micro/ nanofluidics and heat transfer

15
Micro/Nanofluidics and Heat transfer 27 Oct 2011 In Joo Hwang

Upload: kalei

Post on 19-Jan-2016

40 views

Category:

Documents


0 download

DESCRIPTION

Micro/ Nanofluidics and Heat transfer. 27 Oct 2011 In Joo Hwang. Contents. 1. The Knudsen number and flow regimes. 2 . Velocity slip and temperature jump. 3. Gas conduction from the continuum to the free molecule regime. 1. The Knudsen number and flow regimes. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Micro/ Nanofluidics  and  Heat transfer

Micro/Nanofluidics and Heat transfer

27 Oct 2011

In Joo Hwang

Page 2: Micro/ Nanofluidics  and  Heat transfer

Contents

1. The Knudsen number and flow regimes 1. The Knudsen number and flow regimes

2. Velocity slip and temperature jump 2. Velocity slip and temperature jump

3. Gas conduction from the continuum to the free molecule regime

3. Gas conduction from the continuum to the free molecule regime

Page 3: Micro/ Nanofluidics  and  Heat transfer

1. The Knudsen number and flow regimes 1. The Knudsen number and flow regimes

Page 4: Micro/ Nanofluidics  and  Heat transfer

The Knudsen number and flow regimes

Lc : Characteristic dimension

Λ : Mean free path

Lc ~ Λ Lc < Λ

Not valid for continuum model

Ex) low pressure (rarefied gases) micro or nano channel

Page 5: Micro/ Nanofluidics  and  Heat transfer

The Knudsen number and flow regimes

Kn ≡ ─ : Knudsen number

Kn : determining the degree of deviation from the continuum assumption and method of calculation

Λ

L

Kn : The ratio of the mean free path to the characteristic length

Regime Method of calculation Kn range

ContinuumN-S equation and energy equation

with no-slip/ no-Jump b.c. Kn ≤ 0.001

Slip flowN-S equation and energy equation

with slip/ Jump b.c. DSMC 0.001 < Kn ≤ 0.1

Transition BTE, DSMC0.1 < Kn ≤ 10

Free molecule BTE, DSMC Kn > 10

Page 6: Micro/ Nanofluidics  and  Heat transfer

The Knudsen number and flow regimes

Tw

T(y)vx(y)

yb

y

xCenterline

Velocity profiles vx(y) Temperature profiles T(y)

Number Kn Boundary condition

1 Kn < 0.001 flow adjacent = wall

2 0.001 < Kn ≤ 0.1 slip flow, temperature jump

3 Kn > 10 Boundary scattering

1

2

3

Page 7: Micro/ Nanofluidics  and  Heat transfer

2. Velocity slip and temperature jump 2. Velocity slip and temperature jump

Page 8: Micro/ Nanofluidics  and  Heat transfer

Velocity slip and temperature jump

Momentum accommodation coefficient

||

wi

riv pp

pp

wi

riv pp

pp For tangential components

For normal components

Thermal accommodation coefficient

Specular reflection :

Diffuse reflection :

0 vv

1 vv

wi

riT

Monatomic molecules

Kinetic energy K∝

wi

riT TT

TT

Often extended to polyatomic molecule

Page 9: Micro/ Nanofluidics  and  Heat transfer

Velocity slip and temperature jump

Velocity slip boundary condition

R

yv

y

TTyT bx

yT

Twb

b4

)(

Pr1

22)(

2

bbyy

x

v

vbx x

T

T

R

y

vyv

8

32

)(

Temperature jump boundary condition

thermal creep due to the temperature gradient

viscous dissipation caused by the slip velocityusually negligibly small

Page 10: Micro/ Nanofluidics  and  Heat transfer

Velocity slip and temperature jump

2HW

xy

vx

wq

W ≥ 2H

Kn = ─ Λ2L

Poiseuille flow with heat transfer

dx

dPH

d

vd x

2

2

2

1

2)1(

d

dvv x

vx Knv

vv

2

v

v

m

x

v

v

61

41

2

3)( 2

1

0

2

3)61()(

dx

dPHdvv vxm

2

2

)1(3

2

3)(

m

x

v

v

Hy / 0/ 0 ddvx

)61/(6/)1( vvmx vv

bulk velocity

defining velocity slip ratio

velocity slip condition

velocity distribution

Page 11: Micro/ Nanofluidics  and  Heat transfer

Velocity slip and temperature jump

m

x

v

v

2

2

2142

8

1

4

3)( CC

1

2)1(

d

dT

Pr1

22 Kn

T

TT

H

HyTT

y

Tq

T

w

Hy

w

2

)(

1

0)(

)( d

v

v

m

xm

mmw

wh H

TT

qhDNu

44

2

2

2

2

y

T

x

T

x

Tvc xp

ww qTTH /))(/()(

01 C TC 28/)5(2

temperature – jump distance

Nusselt number , HDh 4

energy equation

temperature jump condition

Page 12: Micro/ Nanofluidics  and  Heat transfer

3. Gas conduction from the continuum to the free molecule regime

3. Gas conduction from the continuum to the free molecule regime

Page 13: Micro/ Nanofluidics  and  Heat transfer

Gas conduction from the continuum to the free molecule regime

T1

T2

T1

T2

L Lx x0 0

Diffusion

Jump

Free molecule

Kn = ─ << 1 ΛL

diffusion Fourier’s law

L

TTqDE

21

vc4

59

2

21

2/32

2/31

, 3

2

TT

TTT DFm

Effective mean temperature

Temperature distribution

3/2

2/32

2/31

2/31)(

L

xTTTxT dxdTTq /by integrating

Page 14: Micro/ Nanofluidics  and  Heat transfer

Gas conduction from the continuum to the free molecule regime

Kn = ─ >> 1 ΛL

• collide with the wall > collide with each other

• mean free path > actual distance • neglect the collisions between molecules• heat transfer by the molecules

T

T TTT

2

)1( 211

Thermal accommodation coefficients : T

T

T TTT

2

)1( 122

Flux temperatures

Effective mean temperature in the free molecule regime

221

21,

4

TT

TTT FMm

Net heat flux

Pc

RT

TTq

vT

FMmT

FM

1

82 ,

21

heat flux P∝

independent of L

DFm

FMm

T

T

FM

T

TKnL

TTq

,

,

21

1592

1

assumption 21 TTT

Page 15: Micro/ Nanofluidics  and  Heat transfer