mid-ocean geostrophic turbulence

19
Mid-ocean Geostrophic Turbulence t 2 ψ + ψ ,∇ 2 ψ ( ) x , y ( ) =0 dE dt = dZ dt =0 E = 1 2 dx dy ∫∫ vv = 1 2 dx dy ∫∫ ψ ψ = dk 0 Ek () Z = 1 2 dx dy ∫∫ ζ 2 = 1 2 dx dy ∫∫ 2 ψ ( ) 2 = dk 0 k 2 Ek () prototype: two-dimensional turbulence

Upload: hertz

Post on 08-Jan-2016

33 views

Category:

Documents


0 download

DESCRIPTION

Mid-ocean Geostrophic Turbulence. prototype: two-dimensional turbulence. Continuously stratified case. Energy transfer is to low. WKB form. Energy transfer is to low. Energy transfer is toward the equator and into high vertical mode. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Mid-ocean Geostrophic Turbulence

Mid-ocean Geostrophic Turbulence

∂∂t∇ 2ψ +

∂ ψ ,∇ 2ψ( )

∂ x, y( )= 0

⇒dE

dt=

dZ

dt= 0

E =1

2dx dy∫∫ v ⋅v =

1

2dx dy∫∫ ∇ψ ⋅∇ψ = dk

0

∫ E k( )

Z =1

2dx dy∫∫ ζ 2 =

1

2dx dy∫∫ ∇ 2ψ( )

2= dk

0

∫ k 2E k( )

prototype: two-dimensional turbulence

Page 2: Mid-ocean Geostrophic Turbulence

Continuously stratified case

∂q

∂t+

∂ ψ ,q( )∂ x,y( )

= 0, q =∂ 2ψ

∂x 2+

∂ 2ψ

∂y 2+

f 2

N 2

∂ 2ψ

∂z2+ f

Energy transfer is to low

ktotal ≡ kx2 + ky

2 + kn2

kn =f

N

H=

1

n - th deformation radius

Page 3: Mid-ocean Geostrophic Turbulence

WKB form

∂q

∂t+

∂ ψ ,q( )∂ x,y( )

= 0, q =∂ 2ψ

∂x 2 +∂ 2ψ

∂y 2 +βy( )

2

N 2

∂ 2ψ

∂z2 + f

Energy transfer is to low

ktotal ≡ kx2 + ky

2 + kn y( )2

kn y( ) =βy

N

H=

1

n - th deformation radius

Energy transfer is toward the equator and into high vertical mode.

The energy in mode n shows an equatorial peak of width W,determined by

ky = kn

1

Wn

=βWn

N

H⇒ Wn =

NH

β nπ≡ equatorial deformation radius

i.e.

Page 4: Mid-ocean Geostrophic Turbulence

“Global characteristics of ocean variability estimatedfrom regional TOPEX/POSEIDON altimeter measurements”

D. Stammer, J. Phys. Oc. 1997

Eddy kinetic energy at the sea surface (cm/sec)**2

Page 5: Mid-ocean Geostrophic Turbulence

U. Send, C. Eden & F. Schott“Atlantic equatorial deep jets…” J. Phys. Oc. 2002

Zonal flow (cm/sec) along the equator from six cruises.

Page 6: Mid-ocean Geostrophic Turbulence

Six-layer QG model

1982

kinetic energy in modes 0 to 5 as a function of y

Page 7: Mid-ocean Geostrophic Turbulence

Six-layer QG model

mode: 0 3 5

Page 8: Mid-ocean Geostrophic Turbulence

Two-layer QG flow

3 quadratic invariants: energy & potential enstrophy of each layer

E, Z1 (top), Z2 (bottom)

Typically only E and Z1 + Z2 are used.

This is not wrong, but it is incomplete. Not all the information is being used.

To see what phenomena are being missed, consider caseswith a very high degree of asymmetry between the layers.

Page 9: Mid-ocean Geostrophic Turbulence

Two-layer flow with the lower layer at rest

∂∂t

q +∂ ψ ,q( )∂ x, y( )

+ β∂ψ

∂x= 0 , q =∇ 2ψ − kR

E = dk∫ E k( ), Z = dk∫ k 2 + kR2

( )E k( )

Energy moves to lowest k 2 + kR2 ≡ keff

2

Work of Jurgen Theiss (“Rhines latitude”)

Problem with this model: the lower layer does not remain at rest.

Page 10: Mid-ocean Geostrophic Turbulence

∂q1

∂t+ J ψ1,q1( ) + β

∂ψ1

∂x= S1,

Two-layer QG flow

∂q2

∂t+ J ψ 2,q2( ) + β

∂ψ 2

∂x= S2,€

q1 =∇ 2ψ1 + F1 ψ 2 −ψ1( ),

q2 =∇ 2ψ 2 + F2 ψ1 −ψ 2( ),€

F1 =f0

2

′ g H1

F2 =f0

2

′ g H 2

top

bottom

2 sources of asymmetry:

δ ≡H1

H1 + H2

<<1,

S2 << S1

Suppose β = S2 = 0. Then q2 ≡ 0 consistently.

Page 11: Mid-ocean Geostrophic Turbulence

Consistent equivalent barotropic dynamics

∂q1

∂t+ J ψ1,q1( ) = S1

∇2ψ 2 + F2 ψ1 −ψ 2( ) = 0 ⇒ k 2 + F2( )ψ 2 = F2ψ1

q1 =∇ 2ψ1 + F1 ψ 2 −ψ1( ) ⇒ q1 = − k 2 + F1( )ψ1 + F1ψ 2

⎫ ⎬ ⎭q1 = −

k 2 k 2 + F1 + F2( )

k 2 + F2( )ψ1 ≡ −keff

2ψ1

E = dk∫ E k( )

Z = dk∫ keff2E k( ) = dk∫

k 2 k 2 + kR2

( )

k 2 + δkR2

( )E k( )

KE1 k( ) =k 2 + F2( )

k 2 + F1 + F2( )E k( ), KE2 k( ) =

F1F2

k 2 + F2( ) k 2 + F1 + F2( )E k( ),

APE k( ) =F1k

2

k 2 + F2( ) k 2 + F1 + F2( )E k( )

Page 12: Mid-ocean Geostrophic Turbulence

1976

Guidance from equilibrium stat-mech (equipartition theory)

E k( ) =k

C1 + C2keff2

Page 13: Mid-ocean Geostrophic Turbulence

But beta doesn’t actually vanish…… or does it?

2-layer QG with a zonal mean flow

∂q1′

∂t+ U1

∂q1′

∂x+ β1

∂ψ1′

∂x+ J ψ1

′,q1′ ⎛

⎝ ⎜ ⎞

⎠ ⎟= 0

∂q2′

∂t+ U2

∂q2′

∂x+ β 2

∂ψ 2′

∂x+ J ψ 2

′,q2′ ⎛

⎝ ⎜ ⎞

⎠ ⎟= 0

β1 = β + F1 U

β2 = β − F2 U

Baroclinic instability requires opposite signs.

Therefore the threshold for instability is:

β2 = 0 ⇒ U = β /F2 (atmospheric case) allows q2 ≡ 0

β1 = 0 ⇒ U = −β /F1 (tropical ocean) allows q1 ≡ 0

Page 14: Mid-ocean Geostrophic Turbulence

A view of the ocean

β2 = 0 (the atmospheric case) has been studied a lot

β1 = 0 is not simply the flip of this, because H1 << H2

Page 15: Mid-ocean Geostrophic Turbulence

initial stream function

1000 sq km = 512 x 512, rdef = 40 km, depth ratio=10

tropical extra-tropical

upper layer

lower layer

urms = 10 km/day

The two cases of neutral stability

Page 16: Mid-ocean Geostrophic Turbulence

Stream function at 100 days

upper

lower

tropical extra-tropical

4.02 k/d

8.47 k/d

Rhines scale = 88 km 27 km

7.20 k/d

0.51 k/d

Page 17: Mid-ocean Geostrophic Turbulence

Potential vorticity at 100 days

upper

lower

tropical extratropical

Page 18: Mid-ocean Geostrophic Turbulence

Stream function at 150 days

upper

lower

tropical extra-tropical

6.42 k/d

1.18 k/d

Rhines scale = 77 km 25 km

6.52 k/d

0.49 k/d

Second experiment: lower layer initially at rest

Page 19: Mid-ocean Geostrophic Turbulence

Potential vorticity at 150 days

upper

lower

tropical extratropical