineales; v es el vector de deformaciones de los elementos no-lineales; w es la excitación del sistema; y Lw es la matriz de transformación entre la excitación y las fuerzas del sistema.

Esta ecuación puede ser escrita en espacio estado, la cual se expresa como

( )( )( )

( )( )( )

( ) ( )( )tttt

tt

fw

T1w

1

t

11

t

vFLM

0w

LM0

uu

CMKMI0

uu

BBxAx

⋅⎥⎦

⎤⎢⎣

⎡⋅−

+⋅⎥⎦

⎤⎢⎣

⎡⋅

+⎥⎦

⎤⎢⎣

⎡⋅⎥

⎤⎢⎣

⎡⋅−⋅−

=⎥⎦

⎤⎢⎣

⎡−−−−

443442143421321&

4444 34444 21321&&

&

&

(5.26)

donde I es la matriz identidad. Consecuentemente la ecuación general no-lineal en primer orden es

( ) ( ) ( ) ( )( )tttt fw vFBwBxAx ⋅+⋅+⋅=& (5.27)

Particularizada a los modelos de este estudio, la ecuación de movimiento resulta

( )( )( )

( )( )( ){

( ) ( )( )tttt

tt

fw

T1g

t

1

t

vFLM

0u

r0

uu

CM0I0

uu

BBxAx

⋅⎥⎦

⎤⎢⎣

⎡⋅−

+⋅⎥⎦

⎤⎢⎣

⎡−

+⎥⎦

⎤⎢⎣

⎡⋅⎥

⎤⎢⎣

⎡⋅−

=⎥⎦

⎤⎢⎣

⎡−−

4434421

&&

321&

44 344 21321&&

&

&

(5.28)

donde M es la matriz de masas; C es la matriz de amortiguamiento; u es el vector de desplazamientos relativos de las masas con respecto al suelo; L es la matriz de transformación cinemática (v = L⋅u); F es el vector de fuerzas de los elementos no-lineales; v es el vector de deformaciones de los elementos no-lineales; gu&& es la

aceleración del suelo; y r es el vector de influencia del input.

5.4.2 Propiedades del sistema en tiempo discreto

Queremos transformar la ecuación continua en primer orden a tiempo discreto, con un intervalo temporal constante igual a dT.

Page 101: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

84

Si se considera que el vector de fuerzas no-lineales es constante durante el intervalo [k⋅dT (k+1)⋅dT], la ecuación en primer orden se puede expresar en forma discreta como

( ) ( ) ( ) ( )( )kkk1k df

dw

d vFBwBxAx ⋅+⋅+⋅=+ (5.29)

donde: dTd e ⋅= AA (5.30) ( ) w

dT1dw e BIAB A ⋅−⋅= ⋅− (5.31)

( ) fdT1d

f e BIAB A ⋅−⋅= ⋅− (5.32)

Cuando la matriz de rigidez es cero, como es el caso de los sistemas implementados, A es singular y por lo tanto no es invertible. En ese caso se puede de todas formas obtener las matrices d

wB y dfB . Para resto se extiende el estado del

sistema, con lo que se rescribe la ecuación (5.27) como

( )( )( )( )

( )( )( )( )⎥

⎥⎥

⎢⎢⎢

⎡⋅

⎥⎥⎥

⎢⎢⎢

⎡=

⎥⎥⎥

⎢⎢⎢

ttt

ttt

ext

fw

vFwx

000000

BBA

vFwx

A44 344 21

&

&

&

(5.33)

La nueva ecuación en tiempo discreto, con el nuevo estado extendido se transforma en

( )( )( )( )

( )( )( )( )⎥

⎥⎥

⎢⎢⎢

⎡⋅=

⎥⎥⎥

⎢⎢⎢

+++

kkk

e1k1k1k

dText

vFwx

vFwx

A (5.34)

Para obtener las matrices discretas de la ecuación (5.29), se particiona dText

e ⋅A tal que

( )( )( )( )

( )( )( )( )⎥

⎥⎥

⎢⎢⎢

⎡⋅

⎥⎥⎥

⎢⎢⎢

=⎥⎥⎥

⎢⎢⎢

+++

kkk

1k1k1k d

fdw

d

vFwxBBA

vFwx

LLL

LLL (5.35)

Conociendo las fuerzas de los elementos no-lineales en el instante k+1, la ecuación en primer orden se puede expresar en forma discreta como

( ) ( ) ( ) ( )( ) ( )( ) ( )( )( )k1kkkk1k 1df

0df

dw

d vFvFBvFBwBxAx −+⋅+⋅+⋅+⋅=+ (5.36)

Page 102: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

85

donde: dTd e ⋅= AA (5.37) ( ) w

dT1dw e BIAB A ⋅−⋅= ⋅− (5.38)

( ) fdT10d

f e BIAB A ⋅−⋅= ⋅− (5.39)

( ) fdT111d

f edT1 BIIAAB A ⋅⎟

⎠⎞

⎜⎝⎛ −−⋅⋅⋅= ⋅−− (5.40)

Al igual que en el caso anterior, cuando A es singular, se puede obtener de todas formas 0d

fB y 1dfB . Extendiendo el estado, se obtiene de la ecuación (5.27) la

nueva expresión

( )( )( )( )( )( )

( )( )( )( )( )( )⎥

⎥⎥⎥

⎢⎢⎢⎢

⎥⎥⎥⎥

⎢⎢⎢⎢

=

⎥⎥⎥⎥

⎢⎢⎢⎢

tttt

tttt

2ext

fw

vFvF

wx

0000I00000000BBA

vFvF

wx

A

&444 3444 21

&&

&

&

&

(5.41)

La nueva ecuación en tiempo discreto, con el nuevo estado extendido se transforma en

( )( )( )( )

( )( ) ( )( )

( )( )( )( )

( )( ) ( )( )⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

−+⋅=

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

+−++++

dTk1k

kkk

e

dT1k2k

1k1k1k

dT2ext

vFvFvF

wx

vFvFvF

wx

A (5.42)

Para obtener las matrices de la ecuación (5.36), se particiona dT2exte ⋅A en la

ecuación (5.42) y se obtiene

( )( )( )( )

( )( ) ( )( )

( )( )( )( )

( )( ) ( )( )⎥⎥⎥⎥

⎢⎢⎢⎢

−+

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

=

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

+−++++

k1kkkk

dT1k2k

1k1k1k 1d

f0d

fdw

d

vFvFvF

wxBBBA

vFvFvF

wx

LLLL

LLLL

LLLL (5.43)

5.4.3 Implementación

Para integrar el sistema, utilizamos un metodo predictor-evaluzación-corrección orden 2, con una evaluación final, notado P(EC)2E.

Page 103: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

86

Las condiciones iniciales son x(k=0)=x0; F(k=0)=F0; y las deformaciones iniciales de los elementos v(k=0)=v0.

Supongamos que se ha calculado la respuesta hasta el instante k, y se desea obtener la respuesta en el instante k+1. El algoritmo implementado considera los siguientes pasos:

Etapa i): Asumir ( ) ( )k1kˆ FF =+ , es decir mantenedor de orden cero para las fuerzas de los

elementos no-lineales. Etapa ii): Estimar el estado del sistema en k+1 a través de un predictor explícito ( ) ( ) ( ) ( )kkk1kˆ d

fdw

d FBwBxAx ⋅+⋅+⋅=+ .

Etapa iii): Evaluar las fuerzas en los elementos no-lineales. Para esto se utiliza el predictor de deformaciones ( ) ( )1kˆ1kˆ +⋅=+ uLv , con el cual se obtiene ( )( )1kˆˆ +vF .

Etapa iv): Corregir a través de un esquema implícito, con ( ) ( ) ( ) ( )( ) ( )( ) ( )( )( )k1kˆˆkkk1kˆ 1d

f0d

fdw

d vFvFBvFBwBxAx −+⋅+⋅+⋅+⋅=+ .

Etapa v): Iterar nuevamente en la etapa iii) y iv), para realizar una segunda evaluación y corrección. Etapa vi): Realizar una evaluación final con ( ) ( )1kˆ1k +=+ xx y ( ) ( )1kˆ1k +⋅=+ uLv y se obtiene

( )( )1k +vF .

Etapa vii): Avanzar la iteración hacia el siguiente paso de integración.

Page 104: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

87

VI. EDIFICIO HOLIDAY INN

6.1 Descripción del Edificio

Identificado como la estación CSMIP Nº 24386, este edificio está ubicado en Van Nuys, Los Angeles, California, a 7 km del epicentro del terremoto de Northridge ocurrido el 17 de enero de 1994. El edificio fue diseñado en 1965 y construido en 1966. La misma estructura se encontraba a 13 km del epicentro del terremoto de San Fernando ocurrido en 1971. En esa ocasión el edificio no sufrió daños estructurales de consideración. El edificio se encuentra en el medio del San Fernando Valley, entre las montañas de Santa Mónica al sur y las montañas San Gabriel y Santa Suzana al norte.

Los datos geológicos indican que el terreno del edificio descansa sobre suelo aluvial reciente y muestra que el suelo está conformado, en los primeros 15m, principalmente de arenas con finos no plásticos (SM) y limos y arcillas (ML).

El edificio es de hormigón armado (H/A) y tiene siete pisos. Posee una planta de 62’ de ancho y 160’ de largo aproximadamente. La altura total del edificio es de 65.7’, con un primer piso de 13.5’ y los seis restantes de 8.7’, aproximadamente. La planta del edificio es regular en altura, con la excepción de dos pequeñas salientes de losa en el primer piso. Exceptuando cuatro muros de albañilería en el primer piso y elementos de marcos livianos que sostienen los espacios de la escalera y el ascensor, la estructura es esencialmente simétrica.

La resistencia a cargas laterales en el edificio está provista por marcos perimetrales H/A con columnas espaciadas aproximadamente a 19’ en sentido longitudinal, y a 20’ en sentido transversal. Las columnas típicas son de 14”x20”, y están dispuestas de modo que su eje débil se encuentra en la dirección de los planos resistentes A y D, y su eje fuerte en los planos resistentes 1 y 9 (Fig. 6.1). La resistencia producida por las columnas interiores de 18” también contribuye a la resistencia y rigidez lateral del edificio, y debe ser considerada en el modelo de la estructura. Se estima que esta rigidez es aproximadamente la mitad de la correspondiente al marco perimetral. En este se usan vigas altas de altura variable de 22,5” típicamente.

Page 105: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

88

La rigidez cilíndrica especificada del hormigón f’c es 5000 psi para las

columnas del primer piso, 4000 psi para las columnas del segundo piso y 3000 psi para las columnas del tercer al séptimo piso. Para las vigas del segundo piso f’

c es 4000 psi, y para el resto de los pisos 3000 psi.

El edificio sufrió daños estructurales severos durante el terremoto de Northridge. Estos se concentraron principalmente en las columnas de los marcos longitudinales A y D (Fig. 6.1). Solo daños estructurales menores ocurrieron en los marcos transversales 1 y 9. Las columnas sísmicas del marco A fueron seriamente dañadas en corte entre los pisos 4 y 5. La falta de un confinamiento de acero apropiado en estas columnas produjo el subsecuente pandeo de las barras longitudinales. De acuerdo a los reportes de daños, roturas de corte menores a moderadas ocurrieron en varias uniones de columnas con vigas bajo el quinto piso. Las vigas altas muestran descascaramientos y fallas flexurales solo en la cara inferior, lo que sugiere la fluencia sólo del refuerzo inferior de acero.

Los daños en el edificio durante el terremoto de Northridge fueron significativamente mayores que los observados durante el terremoto de San Fernando. En este último el costo total del daño estructural fue sólo un 1% del daño total estimado en un 11% del costo de la construcción del edificio. Este se debió principalmente a daños de componentes no estructurales. Al contrario del terremoto de Northridge, durante el terremoto de San Fernando el daño estructural se localizó en el segundo y tercer piso.

Page 106: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

89

B

Vigas Altas Exteriores

Columnas exteriores de 14”x20” (tip.)

Columnas interiores cuadradas de 18” (tip.)

8 Vanos @ 18’-9” = 150’-0”

159’-10 ¾”

20’-1

”20

’-1”

20’-1

68’-8

A

C

D

1 3 4 52 6 7 8 9

Asc

enso

r

Escaleras

Nref

BB

Vigas Altas Exteriores

Columnas exteriores de 14”x20” (tip.)

Columnas interiores cuadradas de 18” (tip.)

8 Vanos @ 18’-9” = 150’-0”

159’-10 ¾”

20’-1

”20

’-1”

20’-1

68’-8

AA

CC

DD

11 33 44 5522 66 77 88 99

Asc

enso

r

Escaleras

Nref

Figura 6.1: Planta típica del edificio

Page 107: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

90

D C B A

13’-6

”8’

-8 ½

”8’

-8 ½

”8’

-8 ½

”8’

-8 ½

”8’

-8 ½

”8’

-8”

2do

1er

3ro

5to

4to

6mo

7mo

DD CC BB AA

13’-6

”8’

-8 ½

”8’

-8 ½

”8’

-8 ½

”8’

-8 ½

”8’

-8 ½

”8’

-8”

2do

1er

3ro

5to

4to

6mo

7mo

Figura 6.2: Elevación transversal típica

6.2 Modelación del Edificio

En este estudio se ha modelado el marco resistente sur correspondiente al eje transversal A (Fig. 6.1). Para esto se utiliza el modelo de marco flexural

Page 108: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

91

explicado en la Caplítulo IV. Las unidades utilizadas en las modelación son centímetros y toneladas.

En la modelación geométrica los ejes de los elementos se ponen en los centros geométricos de las secciones brutas de las vigas de cada piso y de las columnas. Se colocan además extremos rígidos correspondiente a las dimensiones del nodo, es decir al alto de las vigas y al ancho de las columnas. Las dimensiones, extremos rígidos y numeración de los elementos se muestra en la Figura 6.3. Los detalles de las dimensiones de los extremos rígidos y los elementos se muestran en la figura 6.4. Cada piso tiene un GDL horizontal, mientras que el resto de los nodos tiene además un grado de libertad vertical y de giro.

Las propiedades de los elementos se calcularon sobre la base de sus materiales y geometría bruta. Estas se muestran en la Tabla 6.1. Para el modelo es necesario calcular las curvas de interacción de las columnas y los momentos plásticos de las vigas. Las enfierraduras utilizadas en cada columna se muestran en la Tabla 6.2. En ella, Nº, corresponde al número de fierros y # al diámetro en octavos de pulgada. La disposición geométrica de la enfierradurra de las columnas se muestra en la Figura 6.5. Todas las columnas tienen un recubrimiento de 2”.

El momento plástico en las vigas se calculó suponiendo que fluye la enfierradura inferior y se rompe el hormigón en compresión de la parte superior de la sección. El detalle de las enfierraduras inferiores y superiores se muestra en la Tabla 6.3. Todas las vigas tienen un recubrimiento de 2”.

Debido a la contribución de la rigidez lateral de las columnas interiores, la cual es la mitad del marco perimetral, en el modelo se utiliza 1/3 de la masa de cada piso, como se muestra en la Tabla 6.4.

La matriz de amortiguamiento es modal, con ξ=5% en los primeros 7 modos. Como la contribución del resto de los modos (altos) es insignificante en la respuesta del edificio, utilizaremos una razón de amortiguamiento ξ=30% para ellos. Esto permite además mejorar las propiedades de estabilidad del método de integración, a través de ingresar amortiguamiento “numérico” controlando los modos altos.

Page 109: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

92

Los registros utilizados corresponden al terremoto de Northridge, medido en la base del edificio. En la integración se utilizó la componente horizontal (en dirección del eje x) y la componente vertical (en dirección del eje y) (Fig. 6.3). Los registros se muestran en la Figura 6.6. Para el calculo de la respuesta se utilizó un paso de integración constante dT=0.002 seg. La elección de este intervalo temporal se debe a la necesidad asegurar tanto la estabilidad de la integración como la precisión de los resultados.

Page 110: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

93

4572 cm.

571.5 cm.

1974

.85

cm.

373.

38 c

m.

274.

955

cm.

265.

43 c

m.

265.

43 c

m.

265.

43 c

m.

265.

43 c

m.

264.

795

cm.

571.5 cm.571.5 cm.571.5 cm. 571.5 cm.571.5 cm.571.5 cm. 571.5 cm.

4to

3ro

1er

2do

5to

6to

1 5432 9876

10 14131211 18171615

19 24232120 22 272625

28 32313029 36353433

37 38 39 40 41 42 454443

46 494847 50 54535251

55 59585756 63626160

64 6665 6968 7067 71

72 757473 7877 7976

80 81 82 8483 85 86 87

88 9290 9189 959493

96 98 99 10097 103102101

104 107106 108105 110 111109

112 114 115 116113 118 119117

x

y

7mo

4572 cm.

571.5 cm.

1974

.85

cm.

373.

38 c

m.

274.

955

cm.

265.

43 c

m.

265.

43 c

m.

265.

43 c

m.

265.

43 c

m.

264.

795

cm.

571.5 cm.571.5 cm.571.5 cm. 571.5 cm.571.5 cm.571.5 cm. 571.5 cm.

4to

3ro

1er

2do

5to

6to

11 55443322 99887766

1010 1414131312121111 1818171716161515

1919 2424232321212020 2222 272726262525

2828 3232313130302929 3636353534343333

3737 3838 3939 4040 4141 4242 454544444343

4646 494948484747 5050 5454535352525151

5555 5959585857575656 6363626261616060

6464 66666565 69696868 70706767 7171

7272 757574747373 78787777 79797676

8080 8181 8282 84848383 8585 8686 8787

8888 92929090 91918989 959594949393

9696 9898 9999 1001009797 103103102102101101

104104 107107106106 108108105105 110110 111111109109

112112 114114 115115 116116113113 118118 119119117117

x

y

7mo

Figura 6.3: Modelación geométrica del marco resistente correspondiente al eje transversal A: numeración de elementos

Page 111: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

94

373.

38 c

m.

38.1

cm

.33

5.28

cm

.

Columnas 1er piso Columnas 2do piso

274.

955

cm.

28.5

75 c

m.

208.

28 c

m.

38.1

cm

.

265.

43 c

m.

28.5

75 c

m.

208.

28 c

m.

Columnas 3er a 6to piso

28.5

75 c

m.

264.

795

cm.

27.9

4 cm

.20

8.28

cm

.

Columnas 7mo piso

28.5

75 c

m.

571.5 cm.

17.78 cm.535.94 cm.17.78 cm.

Vigas

373.

38 c

m.

38.1

cm

.33

5.28

cm

.

Columnas 1er piso Columnas 2do piso

274.

955

cm.

28.5

75 c

m.

208.

28 c

m.

38.1

cm

.

274.

955

cm.

28.5

75 c

m.

208.

28 c

m.

38.1

cm

.

265.

43 c

m.

28.5

75 c

m.

208.

28 c

m.

Columnas 3er a 6to piso

28.5

75 c

m.

264.

795

cm.

27.9

4 cm

.20

8.28

cm

.

Columnas 7mo piso

28.5

75 c

m.

571.5 cm.

17.78 cm.535.94 cm.17.78 cm.

571.5 cm.

17.78 cm.535.94 cm.17.78 cm.

Vigas

Figura 6.4: Dimensiones de elementos y extremos rígidos

Tabla 6.1: Propiedades estructurales de los elementos y materiales

dimensiones fc' (hormigón) fy (acero) E ancho altura Area Iy(in) (psi^2) (psi^2) (ton/cm^2) (cm) (cm) (cm^2) (cm^4)

ColumnasPiso 1 14" x 20" 5000 60000 278 35.56 50.80 1806.45 190356.51Piso 2 14" x 20" 4000 60000 248.7 35.56 50.80 1806.45 190356.51Piso 3 a 7 14" x 20" 3000 60000 215.3 35.56 50.80 1806.45 190356.51

VigasPiso 1 16" x 30" 4000 40000 248.7 40.64 76.2 3096.77 1498433.13Piso 2 al 6 16" x 22.5" 3000 40000 215.3 40.64 57.15 2322.58 632151.48Piso 7 16" x 22" 3000 40000 215.3 40.64 55.88 2270.96 590937.63

Page 112: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

95

Tabla 6.2: Enfierraduras de las columnas

Piso dimensiones Eje 1 Eje 2 Eje 3 Eje 4 Eje 5 Eje 6 Eje 7 Eje 8 Eje 9(in) Nº # Nº # Nº # Nº # Nº # Nº # Nº # Nº # Nº #

7 14" x 20" 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 76 14" x 20" 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 75 14" x 20" 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 74 14" x 20" 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 73 14" x 20" 6 7 8 9 8 9 6 9 6 9 6 9 6 9 8 9 6 72 14" x 20" 6 7 8 9 8 9 6 9 6 9 6 9 6 9 8 9 6 71 14" x 20" 8 9 10 9 10 9 10 9 10 9 10 9 10 9 10 9 8 9

20”

14” 2”

6 fierros

20”

14” 2”

8 fierros

20”

14” 2”

10 fierros

20”

14” 2”

6 fierros

20”

14” 2”

8 fierros

20”

14” 2”

10 fierros

Figura 6.5: Disposición geométrica de las enfierraduras de las columnas

Page 113: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

96

Tabla 6.3: Enfierraduras de las vigas

Piso Enfierradura Viga vano 1 Viga vano 2 Viga vano 3 Viga vano 4 Viga vano 5 Viga vano 6 Viga vano 7 Viga vano 8 Eje 1 Eje 2 Eje 2 Eje 3 Eje 3 Eje 4 Eje 4 Eje 5 Eje 5 Eje 6 Eje 6 Eje 7 Eje 7 Eje 8 Eje 8 Eje 9Nº # Nº # Nº # Nº # Nº # Nº # Nº # Nº # Nº # Nº # Nº # Nº # Nº # Nº # Nº # Nº #

7 Superior 2 6 3 9 3 9 2 9 2 9 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 6Inferior 2 8 2 8 2 9 2 9 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 7 2 7

6 Superior 2 7 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 9 2 9 2 7Inferior 2 7 2 7 2 7 2 7 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 7 2 7

5 Superior 2 8 2 9 2 9 2 9 2 9 2 9 2 9 2 9 2 9 2 9 2 9 2 9 2 9 3 8 3 8 2 9Inferior 2 7 2 7 2 7 2 7 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 7 2 7

4 Superior 2 9 2 9 2 9 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8 2 9Inferior 2 8 2 8 2 7 2 7 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 7 2 7

3 Superior 2 9 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8Inferior 2 9 2 9 2 7 2 7 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 8 2 8

2 Superior 3 8 3 8 3 8 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 8Inferior 2 9 2 9 2 7 2 7 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 8 2 8

1 Superior 2 9 2 9 2 9 2 9 2 9 2 9 2 9 2 9 2 9 2 9 2 9 2 9 2 9 3 8 3 8 2 9Inferior 2 8 2 8 2 7 2 7 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 8 2 8

Tabla 6.4: Masas transalcionales del edificio y del marco modelado

Piso Masas Edificio Masas Marco (modelo)(t) (t)

7 626.4 208.86 648.7 216.25 648.7 216.24 648.7 216.23 648.7 216.22 648.7 216.21 813.1 271.0

Page 114: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

97

0 10 20 30 40 50 60-0.6

-0.4

-0.2

0

0.2

0.4

tiempo (seg)

acel

erac

ión

(g)

a) componente horizontal (dirección x)

0 10 20 30 40 50 60-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

tiempo (seg)

acel

erac

ión

(g)

b) componente vertical (dirección y)

Figura 6.6: Registro medido en la base del edificio (Northridge, 1994)

6.3 Resultados del Análisis

En esta sección se presentan los resultados del análisis del modelo del marco sur del edificio.

Primero se muestran las propiedades modales en estado elástico del sistema (Tabla 6.5 y Fig. 6.7). Luego se incluyen los gráficos de respuesta del edificio. Estos son las historias de desplazamientos (Fig. 6.8), deformaciones de entrepiso (Fig. 6.9) y esfuerzo de corte por piso (Fig. 6.10). Después se muestran las

Page 115: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

98

curvas de interacción, las historias de esfuerzos axial y flexural en las columnas (Figs. 6.11 a 6.24), y las curvas de momento y deformación en las vigas (Figs. 6.25 a 6.31). En estas figuras se puede apreciar cuales elementos son los que fluyen. Finalmente se incluyen los gráficos de energía disipada por histéresis del edificio (Figs 6.32 a 6.35).

Tabla 6.5: Períodos y formas modales elásticos del modelo analizado

modo 1 modo 2 modo 3 modo 4 modo 5 modo 6 modo 7T (seg) 0.797 0.266 0.150 0.099 0.085 0.083 0.080

a) peridos modales

modo 1 modo 2 modo 3 modo 4 modo 5 modo 6 modo 7Techo -0.4874 -0.4864 0.4849 0.4342 -0.6606 0.8916 -0.2736Piso 7 -0.4691 -0.3373 0.0792 -0.2709 0.6330 -0.1448 -0.0012Piso 6 -0.4353 -0.0939 -0.3772 -0.5111 0.2784 -0.1920 0.4178Piso 5 -0.3865 0.1766 -0.5186 0.0800 -0.1943 -0.0658 0.1775Piso 4 -0.3244 0.3939 -0.2281 0.5423 -0.1701 0.0129 -0.5895Piso 3 -0.2523 0.4942 0.2504 0.1289 0.0772 -0.0993 -0.2409Piso 2 -0.1858 0.4584 0.4823 -0.3996 0.1130 -0.3644 0.5599

b) formas modales

Page 116: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

99

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.60

373.38

648.335

913.765

1179.195

1444.625

1710.055

1974.85

Altu

ra d

el E

dific

io (c

m)

Piso

1

7

6

5

4

3

2

1º modo

3º modo

2º modo

Figura 6.7: Formas modales elásticas del modelo analizado

Page 117: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

100

-20

0

20Piso 7

-20

0

20Piso 6

-20

0

20Piso 5

-20

0

20Piso 4

Des

plaz

amie

nto

(cm

)

-20

0

20Piso 3

-20

0

20Piso 2

0 10 20 30 40 50 60-20

0

20Piso 1

Tiempo (seg)

Figura 6.8: Historias de desplazamientos relativos a la base

Page 118: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

101

0 10 20 30 40 50 60-5

0

5

Piso 1

Tiempo (seg)

-5

0

5

Piso 7

-5

0

5

Piso 6

-5

0

5

Piso 5

-5

0

5

Piso 4

Def

orm

ació

n de

Ent

repi

so (c

m)

-5

0

5

Piso 3

-5

0

5

Piso 2

Figura 6.9: Historia de deformaciones de entrepisos (drifts)

Page 119: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

102

-200

0

200Piso 7

-200

0

200Piso 6

-200

0

200Piso 5

-200

0

200Piso 4

Esf

uerz

o de

Cor

te (t

on)

-200

0

200Piso 3

-200

0

200Piso 2

0 10 20 30 40 50 60-200

0

200Piso 1

Tiempo (seg)

Figura 6.10: Historia de esfuerzos de corte por piso

Page 120: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

103

-4000 -2000 0 2000 4000-800

-600

-400

-200

0

200

400Columna 1

-5000 0 5000-800

-600

-400

-200

0

200

400Columna 2

-5000 0 5000-800

-600

-400

-200

0

200

400Columna 3

-5000 0 5000-800

-600

-400

-200

0

200

400Columna 4

Esf

uerz

o A

xial

Ni (t

on)

-5000 0 5000-800

-600

-400

-200

0

200

400Columna 5

-5000 0 5000-800

-600

-400

-200

0

200

400Columna 6

-5000 0 5000-800

-600

-400

-200

0

200

400Columna 7

-5000 0 5000-800

-600

-400

-200

0

200

400Columna 8

Momento Mi (ton cm)-4000 -2000 0 2000 4000

-800

-600

-400

-200

0

200

400Columna 9

Figura 6.11: Curvas de interacción, historias de esfuerzos axial y momento en el extremo inferior de las columnas del 1º piso

Page 121: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

104

-4000 -2000 0 2000 4000-800

-600

-400

-200

0

200

400Columna 1

-5000 0 5000-800

-600

-400

-200

0

200

400Columna 2

-5000 0 5000-800

-600

-400

-200

0

200

400Columna 3

-5000 0 5000-800

-600

-400

-200

0

200

400Columna 4

Esf

uerz

o A

xial

Nj (t

on)

-5000 0 5000-800

-600

-400

-200

0

200

400Columna 5

-5000 0 5000-800

-600

-400

-200

0

200

400Columna 6

-5000 0 5000-800

-600

-400

-200

0

200

400Columna 7

-5000 0 5000-800

-600

-400

-200

0

200

400Columna 8

Momento Mj (ton cm)-4000 -2000 0 2000 4000

-800

-600

-400

-200

0

200

400Columna 9

Figura 6.12: Curvas de interacción, historias de esfuerzos axial y momento en el extremo superior de las columnas del 1º piso

Page 122: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

105

-4000 -2000 0 2000 4000-500

-400

-300

-200

-100

0

100

200Columna 10

-4000 -2000 0 2000 4000-600

-400

-200

0

200

400

Columna 11

-4000 -2000 0 2000 4000-600

-400

-200

0

200

400

Columna 12

-4000 -2000 0 2000 4000-600

-400

-200

0

200

400

Columna 13

Esf

uerz

o A

xial

Ni (t

on)

-4000 -2000 0 2000 4000-600

-400

-200

0

200

400

Columna 14

-4000 -2000 0 2000 4000-600

-400

-200

0

200

400

Columna 15

-4000 -2000 0 2000 4000-600

-400

-200

0

200

400

Columna 16

-4000 -2000 0 2000 4000-600

-400

-200

0

200

400

Columna 17

Momento Mi (ton cm)-4000 -2000 0 2000 4000

-500

-400

-300

-200

-100

0

100

200Columna 18

Figura 6.13: Curvas de interacción, historias de esfuerzos axial y momento en el extremo inferior de las columnas del 2º piso

Page 123: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

106

-4000 -2000 0 2000 4000-500

-400

-300

-200

-100

0

100

200Columna 10

-4000 -2000 0 2000 4000-600

-400

-200

0

200

400

Columna 11

-4000 -2000 0 2000 4000-600

-400

-200

0

200

400

Columna 12

-4000 -2000 0 2000 4000-600

-400

-200

0

200

400

Columna 13

Esf

uerz

o A

xial

Nj (t

on)

-4000 -2000 0 2000 4000-600

-400

-200

0

200

400

Columna 14

-4000 -2000 0 2000 4000-600

-400

-200

0

200

400

Columna 15

-4000 -2000 0 2000 4000-600

-400

-200

0

200

400

Columna 16

-4000 -2000 0 2000 4000-600

-400

-200

0

200

400

Columna 17

Momento Mj (ton cm)-4000 -2000 0 2000 4000

-500

-400

-300

-200

-100

0

100

200Columna 18

Figura 6.14: Curvas de interacción, historias de esfuerzos axial y momento en el extremo superior de las columnas del 2º piso

Page 124: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

107

-4000 -2000 0 2000 4000-400

-300

-200

-100

0

100

200

Columna 19

-4000 -2000 0 2000 4000-600

-400

-200

0

200

400

Columna 20

-4000 -2000 0 2000 4000-600

-400

-200

0

200

400

Columna 21

-4000 -2000 0 2000 4000-600

-400

-200

0

200

400

Columna 22

Esf

uerz

o A

xial

Ni (t

on)

-4000 -2000 0 2000 4000-600

-400

-200

0

200

400

Columna 23

-4000 -2000 0 2000 4000-600

-400

-200

0

200

400

Columna 24

-4000 -2000 0 2000 4000-600

-400

-200

0

200

400

Columna 25

-4000 -2000 0 2000 4000-600

-400

-200

0

200

400

Columna 26

Momento Mi (ton cm)-4000 -2000 0 2000 4000

-400

-300

-200

-100

0

100

200

Columna 27

Figura 6.15: Curvas de interacción, historias de esfuerzos axial y momento en el extremo inferior de las columnas del 3º piso

Page 125: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

108

-4000 -2000 0 2000 4000-400

-300

-200

-100

0

100

200

Columna 19

-4000 -2000 0 2000 4000-600

-400

-200

0

200

400

Columna 20

-4000 -2000 0 2000 4000-600

-400

-200

0

200

400

Columna 21

-4000 -2000 0 2000 4000-600

-400

-200

0

200

400

Columna 22

Esf

uerz

o A

xial

Nj (t

on)

-4000 -2000 0 2000 4000-600

-400

-200

0

200

400

Columna 23

-4000 -2000 0 2000 4000-600

-400

-200

0

200

400

Columna 24

-4000 -2000 0 2000 4000-600

-400

-200

0

200

400

Columna 25

-4000 -2000 0 2000 4000-600

-400

-200

0

200

400

Columna 26

Momento Mj (ton cm)-4000 -2000 0 2000 4000

-400

-300

-200

-100

0

100

200

Columna 27

Figura 6.16: Curvas de interacción, historias de esfuerzos axial y momento en el extremo superior de las columnas del 3º piso

Page 126: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

109

-4000 -2000 0 2000 4000-400

-300

-200

-100

0

100

200

Columna 28

-4000 -2000 0 2000 4000-400

-300

-200

-100

0

100

200Columna 29

-4000 -2000 0 2000 4000-400

-300

-200

-100

0

100

200Columna 30

-4000 -2000 0 2000 4000-400

-300

-200

-100

0

100

200Columna 31

Esf

uerz

o A

xial

Ni (t

on)

-4000 -2000 0 2000 4000-400

-300

-200

-100

0

100

200Columna 32

-4000 -2000 0 2000 4000-400

-300

-200

-100

0

100

200Columna 33

-4000 -2000 0 2000 4000-400

-300

-200

-100

0

100

200Columna 34

-4000 -2000 0 2000 4000-400

-300

-200

-100

0

100

200Columna 35

Momento Mi (ton cm)-4000 -2000 0 2000 4000

-400

-300

-200

-100

0

100

200

Columna 36

Figura 6.17: Curvas de interacción, historias de esfuerzos axial y momento en el extremo inferior de las columnas del 4º piso

Page 127: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

110

-4000 -2000 0 2000 4000-400

-300

-200

-100

0

100

200

Columna 28

-4000 -2000 0 2000 4000-400

-300

-200

-100

0

100

200Columna 29

-4000 -2000 0 2000 4000-400

-300

-200

-100

0

100

200Columna 30

-4000 -2000 0 2000 4000-400

-300

-200

-100

0

100

200Columna 31

Esf

uerz

o A

xial

Nj (t

on)

-4000 -2000 0 2000 4000-400

-300

-200

-100

0

100

200Columna 32

-4000 -2000 0 2000 4000-400

-300

-200

-100

0

100

200Columna 33

-4000 -2000 0 2000 4000-400

-300

-200

-100

0

100

200Columna 34

-4000 -2000 0 2000 4000-400

-300

-200

-100

0

100

200Columna 35

Momento Mj (ton cm)-4000 -2000 0 2000 4000

-400

-300

-200

-100

0

100

200

Columna 36

Figura 6.18: Curvas de interacción, historias de esfuerzos axial y momento en el extremo superior de las columnas del 4º piso

Page 128: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

111

-4000 -2000 0 2000 4000-400

-300

-200

-100

0

100

200

Columna 37

-4000 -2000 0 2000 4000-400

-300

-200

-100

0

100

200

Columna 38

-4000 -2000 0 2000 4000-400

-300

-200

-100

0

100

200

Columna 39

-4000 -2000 0 2000 4000-400

-300

-200

-100

0

100

200

Columna 40

Esf

uerz

o A

xial

Ni (t

on)

-4000 -2000 0 2000 4000-400

-300

-200

-100

0

100

200

Columna 41

-4000 -2000 0 2000 4000-400

-300

-200

-100

0

100

200

Columna 42

-4000 -2000 0 2000 4000-400

-300

-200

-100

0

100

200

Columna 43

-4000 -2000 0 2000 4000-400

-300

-200

-100

0

100

200

Columna 44

Momento Mi (ton cm)-4000 -2000 0 2000 4000

-400

-300

-200

-100

0

100

200

Columna 45

Figura 6.19: Curvas de interacción, historias de esfuerzos axial y momento en el extremo inferior de las columnas del 5º piso

Page 129: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

112

-4000 -2000 0 2000 4000-400

-300

-200

-100

0

100

200

Columna 37

-4000 -2000 0 2000 4000-400

-300

-200

-100

0

100

200

Columna 38

-4000 -2000 0 2000 4000-400

-300

-200

-100

0

100

200

Columna 39

-4000 -2000 0 2000 4000-400

-300

-200

-100

0

100

200

Columna 40

Esf

uerz

o A

xial

Nj (t

on)

-4000 -2000 0 2000 4000-400

-300

-200

-100

0

100

200

Columna 41

-4000 -2000 0 2000 4000-400

-300

-200

-100

0

100

200

Columna 42

-4000 -2000 0 2000 4000-400

-300

-200

-100

0

100

200

Columna 43

-4000 -2000 0 2000 4000-400

-300

-200

-100

0

100

200

Columna 44

Momento Mj (ton cm)-4000 -2000 0 2000 4000

-400

-300

-200

-100

0

100

200

Columna 45

Figura 6.20: Curvas de interacción, historias de esfuerzos axial y momento en el extremo superior de las columnas del 5º piso

Page 130: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

113

-4000 -2000 0 2000 4000-500

-400

-300

-200

-100

0

100

200

Columna 46

-4000 -2000 0 2000 4000-400

-300

-200

-100

0

100

200

Columna 47

-4000 -2000 0 2000 4000-400

-300

-200

-100

0

100

200

Columna 48

-4000 -2000 0 2000 4000-400

-300

-200

-100

0

100

200

Columna 49

Esf

uerz

o A

xial

Ni (t

on)

-4000 -2000 0 2000 4000-400

-300

-200

-100

0

100

200

Columna 50

-4000 -2000 0 2000 4000-400

-300

-200

-100

0

100

200

Columna 51

-4000 -2000 0 2000 4000-400

-300

-200

-100

0

100

200

Columna 52

-4000 -2000 0 2000 4000-400

-300

-200

-100

0

100

200

Columna 53

Momento Mi (ton cm)-4000 -2000 0 2000 4000

-500

-400

-300

-200

-100

0

100

200

Columna 54

Figura 6.21: Curvas de interacción, historias de esfuerzos axial y momento en el extremo inferior de las columnas del 6º piso

Page 131: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

114

-4000 -2000 0 2000 4000-500

-400

-300

-200

-100

0

100

200

Columna 46

-4000 -2000 0 2000 4000-400

-300

-200

-100

0

100

200

Columna 47

-4000 -2000 0 2000 4000-400

-300

-200

-100

0

100

200

Columna 48

-4000 -2000 0 2000 4000-400

-300

-200

-100

0

100

200

Columna 49

Esf

uerz

o A

xial

Nj (t

on)

-4000 -2000 0 2000 4000-400

-300

-200

-100

0

100

200

Columna 50

-4000 -2000 0 2000 4000-400

-300

-200

-100

0

100

200

Columna 51

-4000 -2000 0 2000 4000-400

-300

-200

-100

0

100

200

Columna 52

-4000 -2000 0 2000 4000-400

-300

-200

-100

0

100

200

Columna 53

Momento Mj (ton cm)-4000 -2000 0 2000 4000

-500

-400

-300

-200

-100

0

100

200

Columna 54

Figura 6.22: Curvas de interacción, historias de esfuerzos axial y momento en el extremo superior de las columnas del 6º piso

Page 132: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

115

-4000 -2000 0 2000 4000-500

-400

-300

-200

-100

0

100

200

Columna 55

-4000 -2000 0 2000 4000-500

-400

-300

-200

-100

0

100

200

Columna 56

-4000 -2000 0 2000 4000-500

-400

-300

-200

-100

0

100

200

Columna 57

-4000 -2000 0 2000 4000-600

-400

-200

0

200

Columna 58

Esf

uerz

o A

xial

Ni (t

on)

-4000 -2000 0 2000 4000-600

-400

-200

0

200

Columna 59

-4000 -2000 0 2000 4000-600

-400

-200

0

200

Columna 60

-4000 -2000 0 2000 4000-500

-400

-300

-200

-100

0

100

200

Columna 61

-4000 -2000 0 2000 4000-500

-400

-300

-200

-100

0

100

200

Columna 62

Momento Mi (ton cm)-4000 -2000 0 2000 4000

-500

-400

-300

-200

-100

0

100

200

Columna 63

Figura 6.23: Curvas de interacción, historias de esfuerzos axial y momento en el extremo inferior de las columnas del 7º piso

Page 133: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

116

-4000 -2000 0 2000 4000-500

-400

-300

-200

-100

0

100

200

Columna 55

-4000 -2000 0 2000 4000-500

-400

-300

-200

-100

0

100

200

Columna 56

-4000 -2000 0 2000 4000-500

-400

-300

-200

-100

0

100

200

Columna 57

-4000 -2000 0 2000 4000-600

-400

-200

0

200

Columna 58

Esf

uerz

o A

xial

Nj (t

on)

-4000 -2000 0 2000 4000-600

-400

-200

0

200

Columna 59

-4000 -2000 0 2000 4000-600

-400

-200

0

200

Columna 60

-4000 -2000 0 2000 4000-500

-400

-300

-200

-100

0

100

200

Columna 61

-4000 -2000 0 2000 4000-500

-400

-300

-200

-100

0

100

200

Columna 62

Momento Mj (ton cm)-4000 -2000 0 2000 4000

-500

-400

-300

-200

-100

0

100

200

Columna 63

Figura 6.24: Curvas de interacción, historias de esfuerzos axial y momento en el extremo superior de las columnas del 7º piso

Page 134: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

117

-2000

0

2000

Viga 64

(Eje 1)

Rótulas Extremo Izquerdo (i)

-2000

0

2000

Viga 64

(Eje 2)

Rótulas Extremo Derecho (j)

-2000

0

2000

Viga 65

(Eje 2)

-2000

0

2000

Viga 65

(Eje 3)

-2000

0

2000

Viga 66

(Eje 3)

-2000

0

2000

Viga 66

(Eje 4)

-2000

0

2000

Viga 67

(Eje 4)

Mom

ento

Mi (t

on c

m)

-2000

0

2000

Viga 67

(Eje 5)

Mom

ento

Mj (t

on c

m)

-2000

0

2000

Viga 68

(Eje 5)

-2000

0

2000

Viga 68

(Eje 6)

-2000

0

2000

Viga 69

(Eje 6)

-2000

0

2000

Viga 69

(Eje 7)

-2000

0

2000

Viga 70

(Eje 7)

-2000

0

2000

Viga 70

(Eje 8)

-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02-2000

0

2000

Viga 71

(Eje 8)

Deformación θi (rad)-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02

-2000

0

2000

Viga 71

(Eje 9)

Deformación θj (rad)

Figura 6.25: Curvas de momento-deformación en rótulas de vigas del 1º piso

Page 135: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

118

-2000

0

2000

Viga 72

(Eje 1)

Rótulas Extremo Izquerdo (i)

-2000

0

2000

Viga 72

(Eje 2)

Rótulas Extremo Derecho (j)

-2000

0

2000

Viga 73

(Eje 2)

-2000

0

2000

Viga 73

(Eje 3)

-2000

0

2000

Viga 74

(Eje 3)

-2000

0

2000

Viga 74

(Eje 4)

-2000

0

2000

Viga 75

(Eje 4)

Mom

ento

Mi (t

on c

m)

-2000

0

2000

Viga 75

(Eje 5)

Mom

ento

Mj (t

on c

m)

-2000

0

2000

Viga 76

(Eje 5)

-2000

0

2000

Viga 76

(Eje 6)

-2000

0

2000

Viga 77

(Eje 6)

-2000

0

2000

Viga 77

(Eje 7)

-2000

0

2000

Viga 78

(Eje 7)

-2000

0

2000

Viga 78

(Eje 8)

-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02-2000

0

2000

Viga 79

(Eje 8)

Deformación θi (rad)-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02

-2000

0

2000

Viga 79

(Eje 9)

Deformación θj (rad)

Figura 6.26: Curvas de momento-deformación en rótulas de vigas del 2º piso

Page 136: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

119

-2000

0

2000

Viga 80

(Eje 1)

Rótulas Extremo Izquerdo (i)

-2000

0

2000

Viga 80

(Eje 2)

Rótulas Extremo Derecho (j)

-2000

0

2000

Viga 81

(Eje 2)

-2000

0

2000

Viga 81

(Eje 3)

-2000

0

2000

Viga 82

(Eje 3)

-2000

0

2000

Viga 82

(Eje 4)

-2000

0

2000

Viga 83

(Eje 4)

Mom

ento

Mi (t

on c

m)

-2000

0

2000

Viga 83

(Eje 5)

Mom

ento

Mj (t

on c

m)

-2000

0

2000

Viga 84

(Eje 5)

-2000

0

2000

Viga 84

(Eje 6)

-2000

0

2000

Viga 85

(Eje 6)

-2000

0

2000

Viga 85

(Eje 7)

-2000

0

2000

Viga 86

(Eje 7)

-2000

0

2000

Viga 86

(Eje 8)

-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02-2000

0

2000

Viga 87

(Eje 8)

Deformación θi (rad)-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02

-2000

0

2000

Viga 87

(Eje 9)

Deformación θj (rad)

Figura 6.27: Curvas de momento-deformación en rótulas de vigas del 3º piso

Page 137: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

120

-2000

0

2000

Viga 88

(Eje 1)

Rótulas Extremo Izquerdo (i)

-2000

0

2000

Viga 88

(Eje 2)

Rótulas Extremo Derecho (j)

-2000

0

2000

Viga 89

(Eje 2)

-2000

0

2000

Viga 89

(Eje 3)

-2000

0

2000

Viga 90

(Eje 3)

-2000

0

2000

Viga 90

(Eje 4)

-2000

0

2000

Viga 91

(Eje 4)

Mom

ento

Mi (t

on c

m)

-2000

0

2000

Viga 91

(Eje 5)

Mom

ento

Mj (t

on c

m)

-2000

0

2000

Viga 92

(Eje 5)

-2000

0

2000

Viga 92

(Eje 6)

-2000

0

2000

Viga 93

(Eje 6)

-2000

0

2000

Viga 93

(Eje 7)

-2000

0

2000

Viga 94

(Eje 7)

-2000

0

2000

Viga 94

(Eje 8)

-0.01 -0.005 0 0.005 0.01-2000

0

2000

Viga 95

(Eje 8)

Deformación θi (rad)-0.01 -0.005 0 0.005 0.01

-2000

0

2000

Viga 95

(Eje 9)

Deformación θj (rad)

Figura 6.28: Curvas de momento-deformación en rótulas de vigas del 4º piso

Page 138: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

121

-2000

0

2000

Viga 96

(Eje 1)

Rótulas Extremo Izquerdo (i)

-2000

0

2000

Viga 96

(Eje 2)

Rótulas Extremo Derecho (j)

-2000

0

2000

Viga 97

(Eje 2)

-2000

0

2000

Viga 97

(Eje 3)

-2000

0

2000

Viga 98

(Eje 3)

-2000

0

2000

Viga 98

(Eje 4)

-2000

0

2000

Viga 99

(Eje 4)

Mom

ento

Mi (t

on c

m)

-2000

0

2000

Viga 99

(Eje 5)

Mom

ento

Mj (t

on c

m)

-2000

0

2000

Viga 100

(Eje 5)

-2000

0

2000

Viga 100

(Eje 6)

-2000

0

2000

Viga 101

(Eje 6)

-2000

0

2000

Viga 101

(Eje 7)

-2000

0

2000

Viga 102

(Eje 7)

-2000

0

2000

Viga 102

(Eje 8)

-6 -4 -2 0 2 4 6

x 10-3

-2000

0

2000

Viga 103

(Eje 8)

Deformación θi (rad)-6 -4 -2 0 2 4 6

x 10-3

-2000

0

2000

Viga 103

(Eje 9)

Deformación θj (rad)

Figura 6.29: Curvas de momento-deformación en rótulas de vigas del 5º piso

Page 139: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

122

-2000

0

2000

Viga 104

(Eje 1)

Rótulas Extremo Izquerdo (i)

-2000

0

2000

Viga 104

(Eje 2)

Rótulas Extremo Derecho (j)

-2000

0

2000

Viga 105

(Eje 2)

-2000

0

2000

Viga 105

(Eje 3)

-2000

0

2000

Viga 106

(Eje 3)

-2000

0

2000

Viga 106

(Eje 4)

-2000

0

2000

Viga 107

(Eje 4)

Mom

ento

Mi (t

on c

m)

-2000

0

2000

Viga 107

(Eje 5)

Mom

ento

Mj (t

on c

m)

-2000

0

2000

Viga 108

(Eje 5)

-2000

0

2000

Viga 108

(Eje 6)

-2000

0

2000

Viga 109

(Eje 6)

-2000

0

2000

Viga 109

(Eje 7)

-2000

0

2000

Viga 110

(Eje 7)

-2000

0

2000

Viga 110

(Eje 8)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x 10-3

-2000

0

2000

Viga 111

(Eje 8)

Deformación θi (rad)-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x 10-3

-2000

0

2000

Viga 111

(Eje 9)

Deformación θj (rad)

Figura 6.30: Curvas de momento-deformación en rótulas de vigas del 6º piso

Page 140: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

123

-1000

0

1000

Viga 112

(Eje 1)

Rótulas Extremo Izquerdo (i)

-1000

0

1000

Viga 112

(Eje 2)

Rótulas Extremo Derecho (j)

-1000

0

1000

Viga 113

(Eje 2)

-1000

0

1000

Viga 113

(Eje 3)

-1000

0

1000

Viga 114

(Eje 3)

-1000

0

1000

Viga 114

(Eje 4)

-1000

0

1000

Viga 115

(Eje 4)

Mom

ento

Mi (t

on c

m)

-1000

0

1000

Viga 115

(Eje 5)

Mom

ento

Mj (t

on c

m)

-1000

0

1000

Viga 116

(Eje 5)

-1000

0

1000

Viga 116

(Eje 6)

-1000

0

1000

Viga 117

(Eje 6)

-1000

0

1000

Viga 117

(Eje 7)

-1000

0

1000

Viga 118

(Eje 7)

-1000

0

1000

Viga 118

(Eje 8)

-1 -0.5 0 0.5 1

x 10-4

-1000

0

1000

Viga 119

(Eje 8)

Deformación θi (rad)-1 -0.5 0 0.5 1

x 10-4

-1000

0

1000

Viga 119

(Eje 9)

Deformación θj (rad)

Figura 6.31: Curvas de momento-deformación en rótulas de vigas del 7º piso

Page 141: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

124

0 50 100 150 200 250 300 350 4000

1

2

3

4

5

6

7

EH columnas (ton cm)

Núm

ero

de P

isos

Figura 6.32: Energía disipada en cada piso por hitéresis de las columnas

0 500 1000 1500 2000 2500 3000 35000

1

2

3

4

5

6

7

EH vigas (ton cm)

Núm

ero

de P

isos

Figura 6.33: Energía disipada en cada piso por hitéresis de las vigas

Page 142: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

125

0 500 1000 1500 2000 2500 3000 3500 40000

1

2

3

4

5

6

7

EH total (ton cm)

Núm

ero

de P

isos

Figura 6.34: Energía total disipada por hitéresis en cada piso

0 500 1000 1500 2000 2500 3000 3500 40000

1

2

3

4

5

6

7

EH (ton cm)

Núm

ero

de P

isos

Columnas Vigas

Total

Figura 6.35: Gráfico comparativo de las energías disipadas por hitéresis en cada piso

Page 143: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

126

6.4 Interpretación de resultados

El análisis numérico del marco indica que los daños se concentran principalmente entre el primero y cuarto piso del edificio.

En las curvas de energía disipada por histéresis (Figs. 6.32 a 6.35), se aprecia que el daño en las vigas aumenta en forma progresiva en altura. En cambio, las columnas que más daño sufren son las de los pisos primero y cuarto.

Como se aprecia en las Figuras 6.11 y 6.12, todas las columnas del primer piso fluyen en forma significativa sólo en sus extremos inferiores. El nodo superior no registra comportamiento inelástico. En el segundo y tercer piso la incursión en rango plástico de las columnas es menor. Las columnas del cuarto piso, las otras que sufrieron daños significativos (Figs. 6.17 y 6.18), fluyen casi sólo en su extremo superior, con la excepción de una pequeña fluencia de las columnas 29 y 35 en el extremo inferior. Esto se debe principalmente a la influencia que tienen los modos altos en la estructura. Las columnas de los pisos quinto y sexto (Figs. 6.19 a 6.22) sólo sufren daños menores, mientras que las del séptimo piso (Figs. 6.23 y 6.24) no sufren daño alguno.

Las vigas en un mismo piso sufren un daño similar entre ellas, como se aprecia de la Figuras 6.25 a 6.30. Sólo las vigas del último piso del edificio no tienen comportamiento inelástico (Fig. 6.31).

Si bien el modelo analizado es capaz de representar lo sucedido durante un movimiento sísmico en un marco, existen algunas variaciones entre los resultados del análisis y el comportamiento real del edificio. La principal de ellas es el daño de las columnas, ya que en el edificio real este se concentra principalmente en las del cuarto piso, y no en las del primero como en el modelo. Las diferencias entre el modelo analizado y el real pueden deberse a:

1. Las columnas del edificio real fallaron por un mecanismo de corte, debido a la falta de confinamiento en las columnas. Esto va contra el actual criterio de diseño según el cual la falla flexural debe preceder la falla por corte. Por esto el modelo presentado representa una falla axial-flexural de las columnas, lo que explica la diferencia entre las capacidades reales y las del modelo.

Page 144: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

127

2. En el edificio real tridimensional se produjo un mecanismo torsional durante el movimiento sísmico, producto de factores accidentales que hacen que una estructura nominalmente simétrica no se comporte como tal. Esto influye directamente en como se reparten los esfuerzos en altura durante el movimiento sísmico. Como el modelo es plano, se debe hacer un estudio de las propiedades de este mecanismo torsional particular para poder incluir este efecto en una modelación plana, como cambiar las rigideces de los pisos o sus capacidades.

3. La presencia de muros en el primer piso puede influir en el comportamiento sísmico del edificio, el cual no se considera en la modelación basada en un marco flexural.

4. La sobre-resistencia que pueden experimentar algunos elementos, produce que los esfuerzos reales salgan fuera de la curva de interacción calculada. Para considerar este efecto habría que determinar cuáles elementos desarrollan esta capacidad y así escalar la curva de interacción que se utiliza en el modelo.

5. Algunos elementos pueden haber experimentado una falla frágil (especialmente por corte), lo que se traduce en una brusca disminución de su rigidez post-fluencia. Los elementos del modelo consideran una falla dúctil, y por eso la rigidez post-fluencia del elemento y de sus rótulas es la misma que la del elemento en estado elástico inicial.

En la Figura 6.36 se hace una comparación entre la energía disipada por histéresis del marco analizado con el espectro de energía del registro de Northridge.(Fig. 6.6). En esta figura se aprecia que la energía disipada por las columnas se acerca al espectro correspondiente a una ductilidad µ=1.5. Sin embargo la energía disipada por las vigas se encuentra muy por sobre los espectros mostrados. Como se mostró en el Capítulo III, los espectros de edificios de corte en las frecuencias intermedias se encuentran aproximadamente en el rango de valores de los espectros para sistemas de un grado de libertad. Sin embargo estos edificios sólo consideran la energía disipada por las columnas, ya que las vigas son infinitamente rígidas. Como el marco sufre daños significativos, las vigas disipan una cantidad importante de energía por histéresis, lo que explica las diferencias con los espectros calculados para sistemas de un grado de libertad.

Page 145: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

128

0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10 20 50 1000.2

0.5

1

2

5

10

20

50

100

200

µ=1.5

µ=2

µ=3

µ=5

µ=10

Frecuencia (Hz)

Eh1/

2 (cm

/seg

)

←Vigas

Columnas→

Total→

Figura 6.36: Espectro de energía por histéresis para el registro medido en la base del edificio (Northridge, 1994), componente horizontal; y energía disipada por histéresis para el marco analizado (*)

Page 146: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

129

VII. CONCLUSIONES

Los resultados presentes en este trabajo corresponden al análisis e implementación de modelos no-lineales que permitan predecir el comportamiento real de una estructura que se ve sometida a un movimiento sísmico. Además se hace un estudio de la disipación de energía por histéresis de edificios de corte, con lo que se logra obtener espectros de energía y compararlos con los correspondientes a los sistemas de un grado de libertad.

Se utilizan cuatro registros sísmicos para obtener espectros de disipación de energía por histéresis. Con cada registro se analizan 29 edificios entre dos y cien pisos, de forma que se cubra un rango de frecuencias fundamentales entre 0.1 y 5 Hz. En general los cuatro registros analizados muestran un comportamiento similar, el cual podemos resumir en:

1. El mejor ajuste del espectro de edificios se encuentra en la zona de frecuencias donde existe mayor disipación de energía, debido a que en esta zona el movimiento sísmico de los edificios está regido principalmente por el modo fundamental de la estructura, con una menor participación de los modos altos.

2. Para frecuencias bajas (sistemas flexibles), los edificios disipan más energía que los sistemas de un grado de libertad con igual frecuencia fundamental, ya que la influencia de los modos altos en la respuesta de los edificios se hace más importante.

3. Los registros impulsivos presentan un mejor ajuste entre el espectro de edificios y el de sistemas de un grado de libertad. Esto se debe a que el contenido de frecuencias (espectro en frecuencia de Fourier) en estos registros es menor que en los registros más ruidosos (como los chilenos estudiados en esta investigación). Consecuentemente existe una mayor participación del modo fundamental y una mejor distribución de las disipaciones en altura.

Si bien existen diferencias entre los dos espectros comparados, se muestra que a se puede lograr determinar la disipación de energía de edificios a partir de los espectros calculados para sistemas de un grado de libertad. Para esto hay mejorar los códigos de diseño para lograr que el edificio responde principalmente a su modo fundamental de vibración.

Page 147: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

130

Para poder simular en forma precisa, pero al mismo tiempo con una modelación sencilla y transparente, se crean dos macro-elementos no lineales, uno correspondiente a las vigas y el otro a las columnas. Estos elementos se utilizan para crear marcos flexurales planos. Otros modelos existentes para modelar estos marcos son los que van desde modelos lineales simplificados hasta los que utilizan elementos finitos no-lineales.

Las ventajas de la modelación implementada en este estudio con respecto a otras existentes se pueden resumir en:

1. El modelo de marco flexural con macro-elementos es mucho más preciso que los métodos simplificados, con un costo relativamente bajo. Además da cuenta detalladamente donde y cuanto fue el daño sufrido por la estructura.

2. Comparado con una modelación en la que se utilizan las rótulas y los elementos elásticos en forma separada, el modelo implementado es mucho más estable, ya que no incorpora los grados de libertad internos de las rótulas, y por lo tanto no aparecen los modos altos que hacen que el método de integración se inestabilice. Además la modelación estudiada se implementa con muchos menos grados de libertad que en la que se incluyen las rótulas y los elementos elásticos por separado.

3. Comparada con una modelación en la que se utilizan elementos finitos, el modelo de marco flexural con macro-elementos es más transparente y sencillo para el usuario, ya que la forma de ingresar los datos es muy similar a la que se utilizaría para la misma estructura lineal.

El análisis del edificio del Capítulo VI muestra las aplicaciones prácticas que puede tener el modelo implementado. En este se aprecian, p.e., como las columnas del cuarto piso soportan daños significativos, mientras que las del segundo y tercer piso sufren deterioros menores.

La implementación de los macro-elementos planos de este estudio puede ser extendida al caso tridimensional, con un enfoque algorítmico similar al explicado en el Capítulo V. Con esto se podrían determinar comportamientos torsionales que no pueden ser simulados con el modelo plano.

Page 148: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

131

Este trabajo puede además servir como base para la creación de modelos en los que se reemplazan las rótulas no-lineales por elementos tipo fibra. Con esta mejora se obtiene una modelación más precisa de la transición entre el estado elástico y el plástico de las rótulas, especialmente en el caso del macro-elemento columna.

Page 149: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

132

BIBLIOGRAFÍA

1. Chopra, Anil K. (1995), Dynamics of Structures, Prentice Hall, New Jersey.

2. Comisión de Diseño Estructural en Hormigón Armado y Albañilerías (1997), Código de Diseño en Hormigón Armado, Basado en el ACI 318-95, Cámara Chilena de la Construcción, Instituto Chileno del Cemento y del Hormigón, Corp. de Investigación de la Construcción, Santiago, Chile.

3. De la Llera J.C., Chopra A.K. (1995), A Simplified Model for Analysis and Design of Asymetric-plan Buildings, Earthquake Engineering and Structural Dynamics, 24 (4), 573-594.

4. De la Llera, J.C. (1998), Apuntes del Curso “ICE-3722 Dinámica Estructural”, Dictado el 1er Semestre de 1998, Escuela de Ingeniería, Pontificia Universidad Católica de Chile.

5. De la Llera J.C., Chopra A.K. (1998), Evaluation of Seismic Code Provisions Using Strong-Motion Building Records from the 1994 Northridge Earthquake, Report UBC/EERC-97/16, Earthquake Engineering Reserch Center, University of California at Berkeley.

6. De la Llera J.C., Inaudi J., Lüders C. (1998), Análisis y Diseño de Sistemas de Aislación Sísmica y Disipación de Energía, Pontificia Universidad Católica de Chile.

7. De la Llera, J.C. (1999), Apuntes del Curso “ICE-3732 Dinámica Computacional”, Dictado el 1er Semestre de 1999, Escuela de Ingeniería, Pontificia Universidad Católica de Chile.

8. De la Llera J.C., Vásquez J., Chopra A.K., Almazán J.L. (2000), A Macro-Element Model for Inelastic Building Analysis, Earthquake Engineering and Structural Dynamics, 29 (12), 1725-1757.

Page 150: MODELACIÓN, ANÁLISIS NO-LINEAL Y DISIPACIÓN …jcaceres/research/PDFs/jpcaceres... · NO-LINEAL Y DISIPACIÓN DE ENERGÍA DE ESTRUCTURAS PLANAS SOMETIDAS A TERREMOTOS JUAN PABLO

133

9. García E., Riddell R. (1995), Espectros de Energía Disipada por Histéresis en Sistemas Inelásticos Sometidos a Terremotos, Departamento de Ingeniería Estructural, Escuela de Ingeniería, Pontificia Universidad Católica de Chile.

10. Gupta A., Krawinkler H. (2000), Estimation of seismic drift demands for frame structures, Earthquake Engineering and Structural Dynamics, 29, 1287-1305.

11. International Conference of Building Officials (1994), Uniform Building Code, 1994 Edition, Whittier, California.

12. Ogata, K. (1992), System Dynamics, 2nd ed. Prentice Hall, Englewood Cliffs, N.J.

13. Przemieniecki, J.S. (1968), Theory of Matrix Structural Analysis, Dover Publications, Inc., New York.

14. Riddell, R. (1999), Apuntes del Curso “ICE-3742 Análisis Sísmico”, Dictado el 1er Semestre de 1999, Escuela de Ingeniería, Pontificia Universidad Católica de Chile.

15. U.S. Department of Commerce (1973), San Fernando, California, Earthquake of February 9, 1971, Efects on Building Structures, Washington, D.C., 1, 359-393.