mit15_450f10_lec02

75
Stochastic Integral Itô’s Lemma Black-Sch oles Model Multivariate Itô Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing Stochastic Calculus and Option Pricing Leonid Kogan MIT , Sloan 15.450, Fall 2010  Leonid Kogan ( MIT , Sloan ) Stochastic Calculus 15.450, Fall 2010 1 / 74 c

Upload: seanwu95

Post on 13-Oct-2015

4 views

Category:

Documents


0 download

DESCRIPTION

MIT15_450F10_lec02

TRANSCRIPT

  • 5/23/2018 MIT15_450F10_lec02

    1/75

    Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    Stochastic Calculus and Option Pricing

    Leonid Kogan

    MIT, Sloan

    15.450, Fall 2010

    Leonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 1 / 74c

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    2/75

    Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    Outline

    1 Stochastic Integral

    2 Its Lemma

    3 Black-Scholes Model

    4 Multivariate It Processes

    5 SDEs

    6 SDEs and PDEs

    7 Risk-Neutral Probability

    8 Risk-Neutral Pricing

    c Stochastic Calculus 2 / 74Leonid Kogan ( MIT, Sloan ) 15.450, Fall 2010

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    3/75

    Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    Outline

    1 Stochastic Integral

    2 Its Lemma

    3 Black-Scholes Model

    4 Multivariate It Processes

    5 SDEs

    6 SDEs and PDEs

    7 Risk-Neutral Probability

    8 Risk-Neutral Pricing

    c Stochastic Calculus 3 / 74Leonid Kogan ( MIT, Sloan ) 15.450, Fall 2010

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    4/75

    Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    Brownian Motion

    Consider a random walk xt+nt with equally likely increments of

    t.

    Let the time step of the random walk shrink to zero: t 0.

    The limit is a continuous-time process called Brownian motion, which we

    denote Zt , or Z (t).

    We always set Z0 =0.Brownian motion is a basic building block of continuous-time models.

    cLeonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 4 / 74

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    5/75

    Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    Properties of Brownian Motion

    Brownian motion has independent increments: if t

  • 5/23/2018 MIT15_450F10_lec02

    6/75

    Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    Ito Integral

    Ito integral, also called the stochastic integral (with respect to the Brownian

    motion) is an object tu dZu

    0

    where u is a stochastic process.

    Important: u can depend on the past history of Zu, but it cannot depend onthe future. u is called adapted to the history of the Brownian motion.

    Consider discrete-time approximations

    N

    t(i1)t (Zit Z(i1)t ), t =

    Ni=1

    and then take the limit of N (the limit must be taken in themean-squared-error sense).

    The limit is well defined, and is called the Ito integral.

    cLeonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 6 / 74S h i I l I L Bl k S h l M d l M l i i I P SDE SDE d PDE Ri k N l P b bili Ri k N l P i i

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    7/75

    Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    Properties of It Integral

    It integral is linear

    t t t(au +c bu)dZu = au dZu +c bu dZu

    0 0 0tXt = 0 u dZu, is continuous as a function of time.Increments of Xt have conditional mean of zero (under some technicalrestrictions on u):

    Et [Xt Xt] =0, t >tT T Note: a sufficient condition for Et t u dZu =0 i s E0 0 2u du

  • 5/23/2018 MIT15_450F10_lec02

    8/75

    Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    It Processes

    An It process is a continuous-time stochastic process Xt , or X(t), of the form

    t tu du + u dZu

    0 0

    u is called the instantaneous drift of Xt at time u, and u is called theinstantaneous volatility, or the diffusion coefficient.

    t dt captures the expected change of Xt between t and t +dt.t dZt captures the unexpected (stochastic) component of the change of Xtbetween t and t +dt.Conditional mean and variance:

    Et (Xt+dt Xt ) =t dt +o(dt), Et (Xt+dt Xt )2 =t2 dt +o(dt)

    cLeonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 8 / 74Stochastic Integral Its Lemma Black Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk Neutral Probability Risk Neutral Pricing

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    9/75

    Stochastic Integral It s Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    Outline

    1

    Stochastic Integral

    2 Its Lemma

    3 Black-Scholes Model

    4 Multivariate It Processes

    5 SDEs

    6 SDEs and PDEs

    7 Risk-Neutral Probability

    8 Risk-Neutral Pricing

    c Stochastic Calculus 9 / 74Leonid Kogan ( MIT, Sloan ) 15.450, Fall 2010Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    10/75

    Stochastic Integral It s Lemma Black Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk Neutral Probability Risk Neutral Pricing

    Quadratic Variation

    Consider a time discretization

    0 =t1

  • 5/23/2018 MIT15_450F10_lec02

    11/75

    Stochastic Integral It s Lemma Black Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk Neutral Probability Risk Neutral Pricing

    Quadratic Variation

    Quadratic variation of an It process

    t tXt = u du + u dZu

    0 0

    is given by

    T

    [X]T = 2t

    dt0

    Heuristically, the quadratic variation formula states that

    (dZt )2 =dt, dt dZt =o(dt), (dt)2 =o(dt)

    Random walk intuition:

    |dZt |=dt, |dt dZt |= (dt)3/2 =o(dt), dZt2 =dtConditional variance of the It process can be estimated by approximating its

    quadratic variation with a discrete sum. This is the basis for variance

    estimation using high-frequency data.

    c Stochastic Calculus 11 / 74Leonid Kogan ( MIT, Sloan ) 15.450, Fall 2010Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    12/75

    g y g

    Its Lemma

    Its Lemma states that if Xt is an It process,t tXt = u du + u dZu

    0 0

    then so is f (t,Xt ), where f is a sufficiently smooth function, and

    df (t,Xt ) = f (t,Xt ) +f (t,Xt )t +1 2f (t,Xt )2t dt +f (t,Xt )t dZtt Xt 2 Xt2 XtIts Lemma is, heuristically, a second-order Taylor expansion in t and Xt ,

    using the rule that

    (dZt )2 =dt, dt dZt =o(dt), (dt)2 =o(dt)

    cLeonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 12 / 74Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    13/75

    g y g

    Its Lemma

    Using the Taylor expansion,

    df (t,Xt )f (

    t,t

    Xt )dt +f (

    t

    X

    ,Xt

    t )dXt +

    2

    1 2f

    (t

    t

    ,2

    Xt )dt2

    +2

    1 2f

    (

    X

    t,t

    2

    Xt )(dXt )

    2 +2

    f

    t

    (

    t,X

    X

    t

    t )dt dXt

    f (t,Xt ) f (t,Xt ) f (t,Xt )= dt + t dt + t dZt

    t Xt Xt

    +2

    1 2f

    (

    X

    t,t2

    Xt )2t dt +o(dt)

    Short-hand notation

    df (t,Xt ) = f (

    t,t

    Xt )dt +f (

    t

    X

    ,Xt

    t )dXt +

    2

    1 2f

    (

    X

    t,t2

    Xt )(dXt )

    2

    cLeonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 13 / 74Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    14/75

    Its LemmaExample

    Let Xt =exp(at +bZt ).We can write Xt =f (t,Zt ), where

    f (t,Zt ) =exp(at +bZt )Using

    f (t,Zt )=af (t,Zt ), f (t,Zt ) =bf (t,Zt ), 2f (t,Zt ) =b2f (t,Zt )

    t Zt Zt2

    Its Lemma implies

    b2dXt = a + Xt dt +bXt dZt

    2

    Expected growth rate of Xt is a +b2/2.c Stochastic Calculus 14 / 74Leonid Kogan ( MIT, Sloan ) 15.450, Fall 2010

    Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    15/75

    Outline

    1

    Stochastic Integral

    2 Its Lemma

    3 Black-Scholes Model

    4 Multivariate It Processes

    5 SDEs

    6 SDEs and PDEs

    7 Risk-Neutral Probability

    8 Risk-Neutral Pricing

    c Stochastic Calculus 15 / 74Leonid Kogan ( MIT, Sloan ) 15.450, Fall 2010Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    16/75

    The Black-Scholes Model of the Market

    Consider the market with a constant risk-free interest rate r and a single risky

    asset, the stock.Assume the stock does not pay dividends and the price process of the stock

    is given by St =S0 exp 1 2 t +Zt

    2

    Because Brownian motion is normally distributed, usingE0[exp(Zt )]=exp(t/2), find

    E0[St] =S0 exp(t)Using Its Lemma (check)

    dSt=dt +dZt

    St

    is the expected continuously compounded stock return, is the volatility ofstock returns.

    Stock returns have constant volatility.

    c Stochastic Calculus 16 / 74Leonid Kogan ( MIT, Sloan ) 15.450, Fall 2010Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    17/75

    Dynamic Trading

    Consider a trading strategy with continuous rebalancing.

    At each point in time, hold t shares of stocks in the portfolio.

    Let the portfolio value be Wt . Then Wt tSt dollars are invested in theshort-term risk-free bond.

    Portfolio is self-financing: no exogenous incoming or outgoing cash flows.Portfolio value changes according to

    dWt =t dSt + (Wt tSt )r dtDiscrete-time analogy

    Bt+tWt+t Wt =t (St+t St ) + (Wt tSt ) 1

    Bt

    cLeonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 17 / 74Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    18/75

    Option Replication

    Consider a European option with the payoff H(ST ).

    We will construct a self-financing portfolio replicating the payoff of the option.

    Look for the portfolio such that

    Wt =f (t,St )for some function f (t,St ).By Law of One Price, f (t,St )must be the price of the option at time t, beingthe cost of a trading strategy with an identical payoff.

    Note that the self-financing condition is important for the above argument: wedo not want the portfolio to produce intermediate cash flows.

    cLeonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 18 / 74Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    19/75

    Option Replication

    Apply Its Lemma to portfolio value, Wt =f (t,St ):f f 1 2fdWt =t dSt + (Wt tSt )r dt =t

    dt +St

    dSt +2 St

    2(dSt )

    2

    where (dSt )2 =2St2 dt

    The above equality holds at all times if

    t = f (tS

    ,St

    t ), f (t,tSt ) +

    21 2f

    (St,

    t2St )2St2 r f (t,St ) Sft St =0

    If we can find the solution f (t,S)to the PDEf (t,S) f (t,S) 1

    2S22f (t,S)

    r f (t,S) + +rS + =0t S 2 S

    2

    with the boundary condition f (T ,S) =H(S), then the portfolio withf (t,St )

    W0 =f (0,S0), t =St

    replicates the option!cLeonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 19 / 74

    Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    20/75

    Black-Scholes Option Price

    We conclude that the option price can be computed as a solution of the

    Black-Scholes PDEf f 1 2f

    r f + +rS + 2S2 =0t S 2 S2

    If the option is a European call with strike K , the PDE can be solved in closed

    form, yielding the Black-Scholes formula:

    C(t,St ) =StN(z1) exp(r(T t))KN(z2),where N(.)is the cumulative distribution function of the standard normaldistribution,

    log SK

    t + r +21 2 (T t)

    z1 =

    ,

    T tand

    z2 =z1 T t.Note that does not enter the PDE or the B-S formula. This is intuitive fromthe perspective of risk-neutral pricing. Discuss later.

    c Stochastic Calculus 20 / 74Leonid Kogan ( MIT, Sloan ) 15.450, Fall 2010Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    21/75

    3

    Black-Scholes Option Replication

    The replicating strategy requires holding

    f (t,St )t =

    St

    stock shares in the portfolio. t is called the options delta.

    It is possible to replicate any option in the Black-Scholes setting because

    Price of the stock St is driven by a Brownian motion;

    Rebalancing of the replicating portfolio is continuous;

    There is a single Brownian motion affecting the payoff of the option and the price

    of the stock. More on this later, when we cover multivariate It processes.

    cLeonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 21 / 74Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    22/75

    Single-Factor Term Structure Model

    Consider a model of the term structure of default-free bond yields.

    Assume that the short-term interest rate follows

    drt =(rt )dt +(rt )dZtLet P(t,)denote the time-t price of a discount bond with unit face valuematuring at time .

    We want to construct an arbitrage-free model capturing, simultaneously, the

    dynamics of bond prices of many different maturities.

    cLeonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 22 / 74Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    23/75

    Single-Factor Term Structure Model

    Assume that bond prices can be expressed as a function of the short rate

    only (single-factor structure)

    P(t,) =f (t,rt ,)It formula implies that

    dP(t,) = f +f (rt ) +1 2f 2(rt ) dt +f (rt )dZtt r 2 r2 r

    t t

    Consider a self-financing portfolio which invests P(t,)/t dollars in thebond maturing at , and P(t

    ,)/t

    dollars in the bond maturing at

    .Self-financing requires that the investment in the risk-free short-term bond is

    Wt P(

    t,)

    +P(

    t,

    )

    t t

    cLeonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 23 / 74Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    24/75

    Single-Factor Term Structure Model

    Portfolio value evolves according to

    dWt = Wt P(

    t,

    )+P(

    t,

    )

    rt +

    t

    t

    dt+

    t t t t

    t t dZt

    t t

    = Wt P(

    t,

    )+P(

    t,

    )

    rt +

    t

    t

    dt

    t t t t

    Portfolio value changes are instantaneously risk-free.

    To avoid arbitrage, the portfolio value must grow at the risk-free rate:

    Wt P(

    t,

    )+P(

    t,

    )

    rt +

    t

    t

    =Wtrtt t t t

    cLeonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 24 / 74Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    25/75

    Single-Factor Term Structure Model

    We conclude that

    t rtP(t,)

    = t rtP(t,), for any and t t

    Assume that, for some ,

    t

    rtP(t,) =(t,rt )

    t

    Then, for all bonds, must have

    t rtP(t,) =(t,rt )t

    Recall the definition of t, t to derive the pricing PDE on P(t,) =f (t,rt ,)

    f f 1 2f f+ (r) + 2(r) rf =(t,r)(r) , f (,r,) =1

    t r 2 r2 r

    The solution, indeed, has the form f (t,r,).cLeonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 25 / 74

    Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    26/75

    Single-Factor Term Structure Model

    What ift rtP(t,)

    t=(t,rt )

    for any function , i.e., the LHS depends on something other than rt and t?

    Then the term structure will not have a single-factor form.We have seen that, for each choice of (t,rt ), absence of arbitrage impliesthat bond prices must satisfy the pricing PDE.

    The reverse is true: if bond prices satisfy the pricing PDE (with well-behaved

    (t,rt )), there is no arbitrage (show later, using risk-neutral pricing).The choice of (t,rt )determines the joint arbitrage-free dynamics of bondprices (yields).

    (t,rt )is the price of interest rate risk.

    cLeonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 26 / 74Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    27/75

    Outline

    1 Stochastic Integral

    2 Its Lemma

    3 Black-Scholes Model

    4 Multivariate It Processes

    5 SDEs

    6 SDEs and PDEs

    7 Risk-Neutral Probability

    8 Risk-Neutral Pricing

    c Stochastic Calculus 27 / 74Leonid Kogan ( MIT, Sloan ) 15.450, Fall 2010Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    28/75

    Multiple Brownian motions

    Consider two independent Brownian motions Zt1 and Zt

    2. Construct a third

    process Xt =Zt1 + 1 2Zt2Xt is also a Brownian motion:

    Xt has IID normal increments;

    Xt is continuous.

    Xt and Zt1

    are correlated: E0 XtZt1 =tCorrelated Brownian motions can be constructed from uncorrelated ones,

    just like with normal random variables.

    Cross-variation

    N1

    [Zt1,Zt2]T = lim (Z 1(tn+1) Z 1(tn))(Z 2(tn+1) Z 2(tn))=0

    0n=1

    Short-hand rule

    dZt1 dZt

    2 =0 dZt1 dXt =dt

    cLeonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 28 / 74

    Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    29/75

    Multivariate It Processes

    A multivariate It process is a vector process with each coordinate driven byan It process.

    Consider a pair of processes

    dXt =tX dt +Xt dZtX ,

    dYt =tY

    dt +

    Y

    t dZtY

    ,dZt

    X dZtY =t dt

    Its formula can be extended to multiple process as follows:

    f f f

    df (t,Xt ,Yt ) = dt + dXt + dYt +t Xt Yt

    1 2f 1 2f 2f(dXt )

    2 + (dYt )2 + dXt dYt

    2 Xt2 2 Yt

    2 Xt Yt

    cLeonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 29 / 74Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    30/75

    Example of Its formula

    Consider two asset price processes, Xt and Yt , both given by It processes

    dXt =Xt dt +Xt dZtXdYt =tY dt +Yt dZtY

    dZtX dZt

    Y =0Using Its formula, we can derive the process for the ratio ft =Xt /Yt (usef (X,Y ) =X/Y ):

    2

    dft dXt dYt dXt dYt dYt= +

    ft Xt Yt Xt Yt Yt 2X Y Y X Y= t t + t dt + t dZtX t dZtYXt Yt Yt2 Xt Yt

    cLeonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 30 / 74Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    f f

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    31/75

    Example of Its formula

    We find that the expected growth rate of the ratio Xt /Yt is X Y Y 2t t t +Xt Yt Yt

    2

    Assume that tX =tY . Then, dft Yt 2

    Et = dtft Yt

    2

    Repeating the same calculation for the inverse ratio, ht =Yt /Xt , we find 2

    Etdht

    = tX dtht Xt

    2

    It is possible for both the ratio Xt /Yt and its inverse Yt /Xt to be expected to

    grow at the same time. Application to FX.

    c Stochastic Calculus 31 / 74Leonid Kogan ( MIT, Sloan ) 15.450, Fall 2010Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    O li

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    32/75

    Outline

    1 Stochastic Integral

    2 Its Lemma

    3 Black-Scholes Model

    4 Multivariate It Processes

    5 SDEs

    6

    SDEs and PDEs

    7 Risk-Neutral Probability

    8 Risk-Neutral Pricing

    c Stochastic Calculus 32 / 74Leonid Kogan ( MIT, Sloan ) 15.450, Fall 2010Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    St h ti Diff ti l E ti

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    33/75

    Stochastic Differential Equations

    Example: Hestons stochastic volatility model

    dSt =dt +vt dZSSt

    t

    dvt = (vt v)dt +vt dZtvdZt

    S dZtv =dt

    Conditional variance vt is described by a Stochastic Differential Equation.

    Definition (SDE)

    The It process Xt satisfies a stochastic differential equation

    dXt

    =(t,Xt)dt +(t,X

    t)dZ

    t

    with an initial condition X0 if it satisfies

    Xt =X0 +t

    0

    (s,Xs)ds +(s,Xs)dZs.cLeonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 33 / 74

    Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    E i t f S l ti f SDE

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    34/75

    Existence of Solutions of SDEs

    Assume that for some C,D >0|(t,X)|+|(t,X)|C(1 +|X |)

    and

    |(t,X) (t,Y )|+|(t,X) (t,Y )|D|X Y |for any X and Y (Lipschitz property).

    Then, the SDE

    dXt =(t,Xt )dt +(t,Xt )dZt , X0 =x,has a unique continuous solution Xt .

    cLeonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 34 / 74Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    Common SDEs

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    35/75

    Common SDEsArithmetic Brownian Motion

    The solution of the SDE

    dXt =dt +dZtis given by

    Xt =X0 +t +Zt .The process Xt is called an arithmetic Brownian motion, or Brownian motion

    with a drift.

    Guess and verify.

    We typically reduce an SDE to a few common cases with explicit solutions.

    cLeonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 35 / 74Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    Common SDEs

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    36/75

    Common SDEsGeometric Brownian Motion

    Consider the SDEdXt =Xt dt +Xt dZt

    Define the process

    Yt =ln(Xt ).By Its Lemma,

    dYt =X

    1

    t

    Xt dt +X

    1

    t

    Xt dZt +12

    (X

    1

    t2

    )2Xt2 dt = (2/2)dt +dZt .

    Yt is an arithmetic Brownian motion, given in the previous example, and

    Yt =Y0 + (2/2)t +Zt .Then

    Xt =eYt =X0 exp (2/2)t +ZtcLeonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 36 / 74

    Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    Common SDEs

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    37/75

    Common SDEsOrnstein-Uhlenbeck process

    The mean-reverting Ornstein-Uhlenbeck process is the solution Xt to the

    stochastic differential equation

    dXt = (X Xt )dt +dZtWe solve this equation using et as an integrating factor.

    Setting Yt =et and using Its lemma for the function f (X ,Y ) =X Y , we findd(etXt ) =et (X dt +dZt ).

    Integrating this between 0 and t, we find

    t tetXt X0 = esXds + esdZs,0 0

    i.e., tXt =etX0 + (1 et )X + estdZs.

    0

    cLeonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 37 / 74Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    Option Replication in the Heston Model

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    38/75

    Option Replication in the Heston Model

    Assume the Heston stochastic-volatility model for the stock.

    Attempt to replicate the option payoff with the stock and the risk-free bond.Can we find a trading strategy that would guarantee perfect replication?

    It is possible to replicate an option using a bond, a stock, and another option.

    cLeonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 38 / 74Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    Recap of APT

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    39/75

    Recap of APT

    Recall the logic of APT.

    Suppose we have N assets with two-factor structure in their returns:Rt

    i =ai +bi1Ft1 +bi2Ft2Interest rate is r.

    While not stated explicitly, all factor loadings may be stochastic.

    Unlike the general version of the APT, we assume that returns have noidiosyncratic component.

    At time t, consider any portfolio with fraction i in each asset i that has zero

    exposure to both factors:

    b111 +b122 +...+b1N N =0

    b211 +b222 +...+b2N N =0

    This portfolio must have zero expected excess return to avoid arbitrage

    1 Et [Rt1] r +2 Et [Rt2] r +...+N Et [RtN] r =0

    cLeonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 39 / 74Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    Recap of APT

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    40/75

    Recap of APT

    To avoid arbitrage, any portfolio satisfying

    b111 +b122 +...+b1N N =0b2

    11 +b222 +...+b2N N =0must satisfy

    1 Et [Rt1

    ] r +2 Et [Rt2] r +...+N Et [RtN] r =0Restating this in vector form, any vector orthogonal to

    (b11,b12,...,b1N )and (b21,b22,...,b2N )

    must be orthogonal to (Et [Rt1] r,Et [Rt2] r,...,Et [RtN] r).Conclude that the third vector is spanned by the first two: there exist

    constants (prices of risk) (1t ,2t )such thatEt [Rt

    i] r =1tb1i +t2b2i , i =1,...,NcLeonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 40 / 74

    Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    Option Pricing in the Heston Model

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    41/75

    Option Pricing in the Heston Model

    Suppose there are N derivatives with prices given by

    fi (t,St ,vt )where the first option is the stock itself: f 1(t,St ,vt ) =St .Using Itos lemma, their prices satisfy

    df i (t,St ,vt ) =aitdt +fi (t,St ,vt )dSt +fi (t,St ,vt )dvtSt vtCompare the above to our APT argument

    Conclude that there exist St and vt such that

    Edf i (t,St ,vt ) rf i (t,St ,vt )dt= fi (t

    ,S

    S

    t

    t ,vt )t

    S dt +fi (t

    ,v

    S

    t

    t ,vt )t

    v dt

    We work with price changes instead of returns, as we did in the APT,

    because some of the derivatives may have zero price.

    cLeonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 41 / 74Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    Option Pricing in the Heston Model

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    42/75

    Option Pricing in the Heston Model

    The APT pricing equation, applied to the stock, implies that

    E [dSt rSt dt]= (r)St dt =tS dtvt is the price of volatility risk, which determines the risk premium on any

    investment with exposure to dvt .

    Writing out the pricing equation explicitly, with the Itos lemma providing an

    expression for E df i (t,St ,vt ) ,fi fi fi

    + S + ()(v v)+t S v

    1 2fi 1 2fi 2fi fi fivS2 + 2v + Sv rf i = (r)S + v

    2 S2 2 v2 Sv S v t

    As long as we assume that the price of volatility risk is of the form

    v =v (t,St ,vt )tthe assumed functional form for option prices is justified and we obtain an

    arbitrage-free option pricing model.

    c Stochastic Calculus 42 / 74Leonid Kogan ( MIT, Sloan ) 15.450, Fall 2010Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    Numerical Solution of SDEs

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    43/75

    Numerical Solution of SDEs

    Except for a few special cases, SDEs do not have explicit solutions.

    The most basic and common method of approximating solutions of SDEs

    numerically is using the first-order Euler scheme.

    Use the grid ti

    =i.Xi+1 =Xi +(ti ,Xi )+(ti ,Xi )i ,

    where

    i are IID N(0,1)random variables.

    Using a binomial distribution for i , with equal probabilities of 1, is also avalid procedure for approximating the distribution of Xt

    cLeonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 43 / 74Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    Outline

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    44/75

    Outline

    1 Stochastic Integral

    2 Its Lemma

    3 Black-Scholes Model

    4 Multivariate It Processes

    5 SDEs

    6 SDEs and PDEs

    7 Risk-Neutral Probability

    8 Risk-Neutral Pricing

    c Stochastic Calculus 44 / 74Leonid Kogan ( MIT, Sloan ) 15.450, Fall 2010Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    Moments of Diffusion Processes

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    45/75

    Moments of Diffusion Processes

    Often need to compute conditional moments of diffusion processes:

    Expected returns and variances of returns on financial assets over finite time

    intervals;

    Use the method of moments to estimate a diffusion process from discretelysampled data;

    Compute prices of derivatives.

    One approach is to reduce the problem to a PDE, which can sometimes be

    solved analytically.

    cLeonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 45 / 74Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    Kolmogorov Backward Equation

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    46/75

    g q

    Diffusion process Xt with coefficients (t,X)and (t,X).Objective: compute a conditional expectation

    f (t,X) =E[g(XT )|Xt =X]Suppose f (t,X)is a smooth function of t and X . By the law of iteratedexpectations,

    f (t,Xt) =E

    t[f (t +dt,X

    t+

    dt)] E

    t[df (t,X

    t)]=0

    Using Itos Lemma,

    Et [df (t,Xt )]= f (t,X) +(t,X)f (t,X) +1 (t,X)2 2f (t,X) dt =0t X 2 X 2

    Kolmogorov backward equationf (t,X)

    +(t,X)f (t,X) +1 (t,X)2 2f (t,X) =0,t X 2 X 2

    with boundary condition

    f (T ,X) =g(X)cLeonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 46 / 74

    Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    Example: Square-Root Diffusion

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    47/75

    p q

    Consider a popular diffusion process used to model interest rates and

    stochastic volatility

    dXt = (Xt X)dt + Xt dZtWe want to compute the conditional moments of this process, to be used as

    a part of GMM estimation.

    Compute the second non-central moment

    f (t,X) =E(XT2|Xt =X)Using Kolmogorov backward equation,

    f (t,X) (X X)f (t,X) +1 2X 2f (t,X) =0,t X 2 X 2

    with boundary condition

    f (T ,X) =X 2cLeonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 47 / 74

    Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    Example: Square-Root Diffusion

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    48/75

    p q

    Look for the solution in the the form

    f (t,X) =a0(t) +a1(t)X +a2(t)X 22Substitute f (t,X)into the PDE

    a0(t) +a1(t)X +a2(t)X 2 (X X)(a1(t) +a2(t)X) +2 Xa2(t) =02 2

    Collect terms with different powers of X , zero, one and two, to get

    a0(t) +Xa1(t) =0

    2a1(t) a1(t) + +X a2(t) =0

    2a2(t) 2a2(t) =0

    with initial conditions

    a0(T ) =a1(T ) =0, a2(T ) =2cLeonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 48 / 74

    Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    Example: Square-Root Diffusion

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    49/75

    p q

    We solve the system of equations starting from the third one and working up

    to the first:

    a0(t)=XA

    1

    2e2(tT ) e(tT ) +1

    2

    a1(t)=A e(tT ) e2(tT )

    a2(t)=2e2(tT )A = 2 +2X

    Compare the exact expression above to an approximate expression, obtained

    by assuming that T t =t is small.

    cLeonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 49 / 74Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    Example: Square-Root Diffusion

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    50/75

    Assume T t =

    t is small. Using Taylor expansion,

    a0(t) =o(t), a1(t) =At +o(t)a2(t) =2(1 2t) +o(t)

    Then Et (Xt2+t |Xt =X)X 2 +t (2 +2X)X 2X2Alternatively,

    Xt+t Xt (Xt X)t +

    Xt

    tt , t N(0,1)Therefore

    Et (Xt2+t |Xt =X)X 2 +t 2X 2X(X X)

    cLeonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 50 / 74Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    Outline

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    51/75

    1 Stochastic Integral

    2 Its Lemma

    3 Black-Scholes Model

    4 Multivariate It Processes

    5 SDEs

    6 SDEs and PDEs

    7 Risk-Neutral Probability

    8 Risk-Neutral Pricing

    c Stochastic Calculus 51 / 74Leonid Kogan ( MIT, Sloan ) 15.450, Fall 2010Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    Risk-Neutral Probability Measure

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    52/75

    Under the risk-neutral probability measureQ

    , expected conditional assetreturns must equal the risk-free rate.

    Alternatively, using the discounted cash flow formula, the price Pt of an asset

    with payoff HT at time T is given by

    T Pt t exp rsds HT=EQ twhere rs is the instantaneous risk-free interest rate at time s.

    The DCF formula under the risk-neutral probability can be used to compute

    asset prices by Monte Carlo simulation (e.g., using an Euler scheme to

    approximate the solutions of SDEs).

    Alternatively, one can derive a PDE characterizing asset prices using the

    connection between PDEs and SDEs.

    cLeonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 52 / 74Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    Change of Measure

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    53/75

    We often want to consider a probability measure Qdifferent from P, but theone that agrees with Pon which events have zero probability (equivalent toP) (e.g., Qcould be a risk-neutral measure).Different probability measures assign different relative likelihoods to the

    trajectories of the Brownian motion.

    It is easy to express a new probability measure Qusing its densitydQ

    T =dP T

    For any random variable XT ,

    EQ0 [XT] =EP0 [T XT], EQt [XT] =EP T XT , t EPt [T]t tQis equivalent to Pif T is positive (with probability one).cLeonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 53 / 74

    Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    Change of Measure

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    54/75

    If we consider a probability measure Qdifferent from P, but the one that

    agrees with Pon which events have zero probability, then the P-Brownianmotion Zt

    P becomes an Ito process under Q:dZt

    P =dZtQ t dtfor some t . ZtQ

    is a Brownian motion under Q.

    When we change probability measures this way, only the drift of the Brownian

    motion changes, not the variance.

    Intuition: a probability measure assigns relative likelihood to different

    trajectories of the Brownian motion. Variance of the Ito process can be

    recovered from the shape of a single trajectory (quadratic variation), so itdoes not depend on the relative likelihood of the trajectories, hence, does not

    depend on the choice of the probability measure.

    cLeonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 54 / 74Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    Risk-Neutral Probability Measure

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    55/75

    Under the risk-neutral probability measure, expected conditional asset

    returns must equal the risk-free rate.

    Start with the stock price process under P:

    dSt =tSt dt +tSt dZtPUnder the risk-neutral measure Q,

    dSt =rtSt dt +tSt dZtQThus, if dZt

    P = t dt +dZtQ,t tt =rt

    t is the price of risk.

    The risk-neutral measure Qis such that the process ZtQ defined bydZt

    Q = t rt dt +dZtPtis a Brownian motion under Q.

    c Stochastic Calculus 55 / 74Leonid Kogan ( MIT, Sloan ) 15.450, Fall 2010Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    Risk-Neutral Probability Measure

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    56/75

    Under the risk-neutral probability measure, expected conditional asset

    returns must equal the risk-free rate.

    We conclude that for any asset (paying no dividends), the conditional risk

    premium is given by

    EP dSt rt dt =EP dSt EQ dStt t tSt St StThus, mathematically, the risk premium is the difference between expected

    returns under theP

    andQ

    probabilities.

    cLeonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 56 / 74Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    Risk-Neutral Probability Measure

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    57/75

    If we want to connect Qto Pexplicitly, how can we compute the density,dQ/dP?

    In discrete time, the density was conditionally lognormal.The density T = (dQ/dP)T is given by t t

    t =exp u dZuP 1 2u du , 0 t T20 0The state-price density is given by t

    t =exp ru du t0

    The reverse is true: if we define T as above, for any process t satisfying

    certain regularity conditions (e.g.,t is bounded, or satisfies the Novikovs

    condition as in Back 2005, Appendix B.1), then measure Qis equivalent to Pand t

    ZtQ =ZtP + u du

    0

    is a Brownian motion under Q.

    c Stochastic Calculus 57 / 74Leonid Kogan ( MIT, Sloan ) 15.450, Fall 2010Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    Risk-Neutral Probability and Arbitrage

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    58/75

    If there exists a risk-neutral probability measure, then the model is

    arbitrage-free.

    If there exists a unique risk-neutral probability measure in a model, then all

    options are redundant and can be replicated by trading in the underlying

    assets and the risk-free bond.

    A convenient way to build arbitrage-free models is to describe them directly

    under the risk-neutral probability.

    One does not need to describe the Pmeasure explicitly to specify anarbitrage-free model.

    However, to estimate models using historical data, particularly, to estimaterisk premia, one must specify the price of risk, i.e., the link between Qand P.

    cLeonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 58 / 74Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    Outline

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    59/75

    1 Stochastic Integral

    2 Its Lemma

    3 Black-Scholes Model

    4 Multivariate It Processes

    5 SDEs

    6 SDEs and PDEs

    7 Risk-Neutral Probability

    8 Risk-Neutral Pricing

    c Stochastic Calculus 59 / 74Leonid Kogan ( MIT, Sloan ) 15.450, Fall 2010Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    Black-Scholes Model

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    60/75

    Assume that the stock pays no dividends and the stock price follows

    dSt =dt +dZtPStAssume that the interest rate is constant, r.

    Under the risk-neutral probability Q, the stock price process is

    dSt =r dt +dZtQStTerminal stock price ST is lognormally distributed:

    ln ST =ln S0 + r 2 T +T Q, Q N(0,1)2

    Price of any European option with payoff H(ST )can be computed as=EQ ePt t r(T t)H(ST )

    cLeonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 60 / 74Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    Term Structure of Interest Rates

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    61/75

    Consider the Vasicek model of bond prices.A single-factor arbitrage-free model.

    To guarantee that the model is arbitrage-free, build it under the risk-neutral

    probability measure.

    Assume the short-term risk-free rate process under Qdrt = (rt r)dt +dZtQ

    Price of a pure discount bond maturing at T is given by

    T

    P(t,T ) =E

    Qt exp rs dst

    Characterize P(t,T )as a solution of a PDE.

    cLeonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 61 / 74Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    Term Structure of Interest Rates

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    62/75

    Look for P(t,T ) =f (t,rt ).Using Itos lemma,

    EQt [df (t,rt )]= f (t,rt ) (rt r)f (t,rt ) +1 2 2f (t2,rt ) dtt rt 2 rtRisk-neutral pricing requires that

    EQt [df (t,rt )]=rtf (t,rt )dtand therefore f (t,rt )must satisfy the PDE

    f (t,r)(r r)f (t,r) +1 2

    2f (t,r)=rf (t,r)t r 2 r2

    with the boundary condition

    f (T ,r) =1cLeonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 62 / 74

    Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    Term Structure of Interest Rates

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    63/75

    Look for the solution in the form

    f (t,rt ) =exp (a(T t) b(T t)rt )Derive a system of ODEs on a(t)and b(t)to find

    a(T t) =r(T t) r 1 e(T t)

    2 2(T t) e2(T t) +4e(T t) 3

    43

    1 (T t)b(T t) = 1 e

    cLeonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 63 / 74Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    Term Structure of Interest Rates

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    64/75

    Assume a constant price of risk . What does this imply for the interest rate

    process under the physical measure Pand for the bond risk premia?Use the relation

    dZtP = dt +dZtQ

    to derive

    drt = (rt r)dt +dt +dZt

    P = rt r + dt +dZt

    P

    Expected bond returns satisfy

    EP dP(t,T ) = (rt +Pt )dtt P(t,T )where

    Pt = 1 f (t,rt )= b(T t)f (t,rt ) rt|b(T t)|is the volatility of bond returns.cLeonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 64 / 74

    Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    Equity Options with Stochastic Volatility

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    65/75

    Consider again the Hestons model. Assume that under the risk-neutral

    probabilityQ

    , stock price is given by

    d ln St = (r 1vt )dt +vtdZtQ,S2dvt = (vt v)dt +vtdZtQ,S +

    1 2vtdZtQ,v

    dZtQ,S

    dZtQ,v

    =0

    ZtQ,v models volatility shocks uncorrelated with stock returns.

    Constant interest rate r.

    The price of a European option with a payoff H(ST )can be computed asPt =EQt [exp (r(T t))H(ST )]

    We havent said anything about the physical process for stochastic volatility.

    In particular, how is volatility risk priced?

    c Stochastic Calculus 65 / 74Leonid Kogan ( MIT, Sloan ) 15.450, Fall 2010Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    Equity Options with Stochastic Volatility

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    66/75

    In the Hestons model, assume that the price of volatility risk is constant,v ,

    and the price of stock price risk is constant, S.

    Then, under P, stock returns follow

    d ln St = r +Svt 2

    1vt dt +vtdZtP,S

    dvt =

    (vt v) +vt

    S +

    1 2v

    dt+

    vtdZtP,S +1 2vtdZtP,vdZt

    P,S dZtP,v =0

    We have used

    dZtP,S = S dt +dZtQ,S

    dZtP,v = v dt +dZtQ,v

    Conditional expected excess stock return is

    EPdSt

    r dt=EP d ln St +vt dt r dt = Svt dtt tSt 2

    cLeonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 66 / 74Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    Equity Options with Stochastic Volatility

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    67/75

    Our assumptions regarding the market prices of risk translate directly intoimplications for return predictability.

    For stock returns, our assumption of constant price of risk predicts a

    nonlinear pattern in excess returns: expected excess stock returns

    proportional to conditional volatility.

    Suppose we construct a position in options with the exposure t to stochasticvolatility shocks and no exposure to the stock price:

    dWt = [...]dt +tdZtP,vThen the conditional expected gain on such a position is

    (Wtr +tv )dt

    cLeonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 67 / 74Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    Hestons Model of Stochastic Volatility

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    68/75

    Assume that under the risk-neutral probability Q, stock price is given by

    d ln St = (r 1vt )dt +vtdZtQ,S2dvt = (vt v)dt +vtdZtQ,S +1 2vtdZtQ,v

    dZtQ,S dZt

    Q,v =0ZQ,v models volatility shocks uncorrelated with stock returns.t

    Constant interest rate r.

    The price of a European option with a payoff H(ST )can be computed as=EQ[exp (r(T t))H(ST )]Pt t

    Assume that the price of volatility risk is constant, v , and the price of stock

    price risk is constant, S.

    c Stochastic Calculus 68 / 74Leonid Kogan ( MIT, Sloan ) 15.450, Fall 2010Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    Variance Swap in Hestons Model

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    69/75

    Consider a variance swap, paying

    T (d ln Su)2 Kt2t

    at time T . What should be the strike price of the swap, Kt , to make sure that

    the market value of the swap at time t is zero?

    Using the result on quadratic variation,

    (d ln St )2 =vt dt

    the strike price must be such that

    T

    e

    r(T t)

    E

    Qt vu du

    Kt

    2

    =0t

    Need to compute T K 2 =Et Qt

    t

    vu du

    cLeonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 69 / 74Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    Variance Swap in Hestons Model

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    70/75

    Since

    vu =vt u (vs v)ds + u vs dZsQ,S +1 2 u vs dZsQ,vt t t

    we find that

    u u

    EQt

    [vu] =v

    tEQ

    t(v

    sv)ds =v

    t (EQ

    t[v

    s]v)ds

    t t

    Solving the above equation for EQt [vu], we findEQt [vu] =v +e(ut)(vt v)

    We obtain the strike priceT 1 Kt

    2 =EQt vu du =v(T t) + (vt v) 1 e(T t)t

    cLeonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 70 / 74Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    Expected Profit/Loss on a Variance Swap

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    71/75

    To compute expected profit/loss on a variance swap, we need to evaluate

    T EP (d ln Su)2 K 2t tt

    Instantaneous expected gain on a long position in the swap is easy to

    compute in closed form.

    The market value of a swap starts at 0 at time t, and at s >t becomes s T

    Ps EQ er(T s) vu du + vu du K 2s t

    t s

    s

    =er(T s) vu du +Ks2 Kt2t

    We conclude that the instantaneous gain on the long swap position at time s

    equals

    [...]ds +1er(T s) 1 e(T s) dvs

    cLeonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 71 / 74Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    Expected Profit/Loss on a Variance Swap

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    72/75

    We conclude that the instantaneous gain on the long swap position at time s

    equals

    [...]ds +1er(T s)

    1 e(T s)

    dvs

    Given our assumed market prices of risk, S and v , the time-s expected

    instantaneous gain on the swap opened at time t is

    r(T s) (T s)Psr ds +vs 1e

    1 e

    S +

    1 2v

    ds

    cLeonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 72 / 74Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    Summary

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    73/75

    Risk-neutral pricing is a convenient framework for developing arbitrage-free

    pricing models.

    Connection to classical results: risk-neutral expectation can be characterized

    by a PDE.

    Risk premium on an asset is the difference between expected return under Pand under Qprobability measures.

    cLeonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 73 / 74Stochastic Integral Its Lemma Black-Scholes Model Multivariate It Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing

    Readings

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 5/23/2018 MIT15_450F10_lec02

    74/75

    Back 2005, Sections 2.1-2.6, 2.8-2.9, 2.11, 13.2, 13.3, Appendix B.1.

    cLeonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 74 / 74

    MIT OpenCourseWarehttp://ocw.mit.edu

    http://-/?-http://-/?-http://ocw.mit.edu/http://ocw.mit.edu/
  • 5/23/2018 MIT15_450F10_lec02

    75/75

    15.450 Analytics of FinanceFall 2010

    For information about citing these materials or our Terms of Use, visit:http://ocw.mit.edu/terms.

    http://ocw.mit.edu/http://ocw.mit.edu/http://ocw.mit.edu/