metodologia del shotcrete

30
Proposed Design Methodology for shotcrete W.C Joughin, G.C. Howell, A.R. Leach & J. Thompson

Upload: jm-sv

Post on 18-Oct-2015

48 views

Category:

Documents


7 download

TRANSCRIPT

  • Proposed Design

    Methodology for shotcrete

    W.C Joughin, G.C. Howell, A.R.

    Leach & J. Thompson

  • Research Workshop Team

    William Joughin

    Graham Howell

    Tony Leach

    Jody Thompson

    Kevin Le Bron

    Karl Akermann (AngloPlatinum), Lars Hage (BASF), Alan Naismith, Julian Venter, Dave Ortlepp

  • Design Process

    Determination of rock

    mass and loading

    conditions Rock mass classification Stress modelling

    Determination of Shotcrete

    Requirements Excavation requirements Shotcrete function/purpose Is it required?

    Determination of

    Shotcrete Demand Deadweight loading Quasi-static loading Dynamic loading

    Determination of

    Shotcrete Capacity Peak/Residual capacity Energy absorption Standard tests Fibre content, mesh characteristics

    Determination

    of safety factor

  • Rock mass conditions Q/GSI

    Stress modelling

    Low Stress Moderate stress High Stress Dynamic

    Loading Condition

    Ma

    ssiv

    e (>

    70

    )Jo

    inte

    d (4

    0-7

    0)H

    eav

    ily jo

    inte

    d (0.7, 1/c ratio)

    Empirical charts (joint controlled + SRF)

  • Shotcrete requirements

  • Shotcrete requirements

  • Shotcrete Demand

    Deadweight

    Quasi-static

    Dynamic

  • Shotcrete Demand

    (deadweight)

    Roof prism (Barret & McCreath)

    Sidewall prism slides

    Conservative estimate

  • 0.1

    1

    10

    100

    0 1 2 3 4 5 6

    md

    (kN

    m/m

    )

    Span between tendons (m)

    20 kN/m3

    25kN/m3

    30 kN/m3

    35kN/m3

    40 kN/m3

    Shotcrete Demand

    (Deadweight)

  • Shotcrete Demand (quasi-static) Assumption: Rock mass will continue to deform

    under quasi-static loading. Support pressures

    provided by shotcrete are inadequate to prevent

    deformation.

    Objective is to survive the deformation and maintain the functions of containing the fractured

    rock mass

    If the moment demand exceeds the peak moment capacity, the shotcrete will enter the residual

    state, providing it is reinforced.

  • Shotcrete Demand (quasi-static)

    (Displacement) Displacement monitoring (extensometers)

    Maximum displacement from Udec GRC modelling

  • 0.E+00

    1.E+05

    2.E+05

    3.E+05

    4.E+05

    5.E+05

    6.E+05

    7.E+05

    8.E+05

    9.E+05

    1.E+06

    0.00 5.00 10.00 15.00 20.00 25.00 30.00

    Deformation (mm)

    Su

    pp

    ort

    Pre

    ssu

    re (

    Pa)

    300 MPa

    250 MPa

    200 MPa

    150 MPa

    Displacement from modelling

  • Shotcrete Demand (quasi-static)

    (Displacement)

    Quartzite150-200MPa 200-250MPa 250-300MPa

    20 48.20 Squeezing Squeezing

    30 5.50 Squeezing Squeezing

    40 4.50 43.00 51.00

    50 8.00 25.30 35.70

    60 7.50 6.70 7.80

    70 4.00 5.50 5.50

    80 4.00 3.50 4.00

    90 2.75 1.30 4.60

  • 1.E-02

    1.E-01

    1.E+00

    1.E+01

    1.E+02

    1.E+03

    1.E+04

    1.E+05

    0 1 10 100 1,000

    md

    (kN

    m/m

    )

    Deflection (mm)

    a=1.0m h=25mm

    a=1.0m h=50mm

    a=1.0m h=75mm

    a=1.0m h=100mm

    a=1.0m h=150mm

    a=1.0m h=200mm

    a=1.5m h=25mm

    a=1.5m h=50mm

    a=1.5m h=75mm

    a=1.5m h=100mm

    a=1.5m h=150mm

    a=1.5m h=200mm

    Square tendon spacing (a)Thickness (h)

    Impala

    SD site 2 initial

    SD site 2 final

    Mponeng

    Shotcrete Demand (quasi-static)

  • Shotcrete Demand (Dynamic) Roof Prism (Barret &

    McCreath

    Sidewall: Kinetic Energy

    Roof: Kinetic and potential energy

  • 0.01

    0.1

    1

    10

    100

    0.5 1 1.5 2 2.5 3 3.5

    Kin

    eti

    c En

    erg

    y (k

    J)

    Span between tendons (m)

    0.2 m/s

    0.5 m/s

    1.0 m/s

    1.5 m/s

    2.0 m/s

    2.5 m/s

    3.0 m/sSouth Deep Blast PPV

    South Deep Site effect

    Mponeng Max PPV

    Mponeng threshold PPV

    Shotcrete Demand (Dynamic)

  • 0.1

    1

    10

    0.5 1 1.5 2 2.5 3 3.5

    Po

    ten

    tial

    En

    erg

    y (k

    J)

    Span between tendons (m)

    Shotcrete Demand (Dynamic)

  • Shotcrete Capacity

    Peak/residual strength

    Energy Absorption

    Standard tests (RDP/ASTMC1550, EFNARC)

    Fibre content

    Mesh area

  • 010

    20

    30

    40

    50

    60

    0 5 10 15 20 25 30 35 40 45

    Wp

    c(kN

    )

    Deflection (mm)

    Steel 40kg/m3

    Steel 55kg/m3

    Steel 70kg/m3

    Polypropylene 1kg/m3

    Polypropylene 2kg/m3

    Polypropylene 3kg/m3

    Polypropylene 4kg/m3

    Polypropylene 5kg/m3

    Polypropylene 6kg/m3

    Polypropylene 7kg/m3

    Polypropylene 8kg/m3

    Shotcrete Capacity (RDP)

    Peak load

  • Shotcrete Capacity (RDP)

    1.E-01

    1.E+00

    1.E+01

    1.E+02

    1.E+03

    0 10 20 30 40 50 60

    mc

    (Nm

    /m)

    RDP Wpc (kN)

    25mm

    50mm

    100mm

    150mm

    200mm

    Thickness (h)

    70kg/m3 steel fibre mix40kg/m3 steel fibre mix

    55kg/m3 steel fibre mix1-8kg/m3 poly fibre mixes

    Impala

    South Deep site 2

    Mponeng

  • 010

    20

    30

    40

    50

    60

    0 5 10 15 20 25 30 35 40 45

    Wp

    c(kN

    )

    Deflection (mm)

    Steel 40kg/m3

    Steel 55kg/m3

    Steel 70kg/m3

    Polypropylene 1kg/m3

    Polypropylene 2kg/m3

    Polypropylene 3kg/m3

    Polypropylene 4kg/m3

    Polypropylene 5kg/m3

    Polypropylene 6kg/m3

    Polypropylene 7kg/m3

    Polypropylene 8kg/m3

    Shotcrete Capacity (RDP)

  • Shotcrete Capacity (RDP)

    0.00

    2.00

    4.00

    6.00

    8.00

    10.00

    12.00

    0.000 0.020 0.040 0.060 0.080 0.100 0.120

    mp

    c(k

    Nm

    /m)

    (radians)

    Steel 40kg/m3

    Steel 55kg/m3

    Steel 70kg/m3

    Polypropylene 1kg/m3

    Polypropylene 2kg/m3

    Polypropylene 3kg/m3

    Polypropylene 4kg/m3

    Polypropylene 5kg/m3

    Polypropylene 6kg/m3

    Polypropylene 7kg/m3

    Polypropylene 8kg/m3

    Generic

    P (Load)

    Lever Arm = L/2

  • 050

    100

    150

    200

    250

    300

    350

    400

    0.00 10.00 20.00 30.00 40.00 50.00 60.00

    Wc(

    kN)

    Deflection (mm)

    Steel 40kg/m3

    Steel 55kg/m3

    Steel 70kg/m3

    Shotcrete Capacity (on wall)

    75mm thick, 1m tendon spacing 8.66 x

    1.33 x

  • 01000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    9000

    0.00 10.00 20.00 30.00 40.00 50.00 60.00

    EAc(

    J)

    Deflection (mm)

    Steel 40kg/m3

    Steel 55kg/m3

    Steel 70kg/m3

    40 kg/m3 Panel

    55 kg/m3 panel

    70 kg/m3 panel

    Shotcrete Capacity (on wall)

    75mm thick, 1m tendon spacing

  • 0.1

    1

    10

    100

    0 0.2 0.4 0.6 0.8 1 1.2

    EAc(k

    J)

    RDP EApc (kJ)

    25mm

    50mm

    100mm

    150mm

    200mm

    Thickness (h)

    70kg/m3 steel fibre mix40kg/m3 steel fibre mix

    55kg/m3 steel fibre mix

    Impala

    South Deep site 2

    Mponeng

    Shotcrete capacity (Dynamic) RDP

  • Factor of safety

    Loading South

    Deep Site

    2

    South

    Deep Site

    2

    Mponeng

    116 level

    Impala

    Deadweight 2.4 2.4 72.1 4.6

    Quasi-static 1.0 0.1 9.3 2.6

    Dynamic Max 1.1 32.6

    Dynamic (3m/s) 0.1 0.9 0.08

  • Outstanding work

    Large scale panel tests (Kirsten & Labrum)

    UDL & point load

    Thickness (50mm, 100mm, 150mm)

    Mesh & fibre

    Large scale panel tests (Shotcrete working group Gerhard Keyter)

  • Acknowledgements

    Mine Health and Safety Council (SIM040204)

    South Deep Gold Mine, Mponeng Mine, Impala 14#

    BASF (Lars Hage), Mash (Hector Snashall)

    Geopractica, University of the Witwatersrand

    Seismogen (Tony Ward)

    James Dube, Hlangabeza Gumede