microwave and millimeter wave power amplifiers:...

27
Microwave and Millimeter Wave Power Amplifiers: Technology, Applications, Benchmarks, and Future Trends Dr. James J. Komiak (Jim) BAE Systems Electronic Systems [email protected] title slide

Upload: others

Post on 11-Mar-2021

3 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Microwave and Millimeter Wave Power Amplifiers: …ewh.ieee.org/r1/boston/rl/files/boston_rs_meeting_dec16.pdfKa-Band 0.2 m NFP GaN HEMT MMIC HPA slide 20 • Process: 0.2 um NFP GaN

Microwave and Millimeter Wave Power Amplifiers: Technology,

Applications, Benchmarks, and Future Trends

Dr. James J. Komiak (Jim)

BAE Systems Electronic Systems

[email protected]

title slide

Page 2: Microwave and Millimeter Wave Power Amplifiers: …ewh.ieee.org/r1/boston/rl/files/boston_rs_meeting_dec16.pdfKa-Band 0.2 m NFP GaN HEMT MMIC HPA slide 20 • Process: 0.2 um NFP GaN

Why Are Power Transistors So Important?

Power amplifiers typically dominate transmitter/system characteristics:

• DC power consumption

• Power dissipation (heat) thermal load

• Reliability stressful operating conditions

- High junction/channel temperature

- High DC operating voltage (relative to other functions)

- Large AC signals

• Cost

- Power MMICs typically have largest chip area, highest chip count

- Power MMICs typically are lowest yield, highest cost ($/chip, $/mm2)

of MMIC types due to large size, high periphery

slide 2

Page 3: Microwave and Millimeter Wave Power Amplifiers: …ewh.ieee.org/r1/boston/rl/files/boston_rs_meeting_dec16.pdfKa-Band 0.2 m NFP GaN HEMT MMIC HPA slide 20 • Process: 0.2 um NFP GaN

– Based on MOSFET technology

– Low cost, proven performance, reliability

– Low source inductance using p-type sinker

– Field plate for increased gain

– Multi-generation performance improvement continuously has increased frequency of operation

WSi/Poly Gate

Metal-1

Source

Metal-1 + Metal-2

Drain

P+

Sinker

P+ Substrate

P- Epi

N+ Source PHV NHV N+ Drain

Backside Metal / Source

Metal-2

Gate Bus

WSi Faraday

Shield (2GS)

slide 3

Current Generation Silicon LDMOS

Page 4: Microwave and Millimeter Wave Power Amplifiers: …ewh.ieee.org/r1/boston/rl/files/boston_rs_meeting_dec16.pdfKa-Band 0.2 m NFP GaN HEMT MMIC HPA slide 20 • Process: 0.2 um NFP GaN

GaAs Pseudomorphic HEMT (PHEMT)

• First demonstrated for microwave

power in 1986

• Inx Ga1-x As channel, with 0.15 x 0.30

- Enhanced electron transport

- Increased conduction band discontinuity,

allowing higher channel current

- Quantum well channel provides improved

carrier confinement

• Power devices typically use “double heterojunction”

layer structure

• Material grown by MBE or MOCVD

• Used for power amplifiers from 0.9 to 80 GHz

• Enhancement mode (E-mode) PHEMT for cell-

phone PAs -- single supply voltage

Conduction Band Profile

Typical Power PHEMT

slide 4

Page 5: Microwave and Millimeter Wave Power Amplifiers: …ewh.ieee.org/r1/boston/rl/files/boston_rs_meeting_dec16.pdfKa-Band 0.2 m NFP GaN HEMT MMIC HPA slide 20 • Process: 0.2 um NFP GaN

InP HEMT

• Millimeter-wave operation first demonstrated

in 1988 (low noise)

• Based on InGaAs/InAIAs material system on

InP substrate

- InGaAs channel with 53% In (lattice-matched),

80% In (pseudomorphic),

100% In (strained pseudomorphic)

- Enhanced transport, large conduction band

discontinuity

• High current (1A/mm), very high transconductance

(3000 mS/mm) demonstrated

• Sub-Millimeter Wave frequency response

fmax = 1500 GHz, ft = 610 GHz

• Low breakdown for single recess (low bandgap of InAIAs gate layer)

• Double-recess devices have been reported

• Metamorphic HEMT (MHEMT) – InP HEMT on GaAs Substrate

• Superior PAE and power gain demonstrated at 20-1000 GHz

slide 5

Page 6: Microwave and Millimeter Wave Power Amplifiers: …ewh.ieee.org/r1/boston/rl/files/boston_rs_meeting_dec16.pdfKa-Band 0.2 m NFP GaN HEMT MMIC HPA slide 20 • Process: 0.2 um NFP GaN

• Grown on SiC substrates

• Heterojunction with undoped channel

• Electron mobility µ = 1500 cm2/V-sec

• High surface defect density (107-108/cm2)

• First GaN HEMT MMIC reported in 2000

• Millimeter Wave frequency response

fmax of 230 GHz, ft of 97 GHz

• Very high power density demonstrated >10W/mm

• Thermally limited device

GaN HEMT

slide 6

Page 7: Microwave and Millimeter Wave Power Amplifiers: …ewh.ieee.org/r1/boston/rl/files/boston_rs_meeting_dec16.pdfKa-Band 0.2 m NFP GaN HEMT MMIC HPA slide 20 • Process: 0.2 um NFP GaN

Best Reported Microwave Transistor Efficiencies

High Gain Enables High Efficiency Modes of Operation:

Class AB2, Class B, Class C, Class F

slide 7

Po

wer-

Ad

ded

Eff

icie

ncy (

%)

Frequency (GHz)

100

80

60

40

20

GaAs

PHEMT [1]

GaAs

HFET [5]

GaAs

FET [6]

X

X

SiC FET

[10]

+

+ GaN HEMT [12]

GaAs

PHEMT [2] GaAs

HBT [7]

GaAs HBT [6]

0 5 10 15 20 25

GaN

HEMT [11]

InP HBT [9]

GaAs PHEMT [3]

GaAs PHEMT [4]

GaAs HBT [8] InP HEMT [13]

• InP HBT [14]

InP HBT [14]

GaN

HEMT

GaN

HEMT

Page 8: Microwave and Millimeter Wave Power Amplifiers: …ewh.ieee.org/r1/boston/rl/files/boston_rs_meeting_dec16.pdfKa-Band 0.2 m NFP GaN HEMT MMIC HPA slide 20 • Process: 0.2 um NFP GaN

Small periphery (gate/emitter)Short gate/emitter fingersLow parasitics

“Building block” for higher powerLonger fingersCharacterized for power amplifier

design

Full MMIC: allmatching on-chip

Power amplifier or T/R moduleMIC power combining (typ. 2 to 8-way)

Intrinsic Device(single finger)

Power Transistor

“Cell”

Module

Hybrid PowerAmplifier

Power MMIC

Constrained Combining (Plumbing)

Spatial Combining

(Phased Array/ Quasioptics)

Each MMIC feeds separateradiating element

(typ. 100s-1000s of elements)

Waveguide/Radial Combiners

W/G: 2 to 32-wayRadial: to 128-way

Discrete device:all matching

off-chip

Integration to Higher Power Levels

slide 8

Page 9: Microwave and Millimeter Wave Power Amplifiers: …ewh.ieee.org/r1/boston/rl/files/boston_rs_meeting_dec16.pdfKa-Band 0.2 m NFP GaN HEMT MMIC HPA slide 20 • Process: 0.2 um NFP GaN

of Circuit Design

slide 9

Page 10: Microwave and Millimeter Wave Power Amplifiers: …ewh.ieee.org/r1/boston/rl/files/boston_rs_meeting_dec16.pdfKa-Band 0.2 m NFP GaN HEMT MMIC HPA slide 20 • Process: 0.2 um NFP GaN

Circuit Design

slide 10

Page 11: Microwave and Millimeter Wave Power Amplifiers: …ewh.ieee.org/r1/boston/rl/files/boston_rs_meeting_dec16.pdfKa-Band 0.2 m NFP GaN HEMT MMIC HPA slide 20 • Process: 0.2 um NFP GaN

Circuit Design

slide 11

Page 12: Microwave and Millimeter Wave Power Amplifiers: …ewh.ieee.org/r1/boston/rl/files/boston_rs_meeting_dec16.pdfKa-Band 0.2 m NFP GaN HEMT MMIC HPA slide 20 • Process: 0.2 um NFP GaN

Circuit Design

slide 12

Page 13: Microwave and Millimeter Wave Power Amplifiers: …ewh.ieee.org/r1/boston/rl/files/boston_rs_meeting_dec16.pdfKa-Band 0.2 m NFP GaN HEMT MMIC HPA slide 20 • Process: 0.2 um NFP GaN

Circuit Design

slide 13

Page 14: Microwave and Millimeter Wave Power Amplifiers: …ewh.ieee.org/r1/boston/rl/files/boston_rs_meeting_dec16.pdfKa-Band 0.2 m NFP GaN HEMT MMIC HPA slide 20 • Process: 0.2 um NFP GaN

slide 14

Page 15: Microwave and Millimeter Wave Power Amplifiers: …ewh.ieee.org/r1/boston/rl/files/boston_rs_meeting_dec16.pdfKa-Band 0.2 m NFP GaN HEMT MMIC HPA slide 20 • Process: 0.2 um NFP GaN

slide 15

Page 16: Microwave and Millimeter Wave Power Amplifiers: …ewh.ieee.org/r1/boston/rl/files/boston_rs_meeting_dec16.pdfKa-Band 0.2 m NFP GaN HEMT MMIC HPA slide 20 • Process: 0.2 um NFP GaN

slide 16

Page 17: Microwave and Millimeter Wave Power Amplifiers: …ewh.ieee.org/r1/boston/rl/files/boston_rs_meeting_dec16.pdfKa-Band 0.2 m NFP GaN HEMT MMIC HPA slide 20 • Process: 0.2 um NFP GaN

slide 17

near saturation at high efficiency.

Page 18: Microwave and Millimeter Wave Power Amplifiers: …ewh.ieee.org/r1/boston/rl/files/boston_rs_meeting_dec16.pdfKa-Band 0.2 m NFP GaN HEMT MMIC HPA slide 20 • Process: 0.2 um NFP GaN

Power Gain at 150 Watts ~ 12.5 dBPush-Pull with Ferrite Loaded Coax Baluns

150 Watt 110-450 MHz Si LDMOS Power Amplifier

slide 18

Page 19: Microwave and Millimeter Wave Power Amplifiers: …ewh.ieee.org/r1/boston/rl/files/boston_rs_meeting_dec16.pdfKa-Band 0.2 m NFP GaN HEMT MMIC HPA slide 20 • Process: 0.2 um NFP GaN

S-Band GaN HEMT High Power Amplifier

Frequency = 2.9 GHz

Pout ~ 800 Watts

Bandwidth > 2.9 to 3.3 GHz

Vds = 65 V

Idsq = 2 A

PW = 200 usec

Duty Cycle = 10 %

slide 19

Page 20: Microwave and Millimeter Wave Power Amplifiers: …ewh.ieee.org/r1/boston/rl/files/boston_rs_meeting_dec16.pdfKa-Band 0.2 m NFP GaN HEMT MMIC HPA slide 20 • Process: 0.2 um NFP GaN

Ka-Band 0.2 m NFP GaN HEMT MMIC HPA

slide 20

• Process: 0.2 um NFP GaN HEMT

• Frequency Range: 34 to 36 GHz

• 14.8 - 15.8 Watts Pout

• 21% PAE

• Design Details

• Quadrature Balanced

• Fast gate switching FRAP bias network

• Vds = 20 to 34 Volts

• 5.4 mm periphery, Idsq = 200 mA/mm

• Chip Size: 4.568 mm x 4.025 mm x 55 um

Highest MMIC CW Power Reported at Ka-Band

Page 21: Microwave and Millimeter Wave Power Amplifiers: …ewh.ieee.org/r1/boston/rl/files/boston_rs_meeting_dec16.pdfKa-Band 0.2 m NFP GaN HEMT MMIC HPA slide 20 • Process: 0.2 um NFP GaN

W-Band 0.15 m GaN HEMT MMIC HPA

slide 21

0.15 mm – 0.3 mm – 0.6 mm

• Process: 0.15 m GaN HEMT

• Frequency Range: 84 to 95 GHz

0.5 to 0.8 W @ 10-15 % PAE (2010)

1.5 to 1.8 W @ 17.8 % PAE (2012 8-way)

Page 22: Microwave and Millimeter Wave Power Amplifiers: …ewh.ieee.org/r1/boston/rl/files/boston_rs_meeting_dec16.pdfKa-Band 0.2 m NFP GaN HEMT MMIC HPA slide 20 • Process: 0.2 um NFP GaN

1 THz InP HEMT MMIC

Ten stage InP HEMT MMIC

S-Parameters

• Process: 25 nm InP HEMT

• Application: THz

• Frequency Range: 0.95 to 1.05 THz

Pout 0.25 mW (estimated)

• Chip Size:

550 um x 350 um x 18 um (WR-1.0 version)

• 8 um transistor cell

• 2 fingers x 4 um

• CPW MMIC

slide 22

Page 23: Microwave and Millimeter Wave Power Amplifiers: …ewh.ieee.org/r1/boston/rl/files/boston_rs_meeting_dec16.pdfKa-Band 0.2 m NFP GaN HEMT MMIC HPA slide 20 • Process: 0.2 um NFP GaN

Coaxial Waveguide Spatial Power Combiner

slide 23

Page 24: Microwave and Millimeter Wave Power Amplifiers: …ewh.ieee.org/r1/boston/rl/files/boston_rs_meeting_dec16.pdfKa-Band 0.2 m NFP GaN HEMT MMIC HPA slide 20 • Process: 0.2 um NFP GaN

W-Band SSPA

slide 24

SSPA with the air-cooling fins attached. Mass of this unit is

0.47 kg and its dimensions are 2.4 inches dia x 2.5 inches.

Two-chip module binary WG septum combiner, transitions, bias

networks. Module dimensions are 2.05 x 0.57 x 0.19 inches.

J. Schellenberg, et al., “37 W, 75-100 GHz GaN Power

Amplifier,” IMS 2016 Sym. Dig., May 2016.

Page 25: Microwave and Millimeter Wave Power Amplifiers: …ewh.ieee.org/r1/boston/rl/files/boston_rs_meeting_dec16.pdfKa-Band 0.2 m NFP GaN HEMT MMIC HPA slide 20 • Process: 0.2 um NFP GaN

EIRP = Ge x Pe x N2

slide 25

Page 26: Microwave and Millimeter Wave Power Amplifiers: …ewh.ieee.org/r1/boston/rl/files/boston_rs_meeting_dec16.pdfKa-Band 0.2 m NFP GaN HEMT MMIC HPA slide 20 • Process: 0.2 um NFP GaN

High Power Solid State Transmit Technologies

(not including Phased Arrays)

GaN potential -- 10X increase in MMIC and SSPA power, 1-100 GHz

105

1 10 1000100

Frequency (GHz)

10-2

10-1

1

10

102

103

104

PHEMTMMIC

InP/MHEMTMMIC

PHEMTSSPA

PHEMTSSTA

GaAsMESFET

MMIC

Si BJT

TWTA

SSPA

MMIC

GaN Potential:

slide 26

Page 27: Microwave and Millimeter Wave Power Amplifiers: …ewh.ieee.org/r1/boston/rl/files/boston_rs_meeting_dec16.pdfKa-Band 0.2 m NFP GaN HEMT MMIC HPA slide 20 • Process: 0.2 um NFP GaN

Future Trends

• Circuit Technique Development & Implementation

• Multi-tone with controlled distortion

• STAR: Simultaneous Transmit and Receive

• Sub-Millimeter Wave Applications

• Thermal

• Near Junction Thermal Transport (NJTT) – GaN on Diamond

• Thermal Ground Plane (TGP) -- alloy heat spreader

• IntraChip/InterChip Enhanced Cooling (ICECOOL) -- convective or

evaporative microfluidic cooling built directly into devices or packaging

• Microtechnologies for Air Cooled Exchangers (MACE) – enhanced

heatsinks

• Active Cooling Module (ACM) – miniature refrigeration systems based

on thermoelectric or vapor-compression technologies

• Semiconductor Devices

• Evolutionary

• Diamond

• Graphene, Carbon Nanotube

• Boron Nitride

• ? ? ?slide 27