mnet: multimodal network analysis toolbox for integrating...

1
Procedures in MNET Introduction Misun Yoon 1 , Bumhee Park 3 , Jong Doo Lee 1,2 , HaeJeong Park 2 1 Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea, 2 Department of Nuclear Medicine, Yonsei University College of Medicine , Seoul, Korea, 3 Department of Anesthesiology, David Geffen School of Medicine at UCLA, LA, California, USA [email protected], http://neuroimage.yonsei.ac.kr/mnet MNET: Multimodal network analysis toolbox for integrating structural-functional human brain connectome In recent years, network analyses of neuroimaging have played key roles in understanding la rgescale structural and functional human brain connectome. Besides, database of neuroima ging is getting bigger with accumulated and publicly shared data. Despite the importance of various analyses of brain network and lots of accessible data, there are lacks of simple and au tomatic pipeline for analyzing brain network based on graph theory, using multimodal imagi ng data with respect to the viewpoint of structuralfunctional integration. Taking all of these into consideration, here we propose a toolbox combining various modality connectivity met rics, graphtheoretical metrics, and visualizations of functional and structural connectivity u sing three different modalities; resting state functional MRI (rsfMRI), electroencephalograp hy (EEG), and diffusion tensor images (DTI). 뮤직비디오 (arousal약함) 뮤직비디오 Visualization Methods MNET offers various analysis methods based on the graph theory; node definition, edge defin ition, and topology for each modality (fMRI, EEG, and DTI). Node definition First step to explore brain network is to define unique and homogeneous nodes from the con tinuous medium of the cortex. For this purpose, MNET provides several advanced methods t o define network nodes from existing atlas map using spatial ICA (Kim et al., Human Brain Mapping 2013) or Anatomicalconstrained Hierarchical Modularity Optimization (Park et al., PLoS ONE 2013). rsfMRI / DTI / EEG Connectivity Edges can be defined functionally using correlation of fMRI or coherence of EEG time series among nodes. On top of that, existing standard preprocessing pipeline for resting state fMRI (e.g. regression of nuisance variables for physiological signal and motion effect, temporal ban dpass filtering) was also designed in MNET. DTI based network is constructed using fiber tr actography in DoDTI (http://neuroimage.yonsei.ac.kr/dodti ) and counting number, length a nd mean FA of fibers that pass through the nodes, based on predefined anatomical labels, w hich are registered to the individual space to obtain weighted adjacency matrix. Subnetworks and Topology We offered various analysis methods including univariate and multivariate approaches to rev eal edge and topological network (e.g. topological properties, graph ICA, modularity optimiz ation). For example, graph ICA can be used to decompose networks into edgesharing indepe ndent subnetworks (Park et al., PLoS ONE 2014). Finally, MNET provides methods for combi ne and analyze three network modalities. MNET can produce the results of functional and structural connectivity for each subject. Mo reover, using series of graph metrics and adjacency matrices, it could conduct group level st udy (e.g. general linear modeling including ANCOVA with additional demographic covariat es). MNET provided various interactive and informative visualization techniques; 3Dvisuali zation containing edge weights, node degree, and time series plot of each node, colored adja cency matrices, and hierarchical edge bundle display. It could be used for combining visuali zation of functionalstructural connectivity. Conclusion In this study, we presented a toolbox MNET, which has fully automated pipeline analysis sys tem of functional and structural connectivity from rsfMRI, M/EEG and DTI. This toolbox ca n cover from preparing process for graphtheoretical measurement to statistical analysis. M NET shows the relationship between structural and functional connectivity through compar ing their metrics and displaying them together. Also, the toolbox has high usability with bot h intuitive Graphic User Interface and commandbased running. MNET(Multimodal Network Analysis) MNET incorporates the network property calculation codes from the Brain Connectivity Toolbox developed by the Sporns group (http://www.brainconnectivitytoolbox.net), and it uses several UI control and other functions from the SPM software (the Wellcome Trust Centre for Neuroimaging, UCL: http://www.fil.ion.u cl.ac.uk/spm/). EDGES NODE Main Workspace NETWORK STATISTICS MULTIMODAL Reference Park, B., Kim, D.S., Park, H.J.*, 2014. Graph independent component analysis reveals repertoires of intrinsic network components in the human brain. PLoS One 9, e82873. Park, B., Ko, J.H., Lee, J.D., Park, H.J.*, 2013c. Evaluation of nodeinhomogeneity effects on the functional brain network properties using an ana tomyconstrained hierarchical brain parcellation. PLoS One 8, e74935. Kim, D.J., Park, B., Park, H.J. *, 2013. Functional connectivitybased identification of subdivisions of the basal ganglia and thalamus using multile vel independent component analysis of resting state fMRI. Hum Brain Mapp 34, 13711385.

Upload: others

Post on 21-Aug-2020

15 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: MNET: Multimodal network analysis toolbox for integrating …neuroimage.yonsei.ac.kr/mnet/poster_2014ohbm_mnet.pdf · 2017. 9. 1. · MNET: Multimodal network analysis toolbox for

Procedures  in  MNET  Introduction  

Misun  Yoon1,  Bumhee  Park3,  Jong  Doo  Lee1,2,  Hae-­‐Jeong  Park2  

1Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea, 2Department  of  Nuclear  Medicine,  Yonsei  University  College  of  Medicine  ,  Seoul, Korea,  3Department  of  Anesthesiology,  David  Geffen  School  of  Medicine  at  UCLA,  LA,  California,  USA  

[email protected],  http://neuroimage.yonsei.ac.kr/mnet  

MNET: Multimodal network analysis toolbox for integrating structural-functional human brain connectome

In  recent  years,  network  analyses  of  neuroimaging  have  played  key  roles  in  understanding  large-­‐scale  structural  and  functional  human  brain  connectome.  Besides,  database  of  neuroimaging  is  getting  bigger  with  accumulated  and  publicly  shared  data.  Despite  the  importance  of  various  analyses  of  brain  network  and  lots  of  accessible  data,  there  are  lacks  of  simple  and  automatic  pipeline  for  analyzing  brain  network  based  on  graph  theory,  using  multimodal  imaging  data  with  respect  to  the  viewpoint  of  structural-­‐functional  integration.  Taking  all  of  these  into  consideration,  here  we  propose  a  toolbox  combining  various  modality  connectivity  metrics,  graph-­‐theoretical  metrics,  and  visualizations  of  functional  and  structural  connectivity  using  three  different  modalities;  resting  state  functional  MRI  (rs-­‐fMRI),  electroencephalography  (EEG),  and  diffusion  tensor  images  (DTI).  

뮤직비디오  (arousal약함) 뮤직비디오

Visualization  

Methods  MNET  offers  various  analysis  methods  based  on  the  graph  theory;  node  definition,  edge  definition,  and  topology  for  each  modality  (fMRI,  EEG,  and  DTI).    Node  definition  First  step  to  explore  brain  network  is  to  define  unique  and  homogeneous  nodes  from  the  continuous  medium  of  the  cortex.  For  this  purpose,  MNET  provides  several  advanced  methods  to  define  network  nodes  from  existing  atlas  map  using  spatial  ICA  (Kim  et  al.,  Human  Brain  Mapping  2013)  or  Anatomical-­‐constrained  Hierarchical  Modularity  Optimization  (Park  et  al.,  PLoS  ONE  2013).      rsfMRI  /  DTI  /  EEG  Connectivity  Edges  can  be  defined  functionally  using  correlation  of  fMRI  or  coherence  of  EEG  time  series  among  nodes.  On  top  of  that,  existing  standard  preprocessing  pipeline  for  resting  state  fMRI  (e.g.  regression  of  nuisance  variables  for  physiological  signal  and  motion  effect,  temporal  band-­‐pass  filtering)  was  also  designed  in  MNET.  DTI  based  network  is  constructed  using  fiber  tractography  in  DoDTI  (http://neuroimage.yonsei.ac.kr/dodti)  and  counting  number,  length  and  mean  FA  of  fibers  that  pass  through  the  nodes,  based  on  pre-­‐defined  anatomical  labels,  which  are  registered  to  the  individual  space  to  obtain  weighted  adjacency  matrix.    Sub-­‐networks  and  Topology  We  offered  various  analysis  methods  including  univariate  and  multivariate  approaches  to  reveal  edge  and  topological  network  (e.g.  topological  properties,  graph  ICA,  modularity  optimization).  For  example,  graph  ICA  can  be  used  to  decompose  networks  into  edge-­‐sharing  independent  subnetworks  (Park  et  al.,  PLoS  ONE  2014).  Finally,  MNET  provides  methods  for  combine  and  analyze  three  network  modalities.    

MNET  can  produce  the  results  of  functional  and  structural  connectivity  for  each  subject.  Moreover,  using  series  of  graph  metrics  and  adjacency  matrices,  it  could  conduct  group  level  study  (e.g.  general  linear  modeling  including  ANCOVA  with  additional  demographic  covariates).  MNET  provided  various  interactive  and  informative  visualization  techniques;  3D-­‐visualization  containing  edge  weights,  node  degree,  and  time  series  plot  of  each  node,  colored  adjacency  matrices,  and  hierarchical  edge  bundle  display.  It  could  be  used  for  combining  visualization  of  functional-­‐structural  connectivity.  

Conclusion  In  this  study,  we  presented  a  toolbox  MNET,  which  has  fully  automated  pipeline  analysis  system  of  functional  and  structural  connectivity  from  rs-­‐fMRI,  M/EEG  and  DTI.  This  toolbox  can  cover  from  preparing  process  for  graph-­‐theoretical  measurement  to  statistical  analysis.  MNET  shows  the  relationship  between  structural  and  functional  connectivity  through  comparing  their  metrics  and  displaying  them  together.  Also,  the  toolbox  has  high  usability  with  both  intuitive  Graphic  User  Interface  and  command-­‐based  running.  

MNET(Multimodal  Network  Analysis)  

MNET  incorporates  the  network  property  calculation  codes  from  the  Brain  Connectivity  Toolbox  developed  by  the  Sporns  group  (http://www.brain-­‐connectivity-­‐toolbox.net),  and  it  uses  several  UI  control  and  other  functions  from  the  SPM  software  (the  Wellcome  Trust  Centre  for  Neuroimaging,  UCL:  http://www.fil.ion.ucl.ac.uk/spm/).  

EDGES

NODE Main Workspace

NETWORK STATISTICS MULTIMODAL

Reference  Park,  B.,  Kim,  D.S.,  Park,  H.J.*,  2014.  Graph  independent  component  analysis  reveals  repertoires  of  intrinsic  network  components  in  the  human  brain.  PLoS  One  9,  e82873.  Park,  B.,  Ko,  J.H.,  Lee,  J.D.,  Park,  H.J.*,  2013c.  Evaluation  of  node-­‐inhomogeneity  effects  on  the  functional  brain  network  properties  using  an  anatomy-­‐constrained  hierarchical  brain  parcellation.  PLoS  One  8,  e74935.  Kim,  D.J.,  Park,  B.,  Park,  H.J.*,  2013.  Functional  connectivity-­‐based  identification  of  subdivisions  of  the  basal  ganglia  and  thalamus  using  multilevel  independent  component  analysis  of  resting  state  fMRI.  Hum  Brain  Mapp  34,  1371-­‐1385.