methane in the life time of a landfill · methane in the life time of a landfill operation closure...

38
1 Passive weak gas degradation in methane oxidation systems Prof. Dr. Julia Gebert Department Geoscience and Engineering Delft University of Technology

Upload: others

Post on 16-Mar-2020

20 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Methane in the life time of a landfill · Methane in the life time of a landfill Operation Closure of e t l of CH 4 (m 3 CH 40 none, daily, interim Cover type interim cover final

1

Passive weak gas degradation in

methane oxidation systems

Prof. Dr. Julia Gebert

Department Geoscience and EngineeringDelft University of Technology

Page 2: Methane in the life time of a landfill · Methane in the life time of a landfill Operation Closure of e t l of CH 4 (m 3 CH 40 none, daily, interim Cover type interim cover final

2

Methane in the life time of a landfill

Operation Closure

End

of

was

tefi

ll

Am

ou

nt

of

CH

4(m

3/a

)

40

none, daily,interim

interim cover final coverCover type

produced CH4

recovered CH4

Recovery rate 30-40 % > 90 %

Re

cove

ry s

yste

m t

urn

ed

off

CH4 not captured

Passive aftercareActive aftercare

barrier leakage

-10 0 10

Adapted from Huber-Humer et al., 2008

Years

ca. 65 %

Residual production after LFG recovery

ORLandfills with

pretreated materialOR

Landfills with low original gas potential

ORNon-sanitary landfills

Page 3: Methane in the life time of a landfill · Methane in the life time of a landfill Operation Closure of e t l of CH 4 (m 3 CH 40 none, daily, interim Cover type interim cover final

3

Outline

0 5 10 15 20 25 30 35 40

0,0

5,0x10-7

1,0x10-6

1,5x10-6

2,0x10-6

2,5x10-6

3,0x10-6

3,5x10-6

Deff [

m2/s

]

Luftkapazität [Vol.%]

R2 = 0.85

1) The methane oxidation process

2) Process controls

3) Intro to methane oxidation systems

4) Design goals & tools

5) Conclusions

6) Summary

Page 4: Methane in the life time of a landfill · Methane in the life time of a landfill Operation Closure of e t l of CH 4 (m 3 CH 40 none, daily, interim Cover type interim cover final

4

The methane oxidation process

– Ubiquitous bacteria that accumulate under favourable conditions

– No inoculation necessary

– Requirements on environmental conditions (pH, nutrients etc.) are relatively low

– Re-activation after unfavourable conditions (e.g. desiccation, frost) is fast

MOL

GDL

Methylosinus sp.

MOL topsoil with vegetation

Page 5: Methane in the life time of a landfill · Methane in the life time of a landfill Operation Closure of e t l of CH 4 (m 3 CH 40 none, daily, interim Cover type interim cover final

5

CH4 + 2 O2 → CO2 + 2 H2O + energy

– CH4 load

– Spatial evenness of gas load

– Supply of O2

– Conditions for microbial activity

o Temperatureo Water tensiono Nutrient statuso pH, salinityo ...

Process and performance controls

Methylosinus sp.

Methylobacter sp.

Page 6: Methane in the life time of a landfill · Methane in the life time of a landfill Operation Closure of e t l of CH 4 (m 3 CH 40 none, daily, interim Cover type interim cover final

6

0

5

10

15

20

25

30

35

125

130

135

A1 A2 A3 D1 D2 D3 H1 H2 H3 H4 H5 K1 K2 K3 L1 L2 L30

100

200

300

400

500

600

2000

2100

2200

CH

4 o

xid

atio

n r

ate

[l m

-2 h

-1]

CH

4 o

xid

atio

n r

ate

[g

m-2 d

-1]

Landfill and soil profile no.

sum to 65 cm depth

sum for entire depth

Gebert et al., 2013Factor 103 higher than in natural habitats (rice paddies, peatlands, tundra)

The potential: CH4 oxidation in landfill cover soils

Page 7: Methane in the life time of a landfill · Methane in the life time of a landfill Operation Closure of e t l of CH 4 (m 3 CH 40 none, daily, interim Cover type interim cover final

7

Methane oxidation systems (MOS)

Cover Landfills with or without gas collection and

surface lining (Huber-Humer et al., 2008; Geck et al., 2013)

Window Landfills without gas collection and surface lining

(Pedersen et al., 2010)

Remediation of emission hotspots on old non-sanitary landfills (Röwer et al., 2012)

Filter Landfills with gas collection system

(Streese & Stegmann, 2003; Gebert & Gröngröft, 2006)

Stable exhausts from animal husbandry (Melse & van der Werf, 2005; BiMoLa)

Manure storage (Oonk & Koopmans, 2012)

Coal mine ventilation (Du Plessis et al., 2003)

Page 8: Methane in the life time of a landfill · Methane in the life time of a landfill Operation Closure of e t l of CH 4 (m 3 CH 40 none, daily, interim Cover type interim cover final

8

Design goals

(1) Provide suitable physicochemical environmentof high structural stability

(2) Optimize oxygen flux into soil

(3) Maximize spatial evenness of gas load

(4) Robust dimensioning of the system, adapted to load

Choice also depends on

– Intention of measure (e.g. safety, climate)

– After-use of landfill (e.g. access for the public?)

Page 9: Methane in the life time of a landfill · Methane in the life time of a landfill Operation Closure of e t l of CH 4 (m 3 CH 40 none, daily, interim Cover type interim cover final

9

(1) Suitable physicochemical environment of high structural stability

Aims:

– Support biological activity of bacteria and vegetation

– Avoid loss of permeability, avoid preferential pathways

Page 10: Methane in the life time of a landfill · Methane in the life time of a landfill Operation Closure of e t l of CH 4 (m 3 CH 40 none, daily, interim Cover type interim cover final

10

Requirements properties of MOL

Parameter Value Meaning

Soil pH 5.5 to 8.5 Optimum MOB

El. conductivity < 4 mS/cm Avoid osmotic stress

Plant-available water 14 vol.%Support vegetation and bacteria

Min. air-filled porosity (AFP) at given water content

14 vol.% Diffusion of O2

Organic matter2 to 4%, 8% if stable

Nutrient supply to MOB and vegetation

Low susceptibilityto consolidation

Preservation of pore structure

Low susceptibilityto cracking

Avoid preferential pathways

More in Scheutz et al., 2009Compost

Porous clay

Mineral soil

Page 11: Methane in the life time of a landfill · Methane in the life time of a landfill Operation Closure of e t l of CH 4 (m 3 CH 40 none, daily, interim Cover type interim cover final

11

low compaction, BD < 1.4 g/cm3

Soil textures* meeting target of 14 vol.% AFP

*Particle size distribution Data from Ad-hoc AG Boden (2005)

Page 12: Methane in the life time of a landfill · Methane in the life time of a landfill Operation Closure of e t l of CH 4 (m 3 CH 40 none, daily, interim Cover type interim cover final

12

Medium compaction, BD < 1.4-1.6 g/cm3

*Particle size distribution

Soil textures* meeting target of 14 vol.% AFP

Data from Ad-hoc AG Boden (2005)

Page 13: Methane in the life time of a landfill · Methane in the life time of a landfill Operation Closure of e t l of CH 4 (m 3 CH 40 none, daily, interim Cover type interim cover final

13

High compaction, BD > 1.8 g/cm3

*Particle size distribution

Soil textures* meeting target of 14 vol.% AFP

Data from Ad-hoc AG Boden (2005)

Page 14: Methane in the life time of a landfill · Methane in the life time of a landfill Operation Closure of e t l of CH 4 (m 3 CH 40 none, daily, interim Cover type interim cover final

14

(2) Optimize oxygen flux into soil

Aim:

Maximize depth of aeration to

– Create thick and “redundant” CH4-oxidation layer

– render oxidation process less susceptible to surface effects (frost, drought, heat, cold)

Page 15: Methane in the life time of a landfill · Methane in the life time of a landfill Operation Closure of e t l of CH 4 (m 3 CH 40 none, daily, interim Cover type interim cover final

15

CH4 + 2 O2 → CO2 + 2 H2O + energy

– Twice the volume of O2 is neededfor complete oxidation

– O2 is provided only from theatmosphere

– Main driver is the concentrationgradient, main transport process isdiffusion

→ Effective diffusivity of the soilis absolutely crucial

Optimize ingress of oxygen

Page 16: Methane in the life time of a landfill · Methane in the life time of a landfill Operation Closure of e t l of CH 4 (m 3 CH 40 none, daily, interim Cover type interim cover final

16

Diffusivity depends on air-filled porosity

0 5 10 15 20 25 30 35 40

0,0

5,0x10-7

1,0x10-6

1,5x10-6

2,0x10-6

2,5x10-6

3,0x10-6

3,5x10-6

Deff [

m2/s

]

Luftkapazität [Vol.%]

R2 = 0.85

Air capacity [vol.%]

= Air-filled porosity at Ψm = -6 kPaFrom Gebert et al., 2011

Choice of texture (particle size distribution)

Page 17: Methane in the life time of a landfill · Methane in the life time of a landfill Operation Closure of e t l of CH 4 (m 3 CH 40 none, daily, interim Cover type interim cover final

17

Compaction decreases diffusivity

15 20 25 30 350,0

5,0x10-7

1,0x10-6

1,5x10-6

2,0x10-6

2,5x10-6

95 % Proctor

85 % Proctor

Deff [

m2/s

]

Air filled pore volume [vol.%]

75 % Proctor

Air-filled porosity [vol.%]

1.25 g/cm3

1.42 g/cm3

1.59 g/cm3

After Gebert et al., 2011

Choice of construction practice

Page 18: Methane in the life time of a landfill · Methane in the life time of a landfill Operation Closure of e t l of CH 4 (m 3 CH 40 none, daily, interim Cover type interim cover final

18

(3) Maximize spatial evenness of gas load

Hotspot

Aims:– Avoid overloading of individual compartments– Use full system potential– Avoid channelled preferential transport (hotspots)

Page 19: Methane in the life time of a landfill · Methane in the life time of a landfill Operation Closure of e t l of CH 4 (m 3 CH 40 none, daily, interim Cover type interim cover final

19

Spatial variability of methane concentration in a cover soil of an old landfill

viel

wenig

20 cm

40 cm

90 cm

Geck, 2010

Grid size = 16 m

Page 20: Methane in the life time of a landfill · Methane in the life time of a landfill Operation Closure of e t l of CH 4 (m 3 CH 40 none, daily, interim Cover type interim cover final

20

Morphology of hotspot soil profile

Page 21: Methane in the life time of a landfill · Methane in the life time of a landfill Operation Closure of e t l of CH 4 (m 3 CH 40 none, daily, interim Cover type interim cover final

21

20.000

40.000

60.000

80.000

100.000

120.000

140.000

AB

CD

EF

GH

12

34

56

78

1 m

Surface CH4 concentrations at hotspot

1 m

CH4 [ppm]

Page 22: Methane in the life time of a landfill · Methane in the life time of a landfill Operation Closure of e t l of CH 4 (m 3 CH 40 none, daily, interim Cover type interim cover final

22

Requirements gas distribution layer

1. < 2% CaCO3 → Avoid precipitation of CO2

2. Purely mineral → High structural stability

3. High gas conductivity (kgas) → kGas_GDL >> kGas_MOL , so that

MOL

GDL

Wastebody

Hotspot

Pressure loss is +/-homogenous over all path lengths

→ horizontal gas transport favoured in GDL

Typical materials: coarse sand, gravel

Page 23: Methane in the life time of a landfill · Methane in the life time of a landfill Operation Closure of e t l of CH 4 (m 3 CH 40 none, daily, interim Cover type interim cover final

23

Example: Effect of decreasing kgas in the MOL= increasing difference in kgas between MOL and GDL

Page 24: Methane in the life time of a landfill · Methane in the life time of a landfill Operation Closure of e t l of CH 4 (m 3 CH 40 none, daily, interim Cover type interim cover final

24

Example: Effect of decreasing kgas in the MOL= increasing difference in kgas between MOL and GDL

MOL loose MOL slightly compacted

CH4 conc. in GDL(vol.%)

Page 25: Methane in the life time of a landfill · Methane in the life time of a landfill Operation Closure of e t l of CH 4 (m 3 CH 40 none, daily, interim Cover type interim cover final

25

Conductivity (advection) depends on air-filled porosity

10 20 30 40 5010

-4

10-3

10-2

10-1

kG

as [m

s-1]

Air-filled porosity [vol.-%]

y = 2*10-5*e

(0,1783*x)

R2 = 0.91

Air capacity [vol.-%]

= Air-filled porosity at Ψm = -6 kPa

Choice of texture (particle size distribution)

Page 26: Methane in the life time of a landfill · Methane in the life time of a landfill Operation Closure of e t l of CH 4 (m 3 CH 40 none, daily, interim Cover type interim cover final

26

Compaction decreases gas conductivity (MOL)

1.3 1.4 1.5 1.6 1.7 1.8

0.0

5.0x10-6

1.0x10-5

1.5x10-5

2.0x10-5

soil HH

soil WIE

Ga

s c

ond

uctivity (

kgas)

Bulk density (g/cm3)

Choice of construction practice

Data from Van Verseveld, 2018

Page 27: Methane in the life time of a landfill · Methane in the life time of a landfill Operation Closure of e t l of CH 4 (m 3 CH 40 none, daily, interim Cover type interim cover final

27

(4) Dimension adapted to load,Methane Oxidation Tool

Aims:

– Decrease spatial load to below the expected spatial CH4 oxidation potential

– Consider seasonal variation of oxidation rate (temperature and saturation)

Page 28: Methane in the life time of a landfill · Methane in the life time of a landfill Operation Closure of e t l of CH 4 (m 3 CH 40 none, daily, interim Cover type interim cover final

28

How to determine the methane load to the system

– CH4 oxidation filter: Measurement of flow & concentration at gas well

1 2 4b 5 6 8 10 11 13 14 15

0

1

2

3

4

5

6

9.5

10.0

n = 23 24 24 22 14 16 16 23 14 14 21

Hotspot #

CH

4-E

mis

sio

n [

mo

l d

-1]

Cvar

= 1.1 0.67 0.73 1.1 1.8 1.8 2.9 1.4 0.84 1.6 1.2

Messperiode Mai 2008 - Januar 2010

Rachor et al., 2013

Streese-Kleeberg, 2019

Afvalzorg simple gas generation and emission model

– CH4 oxidation cover: gas production modeling in combination with gas extraction tests

– CH4 oxidation window: Measurement of emissions at prospective site of window

Page 29: Methane in the life time of a landfill · Methane in the life time of a landfill Operation Closure of e t l of CH 4 (m 3 CH 40 none, daily, interim Cover type interim cover final

29

How do determine the methane oxidationpotential: Methane Oxidation Tool (MOT)

Standard Oxidation Unit6.2 kg m-2 a-1

Factor Porosity Factor Temperature Factor Water Tension

0.1 0.2 0.3 0.4

0

1x10-6

2x10-6

3x10-6

4x10-6

5x10-6

R2 = 0.83

p < 0.001

De

ff [

m2/s

]

Air filled pore space [v/v]

0.00

0.05

0.10

0.15

0.20

0.25

De

ff/D

0 [

-]

0 5 10 15 20 25 30 350

2

4

6

8

10

12

14

16

18

CH

4 o

xid

ation [kg m

-2 a

-1]

Temperature [°C]

0 1 2 3 4 50

2

4

6

8

10

CH

4 o

xid

ation [µ

g g

dw

-1 h

-1]

log water potential [hPa]

Estimated ox potential10.2 kg m-2 a-1

http://www.afvalzorg.nl/EN/About-us/Publications/Methane-oxidation.aspx.

Load (kg a-1) = area (m2) Oxidation (kg m-2 a-1)

Page 30: Methane in the life time of a landfill · Methane in the life time of a landfill Operation Closure of e t l of CH 4 (m 3 CH 40 none, daily, interim Cover type interim cover final

30

Conclusions I: Choice of MOL material

– Requirements of methanotrophs met by wide range

of materials

– What is good for the vegetation, is good for

methanotrophs (nutrients, water)!

– Organic materials have to be stable

→ minimize competition for O2

→ minimize settlement and loss of permeability

– IMPORTANT: Choice of suitable soils and adequate

construction practice = gas transport properties in

relation to particle size distribution and compaction

– Enough is known for a good estimate!

Compost

Porous clay

Mineral soil

Page 31: Methane in the life time of a landfill · Methane in the life time of a landfill Operation Closure of e t l of CH 4 (m 3 CH 40 none, daily, interim Cover type interim cover final

31

Conclusions II: Spatial distribution

– Gas distribution layers are an essential element of MOS

– Spatial evenness of gas load depends on difference in gas conductivity between GDL and MOL

o Pressure loss over all path lengths

o Number of gas inlet points

Page 32: Methane in the life time of a landfill · Methane in the life time of a landfill Operation Closure of e t l of CH 4 (m 3 CH 40 none, daily, interim Cover type interim cover final

32

Conclusions III: Dimensioning

– Estimate or measure load

– Estimate CH4 oxidation potential based on soil properties and climatic conditions (example MOT)

– Design follows limiting factor: high quality soil or availability of space?

– Consider seasonal changes in CH4 oxidation activity

– Consider required performance and after use

Page 33: Methane in the life time of a landfill · Methane in the life time of a landfill Operation Closure of e t l of CH 4 (m 3 CH 40 none, daily, interim Cover type interim cover final

33

Summary

– CH4 oxidation is a robust technology to mitigate “weak gas” emissions

– Process controls are well known

– Design parameters are available

– Large scale systems have been successfully constructed

Page 34: Methane in the life time of a landfill · Methane in the life time of a landfill Operation Closure of e t l of CH 4 (m 3 CH 40 none, daily, interim Cover type interim cover final

34

Questions?

Page 35: Methane in the life time of a landfill · Methane in the life time of a landfill Operation Closure of e t l of CH 4 (m 3 CH 40 none, daily, interim Cover type interim cover final

35

Bibliography1) Methane oxidation and gas fluxes in soil covers of on non-sanitary landfills

– Gebert, J., Rachor, I.M., Streese-Kleeberg, J., Pfeiffer, E.-M. (2016): Methane oxidation in a landfill cover soil under conditions of diffusive and advective flux, assessed by in-situ and ex-situ methods. Current Environmental Engineering 3 (2), 144-160.

– Rachor, I., Gröngröft, A., Gebert, J., Pfeiffer, E.-M. (2013): Variability of methane emissions from an old landfill on different time scales. European Journal of Soil Science 64, 16-26.

– Gebert, J., Rachor, I., Gröngröft, A., Pfeiffer, E.-M. (2011): Temporal variability of soil gas composition in landfill covers. Waste Management 31, 935-945.

– Röwer, I. U., Geck, C., Gebert, J., Pfeiffer, E.-M. (2011): Spatial variability of soil gas concentrations and methane oxidation in landfill cover soils. Waste Management 31, 926-934.

– Streese-Kleeberg, J., Rachor, I., Gebert, J., Stegmann, R. (2011): Field quantification of methane oxidation in landfill cover soils by means of gas push-pull tests. Waste Management 31, 995-1001.

2) Methane oxidation in biocovers & biowindows– Streese-Kleeberg, J. (2019): Baggergutdeponie Hamburg-Francop: Erfahrungen mit dem Betrieb von Methanoxidationsfenstern im

technischen Maßstab. Tagungsband Stilllegung und Nachsorge von Deponine, Schwerpunkt Deponiegas. Trier, 2019.– Geck, C. Scharff, H., Pfeiffer, E.-M., Gebert, J. (2016): Validation of a simple model to predict the performance of methane oxidation

systems, using field data from a large scale biocover test field. Waste Management 56, 280-289.– Röwer, I.U., Scharff, H., Pfeiffer, E.-M., Gebert, J. (2016): Optimized landfill biocover for CH4 oxidation I: Experimental design and

oxidation performance. Current Environmental Engineering 3 (2), 80-93.– Röwer, I.U., Streese-Kleeberg, J., Scharff, H., Pfeiffer, E.-M., Gebert, J. (2016): Optimized landfill biocover for CH4 oxidation II:

Implications of spatially heterogeneous fluxes for monitoring and emission prediction. Current Environmental Engineering 3 (2), 94-106.

– Cabral, A.R., Capanema, M.A., Gebert, J., Moreira, J.F., Jugnia, L.B. (2009): Quantifying microbial methane oxidation efficiencies in two experimental landfill biocovers using stable isotopes. Water, Air, and Soil Pollution 209, 157-172.

3) Methane oxidation in biofilters– Gebert, J., Gröngröft, A. (2006): Performance of a passively vented field-scale biofilter for the microbial oxidation of landfill methane.

Waste Management 26, 399-407.– Gebert, J., Gröngröft, A. (2006): Passive landfill gas emission – influence of atmospheric pressure and implications for the operation of

methane-oxidising biofilters. Waste Management 26, 245-251.– Gebert, J., Gröngröft, A., Miehlich, G. (2003): Kinetics of microbial landfill methane oxidation in biofilters. Waste Management 23, 609-

619.

Page 36: Methane in the life time of a landfill · Methane in the life time of a landfill Operation Closure of e t l of CH 4 (m 3 CH 40 none, daily, interim Cover type interim cover final

36

Bibliography ctd.4) Methane oxidation: Laboratory experiments regarding various influential parameters

– Rachor, I., Gebert, J., Gröngröft, A., Pfeiffer, E.-M. (2011): Assessment of the methane oxidation capacity of compacted soils intended for use as landfill cover materials. Waste Management 31, 833-842.

– Bohn, S., Brunke, P., Gebert, J., Jager, J. (2011): Improving the aeration of critical fine-grained landfill top cover material by vegetation to increase the microbial methane oxidation efficiency. Waste Management 31, 854-863.

– Gebert, J., Gröngröft, A., Pfeiffer, E.-M. (2011): Relevance of soil physical properties for the microbial oxidation of methane in landfill covers. Soil Biology & Biochemistry 43, 1759-1767.

5) Landfill methane oxidation: Methods– Gebert, J., Röwer, I. U., Scharff, H., Roncato, C. D. L., Cabral, A. R. (2011): Can soil gas profiles be used to assess microbial CH4

oxidation in landfill covers? Waste Management 31, 987-994.– Gebert, J., Streese-Kleeberg, J. (2017): Coupling stable isotope analysis with gas push-pull tests to derive in-situ values for the

fractionation factor αox associated with the microbial oxidation of methane in soils. Soil Science Society of America Journal. Doi: 10.2136/sssaj2016.11.0387; Date posted: April 12, 2017.

6) Landfill methane oxidation: Microbiology– Gebert, J., Perner, M. (2015): Differentiation of microbial community composition in soil by preferential gas flow. European Journal of

Soil Biology 69, 8-16.– Gebert, J., Singh, B.K., Pan, Y., Bodrossy, L. (2009): Activity and structure of methanotrophic communities in landfill cover soils.

Environmental Microbiology Reports 1, 414-423.– Gebert, J., Stralis-Pavese, Alawi, M., N. & Bodrossy, L. (2008): Analysis of methanotrophic communities in landfill biofilters by means of

diagnostic microarray. Environmental Microbiology 10, 1175-1188.– Gebert, J., Gröngröft, A., Schloter, M., Gattinger, A. (2004): Community structure in a methanotroph biofilter as revealed by

phospholipid fatty acid analysis. FEMS Microbiology Letters 240, 61-68.

7) Methane oxidation on landfills: Reviews– Scheutz, C., Bogner, J., De Visscher, A., Gebert, J., Hilger, H., Huber-Humer, M., Kjeldsen, P., Spokas, K. (2009): Microbial methane

oxidation processes and technologies for mitigation of landfill gas emissions. Waste Management & Research 27, 409-455.– Huber-Humer, M., Gebert, J., Hilger, H. (2008): Biotic systems to mitigate landfill methane emissions. Waste Management & Research

26, 33-46.

Page 37: Methane in the life time of a landfill · Methane in the life time of a landfill Operation Closure of e t l of CH 4 (m 3 CH 40 none, daily, interim Cover type interim cover final

37

Bibliography ctd.

8) Technical reports– Geck, C., Röwer, I.U., Kleinschmidt, V., Scharff, H., Gebert, J. (2016): Design, validation and implementation of a novel accumulation chamber system for the

quantification of CH4 and CO2 emissions from landfills. Technical Report. Available from http://www.afvalzorg.nl/Afvalzorg/EN/PDF/Novel%20large%20emission%20measurement%20chamber.pdf

– Gebert, J., Huber-Humer, J., Oonk, H., Scharff, H. (2011): Methane Oxidation Tool - An approach to estimate methane oxidation on landfills. Available from http://www.afvalzorg.nl/EN/About-us/Publications/Methane-oxidation.asp

9) Guidance (documents)– Task group CLEAR (Consortium for Landfill Emissions Abatement Research): http://www.tuhh.de/iue/iwwg/task-groups/clear.html– Gebert, J., Pfeiffer, E.-M. (Hrsg.) (2017): Bilanzierung von Gasflüssen auf Deponien. Leitfaden I des Forschungsverbundes MiMethox. Hamburger Bodenkundliche

Arbei-ten Band 81/I. ISSN 0724-6382.– Gebert, J., Pfeiffer, E.-M. (Hrsg.) (2017): Systeme zur Methanoxidation auf Deponien. Leitfaden II des Forschungsverbundes MiMethox. Hamburger Bodenkundliche

Arbeiten Band 81/II. ISSN 0724-6382.– LAGA Ad-hoc-AG „Deponietechnik“ (2016): Bundeseinheitlicher Qualitätsstandard 7-3. Methanoxidationsschichten in Deponieoberflächenabdichtungssystemen vom

20.10.2011. Veröffentlicht auf www.laga-online.de .– ÖVA (Österreichischer Verein für Altlastenmanagement) (2008): Leitfaden Methanoxidationsschichten, 37. S. – Basque Country: http://www.euskadi.eus/gobierno-vasco/-/manual/documento-guia-sobre-la-reduccion-de-las-emisiones-de-gases-de-vertedero/– France: http://www.ademe.fr/biogaz-issu-mise-decharge-comment-optimiser-captage

http://www.optigede.ademe.fr/sites/default/files/documents/Biofiltration_0806c0050Sth.pdfhttp://www.optigede.ademe.fr/sites/default/files/fichiers/METHALIX_0906C0002_Synthese_VF.pdfhttp://www.optigede.ademe.fr/sites/default/files/documents/OSSIMED_1006c0109RF.pdf

– Denmark: Biocover Initiative handbook, Emission measurements: http://orbit.dtu.dk/files/118745494/Kjeldsen_Scheutz_2015_SarSym15.pdf

10) Theses (available at https://www.geo.uni-hamburg.de/en/bodenkunde/ueber-das-institut/hba.html)– Blom, H.P.W. (2018): Assessing the effects of compaction and saturation on diffusion and diffusive fractionation of methane. MSc thesis, Delft University of

Technology. Available from: http://repository.tudelft.nl– Van Verseveld, C. (2018): Gas flow through methane oxidation systems. MSc thesis, Delft University of Technology. Available from: http://repository.tudelft.nl– Geck, C. (2017): Temporal and spatial variability of soil gas transport parameters, soil gas composition and gas fluxes in methane oxidation systems. PhD thesis.

Hamburg Soil Science Studies 83. ISSN 0724-6382.– Röwer, I. (2014): Reduction of methane emissions from landfills: Processes, measures and monitoring strategies. PhD thesis. Hamburg Soil Science Studies 75. ISSN

0724-6382.– Rachor, I. (2012): Spatial and Temporal Patterns of Methane Fluxes on Old Landfills: Processes and Emission Reduction Potential. Hamburg Soil Science Studies 67.

ISSN 0724-6382.– Gebert, J. (2013): Microbial Oxidation of Methane Fluxes from Landfills. Habilitation thesis. Hamburg Soil Science Studies 66. ISSN 0724-6382.

Page 38: Methane in the life time of a landfill · Methane in the life time of a landfill Operation Closure of e t l of CH 4 (m 3 CH 40 none, daily, interim Cover type interim cover final

38