mobile ad hoc networks coe 549 random access i

26
07/03/22 1 Mobile Ad hoc Networks COE 549 Random Access I Tarek Sheltami KFUPM CCSE COE http://faculty.kfupm.edu.sa/coe/tarek/co e549.htm

Upload: umed

Post on 10-Jan-2016

26 views

Category:

Documents


2 download

DESCRIPTION

Mobile Ad hoc Networks COE 549 Random Access I. Tarek Sheltami KFUPM CCSE COE http://faculty.kfupm.edu.sa/coe/tarek/coe549.htm. Outline. Medium Access Control Protocols ALOHA BTMA CSMA Some simulation results. Medium Access Control. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Mobile Ad hoc Networks COE 549 Random Access I

04/21/23 1

Mobile Ad hoc Networks COE 549

Random Access ITarek Sheltami

KFUPMCCSECOE

http://faculty.kfupm.edu.sa/coe/tarek/coe549.htm

Page 2: Mobile Ad hoc Networks COE 549 Random Access I

Outline

04/21/23 2

Medium Access Control Protocols ALOHA BTMA CSMA Some simulation results

Page 3: Mobile Ad hoc Networks COE 549 Random Access I

04/21/23 3

Medium Access Control Nodes must decide when to access the

channel, i.e., transmit Two conflicting targets:

Collisions of packets must be avoided Bandwidth must not be underutilized

Therefore, a balance is needed. This is the task of the MAC protocol

Page 4: Mobile Ad hoc Networks COE 549 Random Access I

04/21/23 4

MAC Protocols1. Random Access:

Nodes contend for the channel whenever they have a packet

Simplest example is Slotted Aloha: Nodes transmit packets whenever they arrive

2. Transmission Scheduling: Each node can transmit during a preassigned set of

slots. Simplest example is TDMA/FDMA/CDMA.

3. Hybrid Protocols: Nodes have preassigned slots but also contend. Simplest example is Reservation Aloha: Nodes

contend for a slot whenever they need it, but then have priority in following frames.

Page 5: Mobile Ad hoc Networks COE 549 Random Access I

04/21/23 5

Properties of Each Scheme

Random access is preferable when: traffic is bursty (e.g., data). topology changes fast or is unknown.

Transmission scheduling is preferable when: traffic is periodic (e.g. voice traffic). topology changes slowly. quality guarantees are needed.

Hybrid protocols are adaptable to the traffic/mobility conditions.

Page 6: Mobile Ad hoc Networks COE 549 Random Access I

04/21/23 6

Comparison of Ad hoc and Infrastructure Network Topologies..

Before CSMA/CA: Slotted Aloha (Roberts ’72 [1]) Carrier Sense Multiple Access (CSMA) (Kleinrock ’72 [2]) CSMA with Collision Detection (CSMA/CD) (Metcalfe ’76 [3]) Busy Tone Multiple Access (BTMA) (Tobagi ’76 [4])

CSMA with Collision Avoidance (CSMA/CA): MACA (Karn ’90 [5]) MACAW (Bharghavan ’94 [6]) IEEE 802.11 standard (’97 [7])

After CSMA/CA: Fairness enhanced CSMA/CA (Ozugur ’99 [8]) Dual Busy Tone Multiple Access (DBTMA) (Haas ’99 [9, 10]) CSMA/CA with Power Control (Agarwal ’01 [11], Jung ’02 [12]) CATA (Tang ’99 [13]) Progressive Backoff Algorithm (PBOA), Progressive Ramp Up

Algorithm (PRUA) (Toumpis ’03 [14])

Page 7: Mobile Ad hoc Networks COE 549 Random Access I

04/21/23 7

Slotted ALOHA

Transmission time is divided into time slots BS transmits beacon signal for time and all MTs is

divided into time slots to this beacon signal When MT generates a packet, it is buffered and

transmitted at the start of the next time slot Assuming equal length packet, either we have a

complete collision or no collision Throughput of slotted ALOHA = 36%, which is still low

Page 8: Mobile Ad hoc Networks COE 549 Random Access I

04/21/23 8

It is possible that a node sense the channel to idle, but should not transmit (the hidden terminal problem).

It is possible that a node senses the channel busy, but should transmit

(In the examples, only nodes connected by a straight line can listen to each other’s transmissions.)

Carrier Sense Multiple Access (CSMA)

Page 9: Mobile Ad hoc Networks COE 549 Random Access I

04/21/23 9

Busy Tone Multiple Access (BTMA)

Receiver transmits a busy tone in another channel (control channel).

Nodes sense the control channel before transmitting.

Page 10: Mobile Ad hoc Networks COE 549 Random Access I

04/21/23 10

Disadvantages of BTMA

Some bandwidth is sacrificed, and nodes must be full-duplex (harder than half-duplex)

If all receivers transmit BT, some transmitters are unnecessarily stopped

If only intended receiver transmits BT, there are collisions elsewhere

In first case, B can not transmit a packet to A (he should have been allowed)

In second case, B transmits a packet to C and there is collision (bandwidth is wasted)

Page 11: Mobile Ad hoc Networks COE 549 Random Access I

04/21/23 11

Carrier Sense Multiple Access Collision Avoidance (CSMA/CA)

Page 12: Mobile Ad hoc Networks COE 549 Random Access I

18/9/2004 12

CSMA/CA..

IEEE 802.11b has four types of Inter Frame Space (IFS):

Short IFS (SIFS): is the period between the completion of packet transmission and the start of

the ACK frame. (The minimum IFS) Point Coordination IFS (PIFS): is SIFS plus a Slot Time,

which is optional and we do not use it in our study Distributed IFS (DIFS): is PIFS plus a Slot Time

Extended IFS (EIFS): is a longer IFS used by a station that has received a packet that it could not

understand. This is needed to prevent collisions

Page 13: Mobile Ad hoc Networks COE 549 Random Access I

18/9/2004 13

CSMA/CA..

Packet

ACK

Next Packet

Source

Destination

Other nodes

DIFS Contention Window

Back-off after deferDefer Access

CSMA/CA Back-off Algorith

SIFS

DIFS

Page 14: Mobile Ad hoc Networks COE 549 Random Access I

Backoff Mechanism

04/21/23 14

1. Motivation: When channel becomes available, maybe more

than one node have packets to transmit If all of them transmit, there will be collisions

2. Solution: nodes backoff for random times: Each selects a random number for backoff

counter between 1 and the contention window CW

While channel is idle, nodes reduce backoff counter

First one to hit 0 transmits The rest freeze their counters

Page 15: Mobile Ad hoc Networks COE 549 Random Access I

04/21/23 15

Congestion Control

The contention window size should reflect the level of congestion in the network:

If there is little traffic, the contention window should be small

If there is a lot of traffic, the window should be large to reduce collisions

The solution of IEEE 802.11: If a node transmits but fails, it doubles the contention

window, until it reaches CWmax If a node transmits and succeeds, it resets the contention

window to CWmin CWmin = 15 and CWmax =1023 slot time (50 micro-

second)

Page 16: Mobile Ad hoc Networks COE 549 Random Access I

Problem1: Fairness

04/21/23 16

Assume heavy traffic: all nodes need the channel all of the time.

But red and blue transmissions cannot coexist (see previous slide).

In 4-node example, if A has the channel, D can not get it back

We have long-term fairness but not short-term fairness.

In 6-node example, C can only initiate transmission if both A and F are silent at the same time.

Backoff algorithm makes matters worse! Nodes that fail in handshake double their contention

window.

Page 17: Mobile Ad hoc Networks COE 549 Random Access I

04/21/23 17

CSMA/CA ensures fewer collisions, but introduces artificial restrictions on transmissions.

In following examples, the blue and the red transmission are compatible, but CSMA/CA does not allow them

Reason: With CSMA/CA, transmitter is also required to receive, receiver is also required to transmit

Hidden terminal problem morphs to another problem! Exposed terminal problem not solved at all!

Problem 2: Spatial Reuse with CSMA/CA

Page 18: Mobile Ad hoc Networks COE 549 Random Access I

04/21/23 18

Transmitter receiver pairs must use the same power because communication must be bidirectional (setting (A)).

Different pairs must use same power, otherwise strong transmitters kill weak transmitters (setting (B)).

Problem 3: CSMA has no Power Control

Page 19: Mobile Ad hoc Networks COE 549 Random Access I

04/21/23 19

Have all the nodes transmit the RTS/CTS packets with maximum power, and the DATA/ACK packets with less power, known as BASIC protocol.

Transmissions are protected, power is conserved Actually a bad idea:

Still nodes must be separated more than necessary It is harder for potential interferers to sense the channel

Performance Evaluation [12]

Page 20: Mobile Ad hoc Networks COE 549 Random Access I

04/21/23 20

POWER CONTROL MAC (PCM) PROTOCOL1. Source and destination nodes transmit the RTS and CTS using pmax.

Nodes in the carrier sensing zone set their NAVs for EIFS duration when they sense the signal and cannot decode it correctly (similar to the variation on IEEE 802.11 described earlier).

2. The source node may transmit DATA using a lower power level, similar to the BASIC scheme.

3. To avoid a potential collision with the ACK, the source node transmits DATA at the power level pmax, periodically, for just enough time so that nodes in the carrier sensing zone can sense it.

4. The destination node transmits an ACK using the minimum required power to reach the source node, similar to the BASIC scheme.

5. The key difference between PCM and the BASIC scheme is that PCM periodically increases the transmit power to pmax during the DATA packet transmission

Performance Evaluation [12]..

Page 21: Mobile Ad hoc Networks COE 549 Random Access I

04/21/23 21

POWER CONTROL MAC (PCM) PROTOCOL

Performance Evaluation [12]..

PCM periodically increases the transmit power during DATA transmission in order to inform nodes in the carrier sensing zone of its transmission

If the transmit power is increased every 170μs for 40 μs during DATA transmission, this is referred to as PCM40

Page 22: Mobile Ad hoc Networks COE 549 Random Access I

04/21/23 22

Performance Evaluation [12]..

Page 23: Mobile Ad hoc Networks COE 549 Random Access I

04/21/23 23

(Minimum S/R required for successful reception: = 10.) Problem is typically masked by poor physical layer mode.

Problem 4: Transmissions over weak links are not protected

Page 24: Mobile Ad hoc Networks COE 549 Random Access I

04/21/23 24

Control packets might collide. Nodes must decide a power threshold for declaring the

channel busy. Placing the threshold too high will prohibit some

transmissions that could take place. Placing it too low will not protect sufficiently other

transmissions. No matter where you place the threshold, mistakes will

be made. The problem is that you are sensing at the wrong place

(i.e., the transmitter, not the receiver.)

Other Problems

Page 25: Mobile Ad hoc Networks COE 549 Random Access I

References

04/21/23 25

[1] L. G. Roberts, “Aloha packet system with and without slots and capture,” Stanford, CA: StanfordResearch Institute, Advanced Research Projects Agency, Network Information Center.[2] L. Kleinrock and F. A. Tobagi, “Packet switching in radio channels: Part I—Carrier Sense MultipleAccess models and their throughput-delay characteristics,” IEEE Trans. Commun., vol. 23, no. 12, pp.1400–1416, Dec. 1975.[3] R. M. Metcalfe and D. R. Boggs, “Ethernet: distributed packet switching for local computer networks,”Comm. of the ACM, vol. 19, no. 5, pp. 395–404, July 1976.[4] F. A. Tobagi and L. Kleinrock, “Packet switching in radio channels: Part II—the hidden terminalproblem in carrier sense multiple-access and the busy tone solution.” IEEE Trans. Commun., vol. 23,no. 12, pp. 1417–1433, Dec. 1975.[5] P. Karn, “MACA: A new channel access method for packet radio,” in Proc. CNC, vol. 1, London,Ontario, Canada, Sep. 1990, pp. 134–140.[6] V. Bharghavan, A. Demers, S. Shenkar, and L. Zhang, “MACAW: A media access protocol for wirelessLAN’s,” in Proc. ACM SIGCOMM, London, UK, Aug. 1994, pp. 212–225.[7] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification, IEEE Std.802.11.[8] T. Ozugur, M. Naghshineh, P. Kermani, and J. A. Copeland, “Fair media access for wireless LANs,” inProc. IEEE GLOBECOM, vol. 1B, Rio De Janeiro, Brazil, Dec. 1999, pp. 570–579.[9] Z. J. Haas, J. Deng, and S. Tabrizi, “Collision-free medium access control scheme for ad-hoc networks,”in Proc. IEEE MILCOM, vol. 1, Atlantic City, NJ, Nov. 1999, pp. 276–280.

Page 26: Mobile Ad hoc Networks COE 549 Random Access I

References..

04/21/23 26

[10] Z. J. Haas and J. Deng, “Dual busy tone multiple access (DBTMA)— a multiple access control schemefor ad hoc networks,” IEEE Trans. Commun., vol. 50, no. 6, pp. 975–985, June 2002.[11] S. Agarwal, R. H. Katz, S. Krishnamurthy, and S. K. Dao, “Distributed power control in ad hoc wireless networks,” 12th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 2001, Volume: 2, On page(s): F-59-F-66 vol.2.[12] E.-S. Jung and N. H. Vaidya, “A power control MAC protocol for ad hoc networks,” in Proc. ACMMobicom, Atlanta, GA, Sep. 2002, pp. 36–47.[13] Z. Tang and J. J. Garcia-Luna-Aceves, “A protocol for topology-dependent transmission scheduling in wireless networks,” in Proc. IEEE WCNC, vol. 3, New Orleans, LA, Sep. 1999, pp. 1333–1337.[14] S. Toumpis and A. J. Goldsmith, “Performance, optimization, and cross-layer design of media accesscontrol protocols for wireless ad hoc networks,” in Proc. IEEE ICC, Anchorage, AK, May 2003, pp.2234–2240.[15] A. Colvin, “CSMA with collision avoidance,” Computer Communications, vol. 6, no. 5, pp. 227–235,May 1983.[16] B. P. Crow, I. Widjaja, J. G. Kim, and P. T. Sakai, “IEEE 802.11 Wireless Local Area Networks,” IEEECommun. Mag., vol. 35, no. 9, pp. 116–126, Sep. 1997.[17] D. P. Bertsekas and R. Gallager, Data Networks, 2nd ed. Englewood Cliffs, NJ: Prentice Hall, Dec.1991.