model-based energy characterization of iot system design aspects · 2019. 4. 8. · 2) methods for...

33
A.U.Th. Alexios Lekidis Department of Informatics, Aristotle University of Thessaloniki 2st International Workshop on Methods and Tools for Rigorous System Design (MeTRiD) Prague, Czech Republic 06 April, 2019 Model-based energy characterization of IoT system design aspects 1

Upload: others

Post on 04-Feb-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • A.U.Th.

    Alexios LekidisDepartment of Informatics, Aristotle University of

    Thessaloniki

    2st International Workshop on Methods and Tools for Rigorous System Design (MeTRiD)

    Prague, Czech Republic06 April, 2019

    Model-based energy characterization of IoT system design aspects

    1

  • A.U.Th. 2

    1)  IntroductiontotheIoTdesignaspects2)  MethodsforenergycharacterizationoftheIoT

    designaspects•  Parametersimpactingdesignaspects•  Energyaspectmonitoring

    3)  Casestudy:AspectmonitoringinanIntelligentTransportSystem•  Applicationoftheproposedmethod•  Energyestimationsbasedonsystemrequirements

    4)  Conclusionandongoingwork

    Outline

  • A.U.Th. 3

    1)  IntroductiontotheIoTdesignaspects2)  MethodsforenergycharacterizationoftheIoT

    designaspects•  Parametersimpactingdesignaspects•  Energyaspectmonitoring

    3)  Casestudy:AspectmonitoringinanIntelligentTransportSystem•  Applicationoftheproposedmethod•  Energyestimationsbasedonsystemrequirements

    4)  Conclusionandongoingwork

    Outline

  • A.U.Th. 4

    What is really IoT?

    BuildingAutomation

    ConnectedvehiclesFuturegrid Healthcare

    Industry4.0Homeautomation

    IoT

  • A.U.Th. 5

    IoTHeterogeneity

    Scalability

    Lightweighthardware

    Automation

    ReliabilityDynamicity Latency

    sensitive

    IoT application characteristics

    Low-cost

  • A.U.Th. 6

    Application example: Connected vehicles

  • A.U.Th. 7

    IoT cyber-security: Mirai botnet threat Gaining control

    Launching Denial of Service attacks

    Vulnerable RSU

    Victim

    Controlled IoT devices

    Malware loader Server

  • A.U.Th. 8

    IoT cyber-security: Vulnerabilities

  • A.U.Th. 9

    Security vs lifetime

    Applications

    Systemlibraries

    Operatingsystem

    Library calls System

    calls

    Drivers

    System calls

    Hardware

    Security 0

    50

    100

    150

    200

    250

    300

    350

    400

    Low Medium High

    Life

    time

    (day

    s)

    Security

    Ø  Challenge: Provide security mechanisms that have minimal impact on do not:

    1)  Energy consumption 2)  IoT device performance

  • A.U.Th.

    Previous work [Metrid 2018]

    Open directions: 1) Parameters centered around connectivity aspects 2) Feedback for enhancements to the application designer?

    •  Characterization of scenarios impacting the energy consumption in different modes:

    •  Idle device waiting for events (LPM)

    •  Calculations/data processing (CPU)

    •  Data transmission (Tx) •  Data reception (Rx)

    •  Valid bounds for energy consumption and battery lifetime through an energy-aware model

  • A.U.Th. 11

    1)  IntroductiontotheIoTdesignaspects2)  MethodsforenergycharacterizationoftheIoT

    designaspects•  Parametersimpactingdesignaspects•  Energyaspectmonitoring

    3)  Casestudy:AspectmonitoringinanIntelligentTransportSystem•  Applicationoftheproposedmethod•  Energyestimationsbasedonsystemrequirements

    4)  Conclusionandongoingwork

    Outline

  • A.U.Th. 12

    Proposed method: Phase 1

  • A.U.Th.

    •  BIPmodelsforeveryleveloftheIoTarchitecturewithtwolayers:–  RESTfulApplicationModel(RESTmoduleallocatedtoeverynode)–  ContikiKernelModel(ContikiOS,protocolstack)

    Modeling IoT systems in BIP [Wiley SPE, 2018]

  • A.U.Th. 14

    Energy parameter categories

    Energyparameters

    Connectivity DataProcessing Security

    [Metrid2018]

  • A.U.Th. 15

    • Parametersinfluencingtransmit/receivefunctionalitiesderiveintheirmajorityfromthenetworkstack

    • GroupingaccordingtothelayersoftheContikistacktheybelong

    •  MAClayer•  Applicationlayer•  Physicallayer

    Energy parameters: Connectivity [Metrid 2018]

  • A.U.Th. 16

    Energy parameters: Data processing MemorymanagementinIoTdevices:•  Numberofprocessedresources

    •  RoutingprotocolusedforroutingthedatatoCloudservers(i.e.reducingrequiredmemory)

  • A.U.Th. 17

    Energy parameters: Data processing MemorymanagementinIoTdevices:•  Numberofprocessedresources

    •  RoutingprotocolusedforroutingthedatatoCloudservers(i.e.reducingrequiredmemory)

    •  Memoryblockmanagementusingtwotechniques:

    •  Heapmemoryallocationthroughmalloc

    •  Dynamicblockallocationthroughmmem

  • A.U.Th. 18

    Energy parameters: Security AspectsforportingsecuritymechanismstoIoTdevices:•  Securitylevelrequiredbythesystemrequirements(authentication/authorization,encryptionorboth)

    •  SecurityprotocolindicatingthemechanismusedforsecuredataexchangeintheIoTapplication

    •  Sessionkeysizeindicatingthelengthofthekeyusedforencryption/decryptionofpackets

  • A.U.Th. 19

    Energy model

    ρ1

    λTx

    ρ2

  • A.U.Th. 20

    Model calibration

    Generalized Pareto with: κ = 0.40227; σ =1.6739; µ = 35.105 parameters

  • A.U.Th. 21

    Proposed method: Phase 2

  • A.U.Th.

    Energy aspect monitoring: Connectivity

    ca:Thelifetimeofadeviceisgreaterthan1week

  • A.U.Th.

    Energy aspect monitoring: Security

    cb:processingtimeofsecurityoperations<60%oftheoveralldutycycle

  • A.U.Th. 24

    1)  IntroductiontotheIoTdesignaspects2)  MethodsforenergycharacterizationoftheIoT

    designaspects•  Parametersimpactingdesignaspects•  Energyaspectmonitoring

    3)  Casestudy:AspectmonitoringinanIntelligentTransportSystem•  Applicationoftheproposedmethod•  Energyestimationsbasedonsystemrequirements

    4)  Conclusionandongoingwork

    Outline

  • A.U.Th. 25

    ITS Application Aim: Environmental condition awareness to different parts of a city according to ETSI EN 302 637-2/3

  • A.U.Th. 26

    Dynamicattribute(applicabletoeachvehicle/RSU) Value

    Speed xx(km/h)

    SpeedLimit xx(km/h)

    Location longitude,latitude

    AccelerationControl brakePedalEngaged,gasPedalEngaged,emergencyBrakeEngaged,collisionWarningEngaged,accEngaged,cruiseControlEngaged,speedLimiterEngaged

    Laneposition offTheRoad,hardShoulder,outermostDrivingLane,secondLaneFromOutside

    DriveDirection Forward/Backward

    WeatherCondition Unavailable,fog,smoke,heavySnowfall,heavyRain,heavyHail,lowSunGlare,sandstorms,swarmsOfInsects

    Such attributes change between zones

    ITS parameters (ETSI EN 302 637-2/3)

  • A.U.Th. 27

    ITS Application deployment Implementation of a lightweight security library that includes:

    •  TLS •  DTLS •  IPSec

  • A.U.Th. 28

    ITS Application deployment RPL routes can be monitored through the router or the Zoul client:

  • A.U.Th. 29

    ITS Application: Energy measurements

    •  Obtained using powertrace

    •  Energy measurements for: •  Zoul servers •  Zoul client •  Orion border router

    •  Current and voltage values obtained from the device datasheet

    Energy measurements in different modes

  • A.U.Th. 30

    Actual vs estimated energy

    256 key size + authentication scheme 128 key size

  • A.U.Th. 31

    •  ΝovelmethodforestimatingtheenergycostforIoTdesignaspects

    •  Energymonitoringthroughmodelconditionsthatallowto:–  Verifyifthesystemrequirementsaremet–  Facilitateapplicationdesignbyestimatingthedesignaspects

    underwhichtheyaremet•  Case-study:IntelligentTransportSystem(ITS)providingclimate

    conditiondatatopassingvehicles•  Requirementsforstrongsecuritymechanismscontradictwith

    devicelifetime•  Alternativeestimationsforsecuritymechanismstomeetmodel

    conditionsfordevicelifetime

    Conclusions

  • A.U.Th. 32

    Perspectives

    •  Methodlimitation:requiresextensivetestsforallthecombinationsofIoTdesignaspectsforeachIoTapplication•  Solution:Identifytherelevantdesignaspectsofthe

    applicationandtargetonlythose•  Automatearchitecturalchangesbasedonestimation

    feedback•  Large-scaletestbedtodemonstratethescalabilityof

    theproposedmethod•  Sophisticatedattackstotesttheefficiencyofthe

    securitylibraries

  • ARISTOTLE UNIVERSITY OF THESSALONIKI

    Thank you for your attention. Questions?

    Further info: [email protected]