microwave noise temperature and attenuation of clouds at

101
JPL PUBLICATION 81-46 "_ Microwave Noise Temperature and Attenuation of Clouds at Frequencies Below 50 GHz Stephen D. Slobin (N AS A_CR. 16_,70Z) RICROWAV P- TEMPERATU[RE AND AT'£ENUAT£ON O_ _REQUENCI_S bELOW 50 GHz (Jet L&L.) 11_= p dC AO6/MF A01 kOIS5 Nt_1- 3032_ CLOUDS A _opuls¢on CSCL 20N unclas G3/32 27246 <- c _ ,, 1 -- , [',IU ll ;' "<.C. ; ..... " '" July 1, 1981 National Aeronautics and Space Administration Jet Propulldon Laboratory California Institute of Technology Pasa0ena, California https://ntrs.nasa.gov/search.jsp?R=19810021789 2018-09-18T19:34:08+00:00Z

Upload: others

Post on 08-Apr-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Microwave Noise Temperature and Attenuation of Clouds at

JPL PUBLICATION 81-46 "_

Microwave Noise Temperatureand Attenuation of Clouds atFrequencies Below 50 GHz

Stephen D. Slobin

(N AS A_CR. 16_,70Z) RICROWAV P-TEMPERATU[RE AND AT'£ENUAT£ON O_

_REQUENCI_S bELOW 50 GHz (Jet

L&L.) 11_= p dC AO6/MF A01

kOIS5 Nt_1- 3032_

CLOUDS A

_opuls¢onCSCL 20N unclas

G3/32 27246

<- c _ ,,

1 -- , [',IU ll ;'

"<.C. ; ..... " '"

July 1, 1981

National Aeronautics andSpace Administration

Jet Propulldon LaboratoryCalifornia Institute of TechnologyPasa0ena, California

https://ntrs.nasa.gov/search.jsp?R=19810021789 2018-09-18T19:34:08+00:00Z

Page 2: Microwave Noise Temperature and Attenuation of Clouds at

JPL PUBLICATION 81-46

Microwave Noise Temperatureand Attenuation of Clouds atFrequencies Below 50 GHz

Stephen D. Slobin

July 1, 1981

National Aeronautics and

Space Administration

Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadena, California

Page 3: Microwave Noise Temperature and Attenuation of Clouds at

The research described in this pub!ication was carried out by the Jet Propulsion

Laboratory, California Institute of Technology, under contract with the NationalAeronautics and Space Administration.

Page 4: Microwave Noise Temperature and Attenuation of Clouds at

ABSTRACT

The microwave attenuation and noise temperature effects of clouds can re-

sult in serious degradation of telecommunications link performance, especially

for low-noise systems presently used in deep-space communications. Although

cloud effects are generally less than rain effects, the frequent presence of

clouds will cause some amount of link degradation a large portion of the time.

This report presents a general review of cloud types, water particle

densities, radiative transfer, attenuation and noise temperature calculations,

and examples of basic link signal-to-noise ratio calculations. The results of

calculations for twelve different cloud models are presented for frequencies of

from l to 50 GHz and elevation angles of 30-degrees and 90-degrees. These case

results may be used as a handbook to predict noise temperature and attenuation

values for known or forecast cloud conditions.

Ill

Page 5: Microwave Noise Temperature and Attenuation of Clouds at

lJ

II.

Ill.

IV.

CONTENTS

ABSTRACT .............................iii

INTRODUCTION .......• . vii

o•oo•ooeeoooeeoee•

• . 1CLOUD DESCRIPTIONS .......................

gABSORPTION AND SCATTERING EFFECTS .................

EQUATION OF RADIATIVE TRANSFER .................. 13

SAMPLE CASE CALCULATIONS OF CLOUD ATTENUATION

AND NOISE TEMPERATURE ......................21

33REFERENCES .............................

APPENDIX: SAMPLE CASE CALCULATIONS OF CLOUD ATTENUATION AND....... 37

NOISE TEMPERATURE ..........

I.

2.

3.

2Model Cloud Drop Spectra ......................

Elements of Radiative Transfer Equation .............. 14

24Cloud and Clear Air Models .....................

Tables

I.

2

3.

4.

5.

6.

7.

8.

• . • 3Model Cloud Drop Size and Concentration ...........

Summary of Cloud Model Densities and Average Radii ......... 4

6Cloud Models Used in Reference 5 .................

• • • • • • • • • 8

Typical Fog and Cloud Models .........

One-Way Attenuation Coefficient, KI, in Clouds, dB/km/g/m 3 ..... II

Sample Cloud Models and S-, X-, KA-Band Zenith Effects ....... 25

27Profiles Used in Cloud Calculations ................

"Worst Cloud" Test Case of Integration Step Size .......... 32

_,H&C._5_?._I,I_PAGE. LL;..',"i !,,_"t, r_J-"E,.,

V

Page 6: Microwave Noise Temperature and Attenuation of Clouds at

INTRODUCTION

Microwave propagation through the earth's atmosphere is affected

adversely by the presence of rain and clouds. As communications systems operate

at higher and higher frequencies (greater than 30 GHz), attenuation and noise

t_nperature effects become increasingly severe. Although rain effects are

generally greater than those of clouds, rain occurs less than about five-percent

of the time. Clouds, on the other hand, may be present fifty-percent of the

time as a yearly-average or continuously for periods of weeks on end. Thus,

the integrated cloud effects (dB-hours or Kelvin-hours) may be much larger than

those for rain.

Compared to rain studies, little has been done to characterize the

statistics of cloud effects. Clearly, the best method of determining noise

temperature statistics is to go out and measure noise temperature! Lacking the

resources and equipment to do this, an alternative method is to draw upon the

vast amount of historical weather data (surface observations, radiosonde

profiles, pilot reports, etc.) and turn this real weather data into estimates of

noise temperature and attenuation. To this end, a cloud model and computational

schBne have been developed to calculate attenuation and noise temperature using

real weather observations as program inputs. Forecasts of real weather

parameters can also be used to give forecasted cloud effects, using this model.

This report presents a general discussion of c|oud characteristics and

the computational model. Sample case calculations for twelve specific cloud

cases are given for a frequency range of i to 50 GHz. Future work will involve

calculation of cloud effect statistics based on real weather observations at

numerous locations throughout the United States.

Page 7: Microwave Noise Temperature and Attenuation of Clouds at

I. CLOUD DESCRIPTIONS

A cloud may be described as a random distribution of liquid water

particles above the ground having diameters of from 0 to lO0 microns (um).

For comparison, raindrops have a size distribution of approximate]y

100 microns (0.1 mm) to 3 mm (Refs. I and 2). Rare cases will be found where

particle sizes will be outside the ranges stated. Clouds are not water vapor,,

which is a clear, colorless ag_as, like oxygen and nitrogen, although the

relative humidity is usually 100% within the cloud. Clouds can exist at high

temperatures (+20°C) as well as at temperatures below freezing (-IO°C) where

they remain liquid (supercooled) and pose a great icing threat to aircraft

penetrating them. High-level clouds, such as cirrus, are composed of ice

crystals and will not generally be found at temperatures above -12°C. (Ref. 2)

Figure 1 (Ref. 3) and Table 1 (Ref. 3) show typical model cloud drop

spectra for different cloud types. These spectra may be integrated over the

range of cloud drop radii (~0 to 30 microns) to determine the average cloud

density and average drop diameter for the various cloud types. Table 2 gives

the results of these calculations for the cloud types of Ref. 3.

in Figure | are for illustrative purposes only.

The spectra

Page 8: Microwave Noise Temperature and Attenuation of Clouds at

120

I00

O0

60

4O

20

0

"f T

STRATUSI (TYPICAL)

RADIUS, MICRONS

3O

FIGURE I. MODEL CLOUD DROP SPECTRA

(after Carrler, et al, Ref. 3)

emil

Page 9: Microwave Noise Temperature and Attenuation of Clouds at

TABLE I. MODEL CLOUD DROP SIZE AND

CONCENTRATION

(after Carrier, et al, Ref. 3)

CLQUD TYPE

Stratus I

A1tostratus

Stratocumu 1lJs

Nimbostratus

Fa ir-weather cumul us

Stratus II

Cumulus congestus

Cumul oni mbus

450

35O

330

300

260

207

72

3.5

4.5

3.5

3.5

3.5

4.5

3.5

5.0

L

= total concentration, no./cm3

rmi n rma x Ar

0

0

0

0.5

0

0

0

rmode = radius corresponding to the maximumnumber of droplets, microns

16.0

13.0

11.2

19.8

10.0

20.0

I 16.2

3.0

4.5

4.4

9.5

3.0

5.7

6.7

7.0

rmin = minimum radius, microns

rmax = maximum radius, microns

ar . bandwidth of the drop-size distributionat half-value points, microns

Page 10: Microwave Noise Temperature and Attenuation of Clouds at

TABLE 2

SUMMARY OF CLOUD MODEL DENSITIES AND AVERAGE RADII

4

5

6

CLOUD TYPE

STRATUS I

STRATOCUMULUS

FAIR-WEATHER

CUMULUS

STRATUS II

CUMULONIMBUS

CUMULUS

CONGESTUS

NIMBOSTRATUS

ALTOSTRATUS

CONCENTRATIONI

(no/cm3)

464

350

300

260

72

207

330

450

DENSITY

(g/m3)

0.27

0.16

0.!5

0.49

0.98

0.67

0.99

0.46

AVERAGE RADIUS

(microns)

5.2

4.8

4.9

7.6

14.8

9.2

9.0

6.2

4

Page 11: Microwave Noise Temperature and Attenuation of Clouds at

The stratus I cloud is based on observations taken off the coast of

California. Stratus II is found over land. The altostratus and

stratocumulus clouds observed had bases approximately 2000 meters above

ground and tops up to 4000 meters above ground, with a typical thickness of

1800 meters. For reference, the standard temperature at 4000 meters above sea

level is about -5°C. It is suggested in Ref. 2 that the drop size spectra

for nimbostratus and fair-weather cumulus be used for altocumulus clouds.

A standard pictorial listing of cloud types is given in the U.S. National

Weather Service Cloud Code Chart (Ref. 4). The clouds portrayed on the chart

conform to the standard types approved by the World Meteorological

Organization and serve as a common point of reference for use in cloud

observations and predictions.

Although Table 2 shows cloud densities of less than 1 g/m3, several

investigators (Ref. 2) have observed cloud densities of up to 10 g/m3.

Convective type clouds (cumulus, cumulonimbus) in the sumner have unaximum

water contents of 3 (cumulus humilis) to 10 (cumulonimbus) g/m 3, although

for clouds with large vertical development (cumulonimbus exceeding 10 km in

height), there is some question as to the relative proportions of actual cloud

particles and suspended precipitation particles.

Four cloud models used by other investigators (Ref. 5) are summarized

in Table 3. These models are consistent with descriptions above, except in

the case of altostratus clouds.

Page 12: Microwave Noise Temperature and Attenuation of Clouds at

TABLE3

CLOUD MODELS USED IN REFERENCE 5

TYPE

BASES*

TOPS*

WATERDENSITY

MODEL I

COASTALSTRATUS

O. 500 km

i. 030 km

O. 33 g/m 3

MODEL 2

STRATO-CUMULUS

!.GO0 km

2.000 km

0.33 g/m 3

MODEL 3

STRAIO-CUMULUS

1.000 km

2.500 km

0.20 g/m 3

MODEL 4

ALTO-STRATUS

2.500 km

4.500 km

0,15 g/m 3

*above ground level

6

Page 13: Microwave Noise Temperature and Attenuation of Clouds at

Table 4 (Ref. 6) gives typical fog and cloud models which are

representative of midlatitude conditions. This table is of particular

interest because of its listing of cloud bottom and top heights.

The term "precipitable water" is used to describe the total amount of

water thro,,gh which one looks along a path through the entire atmosphere.

!_recipiLable water has the units %/cm2, or simply cm (i.e., I cm3 of water

we!ghs I g.). For a cloud with a density of i g/m 3, i km thick, the

precipitable wateF (vertically) is 0.I g/cm 2 or 0.i cm. By comparison, a

t vplcal val,_e of preci_itable water vapor is 1.5 g/cm 2 along a vertical path

through the entire atmosphere.

Page 14: Microwave Noise Temperature and Attenuation of Clouds at

TABLE 4. TYPICAL FOG AND CLOUD MODELS

(Ref. 6)

Cloud Type

Heavy Fog 1

Heavy Fog 2

Moderate Fog 1

Moderate Fog 2

Cumulus

Al tostratus

Stratocumulus

Nimbostratus

Stratus

Stratus

Stratus-

Stratocumulus

Stratocumulus

Nimbostratus

Cumulus-

Cumulus Congestus

_psi_Y HeightBSottomab°ve gr°unTo_(m)

0.37 0 150

0.19 0 150

0.06 0 75

0.02 0 75

1.00 660 2700

0.41 2400 2900

0.55 660 1320

0.61 160 1000

0.42 160 660

0.29 330 1000

0.15 660 2000

0.30 160 660

0.65 660 2700

0.57 660 3400

Page 15: Microwave Noise Temperature and Attenuation of Clouds at

I[. ABSORPTION AND SCATTERING EFFECTS

The total attenuation (or extinction) of a radio wave by a cloud is tile

sum of the absorption and scattering by particles in the cloud. Absorption of

microwave enerLjy by a cloud particle heats it up slightly, and it then

re-radiates isotropically (eq_lally in all directi,)ns)with an er_lissivity

less than 1.0 at its particular physical temperature. Scattering results in

a re-direction of the incident energy so that it does not arrive at its

"straight line" destination. Scattering in certain directions is enhanced

depending on the wavelength of incident energy, particle size distribution,

and dielectric constant of the scattering particles. Scattering _y be

advantageous for some applications, such as in troposcatter communication

systems.

The absorbed energy is lost and does not contribute to the noise

temperature (power) received by a radiometer. The absorbing medium itself

does radiate power into tile receiver and contributes to tile total system noise

temperature. This is discussed further in Sections Ill and IV.

A good general description of scattering by water and ice particles

is found in Battan (Ref. 7), who draws on the original work of Mie (Ref. 8).

A detailed discussion of scattering theory is beyond tile scope of this

survey article, but for the case of microwave radiation (i to 50 GHz for

coi(mlunications bands) and cloud particles (diameters i to I00 microns)

certain computational simplifications become possible.

Page 16: Microwave Noise Temperature and Attenuation of Clouds at

A common parameter used in scattering calculations is

: 2.a/_

where a = drop radius

),= wavelength of incident radiation

For the case _<<I, the scattered component of the incident radiation

is small compared to the absorptive component; and the total attenuation

(extinction) is due to absorption. For the shortest wavelength (0.6 cm for

50 GHz) and the largest cloud drop diameter (100 microns), _ = 0.052, which

satifies the relationship _<<I. Using the cloud drop spectrum suggested by

Diermendjian (Ref. 9), Dutton and Doughertv (Ref. 10) make the argument that

even for frequencies as high as 350 GHz(_ : 0.086 cm) "Rayleigh" approximations

are valid (see Battan, Ref. 7) and extinction of ii1icrowaveener_Lv is almost

entirely due to absorption.

The attenuation of cloud drops is given by (Ref. 7, Eqn. 6.14):

: r0.4343 6,/_ Im{-(m2-1)/(m2+2)}IMkc

= KIM

where m = complex index of refraction of water,

function of temperature and wavelength

M = density of cloud water particles, g/m3

(range ~ 0 to 10 g/m J)

lO

Page 17: Microwave Noise Temperature and Attenuation of Clouds at

Values of KI, taken from Gunnand East (Ref. II) are given in Table 5.

Bean and Dutton (Ref. 12) also use these values in their discussion of cloud

attenuation.

TABLE5

_ Attenuation Coefficient_in Clouds_LdB/k_

TEMPERATURE(oc.)

Water 20 ....

Cloud 10....Oi.oo

-- 8....

Ice 0 ....

Cloud -10 ....-20 ....

WAVELENGTH (Cm.)

0.9(33.31GHz)

0.647

0.681

0.99

1.25

I).74XI0-3

2.93XI0-3

2.0 X10-3

1.24(24.18Gllz )

0.311

0.406

0.5320.684

6.35XI0-3

2.11XI0-3

1.45XI0-3

1.8(16.66GIIz)

0.128

0.179

0.267

O.34(ex-

trapolated)

4.36X10-3

1.46XI0-3

1.0 XI0-3

3.2(9.37Gllz)

0.0483

0.0630

0.0858

O.112(ex-

trapolated)

2.46XI0-3

8.19X10-4

5.63X10 -4

Note that ice clouds have attenuation coefficients about two orders of

magnitude less than water clouds. Their attenuation (absorption) effects may

be neglected as long as the ice particles continue to satisfy the relationship

a<<1. In the absence of liquid water clouds, scattering by ice clouds will be

the only contribution to signal attenuation.

11

Page 18: Microwave Noise Temperature and Attenuation of Clouds at

Rather than using the tabulated cloud attenuation values (Table 5), a

convenient expression to use for cloud absorption (in the region I to 50 GHz)

is (following Staelin, Ref. 13):

where

4.343 x M x I00"0122(291-T)'IA = x 1.16

cloud _2 dB/Km

M = cloud water particle density, g/m 3

T = cloud particle temperature, Kelvins

= wavelength, cm.

4.343 = changes nepers* to dB

1.16 = factor to match the Staelin expression

to the Gunn and East values, within 10%

For use in radiative transfer calculations, an absorption coefficient

a (nepers/km) must be used where

(nepers/km) = A (dB/km)/4.343

*The neper is used here in the "power" sense (I neper = 4.343 dB) rather thanthe traditional "voltage" sense (I neper : 8.686 dB).

P2 " P1e'ax

P21PI (dB) = 10 1Og1oe'aX

= -I0 a 1og10e

= -4.343 a

(x = I km)

12

Page 19: Microwave Noise Temperature and Attenuation of Clouds at

Ill. EQUATION OF RADIATIVE TRANSFER

The description and use of the equation of radiative transfer is given

by numerous authors (Refs. 14-20, et al). The noise temperature at a given

frequency received by an idea] antenna with infinitely narrow beamwidth

looking upward at a source outside the atmosphere and ignoring scattering is

given by (See Figure 2):

S

-jrTa : T'e-_a + T(s) _(s)e o ds

o

where Ta = effective antenna temperature, Kelvins.

I

anoise temperature of source outside the atmosphere(e.g., black body disc temperature of the moon), Kelvins

T(s) = physical temperature of a point s in the atmosphere,Kelvins.

= total atmosphere attenuation (optical depth), nepers

: total absorption coefficient at a point s in the

atmosphere, nepers/km (neglecting scattering)*

s = distance from anLenna to a point in the atmosphere, km

* In the case of scattering (attenuation = scattering + absorption), simple

first-order considerations will show that _(s) wil] be the absorption co-efficient and _(s') will be the total attenuation coefficient. This con-

dition is not considered for this cloud survey, but scattering must be

considered for propagation through rain, particularly at frequencies greaterthan I0 GHz.

13

Page 20: Microwave Noise Temperature and Attenuation of Clouds at

///

/s = oo(TOP Of ATMOSP_tERE)

/

"MOON '_

//

/

/

/; ._" .4,-----a(s), a(s' ), T(s) _)

/// _ EMISSION als)T(s)ds/ /

s//j / _ LOSSL.•FACTOR"°

/ " r_s a(s' )d='

FIGURE_ .2_ EL EM.ENTS OF R_A_OXA.TI_VET_RANSF.ER__EQU_AF_X_ON

14

Page 21: Microwave Noise Temperature and Attenuation of Clouds at

The total absorption coefficient (_(s) neperslkm) is the sunlof the

individual absorption coefficients of all atmospheric constituents (water

vapor, oxygen, clouds, rain). If any component is absent, its individual

absorption coefficient equals zero. The loss ("loss factor") through the

entire atmosphere is:

T f'_(s')ds'L(ratio) = e = e o • 1.0

where /" represents the total path through the atmosphere, approximately 30 kmO

at zenith, and T is the optical depth (nepers).

The "transmissivity" of the atmosphere is defined as:

"T

T = I/L = e , 0 _ T _ I

The "absorptivity" or "opacity" is defined as:

"T

A = I-T = i - e = I-I/L , 0 < A < I

The first term of the radiative transfer equation gives the net

brightness temperature of a so_rce located outside the atmosphere after"

transmissivity reduction I/L. The second terT_l re;_resents the su,;lof

infinitesimal [)rightness tefllperatLlrecontribt_tions rT($) 1(S) ds _ , each

attenuated hy the atmosphere between it ,_r_dthe recei,i'ig antenna (;)ath

length s). For atmospheric studies using passive radiorletry only, and no

source in or outside of the atmosphere, the ter,_ (T' e-T) is equal to zero.a

15

Page 22: Microwave Noise Temperature and Attenuation of Clouds at

Sun- and moon-tracker studies (sources outside the atmosphere) enable one to

determine space diversity improvBnent and various atmospheric parameters

(Refs. 21-25).

The total atmospheric absorption, A(dB), through the atmosphere, can be

derived from the |oss factor L by:

A(dB) : I0 log_o(L )

= 10 T logloe = 4.343 T

where T = /®_(s)dso

along a path through the

entire atmosphere (nepers)

An effective mean physical temperature, Tp, of the atmosphere l_laybe

derived from the relationship*

Ta = Tp x (Absorptivity)

= Tp (i - e-T)

= Tp (i - I/L)

where Ta = antennj temperature due to emlssion from the absorptive("lossy") atmosphere, Kelvins

Tp = _;lean physical temperature, Kelvins

L = loss factor, • 1.0

* This eqt_ation is strictly true only fur jr. isother_al ata;_os_,nere,h,_t is a

g(_ed practic,ll approximatiovl f,Jr the earth's atmosphere, where the hLIli_of

attenuation occurs in regions _¢hose temperatures are within 10% of 273 K.

16

Page 23: Microwave Noise Temperature and Attenuation of Clouds at

A more rigorous derivation of this expression begins with the equation

of radiative transfer:

Ta

® -_ _(s' )ds'

= f T(s)_(s) e o

o

ds

For an isothermal, homogeneous atmosphere

_(s) = _, the mean absorption coefficient

T(s) = Tp, the mean physical temperature

Then,

Ta = _Tpj_e__Sds,r where c = top of atmosphere

o

= Tp (l-e-_)

=Tp(I-IIL)

This relationship is discussed in more detail by Waters (Ref. 14).

17

Page 24: Microwave Noise Temperature and Attenuation of Clouds at

As a specific example (based on an actual calculation using the

equation of radiative transfer) consider an atmosphere (heavy clouds, at

32 GHz) whoseantenna temperature and attenuation at zenith are:

Ta = 99.04636 Kelvins

A = 1.93854 dB iL = 1.56262)

Tp is found to be

Tp : Ta [L/(L-I)I = 275.091Kelvins

This physical temperature corresponds to a region in the atmosphere

where the "bulk" of the attenuating material lies (in this case, clouds at an

altitude of approximately 3 kin). The surface temperature for this case was

293.16 Kelvins and the lapse rate was 6.3 K/kin downto a minimumtemperature

of 220 K.

It should be noted that Tp is an artifact and not a "constant" of the

atmosphere. It is found after performing the radiative transfer calculation.

For the cas_ of temperature and/or attenuation gradients in the atmosphere,

the Tp found will depend on whether the atmosphere is "viewed" (integrated)

from below or above.

A further discussion of abnospheric modelling and noise temperattJre

errors is given by Stelzried and Slobin (Ref. 2{i).

18

Page 25: Microwave Noise Temperature and Attenuation of Clouds at

Using these simplified formulae, it is instructive to attempt to

predict the antenna temperature for this cloud model at an elevation angle of

30° . To a good approximation, the attenuation at 30°-elevation is twice the

zenith attenuation. Thus,

A(dB) = 3.87708 dB (L = 2.44179)

Using TP = 275.091 K, the antenna temperature is calculated to be:

Ta = 162.431K

Actual radiative transfer integration at 30°-elevation yields:

Ta = 161.660 K

a difference of 0.771K.

Using

Ta = 161.660 Kand

A = 3.87708 dB (L = 2.44179)

the 30°-elevation mean physical temperature is calculated as

Tp = 273.785 K

which is different by 1.306 K from the zenith mean physical temperature.

These one-Kelvin differences reflect an equivalent resolution well

within present ability to _Tleasureor forecast cloud parameters. Thus,

elevation angle modelling of attenuation and noise temperature is adequate for

stratified atmospheres. For the case of scattered clouds, non-simple

geometries, or low elevation angles, complete radiative transfer calculations

should be carried out.

19

Page 26: Microwave Noise Temperature and Attenuation of Clouds at

IV. SAMPLE CASE CALCULATIONS OF CLOUD ATTENUATION AND NOISE TEMPERATURE

A computer program has been written ted calculate the atmospheric noise

temperature and absorption of water vapor, oxygen, clouds, and rain, (using

the equation of radiative transfer) along various paths in the atmosphere.

For computational purposes, the atmosl)her_ is divided into 300 layers, each

i00 meters thick, up to a height of 30 ki,1 above the ground. For specific

cloud/rain models and/or frequencies at which tile attenuation coefficient s

very large (,_ _ I neper/km (4.34 dB/km)), the I00 meter step size must be

reduced (~ lore) and the number of steps increased (~ 3000) in order to avoid

large computational errors. The effect of ti_ese errors is to calculate a

value of noise temperature that is too low (lot the case of very dense clouds,

at least). The present version of the i)rogra_H is not "smart" (or self-

adjusting); but the calculations appear to be adequate for all cloud ca,,es,

excluding rain, excerpt very near the peak of the oxygen absorption band

(60 GHz), or for very heavy clouds at high frequencies (> 60 GHz). The

presentation here is restricted to frequencies less than 50 GHz.

Since clouds do not exist independent of water vapor and oxygen, the

effects of these two spe'ies must be included in any calculation of cloud

noise temperature and attenuation.

PRECEDING PAGE BLANK NOT FILMED

21

Page 27: Microwave Noise Temperature and Attenuation of Clouds at

The narticular constituent models are described as follows:

WATER VAPOR

Io

2.

3.

4.

5.

6.

7.

CCIR Profile (Ref. 27)

7.5 g/m3 at surface

2 km scale height

20°C at surface

6.3 K/km temperature ]apse rate

220 K minimurn te_;iperature

Bean and Dutton absorption coefficient (Ref. 12), modified slightly to

yield agreement with values calculated by the JPL Radiative TransferPrograrn (Ref. 28)

OXYGEN

.

2.

3.

.

5.

6.

7.

CCIR Profile (Ref. 27)

1013.6 mb at s:_face

-0.116h

Pressure profile curve-fit P=Poe. ,h in km(pressure scale height = 8.62 km)

20°C at surface

6.3 K/km temperature lapse rate

220 K minimum temperature

Bean and Dutton absorption coefficient (Ref. 12)modified slightly toyield agreement with values calculated by the JPL Radiative TransferProgram (Ref. 28)

CLOUD

I.

2.

3.

Absorption model frown Staelin (Ref. 13)

Modified to fit Gunn and East values (Ref. Ii)

Water particle densities derived from drop size distribution

in Carrier, Cato, and von Essen (Ref. 3)

#

22

Page 28: Microwave Noise Temperature and Attenuation of Clouds at

Figure 3 showsa schematic view of the cloud and clear air models used

in the calculations. In these models, h is the height (km) above the ground;

h is the height of the ground above sea level.o

The cloud model has up to two layers, base and top heights specified,

and water particle density determined by specification of cloud type _s

defined by the World Meteorological Organization Cloud CodeChart (Ref. 4).

The relative humidity is not adjusted to be 100% within the cloud layer; the

absolute humidity is defined by an exponential decrease with a 2 km scale

height.

A number of specific weather cases were considered for calculation

using the equation of radiative transfer to determine noise temperature and

attenuation. Table 6 lists the 12 cases (i clear, Ii cloudy); they represent

increasingly dense and thick cloud layers.

This table will be discussed further with respect to S, X, and KA-Band

noise temperature and attenuation effects of clouds.

23

Page 29: Microwave Noise Temperature and Attenuation of Clouds at

h . 30 km TOP OF ATMOSPHERE

/

/

/

TEMPERATURE PROF ILE

-6.3 K/kin220 K MINIMUM

/

/

/

/

ABSOLUTE HUMIDITY

PROFILE • "h/'2" 0

UPPER

CLOUD

/

LOWER

CLOUD

//

PO

AllO

PRESSURE PROF ILE

-.116(h_ )• O

F.I!;.URE_3+..._CL_0UD..AND_Ct._AR_AIR M.0[IE_LS

24

Page 30: Microwave Noise Temperature and Attenuation of Clouds at

U-

U-

UJ

Z

W

N

!

v.

._J

L..)

._J

r_

5-

r_AI,,,,1"I"

n Z

enO0N¢'d

I

• • • • • • • • J •

un_r o0 _ N O ,..4 u_ O _ u_ (_

O C) _ C) C3 ,..4 _ .-_ N 05

C_ .1.- nr

_t_Z• la3

uSN_I

wn_

0 0 0 0 0 0 0 0 0 0 0 0

C•_ 0 _

I,,,. e,- _ O

,_ "0 _ _'P "_._ _ -"r- _

i_ '

Cl£

,,..-4 ,,.-4 ,-,4 _ C_I

c'_ _ _ _ _ _. O0 _ 0 _

¢I

X _ ON _..-

U ',._ "_ _"_._ 0

_ _._ _,_ ._ _x_ _. _ 0

_0 _ _; O _-

25

Page 31: Microwave Noise Temperature and Attenuation of Clouds at

Table 7 shows a printout of the temperature, pressure, and absolute

humidity profiles used in the calculations up to a height of 10 km above the

ground. The va|ues are given at the center of the 0.I km-thick layers. The

receiving antenna is considered to be located at sea level and the clouds are

horizontally stratified. The specific case shown in Table 7 is for clouds

plus rain (10 mm/hr at the ground). The columns labeled ALPHTI and ALPHT2 are

the extinction (total attenuation) and absorption coefficients (nepers/km) at

32 GHz, respectively, for the case where scattering from rain is considered.

The clouds are not considered to scatter at frequencies below 100 GHz for the

purpose of these calculations. DENC is the cloud water particle density,

1.00 g/m3 for the lower cloud and 1.00 g/m3 for the upper cloud. The rainrate

(mm/hr) is given in the last column, based on a specific model. The rain is

considered to start at 3.5 km above the ground and the rate increases in a

downward direction.

Returning to Fable 6, the last columns show the S-, X-, and KA-Band

zenith noise temperature and attenuation effects for the cloud models shown.

The notes at the bottom of the table describe the models used and will

clarify the tabulated values.

Table 6 shows the increasingly severe effects of clouds as the

frequency changes from S-thru KA-Band" S-Band is affected only slightly by

even the heaviest clouds, whereas KA.Band shows very large effects, which

are quite severe for the case of low-noise receiving systems.

26

Page 32: Microwave Noise Temperature and Attenuation of Clouds at

TABLE 7

PROFILES USED IN

CLOUD CALCULATIONS

HEIGHT

• I'5, L:u

._o00_

• 2bD( :.

.35 c :.0

045'_LG

oSSGO0

.650_fJ

• 75 L: ('©

• 85 ? _,tl

.9_000

1005f._0

TEMP PRESS. ABS HUM. ALPHT1 ALPHT2 DENC RNRT

_ 52.045_ Jl _.1 1062124. 7.31482 .t6u16 • 34.,_3 9 .09009 9. 995 :.;.a

292.21500 9_6.'b0037 b. 958"8 04.6355 • 53.51 1 • "J(, "- _.") 909551C

291.SPSG _3 984.51351 e..£ 1073 .4_880 • ._`547 b 000000 9087578

;, Q009'_5 0 _ '915015914. 6. _9593 04.5255 .33t_?b .fgOOC'_ 9075798

29J*325JO %1093571 5.98887 o44465 .32465 on 00'lw't 9.&{,3,_ 9

2 P90159500 %0084174 50L9679 o4.$521 o317)9 o00000 9.91294

2t_90 OF50b 959087559 5*41896 042430 • 31J34. .0 Ol_O_, 9018972

268.435 _ " 929.03613 5.15467 041206 03C178 ._0030 8093597

257 oil L5 _; ,' 916052|57 4.090327 .398bl 029240 0000'?,0 8,.65455

28.'017500 9_ 1013059 4. 056914. 038488 0_8227 000000 8034.853

:"06* 54.500 8Y 702& 17_ 4. 04_667 051843 o4212R 1000000 8o02%18

1015;J:_ 21_5.915GC 886.91365 4..22©29 050490 .4.126* 1.000_9 7067590

1.25_r, 0 •e!5o285r, G 87606848:J 4.:_14.46 049080 04036% 1.0300.n 7031616

1.35060 2R4o65500 866051410 3.81867 .41631 039428 1000060 609454.4

1045_&C 284002500 8:16057992 3.63243 °46150 038477 1.00000 6056718

1.55:_(_ _830395_(, 8460701¢0 3.4.5528 04.4676 .37517 100000_l 6_018479

1065JC_, 26207550_ 83_093602 30_8676 04.3280 036559 loO_OC'_J 508_,,1_2

1.15000 28;013500 821028._b_ $012b4.1 041143 *_5&12 1000000 50419_q

1085009 281.5053'/1 817.74.261 2.97399 .4.J318 034.684. 10003C_ 5.04.342

1.95:00 21_)o_750( 800031159 2.1'2894 038937 .337_!* 1o0000,,I 40674._."2005'; CO 21'.)024500

4..31455

o.U

7'_ 8.98936 2.69097 • 19731 ., 15C4 . .0000_)

2.15000 ,_79051500 78907"/4k$ 2._5913 018148 o138:)8

2.250t_U 278.9_500 780.666,18 2.4.3489 .1_629 01279_

2-35U'_0 27e*3550(' T?_0k5277 2.3161_ -,15182 011741

2.4.5000 .,t7.175(_0 752.15320 2.20,518 .1,5809 010735

2055_GL 277009500 7_3095626 2.09573 .12516 009783

20&50i)0 27_,._.5Q_ 74.5.27078 1.99552 011304 008885

2075¢00 275.n35uf. 735057560 108963 _, o1(',175 008044

2085000 _?SoLbSU_ /280179_3 1080381 0091-'8 001259

2_95000 27_._.7500 719.78145 1.71584 .d8162 .v6531

3.05000 27_.94.5&(' 711.98022 1.53216 .28515 .,_71953.150C& 2730 _15('0

,5.250[_0 •l,_.G(:Su(j

5.55000 2 72. rbsot"

3.950:(' ,_ tl.,_,SuG3055u_b _1J.7_5(

'ohSOOC _. IOolbSOb

3075©_0 ; t':). t _50C

3.850:C k_.gCS_L'

30950..r_ 2t I70_ 751.'

• 00000 3.96753

• 00000 30L331

• O_lOCO 3.31377

• O0000 3.0104.4.

• 00C?0 2. 7239_,

0')09C0 2.454.9&oOOO_O 2*2:3_

• 00000 1.9701G• 05000 1. 754.33

1.0009_ 1.%55957;J 3.27975

t_3.15389

7.146_8

(,79.221"/3

67 I ..301820

ew&..$.64. 5 17

&55099136

(:,4 804. _5 63

64 ;)09_ 754.

105525(, .2_107 02(,953 l.O(_&f_r, 1037449

1.4768_ 02784.0 . :,,618 Ib 10000_0 I .2C9`55

1o4.04.81 .27570 026667 1030CUO 10,)_9_ 1

) .3363.. .27373 ..21;604. 1.0C _'0 .925041027113

023891 o238')1 10_. L'_C _ . ._t_C.Ob _,

102091,5 024.290 024290 1.00000 .OOGO0 (,..)1.1501(, 0246_7 • 29i,9 7 I.O_3L'O .C¢_.L.

10('Q407 025113 02_113 1.00J"O * _0_.. :l.;.qO?l 025537 025537 1 ._0_;._ _ . ?'..( C :

09899:_ .004.97 0004.97 *O00CO *OOOO0

• 94.167 ._,0483 . Oo,_._ .COCC_ ._C:.O

• 1:9575 .&_70 0 _ I'4.7 _'. 00 ) 0_I'_ .CL3e

• 8'5_ C o • ,,'_4.57 0,, _45 7 .C 0 _."0 ._C_ ,)';

• 810_1 .Q0'*45 .0.0445 .00009 .OOO00

• 77.09@ . _J0433 .C 14_3 .CO "'_0 • _003,_

• 7 ]-_) _" * 0C*71 • :, _.47 1 *_ :..'C * 3GCJ

• 6q76| *v_q ;.0 * :"ql .* 0_' ","C * )OOUJ

. b_,.$59 • Ot_ 4.@0 . Gu4J 0 .0(. C _0 .UOqO0

• 6-_IZ,_ *CC3qG .,_3_9C ._'C|_ ",,) .')C00_

4.005000 .e 1.64.50U

90_5 '.C *'t_eTe*5?._

4..4b_C0 ,_*,b. l _'b u b

4.55 0,., :._.4t_5£C

4.75 '( ._.:'SnC

(,J_3.55551

526.24873

61q.O2&;l

e,l I .e_ 7'. 0

O0 '_ ,.a ,_ 012

¶97._4.62

51 ]r.4. b 71`5

570.747q1

27

4.;,,_' .-- ' _ ." "i, ."'

('. _,,,;_. l, .,,.,

Page 33: Microwave Noise Temperature and Attenuation of Clouds at

TABLE 7 Icont.),

S.OS.luO

S.15800

b.25800

5.35000

.dis C O(J

5.55 (,_u

S.&SOSO

5.75000

5.85e10

5015080

k,ISOO0

6.15080

&025000

6035 0 GO

k.415OO0

koSSGO0

&okSOPO

6.75t CQ_.85000

60950t_07.05 ." _,0

?.150v_

102580@

1035000

?.45CC0

7e55000

7.65100

7.75000

7.85 ?C_

? 095 (. 00

8.85 000

o.15nr(,

&o25CiLO

8 .$$ buu

_.55JCC

6.65 ,, 0

8.15G(0

8._SOvu

8oq_ _l'J

9.II"}L C('

q,35 _ ('9

9.550UL,

9.65 3(%

9.75;_V

9.850(0

909_881i

10005000

1 0.1S_UU

1 ¢.2'_:e0

1 8.15888

L t,(.. 7 |5_*'1

;'58082500

;_'58. 155C _

_5' .3U500

2550675V02bSoOqSOO

251041500

?'_307850C

2_3.15500

252.52500

251.89500

251.?5500

2_0.00500

; _9.._ 75') u

_: _8.7_5 0 _,

2'_70 _18500

24(_085500

2 _._2500

2_Sob95GO

?. *._. P,7500

_q2.44500

,,*I. _1%0¢._NI.I_bOC

L2**0. b'_O 0

2_.q250_

,. !7._0530

L _#.. 77_ _ (_

,_ _b. |_,_u. _

._2ogqSoo

2310735&C

2_101C5b_.

;_ ._O. _ 7SO 0

2:,9004500

:,_q._lSOC

;20.585&0

2:,1._5S08

'_:, 4. L 6549 0kC044 08v388 .(_938 0 ,,3U300 0300_

557065858 057115 ok, d371 .t,I;371 ,0':_,_0 ._9&.'. :

5_1.Z2751 05_33;) 000351 0803&1 .OOOO0 oOOOO8

54_1.87021 05168.n 000353 00C353 .O0_;(,O . OOO,_O

5,.3 8.586 24 .q916_ .f_0344 , eO31l_l .9_'_0 09099(_

532.$7_73 045762 *b03M_ *_0536 .OgrJ_8 . }000_

526023487 .q_81 .00528 000328 .O000G .O80OO

520.16581 ._17312 .00321 000321 .O0_OO .O80CO

51_1.16&75 ._(.2e9 00C315 .08313 ._d('Ob .O00OO

501i.23&88 0,38286 • C@3GIb . *.g3_,l_ .8 JC'(_O 030050

_dJ 2' ..51 b 39 . ,.,515418 .00299 e8029 _) *O0080 .81i000

4J)6.58150 .34&42 • 082q3 0(*0293 030_00 08800349 0.854i44 .32853 °¢)8286 0_0286 00=_3 000908

diO 5 ol_J 4_ 0_1_46 .0._88 e_28( _ ._dC¢'9 e (_CGC ,)

_t/$ 055"/78 .29817 000;,[74 .00274 .OOO00 .0000O

474006651 028363 . e026,8 ° C02(:8 .000_0 .OOb._O

468.5qqll .26979 • 0(_262 . L_0262 .0 (' (,30 .@f105_463.19476 °256(_4 .00_57 ."C25 7 .OOOPO .C,O:C_

•_ 1085213 .2qq12 .U0252 .00252 .00000 .OOO00

_52057235 023221 oJC24b °L&2_b ._CC3O . ._,;. _ ;,

_4 703_284 .22089 .3_2_1 .&r2_l ._.9=.',_ .):.L:.

_2019353 .21J12 ._82_7 . (.(,2_7 .Q.J¢= . :_.L_ ..

_3 700q312 .19981 • 00-_32 .002.52 .O00OO .UOUOC

_.52005273 o19012 .0(.227 .00227 .00 P,'. _ .et'=C J

42 709(,987 .18085 00@223 0LC223 .900_3 .O_l_ _

ql 7027590 olb3&_ 0002_1 000219 .(_O00O 000000

_L 20_,346 .1556& 000210 .;)J21C .C _ _.',0 • fl(_OO_.

4,17071J653 o148(,7 . C02,56 ._.g;'b .0_0_,9 ._CO0?

403._04_6 .1_08_ 00)202 ._(,2_2 .O_OC, U **.gCC _

_8035k1_. 015398 .00198 .00198 .OOO00 .08000

.Sq ]07_2 _8 .127_'t . 'J0195 . (_t195 .OP¢_._O .90030

._4 (_0221 12 012125 08_.191 0_0191 oOOr_'o .'_ _;(. 0

.'_ _. I._225 011531 001_187 000187 .OOOO0 000000

._.qJ 02 q b l_l .10969 • r, 918_ 0 _.,'II_Iq .OOCO0 .�GC_O

._7b .9 D9 ;:I . I ._.5, • C,QI_I 0,._1_1 .002_0 007:90

.51 105 7_85 . L992'b .OOl/7 ,, ._,177 .O{,'ICO 0_CC_5

.56 I .,c 88 q9 .09qql .0517_ 01_011q .OOOO0 .OOO00

3650J5267 .oPq8! 00;,171 .,: 3171 ,O_"gO .C C.CO :)

_580_b._ 4q . t'85q3 . _,I.I i_8 • _,:1£8 .O('SnO • O{,e..) _

35_**12670 008126 o01,165 0L)165 .:)OrOO o3P.== J

.,55 00(., 35155 .877_@ ,UOIb2 cO01& -'_ .00000 .OOOUO

..',46059177 .07_53 .0(.159 ._-"15 e) o3(.'_.00 °,JC_CI_3dl2 ._9454 001_99_ 0=0157 .0._157 003,,JqO ._OCJO

_38064310 .:6655 .bb154 . '_I.15_I °200_C o,T&f *_,

331.1.5785 .05329 .00151 .00151 .OOOO0 oi80(,O

_30.87731 .C602 r .O02eq .OUlqq .(*dUO0 . OGO(" '.,

327._131 0C572_ . P.DI_& .901'_ .OJq¢'O *e eC_, e

,.519.5k083 .85181 .001_1 .OOI_X ,O00OO .O80OO

31')08753_ .04929 .05139 . _1.', 5q .¢30('0 ._{,(,e _

312.2323k . :_888 .80|$6 .OCl3k .000'_') .8CC*_9

_108.t,313_ .ve_6J o(,0134 0C_JI34 .gObeO 03CC::

305.071e)S 08_212 .001_2 .00152 .OOOlO .O000O

28

Page 34: Microwave Noise Temperature and Attenuation of Clouds at

J

The change in signal-to-noise ratio (ASNR, dB) is given by:

ASNR = AdB + 10 lOglo(Top/Tbase)

where adB

Top

= change in attenuation, relative to clear air baseline

= system noise temperature with clouds, Kelvins

Tbase = baseline system noise temperature, including ground,

waveguide horn, clear air, and cosmic backgroundcontributions, Kelvins

As an example, consider a low-noise receiving system at KA-Band with

a baseline zenith system noise temperature of 35 Kelvins. Using Case 10

(Table 6), it is seen that the zenith attenuation increases from 0.228 dB

to 1.939 dB. The atmospheric noise temperature increases from 14.29 Kelvins

to 99.05 Kelvins. The 2.7 Kelvin cosmic background effect decreases from

2.56 Kelvin (2.7 attenuated by .228 dB) to 1.73 Kelvin (2.7 K attenuated by

The new Top is 35 + (99.05-14.29) + (1.73-2.5_) = 118.93 Kelvins.i.939 dB).

Thus,

ASNR = (1.939-0.228) + 10 lOglo

= 7.021 dB, at zenith

(118.93/35.) = 1.711 + 5.312

Most of the signal-to-noise degradation in low noise receiving systems

comes from the noise temperature increase. For high noise receiving systems

(> 500 Kelvins), the atmospheric attenuation will cause the greatest SNR

degradation.

The Appendix of this report contains numerous curves of total

atmospheric attenuation coefficients, atmospheric noise temperature, and

atmospheric attenuation for the cloud models in Table 6.

sets of five, one set for each of the twelve cases listed.

of each set are:

The curves are in

The five curves

29

Page 35: Microwave Noise Temperature and Attenuation of Clouds at

I) Total atmospheric attenuation coefficient at 32 GHz, vs. height,

all constituents, no scattering because clouds only (labelled -1)

2) Atmospheric noise temperature at zenith vs. frequency (labelled -2)

3) Atmospheric attenuation at zenith vs. frequency (labelled -3)

4) Atmospheric noise temperature at 30°-elevation vs. frequency

(labelled -4)

5) Atmospheric attenuation at 30°-elevation vs. frequency (labelled -5)

The eight parameters of each plot are printed at the bottom.

They are:

I)

2)

3)

4)

5)

6)

7)

8)

ELEV = elevation angle from horizontal, degrees

LAST LOOP = counting loop, internal use only

DENCLOW = density of lower cloud, g/m3

LOWCLDTHK = thickness of lower cloud, km

DENCLMID = density of upper cloud, g/m3

MIDCLDTHK = thickness of upper cloud, km

RAINRATE = rainrate at the ground, mm/hr

RAINTHICK = thickness of the rain, km

30

Page 36: Microwave Noise Temperature and Attenuation of Clouds at

Table 8 shows results of tests of integration step size on the

determination of atmospheric noise temperature and attenuation for the

"worst-case" cloud, Case 12, at five different frequencies. NL is the number

of layers in the atmosphere up to 30 km above the ground. For NL=300,

layer thickness = 100 meters; NL=IO00, 30 meters; NL=3000, 10 meters.

Assuming the NL=3000 case to give the "correct" answer, noise temperatures

at the same frequency but different step sizes are compared to that value.

At all frequencies shown, the errors at zenith are less than two percent.

However, at higher frequencies or for cases including rain (where the

attenuation coefficient exceeds approximate|y I neper/km), care must be

exercised in choosing an optimum number of tropospheric layers. Carrying out

all calculations at NL=3000 makes computation of even a few cloud cases

prohibitively expensive. Future work will involve the development of

computational methods which strike an acceptable balance between accuracy and

cost.

31

Page 37: Microwave Noise Temperature and Attenuation of Clouds at

TABLE 8

"WORST CLOUD"* TEST CASE OF

INTEGRATION STEP SIZE

** FREQ 90°-ELEV 30°-ELEVNL GHz

300

(1oom)

RC=I

1000

(3om)

RC=3.4

3000

(10 m)

RC=38.3

,J..

t**

10

20

30

40

50

10

2O

30

4O

5O

10

20

30

40

50

CASE NO. 12,

T(K)

26.84

94.35

159.18

214.08

251.92

26.96

94.88

160.64

216.89

255.98

26.87

94.66

160.52

217.21

256.85

| ii

TABLE 6

0.457

1.864

3.891

6.912

11.682

0.460

1.875

3.910

6.943

11.737

0.458

1.869

3.895

6.917

11.697

ii

% ERROR

-0.11

-0.33

-0.83

-1.44

-I .92

+0.33

+0.23

+0.07

-0.15

-0.34

0.00

0.00

0.00

0.00

0.00

T(K)

51.01

155.97

224.41

258.09

269.91

51.26

157.11

227.50

263.50

276.86

51.11

156.94

227.93

264.80

278.75

0.915

3.729

7.782

13.823

23.364

0.919

3.749

7.819

13.887

23.473

0.916

3.738

7.790

13.835

23.395

% ERROR

-0.20

-0.62

-1.54

-2.53

-3.17

+0.29

+0.11

-0.19

-0.49

-0.68

0.00

0.00

0.00

0.00

0.00

NUMBER OF LAYERS IN 30-KM-THICK ATMOSPHERE, THICKNESS OF LAYERAND RELATIVE COST

NOTE THE ANOMALOUS BEHAVIOR OF ATTENUATION AT NL=IO00 AND 3000,

FREQUENCY=50 GHz, WHERE NOISE TEMPERATURE INCREASES AND ATTENUATION

DECREASES; ALSO OSCILLATORY BEHAVIOR OF ERROR

TEMPERATURE ERROR COMPARED TO VALUE AT SAME FREQUENCY WITH NL=3000;VALUE AT NL=3000 ASSUMED TO BE CORRECT

32

Page 38: Microwave Noise Temperature and Attenuation of Clouds at

REFERENCES

i.

.

.

.

e

o

.

9.

lil.

II.

12.

R. R. Rogers, "Statistical Rainstorm Models", IEEE Trans. Ant.

and Prop., July 1976, pp. 547-566.

S. L. Valley, editor, Handbook of Geophysics and Space Environments,1965 edition, McGraw-Hill Book Co., New York, 1965.

L. W. Carrier, G. A. Cat,, K. J. von Essen, "The Backscattering and

Extinction of Visible and Infrared Radiation by Selected Major Cloud

Models", Applied Optics, Vol. 6, page 1209, July 1967.

Cloud Code Chart, National Weather Service, U. S. Dept. of Conm_rce,

Supt. of-Documents, U. S. Govt. Printing Office, Washington, D.C.

N. E. Gaut, E. C. Reifenstein, "Degradation by the Atmosphere of

Passive Microwave Observations from Space in the Frequency Range

0.5 to 20 GHz", Environmental Research and Technology, Inc.,

Stamford, Connecticut.

V. J. Falcone, L. W. Abreu, "Atmospheric Attenuation of Millimeterand Submillimeter Waves", EASCON '79 Record, IEEE Publication 79CH

1476-I AES.

L. J. Battan, Radar MeteorolosLv, Univ. of Chicago Press, Chicago,lIIinois, 1959.

G. Mie, "Beitrage zur Optik ...", Ann. Phys., XXV (1908), p. 377.

t). I)eirmendjian, "Complete Microwave Scattering and ExtinctionProperties of Polydispersed Cloud and Rain [lements", ReportR-42/-PR, Tile Rand Corporation, Santa Monica, Calif., 1963.

_. J. :)utton, !!. T. Dougherty, '[sti_:_aLesof tileAt_iospheric

Transfer Function at SHF and [HF", NTIA Report 1_-8, U. S. i]eHt.of Co,_merce, Washington, D.C., August 1978.

k. L. S. Gunn and T. W. R. Last, "The i,licrowave Properties ofPrecipitation Particles", _uart. Jour. Ro_. Meteorol. S.c.,LXXX (1954), pp. 5Z2-545.

B. R. Bean, E. J. Duttcn, Radio Meteor.lowLY, Dover Publications,Ne_ York, 1968.

33

Page 39: Microwave Noise Temperature and Attenuation of Clouds at

13.

L4.

15.

16.

i/.

18.

19.

20.

21.

22.

23.

24.

D. H. Staelin, "Measurements and Interpretation of the Microwave

Spectrum of the Terrestria| Atmosphere near 1-Centimeter Wavelength",Journal of Geophysical Research, Vol. 71, No. 12, June 15, 1966,pp. 2875-2881.

J. W. Waters, "Absorption and Emission by Atmospheric Gases", inMethods of Experimental Physics, Vol. 12 Academic PressNew York, 1976. ' '

E. D. Damosso, S. de Padova, "Some Considerations about Sky Noise

Temperature at Frequencies above 10 GHz.". Alta Frequenza, Vol. XLV,No. 2, Feb. 1976, pp. 98-10E to i06-18E.

A. W. Straiton, "The Absorption and ReradiaLion of Radio Waves by

I)xygen and I _ter Vapor in the Atmosphere", IEEE Trans. Ant. and Prop.,July 1975,, pp. 595-597.

L. Tsang, J. A. Kong, E. Njoku, D. H. Staelin, j. W. Waters,

"rheory of Microwave Thermal Emission from a Layer of Cloud or

Rain", IEEE Trans. Ant. and Prop., Sept. 1977, pp. 650-657.

D. C. Hogg, "Ground-Based Remote Sensing and Profiling of the Lower

Atmosphere Using Radio Wavelengths", IEEE Trans. Ant. and Prop.,March 1980, pp. 281-283.

V. J. Falcone, K. N. Wulfsberg, S. Gitelson, "Atmospheric Emission

and Absorption at Millimeter Wavelengths", Radio Science, Vol. 6,No. 3, pp. 347-355, March 1971.

A. T. C. Chang, T. T. Wilheit, "Remote Sensing of Atmospheric

Water Vapor, Liquid Water ...", Radio Science, Vol. 14, No. 5,pp. 793-802, Sept-Oct 1979.

M. T. Decker, Millimeter anu Submillimeter Waves_ Scatter,

Absorption_ and Radiation, ERL/ESSA (Boulder) Radio PropagationCourse, Lecture VII-5.

R. J. Coates, "Measurements of Solar Radiation and Atmospheric

Attenuation at 4.3-millimeters Wavelength", Proc. IRE, Vol. 46,No. i, pp. 122-126, January 1958.

R. W. Wilson, "A Three-Radiometer Path-Diversity Experiment",

Bell Sxstem Technical Journal, July-August 1970, pp. 1239-1242.

R. W. Wilson, "Sun Tracker Measurements of Attenuation by Rain

at 16 and 30 GHz", Bell System Technical Journal May-June 1969pp. 1383-1404. ' '

34

Page 40: Microwave Noise Temperature and Attenuation of Clouds at

25.

26.

27.

28.

W. V. T. Rusch, S. D. S1obin, C. T. Stelzried, T. Sato,"Observations of the Total Lunar Eclipse of October 18, 1967at a Wavelength of 3.33 Mill" ,,

Imeters , _sical Journalrot. 155, March 1969, pp. 1017-1021.

C. T. Stelzried, S. D. Slobin, "Calculations of Atmospheric Lossfrom Microwave Radiometric Noise Temperature Measurements , TDA

_Report 42-62. Jet Propulsion Laboratory, Pasadenacalif.

CCIR, R__s an_d.Re o.rts of the CCIR, 1978 Volume V,__ Media. IntTelecommu__ . ernational

E. K. Smith and j. W. Waters, "A Comparison of CCIR Values of Slant

Path Attenuation and Sky Noise Temperature With Those From the JPL

Radiative Transfer Program", presented at URSI National Radio ScienceMeeting, Boulder, Colorado, January 12-16, 198].

m

35

Page 41: Microwave Noise Temperature and Attenuation of Clouds at

APPENDIX

SAMPLE CASE CALCULATIONS

OF CLOUD ATTENUATION AND

NOISE TEMPERATURE

PRECEDING PAGE EL.AI'.!K r40T FILI',._ED

37

Page 42: Microwave Noise Temperature and Attenuation of Clouds at

CASE 1-1

HEIGHT

z

F,1'I

ATMOS ATTN COEF NEPERS/KM

30. __j _ ....

II

2O

ABSORPTION ONLY AT 32 GHz

-----_-Z..... _ww

I

I

.... J_

o

..... jm

i=

I

i!!

.... _m

i

I

I

--1

dI

-q-----4

I

d

_q----.-__

.---tI

-4......

-1-"--1

I

.-----4

-i

ppF.,CEDtNG PAGE ELANK NOT R_

39

Page 43: Microwave Noise Temperature and Attenuation of Clouds at

ATMOS NOISE

CASE 1.2

AI

H0S LhL1

N0I

SE

.I,O

TEMP

K[ 4oLVI

NS

)o

IrklvIp OOnO000. Ot

m. 40.

glAIIIA_O+0OOO000

40

Page 44: Microwave Noise Temperature and Attenuation of Clouds at

CASE 1-3

1 '3TOTAL ATM ATTENUATION VS FREQ ABSORPTION ONLY

A

TH

0

S _ o

ATT

ENUATI

0N

DB

5

0O.

[L[V

5 10.

) OJCO0_O.Ol 0 _OCJO0

1_. 20.

LOI,_LDTI'_0 00O0000

4_=_• . _10.

R E L1UE NC Y _Hz

Oi£_K_LmlO "IOCLDY'_

0 0000000 0 0000000

.l_, 40.

IAIe_IIAT[

0 OOOOCO0iJl_TNIC.,K

0 00000O0

41

Page 45: Microwave Noise Temperature and Attenuation of Clouds at

CASE1-4

^T

Mos

N0ISE

TEM

P

KELVI

N$

ATMOS NOISE TEMP VS FREO.

II

II

I

4,2

Page 46: Microwave Noise Temperature and Attenuation of Clouds at

CASE 1-5

30

TOTAL ATM ATTENUATION VS FREQ ABSORPTION ONLY

25

AT

H0S ,_o

^T

T

ENU^TI I 5

0N

0B

I 0

5

00

) 00000o0.0l

43

Page 47: Microwave Noise Temperature and Attenuation of Clouds at

CASE 2-1

ATMOS ATTN COEF NEPERS/KMABSORPTION oNLY AT 32 GHz

25

to.

015 .020

ALPHTI

LO_aO.011_ OE_IO

2 0000000-01 O. 0000000

PNECEDING PAGE BLANK NOT FILMED

45

Page 48: Microwave Noise Temperature and Attenuation of Clouds at

CASE2.2

T

OS

NoIsE

TEI'IP

KELVI

NS

ATMOS NOISE TEMP VS FREO

O.I

lIIN

I,-,

M.

46

Page 49: Microwave Noise Temperature and Attenuation of Clouds at

CASE 2-3

I 6

TOTAL ATM ATTENUATION VS FREQABSORPTION ONLY

4

TH0S

AT I o

TENUATI II

0N

D0

00

• 0000000"01

47

Page 50: Microwave Noise Temperature and Attenuation of Clouds at

CASE 2-4

140+ATMOS NOISE TEHP VS FRE_

t_

AT

S

N lea

0I

SE

TEM eoP

K

EL.#I

N 60

S

40.

20.

O+O+

L"L(V). 0000000 *01

9. 10. I5. 20. _,. 30.

FREQUENCY GHz

L_ST 1.00A _'xO,. L 01+ L0M2,. 0 rt,4K 0l_l.mlD RI00,.DT_4aC)+.,TO00000. Ol 1.0000000 01 I. 0000000-0l 0. 0000000 O. 0000000

36. 40. 46.

IA |itlIA I'E IAINmI4_0. 0000000 0 0000000

48

Page 51: Microwave Noise Temperature and Attenuation of Clouds at

CASE 2-5

)0

2 5

?,0

I 0

.1._ R

__ --p

O.

TOTAL ATM ATTENUATION VS FREQ

I

!

I

i

ii

6. 10.

_-.wN m_ D

= Z

I

15, 20.

(L(V LAST L(X_ O(_'t c O_ c OMOL OTHIK

$.0000000o01 1 ,?O0_,O00 • 0,2 2. 0000000-0| 20000000-0!

M_

I

I

49

Page 52: Microwave Noise Temperature and Attenuation of Clouds at

CASE3-1

30.

ATMOS ATTN COEF NEPERS/KM ABSORPTION ONLY AT 32 GHz

HEI

GHT

Z 1_,.

K1'1

10.

0.

• 300

9.0000000-01

.00'3 .010 .015 .020 .0_3 .030

• ALPHTI NE PE RS/KPI

LASI' L0a P 0CNCL LOh4 L OIdCt.DTHK 0(NCL _ |O M i 0Q.DTI,(K

1. 4300000-02 _. 0000000 0. 0000000 2. 0000000-01 !. 9_J98_J - 01e

.0315 .040 .045

tMXNmA_E ItAXNI_41CK

0. 000000O 0. 0000000

.050

pP_.EnIN_ PA_E E_I./l,_!K NOT FtLI_[D

51

Page 53: Microwave Noise Temperature and Attenuation of Clouds at

AT-H ;'g,j3

N

0IS 6o

E

T

E

H

K

ELV

I 4oN

S

ATROS NO SE TEMP VS FREQ,

CASE 3-2

10

EL[V LAST LOOP Ot'NCL L OM

9 . 0000000.01 I 1 _00_0 * _ 0 . 00_ _

52

Page 54: Microwave Noise Temperature and Attenuation of Clouds at

CASE 3-3

0s

=,T

rENU

TIoN

DB

TOTAL ATM Ar TENL,tATION VS FREQ

)

I

10

ABSORPTION ONLY

I I I I

f

53

Page 55: Microwave Noise Temperature and Attenuation of Clouds at

AT

M

0S

N

0IS

E

T

EM

P

K

EL

VIN

S

1 O0

Z. 0000000- 01 1. _- O| 0 .0000000

CASE 3-4

ilAINT_41¢J(O. 00OOOO0

54

Page 56: Microwave Noise Temperature and Attenuation of Clouds at

CASE 3-5

$.S

mw_ _u3.0

2.5

20

1.5 .....

I

I ....

i

1.0 .....

!

-4 ....

.0 .....

0. 5.

TOTAL ATM ATTENUATION VS FREQ

I

10.

ELEV LA.ST LO_ =' _ _*0. L Om, d

3.0000000*'1X 1 8000000.02 0.0U0O_ 00

L Ot4CLDTHK

0. 0000000

ABSORPTION

- _ -

)NLY

--

FREQUENCY GHz

0CNCEMi0 M| [X_DTHK

2.0000000-01 1. _" 01 0. 000000O

IA | NIBATI[ mAIN?_|CK

0. 0000_0

60.

55

Page 57: Microwave Noise Temperature and Attenuation of Clouds at

CASE4-1

3O

25,

ABSORPTION ONLY AT 32 GHz

HEIGHT

Z _s-

KH

£LEV

9 J'3C0000.01

_AINr_ICK

O. 0000C00

PRECEDING PAGE BLANK NOT FILMED

57

Page 58: Microwave Noise Temperature and Attenuation of Clouds at

1001

ATMOS NOISE TEMP VS FREQ

CASE 4-2

+ +

58

Page 59: Microwave Noise Temperature and Attenuation of Clouds at

CASE 4-3

TOTAL ATM ATTENUATION VS FREQ ABSORPTION ONLY

^

T

M

0 : 4

$

A

T

T t2EN

U

^

T

I I 0

ON

1313

an

00

EL[v• o0OO0O0.0|

Page 60: Microwave Noise Temperature and Attenuation of Clouds at

CASE 4-4

ATMOS NOISE TEMP VS FREO,

ATM0$ l_o

N0I

SE

100.

TEMP

KE eoLVINS

O.

O. li. 10. IS. I0. ZS. 30.

FREQUENCYGHz

[kEY LAST LOQP O(NQ.L OM kOMCLDTI_[ CINCL ;ql 0 MIOQ. Otl,_). 0000000.01 ? 4000000-01 $. 0000000- 01 S 10000000- Ol O. O000000 0 0000000

3J. 40. 41_.

l,tl_l,t[ I" I m/+,+l Ol

O. 0000000 O. 0000000

_0o

6O

Page 61: Microwave Noise Temperature and Attenuation of Clouds at

CASE 4-5

TOTAL ATM ATTENUATION VS FREQABSORPTION ONLY

AT

M

0S

TT

ENUA

TI

oN

oG

30

Page 62: Microwave Noise Temperature and Attenuation of Clouds at

CASE 5-1

HEIGHT

Z

KH

30.

20.

10.

j

j

s. -1i,--- --

ATMOS ATTN COEF NEPERS/KM

o..00 .04

ABSORPTION ONLY AT 32 GHz

I

.02 .oe

I[LKV LJ_KT LOGIB O_ICL LGMt. 0000000"01 2.4)00000- 02 O. 0000000

.OI

ALPHT| NE PE RS/KPI

LaMCLOTIqKO. Ot,v_.vO0

OtMCI.MIO MI OCLOTI,I(5. 0000000-01 5.0000000-01 O. 0000000

I

PRECEDING PAGE BLANK NOT FILMED

- 63

Page 63: Microwave Noise Temperature and Attenuation of Clouds at

CASE 5-2

lO0,

ATM05

N0I eO5E

TEMP

KE 6oLVI

NS

O.O.

ATHOS NOISE TEHP VS FREQ

IlllllllllllllllIlilililllIlllllll[llfllillllllllllII1111II1i1111111II!1111!1!li11111!III11lllllllii1I1111111!111111111111111ilIIIIIIIII1111!1111111IIII111.I

llllllllllllIIlllliill!lIllllllillllllfffJlllJll!l

I[llll/lllllllllllllilIIJ!Illlllilllllllililt1111111ill

IPLI_ LAST LOOP OLrlIQ. L q_,l• ,O_OOO0 * 01 • 7000000.01 O. 0000000

11JlillJflllilllllllllljil JllliiflllllillllllJllli

Jilllllllllllll!llJllll IIIIII 111111

I1; IIII!!111111111111, 1111111iiI!IIII!1111II. _. _. _. _. 40.

FREQUENCY GHz *

L Ot,_Cl,,C_ _tO ml_O_ BAI_A_O, 0000_ S+_O000-Ol S. 0000_-01 0.0000000

llllilflllllflllll,IlJllI'flll[/lll l1 111

"llilJl!!111IIII!IIIIii!IIIII!II

41. N.

II'Ai IlYl_I_O. OOCO00O

64

Page 64: Microwave Noise Temperature and Attenuation of Clouds at

CASE 5-3

T

M

0q

TT

NUAT

i

0N

oB

O.0000000

ABSORPTION ONL_

1

65

Page 65: Microwave Noise Temperature and Attenuation of Clouds at

CASE 54

ATHos

N0ISE

TEHP

KELVI

NS

180.

ATMOS NOISE TEMP VS FREG

i

FREQUENCY GHz

I

U.

66

Page 66: Microwave Noise Temperature and Attenuation of Clouds at

TOTAL ATM ATTENUATION VS FREQABSORPTION ONLY

CASE 5-5

).5

AT

H

0S 3o

AT

T

ENU a5AT

I

0N

200[3

15

I 0

5

(LEV

) GO00000. Ol

_', 10,

3 JO00000-_ 0 0000000

FREQUENCY GHz

5 0000000- O! 5000000001

67

Page 67: Microwave Noise Temperature and Attenuation of Clouds at

CASE 6-1

EI

GHT

Z

K

,'I

30

25

:5.

0.

.00

E'LEVg.0000C00.01

A.TMOS ATTN COEF NEPERS/KM

.0! .0,2

LAST LOOP O_'_LkOt,_) _00000-_ _10000000-01

!lllll

II111

.o0

o.ooooooo o ooooooo

.ol

_IMT1.41C=(0.0000000

,10

PRECEDING PAGE BLANK NOT FILMED

69

Page 68: Microwave Noise Temperature and Attenuation of Clouds at

CASE 6-2

ATMOS NOISE TEMP VS FREQ

I0o

AT i

M

os

N0I 80sE

TEM

P

K

E 60L

VI

N

s

70

Page 69: Microwave Noise Temperature and Attenuation of Clouds at

CASE 6-3

TOTAL ATM ATTENUATION VS FREQ ABSORPTION ONLY

ATH0S

ATT lENUATI

0N

DG t o

.oO.

FREQUENCY GHz

C_NO..M ! O MIOCLDTHK0. 0000000 0. 0000GO0

71

Page 70: Microwave Noise Temperature and Attenuation of Clouds at

CASE 64

ATM0s

N8IsE

TEMP

KEt.VI

Ns

Lq.rv

$. OOO0000*Ol

ATMOS NOISE

i i i

II |

I I I

IllI ! I

IIIIII

I ! |

I I I| i i

! ! I

-.LM-

Ill

III

i i •

• , o

i i l

I f I ,

6.

L_TLO_P

$._000_*_

TEMP VS FREO.

10. 15. ,ZO.

OC_CLL_ k GI, iCL DI'WI(

5. 0000000- Ol l. 0000000-00

FREQUENCY _Hz

_._ID RIOCLDTIwK

O. GO00000 O. 00001)00

3_, 40. 4,5.

I&lNllatl ItAINTWIGK

O.OOOO000 O.0000000

72

Page 71: Microwave Noise Temperature and Attenuation of Clouds at

CASE 6.5

TOTAL ATM ATTENUATION VS FREQ ABSORPTION ONLY

^TM0S

A1"TENUATI

0N

O13

• 4 •

. ¢1

73

Page 72: Microwave Noise Temperature and Attenuation of Clouds at

ATMOS ATTN COE F NEPERS/KM ABSORPTION ONLY AT 32 GHz

CASE 7-1

20.

Z 15.

KH

lO.

\

0..00 .02

[I.[V kJ_;V LOGP O(IK_LL nu

9. 0000000-01 3.11300000- 0_' O. O000OO0

!I

.04

LOk_.Dn<X0.0OO0000

.01 .01 .10

^L.PHT] NEPER$/KM

(_MCLRIO R|OQ.DTHK mAI_AT[

5. O00_o0-gl 1.0000_*00 O. OOOO000

Jf

• 12

mAINV'NICKO.0000000

.14

pRECEDiNG PAGE BLANK NOT FILMED

75

Page 73: Microwave Noise Temperature and Attenuation of Clouds at

TM0S

N0I5E

TEMP

KELVI

NS

ATHOS NOISE TEHP VS FREO_

CASE 7-2

J

76

Page 74: Microwave Noise Temperature and Attenuation of Clouds at

CASE 7-3

IlINI"_I ¢1(O. 0000000

77

Page 75: Microwave Noise Temperature and Attenuation of Clouds at

ATHOS NOISE TEMP VS t:REQ

CASE 7-4

180

78

Page 76: Microwave Noise Temperature and Attenuation of Clouds at

CASE7-5

T

M0

S

A

TT

EN

UAT

I

0N

08

0. 0000000

ABSORPTION ONLY

79

Page 77: Microwave Noise Temperature and Attenuation of Clouds at

CASE 8-1

30.ATMOS ATTN COEF NEPERS/KM ABSORPTION ONLY AT 32 GHz

20.

HEIGHT

Z I_

K

M

i

1o

O. i

.00 .02

ELEV LAST LOIOPq) 0(]00000-01 4.4)00000,02

,,,J

.04 .04 .0e .10

ALPHTI NE PE RS/KM

O['NQ. L I_l L OMCt. D TINK O_NCL Iq I 0 M |04_ DTI.IK BA |NmAT_

S. 0000000- 0! 1.0000000 • O0 S. 0000000- Ol ]. 0000000 • O0 O,0000000

Jf

IIIAIMT_IO(O. 0000000

.14

PRECEDING PAGE BLANK NOT RLMED

81

Page 78: Microwave Noise Temperature and Attenuation of Clouds at

CASE 8-2

160,ATMOS NOISE TEMP VS FREQ,

82

Page 79: Microwave Noise Temperature and Attenuation of Clouds at

CASE 8-3

ATH0s

ATTENUATI

ON

DB

4,0

31,5

).o

25

2.0

t.5

1.0

0O.

TOTAL ATM ATTENUATION VS FREO

ELEV LAST L00 j 0ENE¢ L 0M L 0MC_. O'f _'.k

9.0000000.01 4. 5000000.0_ 5. 0000000- 01 I. 0000000.00 5,0000000-01 !. 0000000o00 0.0000000

I& INIIATIE

0.0O00000

83

Page 80: Microwave Noise Temperature and Attenuation of Clouds at

CASE 8-4

250

A

M

os

N

0I

SE

T 15o.EMP

KELVIN

S _oo

50

0O.

ELEV

$.0000000o0!

LAST LOOP

4 e030000o02

D_NCLLOW

S.O000000-OI

/F

/!

II[I

L

I!

i

/

tAINI"WICK

0 00011000

84

Page 81: Microwave Noise Temperature and Attenuation of Clouds at

CASE 8-5

T

0%

_kTT

6N

UJ_T

L2

D

) O000OO0oO! ¢ RO00OO0o_ 5 0000000-01 ! OgO0000*O0 5.0000000-0% l.O000000+O0 0 3000O00

85

Page 82: Microwave Noise Temperature and Attenuation of Clouds at

CASE 9-1

HE!GH].

z

KH

ATMOS ATTN COEF NEPERS/KM30. _ .....

i m

m m

¢_. m m

m m

m m

m i

m

20. .mi

15.

10, _

m

m

m

|

|

tm

0.• 00

_'LEv9 0000000o01

ABSORPTION ONLY AT 32 GHz

m m,m m _

.02 .04

L_T L00P 0E hIKe. L 01,d

5. 03100000- 0_ 7.0G00000 Ol

m m

m

m

-- m

m

m m

m

m m

m

m

m

n

m

m m

m

m m

R

w m

I

m

.06

L OkCl. DT_

1 0000000-00

_m

m_

.OI .10 .12

ALPHTI NE PE RS/KH

0[_CLP_XD MIDQ.DI_._7. ooooooo-ol 1. ooooooo.oo

k m

m m

.14

ItMINRA/1E

0. 0000000

m_

--4--

.16 .It

I_AIN'I'_-_Iel<0. 0000000

PRECEDING PAGE BLANK NOT FI_

87

Page 83: Microwave Noise Temperature and Attenuation of Clouds at

CASE 9-2

AT

M

0S

N

0I

SE

T

EMP

KE

LVI

N

S

ATMOS NOISE TEMP VS FREQ

Z_t'II

40.

_LEV LAST LO_ OEM, CLLOW LOI,,ICLOTHI( C{I, KI.MID MIDCLDI'_ RA|M, IQAT[

9.0000000.01 51000000.(12 ?0O0O000-0% 1.0000000-00 Y.0000000-01 1.0000000.00 0.0000000

45.

IAINTHICWO.O000000

l_iO.

88

Page 84: Microwave Noise Temperature and Attenuation of Clouds at

CASE 9-3

4.5

TOTAL ATM ATTENUATION VS FREQ ABSORPTION ONLY

4.0

31'3

AT

M

0S 3.o

ATTENU 2.'3ATIoN

2.0

0[3

1.'3

l.O

'3

0O.

(.L(V9. 000o0o0-01

S. 10. IS. 20.

L_T LOOP 0Em_,.l,. 0M LC_dCLDY_"3.1000000-02 ?. O000000-Ol t . 0000000*00

FREQUENCYGHz

O(NO.MlO N10CI.DT_4C7. 0000000- 0! I. O_'.O000O* O0

J. 40. 4S.

BAINII'ATt IIA |Nll,4| O(O. OOO0000 O. O00000O

89

Page 85: Microwave Noise Temperature and Attenuation of Clouds at

CASE 9-4

ATHOS NOISE TEMP VS FREO.

ATM0S

N0ISE

T

I.tP

KELVI

NS

9O

Page 86: Microwave Noise Temperature and Attenuation of Clouds at

...... ,r.....

CASE 9-5

TOTAL ATM ATTENUATION VS FREQ A_ORPTION ONLY

7

ATMoS 6

ATTEN

ATIoN

4

o13

ELEV) 0000000.01

Page 87: Microwave Noise Temperature and Attenuation of Clouds at

CASE 10-1

30.

ATMOS ATTN COEF NEPERS/KM ABSORPTION ONLY AT 32 GHz

I

HEI

GHT

Z

KH

20

15.

!

10.

O.\

._, .10

IJ

.lm ._0

ALPHTI NIEPE RSl KPI

LrL(v **liST LOOP O[MQ.L OM LGI,ICLOYl41( O[llO,.m |O mlOCLDlrt_ lea Iml'At'K

I

i.IS

IrA 1et'1'141_

O. 0000000

.m

• _, .... IT,. PRECEDING PAGE BLANK NOT FILMED

93

Page 88: Microwave Noise Temperature and Attenuation of Clouds at

CASE10-2

200.ATMOS NOISE TEMP VS FREO,

1¢0

100.

94

Page 89: Microwave Noise Temperature and Attenuation of Clouds at

CASE 10-3

TOTAL ATM ATTENUATION VS FREQ ABSORPTION ONLY

G.[vI. 0000000.01

FREQUENCY GHz

O(NO..RI0 mlOCLDTMK! 0000000-00 1. U000000*00

95

Page 90: Microwave Noise Temperature and Attenuation of Clouds at

CASE 10-4

ATHOS NOISE TEMP VS FREQ,

ATM0S

N0I 200

SE

TEMP

KE lso.LVINS

5O

96

Page 91: Microwave Noise Temperature and Attenuation of Clouds at

• T

TOTAL ATM ATTENUATION VS FREQABSORPTION ONLY

CASE 10-5

0.

0.

I_L['V$. 0000000.01

_" .10.

FREQUENCY GHz

0ENQ.nlO MIDQ.0T_rI 000oo00.00 I 00(.0000.00

97

Page 92: Microwave Noise Temperature and Attenuation of Clouds at

CASE 11-1

ATMOS ATTN COEF NEPERS/KM ABSORPTION ONLY AT 32 GHz

HEI

GH

T

Z is.

K1'I

P_C_DI_!c PAG5 _LANt( NOT fILMED

99

Page 93: Microwave Noise Temperature and Attenuation of Clouds at

CASE 11-2

ATMOS NOISE TEMP VS FREQ

A1 2OO.

M

oS

N

oI

sE

f 15oEMP

K

EL

VIN

SIO0.

I I I I

II

I

I

IIII

I_0.

1 O0

Page 94: Microwave Noise Temperature and Attenuation of Clouds at

TOTAL ATM ATTENUATION VS FREQ ABSORPTION ONLY

CASE 11-3

8.

7

ATM

0S 6

ATTENU s.A1"IoN

4.

0B

3.

2.

Q.

O.

S.O000000*OI

6. 10. IS. gO.

LAs'r L0CP O[NCt.LC_d t 0MCI.D'rNl(I. 3oooooo. o2 l. 0000000-00 1.5oooooo.oo

FREQUENCY GHz

OENQ.MIC NIDCCDTt4K1. 0000000.00 1.5000000-00

_. *0. 4S.

IIAI NnN'AT1E gl'al_TI,qt 0_O. 0000000 O.0000000

.IW.

lOl

Page 95: Microwave Noise Temperature and Attenuation of Clouds at

CASE 11-4

ATM

0S

N

0I

sE

T

EMP

K

EL

VI

NS

300.

L_O.

ATMOS NOISE TEMP VS FREq

_00

XO0.

III I

o.o. 5, 10. 15. 210. _m3. 30. 3_. 40. 45.

FREQUENCY. GHz

(LEV LO4S T LCOB O(NCt. L Ok4 LOWCL DTI,4K OENC1. M I O M|OC_. OTHK IIA I NRAT[ IA| NTt41 (](

$. 0000000"01 6. 6000000"02 1. 0000000"00 1. _000000"00 1. 0000000"00 1.5000000" O0 0.0000030 09000000

IO2

Page 96: Microwave Noise Temperature and Attenuation of Clouds at

CASE 11-5

]8.TOTAL ATM ATTENUATION V$ FREQ ABSORPTION ONLY

_6.

14

A

T

M

o

A

T

T

EN

U io

A

T

I

0N

8

08

4_

2,

O.O.

3.0_0000-01

103

Page 97: Microwave Noise Temperature and Attenuation of Clouds at

CASE 12ol

ATMOS ATTN COEF NEPERS/KMABSORPTION ONLY AT 32 GHz

25.

2(3

H

EI

GH

T

Z is.

KM

1o.

o.• oo

ELEVg.0000000,01

,2O .Z5 .3O ._

ALPHTI NE PERS/KM

OI:NCI.MIO MIDCLDII'I( RAINRATE IAINTMI_

1.0000000"00 2 ,0000000°00 0.0000000 0.0000000

I05

Page 98: Microwave Noise Temperature and Attenuation of Clouds at

CASE 12-2

:300.ATMOS NOISE TEMP VS FRE_

2'50.

ATH

0S

N

oI 2'00.5E

TEMP

K

E lr,oL

VI

NS

100

lo6 _ - "--_-

Page 99: Microwave Noise Temperature and Attenuation of Clouds at

CASE 12-3

TOTAL ATM ATTENUATION VS FREQ ABSORPTION ONLY"T-'

A

I"

M

os

A

T

T

EN

U

A

T

i

0N

D8

IO

• OQO_O00.O|

I_,*,IleYt,*l ¢K0. 0000000

I

.....t,..,.

I

!.-4,,-

I,,....4-.

I

I...L

1 07

Page 100: Microwave Noise Temperature and Attenuation of Clouds at

ATHOS NOISE TEHP VS FREQ

CASE 12-4

ATML)S

N0I aooSE

TEMP

KE 1_oLVI

NS

Page 101: Microwave Noise Temperature and Attenuation of Clouds at

CASE12-5

TOTAL ATM ATTENUATION VS FREOABSORPTION ONLY

ATM

os

AT

T

EN

UAT

I

oN

0 Io

O.O+

I_[V11ooooooo.ot

,Ins. 40. 41b+

IlIA | llll_[ IAIOIYt41Clt

0 0000000 0 0000000

1 09