model paper-4.docx

Upload: s-kalu-sivalingam

Post on 06-Jul-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 Model Paper-4.docx

    1/122

    1

    Contents

    S.No. Particulars Page No.

    12

    3

    4

    5 Gist of Chapters

    6 Marking Scheme

    !mportant "uestions

    # Sol$e% "uestions &ith $alue points

    ' (ips for scoring &ell

  • 8/18/2019 Model Paper-4.docx

    2/122

    2 M)*+!NG SC,-M- / C0)SS !! M)(,-M)(!CS

    Course Structure

    Unit Topic Marks

    !. *elations an% /unctions 1

    !!. )lgera 13

    !!!. Calculus 44

    !. ectors an% 3 Geometr7 1

    . 0inear Programming 6

    !. Proailit7 1

    Total 100

    Unit I: Relations and Functions

    1. Relations and Functions

     (7pes of relations8 re9e:i$e; s7mmetric; transiti$e an% e"ui$alence relations. ne to onean% onto functions; composite functions; in$erse of a function.

  • 8/18/2019 Model Paper-4.docx

    3/122

    3

    Unit III: Calculus

    1. Continuit# and "i$erentia!ilit#

    Continuit7 an% %ierentiailit7; %eri$ati$e of composite functions; chain rule; %eri$ati$es of in$erse trigonometric functions; %eri$ati$e of implicit functions. Concept of e:ponentialan% logarithmic functions.

    eri$ati$es of logarithmic an% e:ponential functions. 0ogarithmic %ierentiation;%eri$ati$e of functions e:presse% in parametric forms. Secon% or%er %eri$ati$es. *olleDsan% 0agrangeDs Mean alue (heorems ?&ithout proof@ an% their geometric interpretation.

    2. pplications o% "erivatives

    )pplications of %eri$ati$es8 rate of change of o%ies; increasingE%ecreasing functions;tangents an% normals; use of %eri$ati$es in appro:imation; ma:ima an% minima ?=rst%eri$ati$e test moti$ate% geometricall7 an% secon% %eri$ati$e test gi$en as a pro$aletool@. Simple prolems ?that illustrate asic principles an% un%erstan%ing of the suBect as

    &ell as reallife situations@.

    &. Integrals

    !ntegration as in$erse process of %ierentiation. !ntegration of a $ariet7 of functions 7sustitution; 7 partial fractions an% 7 parts; -$aluation of simple integrals of thefollo&ing t7pes an% prolems ase% on them.

    e=nite integrals as a limit of a sum; /un%amental (heorem of Calculus ?&ithout proof@.

  • 8/18/2019 Model Paper-4.docx

    4/122

    4

    Unit I,: ,ectors and T(ree-"imensional eometr#

    1. ,ectors

    ectors an% scalars; magnitu%e an% %irection of a $ector. irection cosines an% %irectionratios of a $ector. (7pes of $ectors ?e"ual; unit; >ero; parallel an% collinear $ectors@;position $ector of a point; negati$e of a $ector; components of a $ector; a%%ition of $ectors; multiplication of a $ector 7 a scalar; position $ector of a point %i$i%ing a linesegment in a gi$en ratio. e=nition; Geometrical !nterpretation; properties an% applicationof scalar ?%ot@ pro%uct of $ectors; $ector ?cross@ pro%uct of $ectors; scalar triple pro%uct of $ectors.

    2. T(ree - dimensional eometr#

    irection cosines an% %irection ratios of a line Boining t&o points. Cartesian e"uation an%$ector e"uation of a line; coplanar an% ske& lines; shortest %istance et&een t&o lines.Cartesian an% $ector e"uation of a plane. )ngle et&een ?i@ t&o lines; ?ii@ t&o planes; ?iii@ aline an% a plane. istance of a point from a plane.

    Unit ,: /inear rogramming

    1. /inear rogramming

    !ntro%uction; relate% terminolog7 such as constraints; oBecti$e function; optimi>ation;%ierent t7pes of linear programming ?0.P.@ prolems; mathematical formulation of 0.P.

    prolems; graphical metho% of solution for prolems in t&o $ariales; feasile an%infeasile regions ?oun%e% an% unoun%e%@; feasile an% infeasile solutions; optimalfeasile solutions ?up to three nontri$ial constraints@.

    Unit ,I: ro!a!ilit#

    1. ro!a!ilit#

    Con%itional proailit7; multiplication theorem on proailit7. in%epen%ent e$ents;total proailit7;

  • 8/18/2019 Model Paper-4.docx

    5/122

    5

    G!S( / C,)P(-*S

    Chapter1. *elations an% /unctions

    Introduction8

    )n7 set of or%ere% pairs ? x ; y @ is calle% a relation in x an% y . /urthermore;

    H (he set of =rst components in the or%ere% pairs is calle% the %omain of the relation.

    H (he set of secon% components in the or%ere% pairs is calle% the range of the relation.

    Relation8 0et ) an% < e t&o sets. (hen a relation * from set ) to Set < is a suset of 

     A × B ..

    T#pes o% relations: -

    Empty relation: ) relation * in a set ) is calle% empty relation; if no element of ) is

    relate% to an7 element of ) i

    Universal relation 8) relation * in a set ) is calle% universal relation; if each element of )

    is relate% to e$er7 element of ); i.e.; * ) I ).

    *+uivalence relation.8 ) relation * in a set ) is sai% to e an equivalence relation if * is

    re9e:i$e; s7mmetric an% transiti$e

    ) relation * in a set ) is calle%?i@ refexive; if ?a; a@ ∈  *; for e$er7 a   ∈ );?ii@ symmetric if ?a; @ ∈  * implies that ?b, a@   ∈  *; for all a;   ∈  ).?iii@ transitive if ?a; @ ∈  * an% ?; c@   ∈  * implies that ?a; c@   ∈  *; for all a, b, c   ∈  

    ).Function:

    ) %unction is a relation et&een a set of inputs an% a set of permissile outputs &ith the

    propert7 that each input is relate% to e:actl7 one output. )n e:ample is the %unction that

    relates each real numer : to its s"uare :2.

    ) %unction is a relation for &hich each $alue from the set the =rst components of the

    or%ere% pairs is associate% &ith e:actl7 one $alue from the set of secon% components of

    the or%ere% pair.

  • 8/18/2019 Model Paper-4.docx

    6/122

    6

    Types o unctions:

    One-one or injective3:

    ) function f 8 J is %e=ne% to e one-one ?or injective@; if the images

    of %istinct elements of un%er f are %istinct; i.e.; for e$er7 a, b in ; f ?a@ f ?@

    implies a  b. ther&ise; f is calle% many-one.

  • 8/18/2019 Model Paper-4.docx

    7/122

    4ori5ontal line test:

     (o check the inBecti$it7 of the function; f ?:@ 2:. ra& a hori>ontal line such that this linecuts the graph onl7 at one place. Such t7pes of functions are kno&n as oneone functions.

    !n this case &here the line cuts the graph of a function at more than one place; thefunctions are not oneone.

    Onto or surjective3:

    ) function f 8 J is sai% to e onto ?or surjective@; if e$er7 element of J is the image of

    some element of un%er f ; i.e.; for e$er7 y in J; there e:ists an element x in such that f

    ? x @  y .

    Bijective unction:

    ) function f 8 J is sai% to e one-one an% onto ?or bijective@; if f is oth oneone an% onto.

  • 8/18/2019 Model Paper-4.docx

    8/122

  • 8/18/2019 Model Paper-4.docx

    9/122

    '

    Inverse o a Bijective Function

    0et f8 ) K < e a function. !f; for an aritrar7 : L ) &e ha$e f?:@ 7 L

  • 8/18/2019 Model Paper-4.docx

    10/122

    1

    Chapter 2. !n$erse (rigonometric /unctions

    !n$erse trigonometric functions or c7clometric functions are the socalle% in$erse

    functions of the trigonometric functions; &hen their %omain are restricte% to principal

    $alue ranch to make the trigonometric functions iBecti$e. (he principal in$erses are

    liste% in the follo&ing tale.

    Name Rsual

    notation

    e=nitio

    n

    omain of x 

    for real result

    *ange of usual

    principal $alue

    *ange of usual

    principal $alue

  • 8/18/2019 Model Paper-4.docx

    11/122

    11

    ?radians@ ?degrees@

    arcsine  y   sin1  x  x  

    sin  y 1 T x  T 1 UE2 T y  T UE2 'V T y  T 'V

    arccosine  y   cos1  x  x  

    cos  y 1 T x  T 1 T y  T U V T y  T 1#V

    arctangen

    t y   tan1  x 

     x  

    tan  y 

    all real

    numersUE2 W y  W UE2 'V T y  T 'V

    arccotangent

     y   cot1  x   x  cot  y 

    all realnumers

    W y  W U V W y  W 1#V

    arcsecant  y   sec1  x  x  

    sec  y 

     x  T 1 or 1 T

     x 

    T y  W UE2 or

    UE2 W y  T U

    V T y  W 'V or 'V

    W y  T 1#V

    arccoseca

    nt y   csc1  x 

     x  

    csc  y 

     x  T 1 or 1 T

     x 

    UE2 T y  W or

    W y  T UE2

    'V T y  T V or V

    W y  T 'V

    Chapter 3. Matrices

    e=nition8 ) matri: ) is %e=ne% as an or%ere% rectangular arra7 of numers in m ro&s

    an% n columns.

    http://en.wikipedia.org/wiki/Radianhttp://en.wikipedia.org/wiki/Degree_(mathematics)http://en.wikipedia.org/wiki/Sinehttp://en.wikipedia.org/wiki/Cosinehttp://en.wikipedia.org/wiki/Trigonometric_functionshttp://en.wikipedia.org/wiki/Cotangenthttp://en.wikipedia.org/wiki/Trigonometric_functions#Reciprocal_functionshttp://en.wikipedia.org/wiki/Cosecanthttp://en.wikipedia.org/wiki/Degree_(mathematics)http://en.wikipedia.org/wiki/Sinehttp://en.wikipedia.org/wiki/Cosinehttp://en.wikipedia.org/wiki/Trigonometric_functionshttp://en.wikipedia.org/wiki/Cotangenthttp://en.wikipedia.org/wiki/Trigonometric_functions#Reciprocal_functionshttp://en.wikipedia.org/wiki/Cosecanthttp://en.wikipedia.org/wiki/Radian

  • 8/18/2019 Model Paper-4.docx

    12/122

    12

    1. *o& matri:8 ) matri: can ha$e a single ro& ) X a11 a12  a13  Y a1nZ2. Column matri:8 ) matri: can ha$e a single column ) 3. [ero or null matri:8 \ ) matri: is calle% the >ero or null matri: if all the entries are .4. S"uare matri:8 ) matri: for &hich hori>ontal an% $ertical %imensions are the same

    ?i.e.; an matri:@.5. iagonal matri:8 ) s"uare matri: ) is calle% %iagonal matri: if aiB for .6. Scalar matri:8 ) %iagonal matri: ) is calle% the scalar matri: if all its %iagonal

    elements are e"ual.. !%entit7 matri: 8\ ) %iagonal matri: ) is calle% the i%entit7 matri: if aiB 1 for i B ; it

    is %enote% 7 !n.#. Rpper triangular matri:8 ) s"uare matri: ) is calle% upper triangular matri: if aiB

    for'. 0o&er triangular matri: 8 ) s"uare matri: ) is calle% lo&er triangular matri: if aiB

    for

    •  Matri: operations

    1. e=nition8 (&o matrices ) an% < can e a%%e% or sutracte% if an% onl7 if their%imensions are the same ?i.e. oth matrices ha$e the i%entical amount of ro&s an%columns.

    2. )%%ition!f ) an% < are matrices of the same t7pe then the sum is a matri:C otaine% 7 a%%ing the correspon%ing elements aijFbij i.e. )F< C if aijFbij =cij 

    1. Matri: a%%ition is commutati$e ; associati$e an% %istriuti$e o$er multiplication

    ) F < < F )

    ) F ?< F C@ ?)F

  • 8/18/2019 Model Paper-4.docx

    13/122

    13

    correspon%ing entries in the jth column of < an% summing the n terms. (he elements of C

    are8

    Note8 ):< is not e"ual to

  • 8/18/2019 Model Paper-4.docx

    14/122

    14

    Chapter 4 eterminants

    -$er7 s"uare matri: ) is associate% &ith a numer; calle% its %eterminant an% it

    is %enote% 7 %et ?)@ or ^)^ .

    nl7 s"uare matrices ha$e %eterminants. (he matrices &hich are not s"uare

    %o not ha$e %eterminants

    ?i@ First 6rder "eterminant !f ) XaZ; then %et ?)@ ^)^ a

    ?ii@ Second 6rder "eterminant

    ^)^ a11a22 \ a21a12

    ?iii@ T(ird 6rder "eterminant

    *valuation o% "eterminant o% S+uare Matri7 o% 6rder & !# Sarrus Rule

     then %eterminant can e forme% 7 enlarging the matri: 7 a%Boining

    the first t&o columns on the right an% %ra& lines as sho& elo& parallel an%

    perpen%icular to the %iagonal.

     (he $alue of the %eterminant; thus &ill e the sum of the pro%uct of element. in line

    parallel to the %iagonal minus the sum of the pro%uct of elements in line perpen%icular

    to the line segment. (hus;

    _ a11a22a33 F a12a23a31 F a13a21a32 \ a13a22a31 \ a11a23a32 \

    a12a21a33.

  • 8/18/2019 Model Paper-4.docx

    15/122

    15

    roperties o% "eterminants

    ?i@ (he $alue of the %eterminant remains unchange%; if ro&s are change% intocolumns an% columns are change% into ro&s e.g.; ^)Q^ ^)^

    ?ii@ !n a %eterminant; if an7 t&o ro&s ?columns@ are inter change%; then the $alue of the

    %eterminant is multiplie% 7 1.

    ?iii@ !f t&o ro&s ?columns@ of a s"uare matri: ) are proportional; then ^)^ .

    ?i$@ ^ero; then its $alue

    is >ero. ?i:@ !f an7 t&o ro&s ?columns@ of a %eterminant are i%entical; then its $alue

    is >ero.

  • 8/18/2019 Model Paper-4.docx

    16/122

    16

    ?:@ !f each element of ro& ?column@ of a %eterminant is e:presse% as a sum of t&o

    or more terms; then the %eterminant can e e:presse% as the sum of t&o or more

    %eterminants.

    Important Results on "eterminants

    ?i@ ^)

  • 8/18/2019 Model Paper-4.docx

    17/122

    1

    ?i:@ !n general; ^< F C^ ` ^ero

  • 8/18/2019 Model Paper-4.docx

    18/122

    1#?ii@ (he sum of the pro%uct of elements of an7 ro& ?or column@ of a %eterminant &ith

    the

    cofactors of the correspon%ing elements of the same ro& ?or column@ is _

    pplications o% "eterminant in eometr#

    0et three points in a plane e )?:1; 71@;

  • 8/18/2019 Model Paper-4.docx

    19/122

    1')1 ?)@ )1 <

    ST*S

    -$aluate . *efer the note gi$en elo&.

    . -$aluate the cofactors of elements of ).

    i. /orm the a%Boint of ) as the matri: of cofactorsiv. Calculate in$erse of ) an% .

    N(- /rom the ao$e it is clear that the e:istence of a solution %epen%s on the

    $alue of the %eterminant of ). (here are three cases8

    1. !f the then the s7stem is consistent &ith uni"ue solution gi$en 7

    2. !f ?) is singular@ an% a%B ) .< then the solution %oes not e:ist. (he s7stem is

    inconsistent.

    &. !f ?) is singular@ an% a%B ) .< then the s7stem is consistent &ith in=nitel7

    man7 solutions.to =n% these solutions put > k in t&o of the e"uations an%

    sol$e them 7 matri: metho%.

    For (omogeneous s#stem o% linear e+uations < = 0 > = 03

    1. !f the then the s7stem is consistent &ith tri$ial solution : ; 7 ; >

    2. !f ?) is singular@ an% a%B ) .< then the solution %oes not e:ist. (he s7stem is

    inconsistent.

    &. !f ?) is singular@ an% a%B ) .< then the s7stem is consistent &ith in=nitel7

    man7 solutions. to =n% these solutions put > k in t&o of the e"uations an%

    sol$e them 7 matri: metho%.

    Chapter 5 Continuit7 an% ierentiailit7

  • 8/18/2019 Model Paper-4.docx

    20/122

    2"e?nition

    ) function f is sai% to e continuous at : a if 

     ) function is sai% to e continuous on the inter$al Xa, bZ if it is continuous at eachpoint in the inter$al.

    e=nition of %eri$ati$e 8 !f 7 f?:@ then 71 

    ) function f is %ierentiale if it is continuous.

    hen 0, b *, oth e:ist an% are e"ual then f is sai% to e %eri$ale or

    %ierentiale.

  • 8/18/2019 Model Paper-4.docx

    21/122

    21

    Parametric %ierentiation8 if 7 f?t@; : g?t@ then;

    0ogarithmic %ierentiation8 !f 7 f?:@g?:@ then take log on oth the si%es.

    rite log7 g?:@ logXf?:@Z. ierentiate 7 appl7ing suitale rule for %ierentiation.

    !f 7 is sum of t&o %ierent e:ponential function u an% $; i.e. 7 u F $. /in% 7 using

    logarithmic %ierentiation separatel7 then e$aluate.

    2

    2

    d y

    dx   ,igher eri$ati$es8 (he %eri$ati$e of =rst %eri$ati$e is calle% as the secon%

    %eri$ati$e. !t is %enote% 7 72 or 7QQ or 

    /*MR0)S / -*!)(!-S

    1.( )   0

    d c

    dx=

    2.( )   1n n

    d  x nx

    dx

    −=

    3.1

    1n n

    d n

    dx x x   +−   = ÷

      4.( )   1

    d  x

    dx=

    5.2

    1 1d 

    dx x x

    −  

    = ÷   6. ( )

    1

    2

     xdx   x=

    7.( )   log x x

    d a a a

    dx=

    8.( ) x x

    d e e

    dx=

    9.( )

      1log

    d  x

    dx x=

    10.( )sin cos

    d  x x

    dx=

    11.( )cos sin

    d  x x

    dx= −

    12.( )   2tan sec

    d  x x

    dx=

    13.( )cos cos cotd  ec x ec x x

    dx= −

    14.( )s tand  ec x sec x x

    dx=

    15.( )   2cot

    d  x cosec x

    dx= −

    16.( )1

    2

    1sin

    1

    d  x

    dx   x

    − =−

    17.( )1

    2

    1cos

    1

    d  x

    dx   x

    −   −=− 18.

    ( )1 21

    tan1

    d  x

    dx x

    − =+

    19.( )1 2

    1cot

    1

    d  x

    dx x

    −   −=+ 20.

    ( )12

    1sec

    1

    d  x

    dx   x x

    − =−

  • 8/18/2019 Model Paper-4.docx

    22/122

  • 8/18/2019 Model Paper-4.docx

    23/122

    23

    . e =rst check &hether f?:@ satis=es con%itions of *olleQs (heorem or not.

    . ierentiate the function

    . -"uate the %eri$ati$es &ith [ero to get x .

    . !f x elongs to gi$en inter$al then; *olleQs (heorem $eri=e%.

     (he follo&ing rules ma7 e helpful &hile sol$ing the prolem.

    . ) pol7nomial function is e$er7&here continuous an% %ierentiale

    . (he e:ponential function; sine an% cosine function are e$er7&here continuous an%

    %ierentiale.

    . 0ogarithmic function is continuous an% %ierentiale in its %omain.

    . (an : is not continuous

    Chapter 6 )pplication of eri$ati$es

    Motion in a straig(t /ine

    Suppose a particle is mo$ing in a straight line

     (ake OQ as origin in timeOtQ the position of the particle e at ) &here ) s an% in time tFdt the

    position of the particle e at < &here

  • 8/18/2019 Model Paper-4.docx

    24/122

    24

    sFdsf ?tFdt@

    lgorit(m:

    1. Sol$ing an7 prolem =rst; see &hat are gi$en %ata.

    2. hat "uantit7 is to e foun%

    3. /in% the relation et&een the point no. ?1@ b ?2@.

    4. ierentiate an% calculate for the =nal result.

    )PP*!M)(!NS; !//-*-N(!)0S )N -***S

    • )solute error

    • *elati$e error

    • Percentage error )ppro:imation 1. (ake the "uantit7 gi$en in the "uestion as 7 Fk f?: F h@

    2. (ake a suitale $alue of : nearest to the gi$en $alue. Calculate

    3. Calculate 7 f?:@ at the assume% $alue of :.

    4. calculate at the assume% $alue of :

    5. Rsing %ierential calculate

    6. =n% the appro:imate $alue of the "uantit7 aske% in the "uestion as 7 Fk ; from the

    $alues of 7 an% e$aluate% in step 3 an% 5.

     (angents an% normals \

    •  Slope of the tangent to the cur$e 7 f?:@ at the point ?:;7@ is gi$en 7 m.

    • -"uation of the tangent to the cur$e 7 f?:@ at the point ?:;7@ is ?7 7@ m ?: \ :@

    • Slope of the normal to the cur$e 7 f?:@ at the point ?:;7@ is gi$en 7 1 E m

    • -"uation of the normal to the cur$e 7 f?:@ at the point ?:;7@ is ?7 7@ ? 1 Em@ ?:

    \ :@

  • 8/18/2019 Model Paper-4.docx

    25/122

  • 8/18/2019 Model Paper-4.docx

    26/122

    26

    !n this section &e inten% to see ho& &e can use %eri$ati$e of a function to %etermine &here it is

    increasing an% &here it is %ecreasing.

    Necessar7 con%ition8 if f?:@ is an increasing function on?a; @ then the tangent at e$er7 point on the

    cur$e 7f?:@ makes an acute angle &ith the positi$e %irection of : a:is.

     

    !t is e$i%ent from =g that if f?:@ is a %ecreasing function on ?a; @; then tangent at e$er7 point on

    the cur$e 7f?:@ makes an% otuse angle &ith the positi$e %irection of : a:is.

     

     (hus; fQ?:@ ?W@ for all is the necessar7 con%ition for a function f?:@ to e increasing

    ?%ecreasing@ on a gi$en inter$al ?a; @. in other &or%s; if it is gi$en f?:@ is increasing ?%ecreasing on

    ?a; @; then &e can sa7 that fQ?:@?W@.

     SUFFICI*9T C69"ITI69

    T(eorem  Let f be a di$erentiable real function dened on an open interval %a, b&.

    %a& "f f%x& + for all , then f%x& increasing on %a, b&

    %b& "f f%x& * for all , then f%x& decreasing on %a, b&

    /6RIT4M F6R FI9"I9 T4* I9T*R,/ I9 @4IC4 FU9CTI69 IS I9CR*SI9 6R "*CR*SI9.

    0et f?:@ e a real function. (o =n% the inter$als of monotonicit7 of f?:@ &e procee% as follo&s8

    Step 1=n% fQ?:@.

    Step !!Put fQ?:@ an% sol$e this ine"uation./or the $alues of : otaine% in step !! f?:@ is increasing an% for the remaining points in its

    %omain it is %ecreasing.r

    !. Calculate fQ?:@ for critical points#. 0et c1; c2; c3 are the roots of fQ?:@ .'. Cut the no line at c1; c2; c3/. rite the inter$al in tale0. Consi%er an7 point in the inter$al1. See the sign of fQ?:@ in that inter$al an% accor%ingl7 %etermine the function is increasing or

    %ecreasing in that inter$al.

  • 8/18/2019 Model Paper-4.docx

    27/122

    2

    Ma7imum 0et f?:@ e the real function %e=ne on the inter$al !. then f?:@is sai% to ha$e the

    ma:imum $alue in !; if there e:ists a point a in ! such that f?:@Wf?a@ for all :

    in such a case; the numer f?a@ is calle% the ma:imum $alue of f?:@ in the inter$al !

    an% the point a is calle% a point of ma:imum $alue of f in the inter$al !.

    Minimum 0et f?:@ e the real function %e=ne on the inter$al !. then f?:@ is sai% to ha$e the

    minimum $alue in !; if there e:ists a point a ! such that

    f?:@f?a@ for all :

    !n such a case; the numer f?a@ is calle% the minimum $alue of f?:@ in the inter$al ! an%

    the point a is calle% a point of minimum $alue of f in the inter$al !.

    /6C/ M

  • 8/18/2019 Model Paper-4.docx

    28/122

    2#

    Case I.  0et f ha$e a local ma:imum $alue at :c; then f is an increasing function in the left nbd of 

     x=c i.e., for : slightl7 W c an% a %ecreasing function f   ! the right nbd of x=c i.e. for : slightl7 c.

    )lso for :c; the graph has a hori>ontal tangent.

     (hus; f %x& changes continuousl7 from F$e to \$e as increases through c.

    Case II.  0et f ha$e a local minimum $alue at :c; then f is an increasing function in the left nbd of 

     x=c i.e., for : slightl7 W c an% a %ecreasing function f   ! the right nbd of x=c i.e. for : slightl7 c.

    )lso for :c; the graph has a hori>ontal tangent.

     (h fQ%x& changes continuousl7 from F$e to F$e as

    increases through c.

    @orking rule %or ?rst derivative test

     /in% the sign of fQ?:@ &hen : is slightl7 W c an% &hen : is slightl7 c.

    !f fQ?:@ changes sign from F$e to \$e as : increases through c; then f has a local ma:imum $alue at

    :c.

    !f fQ?:@ changes sign from $e to F$e as : increases through c; then f has a local minimum $alue at

    :c.

    Second "erivative Test %or Finding /ocal Ma7ima and /ocal Minima

    Suppose a "uantit7 7 %epen%s on the another "uantit7 : in a manner sho&n in =g. it ecomes

    ma:imum at :1 an% minimum at :2. )t these points the tangent to the cur$e is parallel to the :

    a:is an% hence its slope is .

  • 8/18/2019 Model Paper-4.docx

    29/122

    2'

    Ma7ima and minima !# using second derivative test

     ust efore the ma:imum the slope is positi$e; at the minimum it is >ero an% Bust after the

    ma:imum it is negati$e. (hus %ecreases at a ma:imum an% hence the rate of change of is

    negati$e at a ma:imum.

    Minima

    Similarl7; at a minimum the slope changes from negati$e to positi$e.

    ,ence &ith increases of :. the slope is increasing that means the rate of change of slope &.r.t : is

    positi$e;

    @orking Rule:

    . /in% fQ?:@.

    . Sol$e fQ?:@ &ithin the %omain to get critical point let one of the $alue of : c.

    . Calculate fQQ?:@ at : c.

    .!f fQQ?c@ then; f?:@ is minimum at : c; an% if fQQ?c@ W ; then f?:@ is ma:imum at : c.

    Ma7ima

    Similarl7; at a ma:imum the slope changes from positi$e to negati$e.

    @orking Rule:

    . /in% fQ?:@.

    1.Sol$e fQ?:@ &ithin the %omain to get critical point let one of the $alue of : c.

    2.Calculate fQQ?:@ at : c.

    3.!f fQQ?c@ W then; f?:@ is minimum at : c; an% if fQQ?c@ W ; then f?:@ is ma:imum at : c.

    pplication o% Ma7ima and Minima to pro!lems

    @orking rule

    ?i@ !n or%er to illustrate the prolem; %ra& a %iagram; if possile. istinguish clearl7

    et&een the $ariale an% constants.

    ?ii@ !f 7 is the "uantit7 to e ma:imi>e% or minimi>e%; e:press 7 in terms of a single

    in%epen%ent $ariale &ith the help of gi$en %ata.

    ?iii@ Get %7E%: an% %27E%:2; then e"uate %7E%: get the $alue of :.

  • 8/18/2019 Model Paper-4.docx

    30/122

    3

    ?i$@ etermine the sign of %27E%:2 at : an% procee%.

  • 8/18/2019 Model Paper-4.docx

    31/122

    31

    Chapter !ntegration

    Integration is a &a7 of a%%ing slices to =n% the &hole. Integration can

    e use% to =n% areas; $olumes; central points an% man7 useful things.

     (he Chain *ule tells us that %eri$ati$e of g?f?:@@ gD?f?:@@fD?:@.

  • 8/18/2019 Model Paper-4.docx

    32/122

    32 ( \ (rigonometric function

    - \ -:ponential function

    Note that if 7ou are gi$en onl7 one function; then set the secon%

    one to e the constant function g?:@1. integrate the gi$en function

    7 using the formula

    -/!N!(- !N(-G*)0 )S 0!M!( / ) SRM

    e=nite integral is closel7 relate% to concepts like anti%eri$ati$e an%

    in%e=nite integrals. !n this section; &e shall %iscuss this relationship in

    %etail.

    e=nite integral consists of a function f?:@ &hich is continuous in a close%

    inter$al Xa; Z an% the meaning of %e=nite integral is assume% to e in

    conte:t of area co$ere% 7 the function f from ?sa7@ OaQ to OQ.

    )n alternati$e &a7 of %escriing is that the %e=nite integral

    is a limiting case of the summation of an in=nite series; pro$i%e%

    f?:@ is continuous on Xa; Z

     (he con$erse is also true i.e.; if &e ha$e an in=nite series of the ao$e

    form; it can e e:presse% as a %e=nite integral.

  • 8/18/2019 Model Paper-4.docx

    33/122

    33

     (he /un%amental (heorem of Calculus Busti=es our proce%ure of

    e$aluating an anti%eri$ati$e at the upper an% lo&er limits of integration

    an% taking the %ierence.

    Fundamental T(eorem o% Calculus

    0et f  e continuous on Xa bZ. !f 2  is an7 anti%eri$ati$e for f  on Xa bZ; then

    2 ?b@2 ?a@

    roperties

    ropert# 1:

    ropert# 2:

    Propert7 38

  • 8/18/2019 Model Paper-4.docx

    34/122

    34

    ropert#':

    ropert#):

    ropert#A:

    ropert# B:

    Propert7 #8

    1.( )

    1

    , 11

    nn   x x dx n

    n

    +

    = ≠ −+∫  2.   ( )

      1

    1 1

    1n ndx

     x n x   −−

    =−∫ 

    3.  dx x=∫  4.

    1logdx x

     x=∫ 

    5.log

     x x   aa dx

    a=∫ 

    6. x xe dx e=∫ 

    7.  sin cos x dx x= −∫  8.   cos sin x dx x=∫ 

    9.2sec tan x dx x=∫  10.

    2cos cotec x dx x= −∫ 

    11.  sec tan sec x x dx x=∫  12.   cos cot cosec x x dx ec x= −∫ 

    13.  tan log sec x dx x=∫  14.   cot log sin x dx x=∫ 

    15.  sec log sec tan x dx x x= +∫  16.   cos log cosec cotecx dx x x= −∫ 

    17.

    1

    2 2

    1tan

    dx x

    a x a a

    −    =   ÷+    ∫  18. 2 21

    log2

    dx a x

    a x a a x

    +=

    − −∫ 

    19.2 2

    1log

    2

    dx x a

     x a a x a−=− +∫  20.1

    2 2 sindx x

    aa x−    =   ÷  −∫ 

  • 8/18/2019 Model Paper-4.docx

    35/122

    35

    21.

    2 2

    2 2log

    dx x x a

     x a= + −

    −∫ 

    22.

    2 2

    2 2log

    dx x x a

     x a= + +

    +∫ 

    23.

    22 2 2 2 1sin

    2 2

     x a xa x dx a x

    a

    −    − = − +   ÷  ∫ 

    24.

    2

    2 2 2 2 2 2log2 2 x a x a dx x a x x a− = − − + −∫ 

    25.

    22 2 2 2 2 2log

    2 2

     x a x a dx x a x x a+ = + + + +∫ 

     

    Chapter #. )pplication of !ntegration

    ) plane cur$e is a cur$e that lies in a single plane. ) plane cur$e ma7 e

    close% or open.

     (he area et&een the cur$e %e=ne% 7 a positi$e function an% the :

    a:is et&een t&o $alues of 7 is calle% the %e=nite integral of f et&een

    these $alues. (he area of a rectangle is the pro%uct of length an% rea%th

    the area un%er a cur$e &ill e generate%. (his metho% is generalise% to

    %e=ne a $ariet7 of integrals that %o not %escrie area.

     (he stan%ar% approach %eals &ith a more general class of functions 7

    imagining that &e %i$i%e the inter$al et&een a an% into a large numer

    of small strips an% estimate the area of each strip to e the pro%uct of its

    &i%th an% some $alue of f?:@ for : &ithin the strip.

     (he area &ill then e something like the sum of the areas of the strips. !f

    &e then let the ma:imum strip length go to >ero; &e can hope to =n% the

    resulting sum of strip areas approach the true area.

    http://mathworld.wolfram.com/Curve.htmlhttp://mathworld.wolfram.com/Plane.htmlhttp://mathworld.wolfram.com/Curve.htmlhttp://mathworld.wolfram.com/Plane.html

  • 8/18/2019 Model Paper-4.docx

    36/122

    36

     (he stan%ar% &a7 to %o this is to let the ith strip egin at :i1 an% en% at

    :iA the area of that strip is estimate% as ?: i:i1@f?:Di@ &ith :Di an7&here in

    the strip.

    ) *iemann sum is a sum of the form Bust in%icate%8 it is a sum o$er strips

    of the &i%th of the strip times a $alue of the f?:@ &ithin the strip. (hefunction is sai% to e *iemann integrale if the sum of the area of the

    strips approaches a constant in%epen%ent of &hich arguments are use%

    &ithin each strip to estimate the area of the strip; as ma:imum strip &i%th

    goes to >ero.

     (he notation use% ao$e can e un%erstoo% from this approachA &e are

    summing the area of the in%i$i%ual strips; &hich for a $er7 small inter$al

    aroun% : of si>e %: is estimate% to e f?:@%:; an% summing this o$er allsuch strips. (he integral sign represents the sum &hich is not an or%inar7

    sum; ut the limit of or%inar7 sums as the si>e of the inter$als goes to

    >ero.

    Suppose &e ha$e a nonnegati$e function f of the $ariale :;

    %e=ne% in some %omain that inclu%es the inter$al Xa; Z &ith a W . !f f is

    sucientl7 &ell eha$e%; there is a &ell %e=ne% area enclose% et&een

    the lines : a; : ; 7 an% the cur$e 7 f?:@.

  • 8/18/2019 Model Paper-4.docx

    37/122

    3 (hat area is calle% the %e=nite integral of f %: et&een : a an% : ?of 

    course onl7 for those functions for &hich it makes sense@.

    !t is usuall7 &ritten as

    !f c lies et&een a an% &e o$iousl7 ha$e

    rea !eteen to curves8

      (here are actuall7 t&o cases that &e are going to e looking

    at.

     !n the =rst case &e &ant to %etermine the area et&een

    an% on the inter$al Xa,bZ. e are also going to assume

    that .

     

    13

     (he secon% case is almost i%entical to the =rst case. ,ere &e are going to

    %etermine the area et&een an% on the inter$al

    Xc,dZ &ith .

  • 8/18/2019 Model Paper-4.docx

    38/122

    3#

     

    !n this case the formula is;

     (he area of a triangle is an e:tension of area of a plane cur$e.

    Chapter ' !//-*-N(!)0 -]R)(!NS

  • 8/18/2019 Model Paper-4.docx

    39/122

    3'

    e=nition8 )n e"uation containing an in%epen%ent $ariale; a %epen%ent

    $ariale an% %ierential coecients of the %epen%ent $ariale &ith

    respect to the in%epen%ent $ariale is calle% a %ierential e"uation -.

     (he *-* of a %ierential e"uation is the highest %eri$ati$e that appears

    in the e"uation.

     (he -G*-- of a %ierential e"uation is the po&er or e:ponent of the

    highest %eri$ati$e that appears in the e"uation.

    Rnlike algeraic e"uations; the solutions of %ierential e"uations are

    functions an% not Bust numers.

    Initial value pro!lem is one in (ic( some initial conditions are

    given to solve a "*.

     (o form a - from a gi$en e"uation in : an% 7 containing aritrar7

    constants ?parameters@ \

    1. ierentiate the gi$en e"uation as man7 times as the

    numer of aritrar7 constants in$ol$e% in it .

    2. -liminate the aritrar7 constant from the e"uations of 7; 7Q; 7QQetc.

    ) =rst or%er linear %ierential e"uation has the follo&ing form8

     (he general solution is gi$en 7 &here

    calle% the integrating factor. !f an initial con%ition is gi$en; use it to =n%

    the constant 3.

    ,ere are some practical steps to follo&8

    1. !f the %ierential e"uation is gi$en as ; re&rite it in

    the form ; &here

    2. /in% the integrating factor .

  • 8/18/2019 Model Paper-4.docx

    40/122

    43. -$aluate the integral

    4. rite %o&n the general solution .

    5. !f 7ou are gi$en an !P; use the initial con%ition to =n% the constant 3.

    )*!)

  • 8/18/2019 Model Paper-4.docx

    41/122

    413. (hen use the pro%uct rule to get

    4. Sustitute to re&rite the %ierential e"uation in terms of $ an% : or $

    an% 7 onl7

    5. /ollo& the steps for sol$ing separale %ierential e"uations.

    6. *esustitute $ 7E: or $ : E 7.

    Chapter 1 -C(*S

    • ) "uantit7 that has magnitu%e as &ell as %irection is calle% a $ector.

    !t is %enote% 7 %irecte% line segment; &here ) is the initial point

    an% < is the terminal point . (he %istance )< is calle% the magnitu%e

    %enote% 7 an% the $ector is %irecte% from ) to

  • 8/18/2019 Model Paper-4.docx

    42/122

    421. (riangle la& of $ectors for a%%ition of t&o $ectors . !f t&o $ectors can

    e represente% oth in magnitu%e an% %irection 7 the t&o si%es of

    a triangle taken in the same or%er; then the resultant is represente%

    completel7; oth in magnitu%e an% %irection; 7 the thir% si%e of the

    triangle taken in the opposite or%er.

    Corollar78 1@ !f three $ectors are represente% 7 the three si%es of a

    triangle taken in or%er; then their resultant is >ero.

     2@ !f the resultant of three $ectors is >ero; then these can e represente%

    completel7 7 the three si%es of a triangle taken in or%er.

    2. Parallelogram la& of $ectors for a%%ition of t&o $ectors. !f t&o

    $ectors are completel7 represente% 7 the t&o si%es )

    an% < respecti$el7 of a parallelogram. (hen; accor%ing to the la&

    of parallelogram of $ectors; the %iagonal C of the parallelogram

    &ill e resultant ; such that

    MR0(!P0!C)(!N P-*)(!NS /* -C(*S8

    1. MR0(!P0!C)(!N / ) -C(*

  • 8/18/2019 Model Paper-4.docx

    43/122

    43 (he %ot pro%uct is %istriuti$e o$er $ector a%%ition8

     (he %ot pro%uct is ilinear8

    hen multiplie% 7 a scalar $alue; %ot pro%uct satis=es8

     (&o non>ero $ectors a an% are perpen%icular if an% onl7 if  a H

    .

     (he %ot pro%uct %oes not oe7 the cancellation la&8 !f a H a H c

    an% a ` 8 then a H ? c@ 8

    !f a is perpen%icular to ? c@; &e can ha$e ? c@ ` an%

    therefore ` c.

    Vector product:

    The Cross roduct a × b of two vectors is another vector that is at right

    angles to both!

    a × b = |a| |b| sin(θ) n

    • |a| is the magnitude (length) of vector a

    • |b| is the magnitude (length) of vector b

    • θ is the angle between a and b

    • n is the unit vector at right angles to both a and b

     (he cross pro%uct is anticommutati$e8 a : : a

    ^ a : ^ is the area of the parallelogram forme% 7 a an%

    istriuti$e o$er a%%ition. (his means that a I ? F c@ a I F a I c

    /or t&o parallel $ectors a I

    http://en.wikipedia.org/wiki/Distributivehttp://en.wikipedia.org/wiki/Bilinear_formhttp://en.wikipedia.org/wiki/Perpendicularhttp://en.wikipedia.org/wiki/If_and_only_ifhttp://en.wikipedia.org/wiki/Cancellation_lawhttps://www.mathsisfun.com/algebra/vector-unit.htmlhttp://en.wikipedia.org/wiki/Distributivehttp://en.wikipedia.org/wiki/Bilinear_formhttp://en.wikipedia.org/wiki/Perpendicularhttp://en.wikipedia.org/wiki/If_and_only_ifhttp://en.wikipedia.org/wiki/Cancellation_lawhttps://www.mathsisfun.com/algebra/vector-unit.html

  • 8/18/2019 Model Paper-4.docx

    44/122

    44

    i % i " & % & " ' % ' " 0.

    #he cross ro!$ct o( a vector )ith itsel( is the n$ll vector

    *( a % + " a % c an! a 0 then: a % + / a % c " 0 an!, + the !istri+$tive la) a+ove:

    a % + / c " 0 o), i( a is arallel to + / c, then even i( a 0 it is ossi+le that + / c 0

    an! there(ore that + c.

    SC/R TRI/* R6"UCT

    !t is %e=ne% for three $ectors in that

    or%er as the scalar . ? I @!t %enotes the

    $olume of the parallelopipe% forme% 7

    taking a; ; c as the coterminus e%ges.

    i.e. magnitu%e of I . ̂ I . ^

     (he $alue of scalar triple pro%uct %epen%s on the c7clic or%er of the

    $ectors an% is in%epen%ent of the position of the %ot an% cross. (hese ma7

    e interchange at pleasure. ,o&e$er an% antic7clic permutation of the

    $ectors changes the $alue of triple pro%uct in sign ut not a magnitu%e.

    Properties of Scalar (riple Pro%uct8

    !f; then their scalar triple pro%uct is gi$en 7

    • i.e. position of %ot an% cross can e interchange% &ithout altering

    the pro%uct.

  • 8/18/2019 Model Paper-4.docx

    45/122

    45

      ; ; in that or%er form a right han%e% s7stem if . .

    •   i.e. scalar triple pro%uct is if an7 t&o $ectors are e"ual.

    •   i.e. scalar triple pro%uct is if an7 t&o $ectors are parallel.

    • Sho& that

    • !f three $ectors are coplanar then .

    Chapter 11. (hree imensional Geometr7

    !n space; an7 point can e e:presse% as P?:; 7; >@. (he e"uations of a line

    passing through a gi$en point an% parallel to a gi$en %irection are gi$en

    7 . (he e"uations of a line &hich

    passes through t&o gi$en points are .

     (&o lines in space ma7 e parallel lines or intersecting lines or ske& lines.

     (&o parallel lines or intersecting lines are in the same plane. !f t&o lines

    %o not intersect then there is no angle et&een them.

    )ngle et&een t&o lines

    /in%ing the angle et&een t&o lines in 2 is eas7; Bust =n% the angle of

    each line &ith the :a:is from the slope of the line an% take the

  • 8/18/2019 Model Paper-4.docx

    46/122

    46%ierence. !n 3 it is not so o$ious; ut it can e sho&n ?using the

    Cosine *ule@ that the angle et&een t&o $ectors a an% is gi$en 78

    Cos

    Rnfortunatel7 this gi$es poor accurac7 for angles close to >eroA for

    instance an angle of 1.- ra%ians e$aluates &ith an error e:cee%ing

    1j; an% 1.-# ra%ians e$aluates as >ero. ) similar formula using the

    sine of the angle Sin has similar prolems &ith angles close to

    ' %egrees.

  • 8/18/2019 Model Paper-4.docx

    47/122

    4

     (hus the $ector representing the shortest %istance et&een )< an% C

    &ill e in the same %irection as ?)< C@; &hich can e &ritten as a

    constant times ?)< C@. e can then e"uate this $ector to a general

    $ector et&een t&o points on )< an% C; &hich can e otaine% from the

    $ector e"uations of the t&o lines. Sol$ing the three e"uations otaine%

    simultaneousl7; &e can =n% the constant an% the shortest %istance.

    Plane8 

    ) plane is a 9at ?not cur$e%@ t&o %imensional space eme%%e% in a higher

    numer of %imensions.

    !n t&o %imensional space there is onl7 one plane that can e containe%

    &ithin it an% that is the &hole 2 space.

  • 8/18/2019 Model Paper-4.docx

    48/122

    4# (hree %imensional space is a special case ecause there is a %ualit7

    et&een points ?&hich can e represente% 7 3 $ectors@ an% planes ?also

    represente% 7 3 $ectors@. e can $isualise the $ector representing a

    plane as a normal to the plane.

     

     (he angle et&een t&o planes is %e=ne% as the angle et&een their

    normals. !t is gi$en 7

    Coplanarit7 of four points8

    Coplanar points are three or more points &hich lie in the same plane&here a plane is a 9at surface &hich e:ten%s &ithout en% in all %irections.

    !tDs usuall7 sho&n in math te:tooks as a 4si%e% =gure. Jou can see that

    points );

  • 8/18/2019 Model Paper-4.docx

    49/122

    4'coplanar. (he7 form a triangle; an% 7ou can $isuali>e that. !f 7ou &ere to

    cut through the tissue o: an% pass through these points; 7ou &oul% ha$e

    a piece of the tissue o: that &oul% ha$e a plane =gure; a triangle; as its

    ase.

    Chapter 12 0inear Programming

    0inear programming is the process of taking $arious linear ine"ualities

    relating to some situation; an% =n%ing the est $alue otainale un%er

    those con%itions. ) t7pical e:ample &oul% e taking the limitations of

    materials an% laor; an% then %etermining the est pro%uction le$els for

    ma:imal pro=ts un%er those con%itions.

    !n real life; linear programming is part of a $er7 important area of

    mathematics calle% optimi>ation techni"ues. (his =el% of stu%7 ?or atleast the applie% results of it@ are use% e$er7 %a7 in the organi>ation an%

    allocation of resources. (hese real life s7stems can ha$e %o>ens or

  • 8/18/2019 Model Paper-4.docx

    50/122

    5hun%re%s of $ariales; or more. !n algera; though; 7ouDll onl7 &ork &ith

    the simple ?an% graphale@ t&o$ariale linear case.

     (he general process for sol$ing linearprogramming e:ercises is to graph

    the ine"ualities ?calle% the constraints@ to form a &alle%o area on

    the x,y plane ?calle% the feasiilit7 region@. (hen 7ou =gure out thecoor%inates of the corners of this feasiilit7 region ?that is; 7ou =n% the

    intersection points of the $arious pairs of lines@; an% test these corner

    points in the formula ?calle% the optimi>ation e"uation@ for &hich 7ouDre

    tr7ing to =n% the highest or lo&est $alue.

     (he ecision ariales8 (he $ariales in a linear program are a set of

    "uantities that nee% to e %etermine% in or%er to sol$e the prolemA i.e.;

    the prolem is sol$e% &hen the est $alues of the $ariales ha$e eeni%enti=e%. (he $ariales are sometimes calle% %ecision $ariales ecause

    the prolem is to %eci%e &hat $alue each $ariale shoul% take. (7picall7;

    the $ariales represent the amount of a resource to use or the le$el of

    some acti$it7.

     (he Becti$e /unction8 (he oBecti$e of a linear programming prolem

    &ill e to ma:imi>e or to minimi>e some numerical $alue. (his $alue ma7

    e the e:pecte% net present $alue of a proBect or a forest propert7A or it

    ma7 e the cost of a proBectA

     (he Constraints8 Constraints %e=ne the possile $alues that the $ariales

    of a linear programming prolem ma7 take. (he7 t7picall7 represent

    resource constraints; or the minimum or ma:imum le$el of some acti$it7

    or con%ition.

    0inear Programming Prolem /ormulation8 e are not going to e

    concerne% &ith the "uestion of ho& 0P prolems are sol$e%. !nstea%; &e

    &ill focus on prolem formulation translating real&orl% prolems into

    the mathematical e"uations of a linear program an% interpreting the

    solutions to linear programs. e &ill let the computer sol$e the prolems

    for us. (his section intro%uces 7ou to the process of formulating linear

    programs. (he asic steps in formulation are8 1. !%entif7 the %ecision

    $arialesA 2. /ormulate the oBecti$e functionA an% 3. !%entif7 an%

    formulate the constraints. 4. ) tri$ial step; ut one 7ou shoul% not forget;

  • 8/18/2019 Model Paper-4.docx

    51/122

    51is &riting out the nonnegati$it7 constraints. (he onl7 &a7 to learn ho& to

    formulate linear programming prolems is to %o it.

     (he corner points are the $ertices of the feasile region. nce 7ou ha$e

    the graph of the s7stem of linear ine"ualities; then 7ou can look at the

    graph an% easil7 tell &here the corner points are. Jou ma7 nee% to sol$e

    a s7stem of linear e"uations to =n% some of the coor%inates of

    the points in the mi%%le.

    Chapter 13 Probability

  • 8/18/2019 Model Paper-4.docx

    52/122

    52e=nition8 (&o e$ents are %epen%ent if the outcome or occurrence of the

    =rst aects the outcome or occurrence of the secon% so that the

    proailit7 is change%.

     (he con%itional proailit7 of an e$ent < in relationship to an e$ent ) is

    the proailit7 that e$ent < occurs gi$en that e$ent ) has alrea%7

    occurre%. (he notation for con%itional proailit7 is P?

  • 8/18/2019 Model Paper-4.docx

    53/122

    53

    Summar78 (he proailit7 of t&o or more in%epen%ent e$ents

    occurring in se"uence can e foun% 7 computing the

    proailit7 of each e$ent separatel7; an% then

    multipl7ing the results together.

    Summar78 (he proailit7 of t&o or more in%epen%ent e$entsoccurring in se"uence can e foun% 7 computing the

    proailit7 of each e$ent separatel7; an% then

    multipl7ing the results together.

    Summar78 (he proailit7 of t&o or more in%epen%ent e$ents occurring

    in se"uence can e foun% 7 computing the proailit7 of each e$entseparatel7; an% then multipl7ing the results together.

  • 8/18/2019 Model Paper-4.docx

    54/122

    54@(en to ppl# >a#esE T(eorem

    Part of the challenge in appl7ing ing the

    t7pes of prolems that &arrant its use. Jou shoul% consi%er ero an% plus in=nit7. ithin that range; though; the

    numer of hea%s can e onl7 certain $alues. /or e:ample; the

    numer of hea%s can onl7 e a &hole numer; not a fraction.

     (herefore; the numer of hea%s is a %iscrete $ariale. )n% ecause

    the numer of hea%s results from a ran%om process 9ipping a coin

    it is a %iscrete ran%om $ariale.

    Continuous. Continuous $ariales; in contrast; can take on an7

    $alue &ithin a range of $alues. /or e:ample; suppose &e ran%oml7

    select an in%i$i%ual from a population. (hen; &e measure the age of

    http://stattrek.com/Help/Glossary.aspx?Target=Sample_spacehttp://stattrek.com/Help/Glossary.aspx?Target=Sethttp://stattrek.com/Help/Glossary.aspx?Target=Mutually_exclusivehttp://stattrek.com/Help/Glossary.aspx?Target=Mutually_exclusivehttp://stattrek.com/Help/Glossary.aspx?Target=Eventhttp://stattrek.com/Help/Glossary.aspx?Target=Variablehttp://stattrek.com/Help/Glossary.aspx?Target=Discrete%2520variablehttp://stattrek.com/Help/Glossary.aspx?Target=Continuous%2520variablehttp://stattrek.com/Help/Glossary.aspx?Target=Sample_spacehttp://stattrek.com/Help/Glossary.aspx?Target=Sethttp://stattrek.com/Help/Glossary.aspx?Target=Mutually_exclusivehttp://stattrek.com/Help/Glossary.aspx?Target=Mutually_exclusivehttp://stattrek.com/Help/Glossary.aspx?Target=Eventhttp://stattrek.com/Help/Glossary.aspx?Target=Variablehttp://stattrek.com/Help/Glossary.aspx?Target=Discrete%2520variablehttp://stattrek.com/Help/Glossary.aspx?Target=Continuous%2520variable

  • 8/18/2019 Model Paper-4.docx

    55/122

    55that person. !n theor7; hisEher age can take on an7 $alue et&een

    >ero an% plus in=nit7; so age is a continuous $ariale. !n this

    e:ample; the age of the person selecte% is %etermine% 7 a chance

    e$entA so; in this e:ample; age is a continuous ran%om $ariale.

    ro!a!ilit# "istri!ution

    ) pro!a!ilit# distri!ution is a tale or an e"uation that links each

    possile $alue that a ran%om $ariale can assume &ith its proailit7 of

    occurrence.

    "iscrete ro!a!ilit# "istri!utions

     (he proailit7 %istriution of a %iscrete ran%om $ariale can al&a7s e

    represente% 7 a tale. /or e:ample; suppose 7ou 9ip a coin t&o times.

     (his simple e:ercise can ha$e four possile outcomes8 ,,; ,(; (,; an% ((.

    No&; let the $ariale represent the numer of hea%s that result from the

    coin 9ips. (he $ariale can take on the $alues ; 1; or 2A an% is a

    %iscrete ran%om $ariale.

     (he tale elo& sho&s the proailities associate% &ith each possile

    $alue of . (he proailit7 of getting hea%s is .25A 1 hea%; .5A an% 2

    hea%s; .25. (hus; the tale is an e:ample of a proailit7 %istriution for

    a %iscrete ran%om $ariale.

    9um!er o% 

    (eads 7

    ro!a!ilit

    # 73

    .25

    1 .5

    2 .25

    9ote: Gi$en a proailit7 %istriution; 7ou can =n% cumulati$e

    proailities. /or e:ample; the proailit7 of getting 1 or fe&er hea%s

    X P? W 1@ Z is P? @ F P? 1@; &hich is e"ual to .25 F .5 or .5.

    http://stattrek.com/Help/Glossary.aspx?Target=Random%2520variablehttp://stattrek.com/Help/Glossary.aspx?Target=Discrete%2520variablehttp://stattrek.com/Help/Glossary.aspx?Target=Cumulative%2520probabilityhttp://stattrek.com/Help/Glossary.aspx?Target=Cumulative%2520probabilityhttp://stattrek.com/Help/Glossary.aspx?Target=Random%2520variablehttp://stattrek.com/Help/Glossary.aspx?Target=Discrete%2520variablehttp://stattrek.com/Help/Glossary.aspx?Target=Cumulative%2520probabilityhttp://stattrek.com/Help/Glossary.aspx?Target=Cumulative%2520probability

  • 8/18/2019 Model Paper-4.docx

    56/122

    56Continuous ro!a!ilit# "istri!utions

     (he proailit7 %istriution of a continuous ran%om $ariale is represente%

    7 an e"uation; calle% the pro!a!ilit# densit# %unction ?p%f@. )ll

    proailit7 %ensit7 functions satisf7 the follo&ing con%itions8

    (he ran%om $ariale J is a function of A that is; 7 f?:@.

    (he $alue of 7 is greater than or e"ual to >ero for all $alues of :.

    (he total area un%er the cur$e of the function is e"ual to one.

    Mean an% ariance

     ust like $ariales from a %ata set; ran%om $ariales are %escrie% 7

    measures of central ten%enc7 ?like the mean@ an% measures of $ariailit7

    ?like $ariance@. (his lesson sho&s ho& to compute these measures

    for %iscrete ran%om $ariales.

    Mean o% a "iscrete Random ,aria!le

     (he mean of the %iscrete ran%om $ariale is also calle% the e7pected

    value of . Notationall7; the e:pecte% $alue of is %enote% 7 -?@. Rse

    the follo&ing formula to compute the mean of a %iscrete ran%om $ariale.

    -?@ q:  X :i  P?:i@ Z

    &here :i is the $alue of the ran%om $ariale for outcome i; q: is the mean

    of ran%om $ariale ; an% P?:i@ is the proailit7 that the ran%om $ariale

    &ill e outcome i.

    ,aria!ilit# o% a "iscrete Random ,aria!le

     (he e"uation for computing the $ariance of a %iscrete ran%om $ariale issho&n elo&.

    2  X :i  -?:@ Z2  P?:i@

    &here :i is the $alue of the ran%om $ariale for outcome i; P?: i@ is the

    proailit7 that the ran%om $ariale &ill e outcome i; -?:@ is the

    e:pecte% $alue of the %iscrete ran%om $ariale :.

  • 8/18/2019 Model Paper-4.docx

    57/122

    5 (o un%erstan% inomial %istriutions an% inomial proailit7; it helps to

    un%erstan% inomial e:periments an% some associate% notationA so &e

    co$er those topics =rst.

    >inomial *7periment

    ) !inomial e7periment is a e:periment that has the follo&ing

    properties8

    (he e:periment consists of n repeate% trials.

    -ach trial can result in Bust t&o possile outcomes. e call one of

    these outcomes a success an% the other; a failure.

    (he proailit7 of success; %enote% 7 6; is the same on e$er7 trial.

    (he trials are in%epen%ent that is; the outcome on one trial %oes not

    aect the outcome on other trials.

    Consi%er the follo&ing statistical e:periment. Jou 9ip a coin 2 times an%

    count the numer of times the coin lan%s on hea%s. (his is a inomial

    e:periment ecause8

    (he e:periment consists of repeate% trials. e 9ip a coin 2 times.

    -ach trial can result in Bust t&o possile outcomes hea%s or tails.

    (he proailit7 of success is constant .5 on e$er7 trial.

     (he trials are in%epen%entA that is; getting hea%s on one trial %oes

    not aect &hether &e get hea%s on other trials. >inomial

    "istri!ution

    ) !inomial random varia!le is the numer of successes x  in n repeate%

    trials of a inomial e:periment. (he proailit7 %istriution of a inomialran%om $ariale is calle% a !inomial distri!ution.

     (he inomial distriution %escries the eha$iour of a count

    $ariale 7  if the follo&ing con%itions appl78

    !: (he number of observations n is xed.

    #: 8ach observation is independent.

    $: 8ach observation represents one of t9o outcomes %:success: or

    :failure:&.

     %: (he probability of :success: p is the same for each outcome.

  • 8/18/2019 Model Paper-4.docx

    58/122

    5#Mean and ,ariance o% t(e >inomial "istri!ution

     (he inomial %istriution for a ran%om $ariale 7  &ith

    parameters n an% p represents the sum of n in%epen%ent

    $ariales ;  &hich ma7 assume the $alues or 1. !f the proailit7 that

    each ; $ariale assumes the $alue 1 is e"ual to p; then the mean of each$ariale is e"ual to !

  • 8/18/2019 Model Paper-4.docx

    59/122

    5'

    5 Continuit7 an% ierentiailit7 12?3@ 12?3@

    6 )pplication of eri$ati$es 6?1@ 6?1@

    !ntegrals 12?3@ 12?3@

    # )pplication of !ntegrals 6?1@ 6?1@

    ' ierential e"uations 2?2@ 6?1@ #?3@

    1 ectors 2?2@ 2?2@

    11 3%imensional Geometr7 1?1@ #?2@ 6?1@ 15?4@

    12 0inear Programming 6?1@ 6?1@

    13 Proailit7 4?1@ 6?1@ 1?2@

     (()0 6?6@ 52?13@ 42?@ 1?26@

    1. !f f?:@ : F an% g?:@ : \ then =n% ?f g@ ?@.

    2. !f the function f is an in$ertile function =n% the in$erse of f?:@ .

    3. !f the function f is an in$ertile function %e=ne% as f?:@ then &rite

    f 1?:@.

    4. Sho& that the relation * in the set of real numers %e=ne% as * ?a; @8

    a is neither re9e:i$e; s7mmetric nor transiti$e.

  • 8/18/2019 Model Paper-4.docx

    60/122

    65. 0et ( e the set of all triangles in a plane &ith * as relation in ( gi$en 7 *

    ?(1; (2@8 (1  (2. Sho& that * is an e"ui$alence relation.

    6. 0et [ e the set of all integers an% * e the relation on [ gi$en 7 * ?a;

    @8 a; [; a \ is %i$isile 7 5. Sho& that * is an e"ui$alence relation.

    . !f f8 * * %e=ne% 7 f?:@ ?3 \ :3@ then =n% ?f f@ ?:@.

    #. Sho& that the relation * in the set ) 1; 2; 3; 4; 5 gi$en 7 * ?a; @8

    is e$en is an e"ui$alence relation.

    '. Sho& that the relation S in the set ) : 8 : [; gi$en 7 S

    ?a;@8 a; [; is %i$isile 7 4 is an e"ui$alence relation.

    1.!s the inar7 operation %e=ne% on N gi$en 7 for all a; N;

    commutati$e ii@ !s associati$e

    11.!f the inar7 operation on [ is %e=ne% 7 then =n% .

    12.0et e the inar7 operation on N gi$en 7 . /in%

    .

    13.0et f8N N %e=ne% 7 f?n@ for all n N. /in%

    &hether the function is iBecti$e.

    14.0et e the inar7 operation on ] gi$en 7 2a F a. /in% 3 4.

    15.hat is the range of f?:@

    16.Consi%er f8 * %e=ne% 7 f?:@ ':2 F 6: \ 5. Sho& that f is

    in$ertile &ith .

  • 8/18/2019 Model Paper-4.docx

    61/122

    61

    1.0et ) an% e a inar7 operation on ) %e=ne% 7 ?a; @ ?c; %@

    ?aFc; F%@. Sho& that is commutati$e an% associati$e. )lso =n% the

    i%entit7 element for on ) if an7.

    1#.!f f8 * * an% g8 * * are gi$en 7 f?:@ sin : an% g?:@ 5 :2 =n% ? @

    ?:@.

    1'.!f f?:@ 2:3 an% g?:@ =n% ? @ ?:@.

    1. -$aluate

    2. -$aluate

    3. -$aluate

  • 8/18/2019 Model Paper-4.docx

    62/122

    62

    4. -$aluate

    5. -$aluate

    6. -$aluate

    . -$aluate

    #. -$aluate

    '. -$aluate

    1.-$aluate

    11.hat is the %omain of sin1 :

    12.Pro$e that tan11 F tan12 F tan13 .

    13.Pro$e that tan1  F tan1  F tan1 Ftan1 .

    14.Pro$e that tan1  F tan1 .

    15.Pro$e that .

    16.Pro$e that .

    1.Pro$e that tan1:Ftan1 .

    1#.Pro$e that tan1 .

  • 8/18/2019 Model Paper-4.docx

    63/122

    63

    1'.Pro$e that .

    2.Pro$e that .

    21.Sol$e tan12: F tan13: .

    22.Sol$e tan1?:F1@ F tan1?:1@ tan1 .

    23.Sol$e .

    24.Sol$e .

    25.Sol$e 2tan1?Cos :@ tan1?2 Cosec:@

    26.Sol$e

    2.Pro$e that .

    1. /in% : an% 7 if

    2. /in% : an% 7 if

  • 8/18/2019 Model Paper-4.docx

    64/122

    64

    3. /in% : if

    4. /in% 7 if

    5. /in% 7 if

    6. /in% 7 if

    . Rsing elementar7 transformations =n% the in$erse of the matri:

    .

    #. Rsing elementar7 transformations =n% the in$erse of the matri:

    .

    '. Rsing elementar7 transformations =n% the in$erse of the matri: .

    1.Rsing elementar7 transformations =n% the in$erse of the matri:.

    11.Rsing elementar7 transformations =n% the in$erse of the matri: .

    12.Rsing elementar7 transformations =n% the in$erse of the matri: .

    13.Sol$e 2: \ 7 F > 3; : F 27 \ > 1 an% : \ 7 F 2> 1.

    14.Sol$e 3: \ 27 F3> #; 2: F 7 \ > 1 an% 4: \37F2> 4.

  • 8/18/2019 Model Paper-4.docx

    65/122

    6515.Sol$e : F 7 F > 4; 2: F 7 \ 3> ' an% 2: \ 7 F > 1.

    16.Sol$e 2: \ 37 F 5> 11; 3: F 27\4> 5 an% :F72>3.

    1.Sol$e : F 7 F > 6; : F 2> an% 3: F 7 F > 12.

    1#.Sol$e :F27 3>4; 2:F 37 F2> 2 an% 3: \ 37 4> 11.

    1'.!f ) =n% )1. Rsing )1 sol$e 2: \ 37 F 5> 16; 3:

    F 27 \ 4> 4 an% : F 7 2> 3.

    2.!f ) =n% )1. Rsing )1 sol$e 2: F 7 F 3> '; : F 37

    \ > 2an% 2: F 7 F > .

    "ifferentiation of composite functions:"ifferentiation b# chain rule:

  • 8/18/2019 Model Paper-4.docx

    66/122

    66$ind the derivative of the following functions wrt %:

    &! (%'  )*! '!

    +&')

     x  x 

     + ÷ ÷

     

    !

    &,&

     x  x 

     + ÷

      +!( )

    -) x x −

    *!  '&   x − -!

      ') + x    −

    .!

    &

    &

     x 

     x 

    +− /!

    ' &

    ' &

     x 

     x 

    +

    0!' ) * x x    − &,! (%'1 &) (%  &)+!

    &&!

    )+

    '&

     x 

     x − &'!

    & &

    & &

     x x 

     x x 

    + + −

    + − −

    "ifferentiation of trigonometric functions$ind the derivative of the following functions wrt %:&! 2in *% '! Cos ('% )

    ! 2in (*% 1 +) +! Tan&,+%

    *!

    & sin '

    & '

     x 

    sin x 

    +− -!

    & s

    &

    co x 

    cosx 

    −+

    .!

    & tan )

    & tan )

     x 

     x 

    −+

    /! 3f # = % tan % then prove that % sin'%

    dy 

    dx  = #' 1 # sin'%!

    0! 3f # = a sin % 1 b cos % then prove that #' 1

    'dy 

    dx 

      ÷   = a' 1 b'!

    &,! 3f # =

    & sin'

    & sin'

     x 

     x 

    −+ then prove that

    dy 

    dx  1 sec' ( +

    π 

    4%) = ,!

    "ifferentiation of inverse trigonometric functions$ind the derivative of the following functions wrt %:&! 2in&'% '! Tan4&*%

    ! 2in4&  '&   x − +!

    '&sin'&

     x  x 

     − ÷ ÷ +  

    *!( )& )sin ) + x x − −

    -!

    &&sec'' & x 

     − ÷ ÷ −  

    .!

    &

    &s&

     x  x co

     x  x 

     − ÷− ÷ ÷+ ÷   /!

    '&&s'

     x co

      +−

    0!

    ( )&tan sec tan x x − +&,!

    cos&tan& sin

     x 

     x 

     −   ÷+  

    &&!

    & cos&tan& cos

     x 

     x 

    −−+ &'!

    & sin&tan& sin

     x 

     x 

    +−−

  • 8/18/2019 Model Paper-4.docx

    67/122

    6

    &!

    &tan&

    a x 

    ax 

     −− ÷ ÷+   &+!

    '&&tan'&

     x 

     x 

     +−   ÷ ÷−  

    &*!

    &&t&

     x co

     x 

    +  − ÷−   &-!

    ' '& &&tan  a x 

    ax 

     + −−   ÷

    ÷ ÷  

    &.!

    &tan'& &

     x 

     x 

     −   ÷ ÷

    + −   &/!

    & 'tan & x x   − + − ÷  

    &0!

    & &&tan& &

     x x 

     x x 

     + + −− ÷ ÷+ − −   ',!

    & sin & sin&t& sin & sin

     x x co

     x x 

     + + −− ÷ ÷+ − −  

    '&!

    & 'sin & & x x x x   − − − − ÷   ''!

    ( ) ( )& ) & )sin ) + cos + ) x x x x − −− + −

    '! 3f # =

    &sin

    '&

     x 

     x 

    − then prove that( )'& &dy  x xy dx − − = !

    "ifferentiation of log and e%ponential functions$ind the derivative of the following wrt %:

    &!( )' x 

    e '!' ) x e   +

    !'&   x e   + +!

    ' x e

    *!sin x e -!

    sin   x e

    .!tan x x 

    e /!

     x x e e

     x x e e

    −−−

    +0! cos

     x e x  &,!

    ( )log sec x 

    &&!( )'log ) x    −

    &'!

    &log   x 

     x 

     +   ÷

     

    &!( )log log x 

    &+!

    '& &log

    '& &

     x 

     x 

     + − ÷

    ÷ ÷+ +  

    &*!

    & cos 'log

    & cos '

     x 

     x 

    −   ÷+   &-!

    & sinlog

    & sin

     x 

     x 

    +−

    &.! ( )log   x a x b− + − &/! ( )log cos cotecx x  −

    &0!( )log s tanecx x  +

    ',!

    log s tan' '

     x x ec 

       + ÷ ÷ ÷    

    '&!

    'log & x x   

    + + ÷   ''!

    'log & x x   

    − − ÷  

    '!( )log sinax e bx 

    "ifferentiation of 3mplicit functions

    $ind

    dy 

    dx  from the following:

  • 8/18/2019 Model Paper-4.docx

    68/122

    6#

    &!' ' '* x y + = '!

    ' '&

    ' '

     x y 

    a b+ =

    !) ) ) x y xy + = +!

    ( )) ) ' ') x y x y xy + = +

    *!+ + + x y xy + = -!

    ) ) x y y x − =

    .! x y a+ =

    /! 3f

    ' '& log &y x x x    

    + = + − ÷   then prove that

    ( )'& & ,!dy  x xy dx + + + =

    0! 3f& & , x y y x + + + =

    then prove that( )

    &

    '&

    dy 

    dx   x 

    −=

    +!

    &,! 3f' '& & & x y y x − + − =

    then prove that

    '&,!

    '&

    dy y 

    dx   x 

    −+ =

    &&! 3f( )' '& & x y a x y − + − = −

    then prove that

    '& ,!

    '&dy y dx   x 

    −− =−

    &'! 3f % 1 # = sin(% 1 #) then prove that

    dy 

    dx  = 4 &!

    &! 3f # log % = % # then prove that( )

    log!

    '& log

    dy x 

    dx   x 

    =+

    &+!!!!!!! x x x x + + + +

    &*!sin sin sin sin !!!!!! x x x x + + + +

    &-!log log log log !!!!!! x x x x + + + +

    &.!

    &

    &

    &

    !!!!!

     x 

     x 

     x  x 

    ++

    ++

     

    5ogarithmic differentiation"ifferentiate the following wrt %:

    &!  x  x  '!

    log x  x 

    !  sin x  x  +!

    ( )sin  x 

     x 

    *!( )

    cossin

      x  x 

    -!( )

    sinn

      x ta x 

    .!( )log

      x  x 

    /!( )sin   x  x 

    0!

    '' )cot' '

     x  x  x  x x 

    −+

    + + &,!

    ' &sin cos' &

     x  x x  x  x 

    −− ++

    &&!( ) ( )' ' x x  x x +

    &'!( ) ( )sin sin x x  x x +

    &!( ) ( )

    s sinsin s

    co x x   x co x +

    &+!( ) ( )

    tan sinsin tan

     x x  x x +

  • 8/18/2019 Model Paper-4.docx

    69/122

    6'

    &*!( ) ( )

    tan sinsin tan

     x x  x x +

    &-! 3f( ) ( )

    y x  x y c + =

    then find

    dy 

    dx  !

    &.! 3f( ) ( )   ,

    y x  x y − =

    then find

    dy 

    dx  !

    &/! 3f( )

    y    x y  x e   −=then prove that

      ( )

    log

    '& log

    dy x 

    dx   x = +!

    &0! 3f

     x y y    x  x e

    +

    = then find

    dy 

    dx  !

    ',! 3fy  x y x + =

    then find

    dy 

    dx  !

    '&!

    !!! x  x  x 

    ''!

    !!!sinsinsin x  x  x 

     

    "ifferentiation of parametric functions

    $ind

    dy 

    dx  from the following:&! %= at'6 # = 'at

    '!

    '&

    '&

    t  x 

    −=

    + 6

    '

    '&

    t y 

    t =

    + !! % = a cos Ө6 #= b sin Ө+! % = a (& cos Ө)6 # = a (Ө 1 sin Ө)

    *! % = a (cos Ө 1 Ө sin Ө)6 # = a (sin Ө  Ө cos Ө)-! % = 'cos Ө  cos 'Ө6 # = ' sin Ө  sin 'Ө!.!

    7igher "erivativesThe derivative of the derivative of a function is called as the second derivative!

    '88

    '   '

    d y d dy  y or y or  

    dx dx  dx 

     =     ÷

     

    ) '888

    )   ) '

    d y d d y  y or y or  

    dx dx dx  

      ÷= ÷  

    ) '

    ) '

    d y d d y  

    dx dx dx  

      ÷= ÷  

    &! $ind the second derivative of %' 1 log % wrt %!

    '! 3f # = e% (sin % 1 cos %) then prove that #'  '#& 1 '# = ,!

    ! 3f # = sec % 1 tan % then prove that( )

    ' cos

    ' '& sin

    d y x 

    dx    x 

    =−

    +! 3f # = cosec % 1 cot % then prove that( )

    ' sin

    ' '& s

    d y x 

    dx    co x 

    =−

    *! 3f # = a sin '% 1 b cos '% then prove that+ ,

    'y y + =

    -! 3f # =&nta x − then prove that

    ( )'& ' ,&' x y xy + + =

  • 8/18/2019 Model Paper-4.docx

    70/122

    .! 3f # =( )

    '&nta x −

    then prove that( ) ( )

    '' '& ' & ' ,

    &' x y x x y + + + − =

    /! 3f # =( )

    '&nsi x −

    then prove that( )'& ' ,&' x y xy − − − =

    0! 3f # =&sin   x e

    −then prove that

    ( )'& ,&' x y xy y − − − =

    &,!3f # =&nta x e

    −then prove that

    ( ) ( )'' '& ' & ,

    &' x y x x y y + + + − =

    &&! 3f # = sin (log %) 1 cos (log %) then prove that

    ' ,&'

     x y xy y + + =

    &'!3f % = a (  sin )6 # = a (& cos ) then find 'y 

    at = '

    π 

    !

  • 8/18/2019 Model Paper-4.docx

    71/122

  • 8/18/2019 Model Paper-4.docx

    72/122

    213./in% the points on the cur$e 7 :3 at &hich the slope of the tangent is

    e"ual to the 7 coor%inate of the point.

    14./in% the e"uations of the normal to the cur$e 7 :3F2:F6 &hich are

    parallel to the line :F147F4 .

    15./in% the e"uation of the tangent to the cur$e 7 at the point

    &here it cuts the : \ a:is.

    16./in% the e"uations of the tangent an% the normal to the cur$e : 1 \ cos

     ; 7 at

    1. -$aluate

    2

    31

     xdx

     x+∫  1 a. -$aluate

    1

    2

    01

    dx

     x+∫ 

    2. -$aluate2

    0

    sin

    1 cos

     x xdx

     x

    π 

    +∫ 2a. -$a.

    a

    a

    a xdx

    a x−

    −+∫ 

    3. -$a. 0

    tan

    cos

     x xdx

     secx ecx

    π 

    ∫ 3a. -$a.

    2

    0

    sin

    1 cos

     x xdx

     x

    π 

    +∫ 

    4. -$a. 0

    tan

    sec tan

     x xdx

     x x

    π 

    +∫ 4a. -$a.

      2

    cos6

    3 sin 6

     x xdx

     x x

    ++∫ 

    5. -$a.

    2

    0tan cot x x dx

    π 

    +∫  5a.-$a.

    2

    0logsin x dx

    π 

    ∫ 

    6. -$a.

    2sec

    3 tan

     xdx

     x+∫  6a. -$a. 25 4 x 

     x x 

    e dx 

    e e− −∫ 

    . !f

    ( )1

    2

    3 2 x x > dx + +∫  then =n% the $alue of k.

    #. -$aluate

    ( )

    ( )

    :

    3

    4 e

    2

     x dx 

     x 

    −∫ # a .-$aluate

    cos

    cos cos

     x 

     x x 

    edx 

    e e

    π 

    −+∫ 

    '. -$aluate

    ( ) ( )( )2

    2log sin log sin2 x x dx 

    π 

    −∫ 'a.-$aluate

    ( )2sec   x dx −∫ 

  • 8/18/2019 Model Paper-4.docx

    73/122

    3

    1.-$aluate

    ( )2

    1 log x dx 

     x 

    +∫ 

    1a.-$aluate

    1

    2

    2   1

    dx 

     x −∫ 

    11.-$aluate

    cos   x dx 

     x ∫ 

    11a.-$aluate25 4 2

    dx 

     x x − −∫ 

    12.-$aluate1sin x xdx −∫  12a.-$aluate

    sin   x dx  x ∫ 

    13.-$aluate

    2sec  x dx 

     x ∫ 

    13a.-$aluate  ( ) ( )

    cos

    2 sin 3 4sin

     x dx 

     x x + +∫ 

    14.-$aluate2 1s x co xdx −∫  14a.-$aluate   ( ) ( )

    4

    21 1

     x dx 

     x x − +∫ 

    15.-$aluate( )

    4

    1

    1 2 4 x x x dx − + − + −∫ 15a.-$aluate log

    dx 

     x x +∫ 

    16.-$aluate2 2 2 2

      cos sin

     x dx 

    a x b x  

    π 

    +∫ 16a.-$aluate

    2 2

    2 2

     x x 

     x x 

    e edx 

    e e

    −+∫ 

    1.-$aluate

    2 2

    2 2

     x x 

     x x 

    e edx 

    e e

    −+∫  1a.-$aluate

    log x dx 

     x ∫ 

    1#.-$aluate

    ( )sin4 4

    1 cos4

     x e x dx 

     x 

    −− 1#a.-$aluate   ( )

    21

    1 2

     x dx 

     x x 

    −−∫ 

    1'.-$aluate

    3

    6

    sin cos

    sin2

     x x dx 

     x 

    π 

    π 

    +

    ∫  1'a.-$aluate x 

    dx  x sinx +∫ 

    2.-$aluate( )

    3

    2

    1

    3 2 x x dx +∫ as the limit of sum.

    21.-$aluate( )

    42

    1

     x x dx −∫ as the limit of sum.

    22.-$aluate

    2

    5

    2

    sin   xdx 

    π 

    π −

    ∫ 

    22a.-$aluate

      ( ) ( )

    2

    2 3

     x dx 

     x x 

    +

    − −∫ 

    23.-$aluate

    2 2

    21

    5

    4 3

     x dx 

     x x + +∫ 23a.-$aluate

    1

    2

    1

    1  dx 

     x +∫ 

    24.-$aluate

    3

    2

    cos x x dx π ∫ 24a.-$aluate

    3

    2

    1

    sin x x dx π −∫ 

    25.-$aluate

    ( )1

    2

    1  n

     x x dx −∫ 25a.-$aluate

      ( ) ( )

    2 3

    1 2

     x x dx 

     x x 

    −− −∫ 

  • 8/18/2019 Model Paper-4.docx

    74/122

    4

    1. /in% the area of the region inclu%e% et&een 72 4a: an% :2  4a7; a .

    2. /in% the area l7ing ao$e the : a:is an% inclu%e% et&een :2 F 72 #:

    an% 72  4:.

    3. /in% the area of the region enclose% 7 the cur$es 7 :2 an% 7 :.

    4. /in% the area of the region enclose% 7 the cur$es 72  : an% 7 : F 2.

    5. /in% the area of the region oun%e% 7 the cur$es 7 ; : 3; : 3

    an% 7 .

    6. /in% the area of the smaller region foun%e% 7 the ellipse an%

    the line .

    . /in% the area of the region in the =rst "ua%rant enclose% 7 the :a:is; the

    line : 7 an% the circle :2 F72  4.

    #. /in% the area oun%e% 7 the lines 7 4: F 5; 7 5 \ : an% 47 : F 5.

    '. /in% the area of the region oun%e% 7 72  4: an% 4:2 F 472  '.

    1./in% the area of the region enclose% et&een :2 F 72  4 an% ?: \ 2@2 F72 

    4.

    11./in% the area of that part of the circle :2 F72  16 &hich is e:terior to the

    paraola 72 6:.

    12./in% the area oun%e% 7 the lines : F 27 2; 7 \ : 1 an% 2: F 7 .

    13./in% the area oun%e% 7 the lines 2:F 7 4; 3: 27 6 an% : 37 F 5

    .

    14./in% the area oun%e% 7 the lines 4: 7 F 5 ; : F 7 \ 5 an% : 47

    F 5 .

    15./in% the area oun%e% 7 the cur$es :2 F 72  1 an% ?: \ 1@2 F72  1.

  • 8/18/2019 Model Paper-4.docx

    75/122

    516.Pro$e that the cur$es 72 4: an% :2  47 %i$i%e the area of the s"uare

    oun%e% 7 : ; : 4; 7 4 an% 7 into three e"ual parts.

    1./in% the area of the region inclu%e% et&een the paraola 72  : an% :F7

    2.

    1#./in% the area of the region inclu%e% et&een the paraola :2  47 an% :

    47 2.

    1'./in% the area of the region inclu%e% et&een the paraola 47 3:2 an% 3:

    27F12 .

    2./in% the area of the region oun%e% 7 the cur$es 72 4a: an% :2 

    4a7.

    21./in% the area of the region .

    22./in% the area of the region .

    23./in% the area of the region

    24./in% the area of the region .

    25./in% the area of the region .

    26./in% the area of the triangle )

  • 8/18/2019 Model Paper-4.docx

    76/122

    6

    1. hat is the %egree of the - .

    2. /orm the - representing the paraolas ha$ing the $erte: at the origin

    an% the a:is along the positi$e %irection of :a:is.

    3. /orm the - representing the famil7 of ellipses &hose foci on : a:is an%

    the centre at the origin.

    4. Sol$e the follo&ing8

    5. Sol$e 8 gi$en that 71 &hen : 1.

    6. Sol$e8 gi$en that 7 1 &hen : 1.

    . Sol$e

    #. Sol$e

    '. Sol$e

    1.Sol$e

    11.Sol$e

  • 8/18/2019 Model Paper-4.docx

    77/122

    12.Sol$e ; 7 &hen : 1.

    13.Sol$e

    14.Sol$e

    15.Sol$e

    16.Sol$e ; 7 &hen :

    1.Sol$e

    1#.Sol$e

    1'.Sol$e . J 1 &hen : .

    2.Sol$e

    21.Sol$e

    22.Sol$e

    23.Sol$e

    24.Sol$e

    25.Sol$e

    26.Sol$e gi$en that : 1 an% 7 1.

  • 8/18/2019 Model Paper-4.docx

    78/122

    #

    2./or the - =n% the solution cur$e passing through the

    point ?1; 1@.

    1. /in% a unit $ector in the %irection of 3 2 6a i j >  = − +

    .

    2. /in% a unit $ector in the %irection 2a i j= −r

     of &hose magnitu%e is .

    3. /in% the angle et&een a i j >  = − +an%

    b i j >  = + − .

    4. /or &hat $alue of v are the $ectors 2a i j >  λ = + +

    an% 2 3b i j >  = − +

    perpen%icular to each other.

    5. !f a i j >  = + +an%

    b j > = −=n% a $ector c such that

    a b c× =an%

    3a b• =.

    6. !fa b c+ + =

    r r

    an%a

    3;b

    5 b c

    sho& that the angle et&eenba b

    r

    is

    6o

    .

    . !fa

    3; b

    2 an% the angle et&een them is 6othen =n%

    a b•r

    .

    #. !f    i j > + + ;

      2 5i j+ ;  3 2 3i j > + − b

      6i j > − − are the position $ectors of );  = + + an%

      3b i pj >  = + + are parallel$ectors.

    1.!f a b c d× = × an% a c b d× = × then sho& that a d b c− −P &here ba d b c≠ ≠ .

    11.rite a unit $ector in the %irection of

    2 2b i j >  = + +.

    12.rite a unit $ector in the %irection of 2 3 6b i j >  = − + .

    13./in% the angle et&een ba b&ith magnitu%es 1 b 2 an%3a b× =

    .

    14. rite the $alue of p for &hich( ) ( ) 2 6 14 i j > i j >  λ + + × − +

    .

    15.( ) ( ) 2 6 2 3i j > i j p>  + + × + +

    .

    16.!f  pis a unit $ector an%( ) ( ) x p x p− • +

    # then =n% x 

    .

    1.(he scalar pro%uct of

    i j > + + &ith the unit $ector along the sum of  2 4 5i j > + − an%

    2 3i j > λ   + + is e"ual to one. /in% the $alue of λ .

  • 8/18/2019 Model Paper-4.docx

    79/122

    '

    1#.!f3a =

    ;2b =

     an% a b• 3 then =n% the angle et&een ba b.

    1'.!f ; ba b care three $ectors such that a b a c• = • an% a b a c× = × ;a ≠ then

    pro$e that b c=r

    .

    2.rite a $ector of magnitu%e 15 units in the %irection of 2 2i j > − + .

    21./in% the position $ector of a point * &hich %i$i%es the line hoining t&opoints P an% ] &hose position $ectors 2a b+ an% 3a b− e:ternall7 in theratio 182. )lso sho& that P is the mi%point of *].

    22.rite a $ector of magnitu%e ' units in the %irection of 2 2i j > − + + .

    23./in% λ  if( ) ( ) 2 6 14 i j > i j >  λ + + × − +

    .

    24.!f a i j >  = + + ;

    4 2 3b i j >  = − + an% 2c i j >  = − + =n% a $ector of magnitu%e 6

    units &hich is parallel to 2 3a b c− + .

    25.0et

    4 2a i j >  = + +;

    3 2 b i j >  = − +an%

    2 4c i j >  = − +. /in% a $ector d &hich is

    perpen%icular to oth ba ban% c d• 1#.

    26.!f ba bare t&o $ectors such thata b a b• = ×

    then &hat is the angle

    et&een ba b.

    2.ectors ba bare such that3a =

    ;

    2

    3b =r

    an%( )a b×

    r

    is a unit $ector. rite

    the angle et&een ba br

    .

    2#./in% x 

    if for a unit $ector a ;( ) ( ) x a x a− • +

    .

    2'./or &hat $alue of p;( ) i j > p+ +

     is a unit $ector

    3.0et 4 2a i j >  = + + ;

    3 2 b i j >  = − + an% 2 4c i j >  = − + . /in% a $ector d &hich is

    perpen%icular to oth ba ban% c d• 1.

    31. (he scalar pro%uct of 2 4i j > + + &ith a unit $ector along the sum of the

    $ectors 2 3i j > + + an%

    4 5i j > λ   + − is e"ual to one. /in% the $alue of λ .

  • 8/18/2019 Model Paper-4.docx

    80/122

    #

    1. /in% the shortest %istance et&een the lines an%

    .

    2. /in% the point on the line at a %istance from the

    point ?1; 2;3@.

    3. /in% the e"uation of the plane passing through the point ?1; 1; 2@ an%

    perpen%icular to the planes 2: F 37 \ 3> 2 an% 5: \ 47 F > 6.

    4. /in% the e"uation of the plane passing through the point ?1; 3; 2@ an%

    perpen%icular to the planes : F 27 F 3> 5 an% 3: F 37 F > .

  • 8/18/2019 Model Paper-4.docx

    81/122

    #15. /in% the e"uation of the plane passing through the point ?3; 4; 1@ an%

    parallel to the line .

    6. !f the e"uation of the line )< is =n% the %irection ratios

    of a line parallel to the line )

  • 8/18/2019 Model Paper-4.docx

    82/122

    #2

    14./in% the shortest %istance et&een the lines an%

    15./in% the shortest %istance et&een the lines

    an%

    16./in% the e"uation of the plane %etermine% 7 the points ?3;1; 2@; ?5; 2; 4@

    an% ?1; 1; 6@. )lso =n% the %istance of the point ?6; 5; '@ from the

    plane.

    1./in% the %irection cosines of the line passing through the points ?2; 4; 5@

    an% ?1; 2; 3@.

    1#./in% the angle et&een the line an% the plane 1: F 27

    \ 11> 3.

    1'.Sho& that the lines an% are coplanar.

    )lso =n% te e"uation of the plane containing the lines.

    2./in% the angle et&een the line an% the plane : F 27 F

    2> \ 5 .

    21.hat is the cosine of the angle &hich the $ector makes &ith the

    7 \ a:is

    22./in% the e"uation of the line passing through the points ?; ; @ b ?3; 1;

    2@ an% parallel to the line .

    23.(he points ) ?4; 5; 1@;

  • 8/18/2019 Model Paper-4.docx

    83/122

    #3

    24./in% the $ector e"uations of the lines an%

    an% hence =n% the %istance et&een them.

    25.rite the %istance of the plane 2: \ 7 F 2> F 1 from the origin.

    26./in% the points on the line at a %istance of 5 units from

    the point ?1; 3; 3@.

    2./in% the %istance of the point ?6; 5; '@ from the plane %etermine% 7 the

    points ?3; 1; 2@; ?5; 2; 4@ an% ?1; 1; 6@.

    2#./in% the coor%inates of the foot of the perpen%icular an% the

    perpen%icular %istance of the point ?3; 2; 1@ from the plane 2: \ 7 F > F 1

    . /in% also the image of the point in the plane.

    2'./in% the e"uation of the plane passing through ?1; 1; 1@ an% containing the

    line . )lso sho& that the plane contains the line

    .

    3.rite the Cartesian e"uation of the line .

    31./in% the shortest %istance et&een the lines an%

    . ,ence &rite &hether the lines intersect or not.

    32./in% the coor%inates of the point &here the line through ?3; 4; 5@ b ?2; 2;

    1@ crosses the plane %etermine% 7 ?1; 2; 3@; ?2; 2; 1@ b ?1; 3; 6@.

    33. /in% the Cartesian an% the $ector e"uations of the plane passing through

    the points ?; ; @ b ?3; 1; 2@ an% parallel to the line .

  • 8/18/2019 Model Paper-4.docx

    84/122

    #4

  • 8/18/2019 Model Paper-4.docx

    85/122

    #51. ) factor7 o&ner purchases t&o t7pes of machines; ) an% < for his factor7.

     (he re"uirements an% the limitations for the machines are as follo&s8

    Machine )rea occupie% 0aourforce

    ail7 output ?inunits@

    ) 1 m2 12 men 6

    < 2 m2 # men 4

    2.

     ,e has ma:imum area of ' m2 a$ailale an% 2 skille% laourers &ho

    can operate oth the machines. ,o& man7 machines of each t7pe shoul%

    he u7 to ma:imi>e the %ail7 output

    1 )n aeroplane can carr7 a ma:imum of 2 passengers. ) pro=t of *s 1

    is ma%e on each e:ecuti$e class ticket an% a pro=t of *s 6 is ma%e on

    each econom7 class ticket. (he airline reser$es at least 2 seats for

    e:ecuti$e class. ,o&e$er; at least 4 times as man7 passengers prefer to

    tra$el 7 econom7 class than 7 the e:ecuti$e class. etermine ho& man7

    tickets of each t7pe must e sol% in or%er to ma:imi>e the pro=t for the

    airline. hat is the ma:imum pro=t

    3. ) %iet is to contain at least # units of $itamin ) an% 1 units of minerals.

     (&o foo%s /1an% /2 are a$ailale. /oo% /1 costs *s 4 per unit foo% an% /2 

    costs *s 6 per unit. ne unit of foo% /1 contains 3 units of $itamin ) an% 4

    units of minerals. ne unit of foo% /2 contains 6 units of $itamin ) an% 3

    units of minerals. /ormulate this as a linear programming prolem. /in%

    the minimum cost for %iet that consists of mi:ture of these t&o foo%s an%

    also meets the minimal nutritional re"uirements.

    4. ) %ealer &ishes to purchase a numer of fans an% se&ing machines. ,e

    has onl7 *s 56 to in$est an% has a space for atmost 2 items. ) fan

    costs him *s 36 an% a se&ing machine *s 24. ,is e:pectation is that he

    can sell a fan at a pro=t of *s 22 an% a se&ing machine at a pro=t of *s

    1#. )ssuming that he can sell all the items that he can u7 ho& shoul% he

    in$est his mone7 in or%er to ma:imi>e the pro=t /ormulate this as a 0PP

    an% sol$e it graphicall7.

    5. ne kin% of cake re"uires 2g 9our an% 25g of fat; an% another kin% of

    cake re"uires 1g of 9our an% 5g of fat. /in% the ma:imum numer of

    cakes &hich can e ma%e from 5 kg of 9our an% 1 kg of fat assuming that

    there is no shortage of the other ingre%ients use% in making the cakes

    /ormulate this as a 0PP an% sol$e it graphicall7.

  • 8/18/2019 Model Paper-4.docx

    86/122

    #66. ) small =rm manufactures gol% rings an% chains. (he total numer of rings

    an% chains manufacture% per %a7 is atmost 24. !t takes 1 hour to make a

    ring an% 3 minutes to make a chain. (he ma:imum numer of hours

    a$ailale per %a7 is 16. !f the pro=t on a ring is *s 3 an% that on a chain

    is *s 1' =n% the numer of rings an% chains that shoul% e manufacture%

    per %a7 so as to earn the ma:imum pro=t. Make it 0PP an% sol$e it

    graphicall7.

    . ne kin% of cake re"uires 3g 9our an% 15g of fat; an% another kin% of

    cake re"uires 15g of 9our an% 3g of fat. /in% the ma:imum numer of

    cakes &hich can e ma%e from .5 kg of 9our an% 6 g of fat assuming

    that there is no shortage of the other ingre%ients use% in making the

    cakes /ormulate this as a 0PP an% sol$e it graphicall7.

    #. ) factor7 makes t&o t7pes of items ) an% < ma%e of pl7&oo%. ne piece

    of item ) re"uires 5 minutes for cutting an% 1 minutes for assemling.

    ne piece of item < re"uires # minutes for cutting an% # minutes for

    assemling. (here are 3 hours an% 2 minutes a$ailale for cutting an% 4

    hours for assemling. (he pro=t on one piece of item ) is *s 5 an% that on

    item < is *s 6. ,o& man7 pieces of each t7pe shoul% the factor7 make so

    as to ma:imi>e the pro=t Make it as a 0PP an% sol$e it graphicall7.

  • 8/18/2019 Model Paper-4.docx

    87/122

    #

    1. ) pair of %ice is thro&n 4 times. !f getting a %oulet is consi%ere% as a

    success; =n% the proailit7 %istriution of numer of successes.

    2. ) an% < thro& a pair of %ie turn 7 turn. (he =rst to thro& ' is a&ar%e% a

    pri>e. !f ) starts the game; sho& that the proailit7 of ) getting the pri>e

    is ' E 1.

    3. ) man is kno&n to speak 3 out of 4 times. ,e thro&s a %ie an% report it is

    a 6. /in% the proailit7 that it is actuall7 a 6.

    4. ) man is kno&n to speak 3 out of 5 times. ,e thro&s a %ie an% report it is

    a numer greater than 4. /in% the proailit7 that it is actuall7 a numer

    greater than 4.

    5. )n