metatranscriptomic analysis of arctic peat soil ... - uit

12
Metatranscriptomic Analysis of Arctic Peat Soil Microbiota Alexander T. Tveit, a Tim Urich, b,c Mette M. Svenning a Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway a ; Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria b ; Austrian Polar Research Institute, Vienna, Austria c Recent advances in meta-omics and particularly metatranscriptomic approaches have enabled detailed studies of the structure and function of microbial communities in many ecosystems. Molecular analyses of peat soils, ecosystems important to the global carbon balance, are still challenging due to the presence of coextracted substances that inhibit enzymes used in downstream ap- plications. We sampled layers at different depths from two high-Arctic peat soils in Svalbard for metatranscriptome preparation. Here we show that enzyme inhibition in the preparation of metatranscriptomic libraries can be circumvented by linear amplifi- cation of diluted template RNA. A comparative analysis of mRNA-enriched and nonenriched metatranscriptomes showed that mRNA enrichment resulted in a 2-fold increase in the relative abundance of mRNA but biased the relative distribution of mRNA. The relative abundance of transcripts for cellulose degradation decreased with depth, while the transcripts for hemicellulose debranching increased, indicating that the polysaccharide composition of the peat was different in the deeper and older layers. Taxonomic annotation revealed that Actinobacteria and Bacteroidetes were the dominating polysaccharide decomposers. The relative abundances of 16S rRNA and mRNA transcripts of methanogenic Archaea increased substantially with depth. Acetoclas- tic methanogenesis was the dominating pathway, followed by methanogenesis from formate. The relative abundances of 16S rRNA and mRNA assigned to the methanotrophic Methylococcaceae, primarily Methylobacter, increased with depth. In conclu- sion, linear amplification of total RNA and deep sequencing constituted the preferred method for metatranscriptomic prepara- tion to enable high-resolution functional and taxonomic analyses of the active microbiota in Arctic peat soil. M etatranscriptomics is the study of rRNA and mRNA of a (microbial) community in an environment. It allows the simultaneous investigation of the gene expression (mRNA) and abundance (rRNA) of the active microorganisms. In contrast to proteins, which have a longer lifetime in the cell and more stable concentrations in response to external influences, mRNAs pro- vide a more immediate picture of the cells responses to changing environmental conditions. Also, metatranscriptomics avoids the limitations inherent to PCR primer-based methods (1, 2). The poly(A) tail of eukaryotic mRNAs enables the cDNA synthesis from these mRNA templates in total RNA pools with selective primers (3). The total microbial RNA is dominated by rRNA tran- scripts, including prokaryotic 16S and 23S rRNAs and eukaryotic 18S and 28S rRNAs. Only a small fraction, usually 1 to 5%, is mRNA (1, 2). Several strategies are currently applied to enrich for prokaryotic mRNA molecules. Selective nuclease degradation of rRNA (3–5), polyadenylation of mRNA (6), and rRNA depletion by capture with commercial kits (3, 5, 7, 8) and sample-specific probes (9) have been attempted to reduce the rRNA fraction of metatranscriptomes. A second challenge, and a general problem for DNA- and RNA-based analyses of soil microbes, is the coextraction of en- zyme-inhibiting compounds such as humic and fulvic acids and phenolic compounds (1). In peat soils, the inhibition has been shown to increase with soil depth (10). Inhibition is particularly problematic in the preparation of metatranscriptomic libraries, in which rather large quantities of RNA are needed for double- stranded cDNA synthesis prior to sequencing. Several studies have addressed this issue, providing strategies for the removal of humic and fulvic acids during the extraction of nucleic acids (1). Sug- gested methodology includes Sephadex spin columns and poly- ethylene glycol (PEG) precipitation of nucleic acids (11). Contin- ued inhibition after extract purification might be related to the high concentrations of enzyme-inhibiting phenolic compounds, particularly in anoxic soils such as peat (12, 13). Metatranscrip- tomic studies have provided new and important knowledge about soil ecosystems (2, 10, 14–16), but few studies have been carried out compared to studies of marine ecosystems, in part because of the inhibition problems mentioned above. Arctic peat soils store large amounts of soil organic carbon (SOC). Soil microorganisms are driving the SOC mineralization to the greenhouse gases methane (CH 4 ) and carbon dioxide (CO 2 ). In anoxic peat, plant polymers are degraded through sev- eral hydrolysis and fermentation steps involving at least four func- tionally distinct types of microorganisms: primary and secondary fermenters and two groups of methanogens (17, 18). Formate, H 2 /CO 2 , and acetate are the major substrates for methanogenesis, but in certain situations, methylamines and methanol are also substrates (19). CH 4 emissions can be mitigated by microbial CH 4 oxidation. In terrestrial and freshwater ecosystems, CH 4 oxidation is primar- ily aerobic and performed by Proteobacteria (20) and Verrucomi- crobia (21). Proteobacterial methanotrophs closely related to the Received 27 March 2014 Accepted 8 July 2014 Published ahead of print 11 July 2014 Editor: G. Voordouw Address correspondence to Tim Urich, [email protected], or Mette M. Svenning, [email protected]. Supplemental material for this article may be found at http://dx.doi.org/10.1128 /AEM.01030-14. Copyright © 2014, American Society for Microbiology. All Rights Reserved. doi:10.1128/AEM.01030-14 The authors have paid a fee to allow immediate free access to this article. September 2014 Volume 80 Number 18 Applied and Environmental Microbiology p. 5761–5772 aem.asm.org 5761 on February 23, 2015 by UNIVERSITETSBIBLIOTEKET I TROMSO http://aem.asm.org/ Downloaded from

Upload: others

Post on 11-May-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Metatranscriptomic Analysis of Arctic Peat Soil ... - UiT

Metatranscriptomic Analysis of Arctic Peat Soil Microbiota

Alexander T. Tveit,a Tim Urich,b,c Mette M. Svenninga

Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norwaya; Department of Ecogenomics and Systems Biology, University of Vienna,Vienna, Austriab; Austrian Polar Research Institute, Vienna, Austriac

Recent advances in meta-omics and particularly metatranscriptomic approaches have enabled detailed studies of the structureand function of microbial communities in many ecosystems. Molecular analyses of peat soils, ecosystems important to the globalcarbon balance, are still challenging due to the presence of coextracted substances that inhibit enzymes used in downstream ap-plications. We sampled layers at different depths from two high-Arctic peat soils in Svalbard for metatranscriptome preparation.Here we show that enzyme inhibition in the preparation of metatranscriptomic libraries can be circumvented by linear amplifi-cation of diluted template RNA. A comparative analysis of mRNA-enriched and nonenriched metatranscriptomes showed thatmRNA enrichment resulted in a 2-fold increase in the relative abundance of mRNA but biased the relative distribution of mRNA.The relative abundance of transcripts for cellulose degradation decreased with depth, while the transcripts for hemicellulosedebranching increased, indicating that the polysaccharide composition of the peat was different in the deeper and older layers.Taxonomic annotation revealed that Actinobacteria and Bacteroidetes were the dominating polysaccharide decomposers. Therelative abundances of 16S rRNA and mRNA transcripts of methanogenic Archaea increased substantially with depth. Acetoclas-tic methanogenesis was the dominating pathway, followed by methanogenesis from formate. The relative abundances of 16SrRNA and mRNA assigned to the methanotrophic Methylococcaceae, primarily Methylobacter, increased with depth. In conclu-sion, linear amplification of total RNA and deep sequencing constituted the preferred method for metatranscriptomic prepara-tion to enable high-resolution functional and taxonomic analyses of the active microbiota in Arctic peat soil.

Metatranscriptomics is the study of rRNA and mRNA of a(microbial) community in an environment. It allows the

simultaneous investigation of the gene expression (mRNA) andabundance (rRNA) of the active microorganisms. In contrast toproteins, which have a longer lifetime in the cell and more stableconcentrations in response to external influences, mRNAs pro-vide a more immediate picture of the cells responses to changingenvironmental conditions. Also, metatranscriptomics avoids thelimitations inherent to PCR primer-based methods (1, 2). Thepoly(A) tail of eukaryotic mRNAs enables the cDNA synthesisfrom these mRNA templates in total RNA pools with selectiveprimers (3). The total microbial RNA is dominated by rRNA tran-scripts, including prokaryotic 16S and 23S rRNAs and eukaryotic18S and 28S rRNAs. Only a small fraction, usually 1 to 5%, ismRNA (1, 2). Several strategies are currently applied to enrich forprokaryotic mRNA molecules. Selective nuclease degradation ofrRNA (3–5), polyadenylation of mRNA (6), and rRNA depletionby capture with commercial kits (3, 5, 7, 8) and sample-specificprobes (9) have been attempted to reduce the rRNA fraction ofmetatranscriptomes.

A second challenge, and a general problem for DNA- andRNA-based analyses of soil microbes, is the coextraction of en-zyme-inhibiting compounds such as humic and fulvic acids andphenolic compounds (1). In peat soils, the inhibition has beenshown to increase with soil depth (10). Inhibition is particularlyproblematic in the preparation of metatranscriptomic libraries, inwhich rather large quantities of RNA are needed for double-stranded cDNA synthesis prior to sequencing. Several studies haveaddressed this issue, providing strategies for the removal of humicand fulvic acids during the extraction of nucleic acids (1). Sug-gested methodology includes Sephadex spin columns and poly-ethylene glycol (PEG) precipitation of nucleic acids (11). Contin-ued inhibition after extract purification might be related to the

high concentrations of enzyme-inhibiting phenolic compounds,particularly in anoxic soils such as peat (12, 13). Metatranscrip-tomic studies have provided new and important knowledge aboutsoil ecosystems (2, 10, 14–16), but few studies have been carriedout compared to studies of marine ecosystems, in part because ofthe inhibition problems mentioned above.

Arctic peat soils store large amounts of soil organic carbon(SOC). Soil microorganisms are driving the SOC mineralizationto the greenhouse gases methane (CH4) and carbon dioxide(CO2). In anoxic peat, plant polymers are degraded through sev-eral hydrolysis and fermentation steps involving at least four func-tionally distinct types of microorganisms: primary and secondaryfermenters and two groups of methanogens (17, 18). Formate,H2/CO2, and acetate are the major substrates for methanogenesis,but in certain situations, methylamines and methanol are alsosubstrates (19).

CH4 emissions can be mitigated by microbial CH4 oxidation.In terrestrial and freshwater ecosystems, CH4 oxidation is primar-ily aerobic and performed by Proteobacteria (20) and Verrucomi-crobia (21). Proteobacterial methanotrophs closely related to the

Received 27 March 2014 Accepted 8 July 2014

Published ahead of print 11 July 2014

Editor: G. Voordouw

Address correspondence to Tim Urich, [email protected], or Mette M.Svenning, [email protected].

Supplemental material for this article may be found at http://dx.doi.org/10.1128/AEM.01030-14.

Copyright © 2014, American Society for Microbiology. All Rights Reserved.

doi:10.1128/AEM.01030-14

The authors have paid a fee to allow immediate free access to this article.

September 2014 Volume 80 Number 18 Applied and Environmental Microbiology p. 5761–5772 aem.asm.org 5761

on February 23, 2015 by U

NIV

ER

SIT

ET

SB

IBLIO

TE

KE

T I T

RO

MS

Ohttp://aem

.asm.org/

Dow

nloaded from

Page 2: Metatranscriptomic Analysis of Arctic Peat Soil ... - UiT

aerobic Methylobacter are characteristic for circumarctic soils (22,23). Stable isotope signature studies indicate that a major sink forCH4 in peat soils is anaerobic CH4 oxidation (24), but the oxi-dants, enzymes, and organism(s) involved are unknown.

More knowledge is needed to understand how microbial com-munities functionally interact in the degradation of SOC and howthey will respond to environmental changes such as the predicteddrastic increase of surface temperatures in Arctic regions.

In this study, we present a method for the generation of high-quality metatranscriptomes from peat soils to circumvent inhibi-tion problems. Further, we assessed the usability of widely appliedmRNA enrichment protocols. We used the generated metatran-scriptomes for analyzing the expression of genes encoding keyfunctions in SOC degradation, such as hydrolysis of polysaccha-rides and methanogenesis, and methanotrophy in two high-Arcticpeat soils.

MATERIALS AND METHODSStudy sites and sampling. High organic Arctic peat soil samples werecollected from two sites in Svalbard, Norway, Solvatn (N78°55.550,E11°56.611) and Knudsenheia (N78°56.544, E11°49.055), in August 2009(10). Peat blocks were kept intact under transport from the field sites tothe laboratory where the first preparation was made. Processing of thedeeper layers was performed under nitrogen atmosphere to avoid oxygencontamination. Immediately after disruption of the peat blocks for sub-sampling and storage, subsamples were frozen in liquid nitrogen to avoideffects of changing conditions in the mRNA pools. The samples weretransported in a dry shipper from Svalbard to the home laboratorieswhere the further preparation for RNA isolation was done.

Sample and RNA processing. Samples from oxic and anoxic layers ofthe two sites Knudsenheia (from the top to deepest layers: Ka, Kb, and Kc)and Solvatn (Sa and Sb) were ground in liquid nitrogen using a mortarand pestle until a fine powder was obtained. The low temperature pre-vented microbial and RNase activities. From each homogenized samplesix replicates of �0.2 g of peat soil were used for nucleic acid (NA) extrac-tion using a modified version of Griffith’s protocol (2, 10). To preventRNase activity during cell lysis, bead beating was carried out in the pres-ence of the denaturant phenol. DNA was removed using RQ1 DNasetreatment (Promega, Madison, WI), followed by RNA purification using theMEGAclear kit (Ambion, Austin, TX). The two top samples, Ka and Sa, wereused for mRNA enrichment, applying the three commercially kits accordingto the manufacturers’ instructions in the following order: (i) RiboMinus kitfor bacteria (specificity: Gram-positive and -negative bacteria, human,mouse, yeast; Invitrogen, Carlsbad, CA), (ii) MICROBExpress (specificity:Gram-positive and -negative bacteria; Ambion, Austin, TX), and (iii) Ribo-Minus kit for eukaryotes (specificity: eukaryotes; Invitrogen). All three kits arebased on subtractive hybridization of rRNA with oligonucleotide probes andcapture with magnetic beads. Starting quantities for each kit are shown inTable S2 in the supplemental material. The quality of RNA was assessed usingautomated gel electrophoresis (Experion; Bio-Rad, Hercules, CA) with stan-dard-sensitivity RNA chips.

Total RNA for all samples and the mRNA-enriched sample (Km) werediluted and amplified using linear amplification with MessageAmp II-Bacteria kit (Ambion). A test with RNA extracted from Kb was performedwith concentrations of 2.5, 10, and 20 ng/�l (equivalent to 12.5, 50, and100 ng per reaction) to identify whether the concentration affected theoutput of amplified RNA. It was found that concentrations of 10 and 20ng/�l resulted in �25% of the final yield of amplified RNA. Based on this,a total of 12.5 ng of RNA at a concentration of 2.5 ng/�l was used as thetemplate for all samples. This was in accordance with the recommenda-tions of the supplier, which stated that 10 ng of RNA should be consideredthe minimum input. Double-stranded cDNA was generated from the am-plified RNA using the Superscript II double-stranded cDNA synthesis kit(Invitrogen) by following the manufacturer’s protocol, with the exception

that both the first- and second-strand syntheses were carried out for 4 heach. Library preparation, processing, and sequencing were performed atthe Norwegian High Throughput Sequencing Centre (NSC), using theIllumina HighSeq2000 (Illumina, Inc., San Diego, CA) with paired-end(PE) 101-bp sequencing of �170-bp-long templates.

Sequence analyses. Paired-end sequence reads were first assembledusing Pandaseq (25), with a minimum overlap of 10 bp and otherwisedefault settings. Preprocessing of the assembled sequences was carried outusing Prinseq (26); poly(A/T) tails longer than 15 bp (Table 1) weretrimmed away, sequences with more than 5 ambiguous bases were re-moved, and all but one sequence in pools of exactly identical sequenceswere removed (Table 1). rRNA and putative mRNAs were separated aspreviously described (2, 27). Sequences with bit scores of �50 were as-signed as putative mRNA tags. Small subunit (SSU) rRNAs (subsets of500,000 sequences) were taxonomically assigned by MEGAN analysis ofBLASTN files against the CREST SilvaMod rRNA reference database (pa-rameters: minimum bit score, 150; minimum support, 1; top percent, 2;50 best blast hits) (28). Putative mRNAs were taxonomically and func-tionally annotated by MEGAN analysis (parameters: minimum bit score,50; minimum support, 1; top percent; best blast hit only) of BLASTX filesagainst the RefSeq protein database. Analysis of methanogenic pathwayswas performed by functional annotation of mRNAs assigned to Archaeausing the KEGG and SEED classification systems available in MEGAN(29). Analysis of pathways of anaerobic respiration and fermentation wasdone the same way, using all taxonomically assigned reads. For assign-ment of transcripts to protein families (Pfams), the putative mRNAs weretranslated into all six frames, each frame into separate open readingframes (ORFs), avoiding any “*” characters marking stop codons in aresulting ORF. All ORFs corresponding to 40 amino acids or larger werescreened for assignable conserved protein domains. All ORFs were in-spected by reference hidden Markov models (HMMs) using HMMERtools (http://hmmer.janelia.org/) with the Pfam database HMMs (Pfamrelease 25; http://pfam.xfam.org/). All database hits with E values below athreshold of 10�4 were counted. Counts were used to generate Pfam pro-files for all sample metatranscriptomes. These were combined in a samplePfam profile matrix for further analysis. The matrix contains the counts oftranscripts assigned to each Pfam for each sample. The computations wereperformed on the Stallo cluster at the High Performance ComputingGroup at the University of Tromsø (https://www.notur.no/). PutativePfam sequence-containing ORFs were taxonomically annotated byMEGAN analysis (parameters: minimum bit score, 50; minimum sup-port, 1; top percent, 2) of BLASTP files against the RefSeq protein data-base.

Statistical data analyses. The R package (30) was used for subsam-pling from sample Pfam profile matrices (function: sample; replace-ment � TRUE), linear regression (function: lm), multivariate analyses,chi-squared contingency table test (function: chisq.test), and plotting.Correspondence analysis (CA) and contribution biplots were done ac-cording to Greenacre (31, 32). CA was applied because it grants a largerimpact of low-abundance variables (Pfams) in the analysis than alterna-tive methods. Also, it weights the samples based on the number of reads toensure that the ordination is not biased by the low variance that is char-acteristic for small samples.

Significant differences between the frequencies of conserved proteindomains (Pfam) in ORFs and transcripts homologous to genes encodingkey enzymes for methanogenesis and methanotrophy of different peat soildepths were evaluated statistically by using the R package (30), using thechi-squared contingency table test. The contingency table contains thefrequency counts of hits and nonhits for a certain Pfam domain categoryor methanogenesis enzyme of two different soils. The total frequencycount is given by all hits found for any domain in the Pfam database. Incases where the frequencies were too low to meet the rules of the test, theP values were calculated by Monte Carlo simulations with 2,000 replicates.

Accession numbers. The sequence data generated in this study weredeposited in the Sequence Read Archive of NCBI and are accessible

Tveit et al.

5762 aem.asm.org Applied and Environmental Microbiology

on February 23, 2015 by U

NIV

ER

SIT

ET

SB

IBLIO

TE

KE

T I T

RO

MS

Ohttp://aem

.asm.org/

Dow

nloaded from

Page 3: Metatranscriptomic Analysis of Arctic Peat Soil ... - UiT

through accession numbers SRR1509497, SRR1509498, SRR1509518,SRR1509520, SRR1509521, and SRR1509522.

RESULTSGeneration of peat soil metatranscriptomes. The nucleic acid(NA) extraction efficiency of the sample lysis procedure was sub-stantially increased by a prior grinding of the peat matrix in liquidnitrogen, from 5 to 10 �g of NA/g (dry weight) (gDW) of soil to�20 �g of NA/gDW of soil (see Materials and Methods for de-tails). The quantity and quality of extracted NAs varied betweenthe sites and the depths (see Table S1 in the supplemental mate-rial). Higher NA yields, �500 to 600 �g g of soil�1, were obtainedfrom the top layers (Ka and Sa) and the lower layer of Solvatn (Sb),while the deeper layers of Knudsenheia (Kb and Kc) yielded lowquantities (�100 �g of NA g of soil�1). The ratios of A260 to A230

obtained from spectrophotometric measurements decreased withdepth (Kb and Kc), indicating higher concentrations of coex-tracted humic substances. In line with this, cDNA synthesis effi-ciencies were high with samples from the top layers, whereas thereactions with deeper-layer samples were severely inhibited. TotalRNA was dominated by peaks corresponding to 16S/23S and 18S/28S rRNAs of pro- and eukaryotes, respectively (Fig. 1; see alsoFig. S1 in the supplemental material). rRNA removal with probe-based kits resulted in RNA profiles exhibiting a clear reduction inthe sizes of peaks corresponding to rRNA molecules (Fig. 1; seealso Fig. S1). The RiboMinus kit for bacteria (Invitrogen) used inthe first step contains probes compatible with a broad range ofbacterial taxa and correspondingly decreased the size of the 16Sand 23S rRNAs of the RNA pools. The MICROBExpress (Am-bion) kit used in the second step has a profile similar to that of theRibominus kitfor bacteria, thus removing additional 16S and 23SrRNAs from the RNA pools. The RiboMinus kit for eukaryotes(Invitrogen) used in the third step has rRNA probe compatibilityto eukaryotic rRNA and correspondingly removed 18S and 28SrRNAs from the remaining RNA pool. RNA removal after eachsubtractive hybridization step with three subsequent kits removed�70% and �77% of the rRNAs from the total RNA pools of forsamples Sa and Ka, respectively (see Table S2 in the supplementalmaterial). However, cDNA synthesis attempts with mRNA-en-riched RNA from Sa and Ka as the template failed.

To circumvent inhibition of the cDNA synthesis of RNA fromthe deep peat layers (Kb, Kc, and Sb) and the mRNA-enriched toplayer (Km), the RNA was diluted to 2.5 ng/�l. Five microliters(12.5 ng) was used as the template in linear RNA amplificationprocedures using the MessageAmp II-Bacteria kit (Ambion). Atest performed prior to this experiment showed that concentra-tions of 10 and 20 ng/�l of RNA (50 and 100 ng RNA per reaction,respectively) from anoxic peat samples (Kb) resulted in approxi-mately one-fourth of the amplified RNA output compared to thatobtained in the reaction with 12.5 ng of the template. Linear am-plification with 12.5 ng of template RNA yielded large amounts ofamplified RNA for all samples (see Table S3 in the supplementalmaterial). The amplification efficiency was highest for the previ-ously uninhibited top-layer samples (Ka and Sa), while all thesamples from deep peat layers yielded smaller amounts of ampli-fied RNA, despite equal amounts of template RNA. This, togetherwith the above-described experiment, suggests a persistent inhi-bition of enzymatic steps in the RNA amplification protocol withRNA from the lower peat layers, which is concentration depen-

TA

BLE

1N

um

berof

assembled

sequen

cereads

generated

frompaired-en

dsequ

encin

gof

metatran

scriptomes

a

Sample

Preprocessin

g

No.of

assembled

RN

Asequ

ences

No.of

sequen

cesw

itham

biguou

sbases

No.of

sequen

cesfromw

hich

poly(A/T

)tails

were

trimm

ed

No.of

sequen

cescon

sisting

only

ofpoly(A

/T)

tails

No.of

duplicate

sequen

cesrem

oved

No.of

sequen

cesrem

ainin

gafterpreprocessin

g

Mean

sequen

celen

gth

No.of

low-

complexity

sequen

cesN

o.ofLSSUrR

NA

sN

o.ofputative

mR

NA

s

No.ofR

efSeqproteinsequ

ences

No.of

sequen

cesw

ithP

famdom

ains

Ka

14,781,0521,560,346

585,3661,665

1,360,98711,858,054

150.278,939

10,036,189(0.85)

1,812,926(0.15)

298,698(0.16)

92,630(0.051)

Km

19,899,3581,937,845

4,213,884170

2,090,26615,871,077

143.318,296

9,726,981(0.61)

6,135,800(0.39)

815,486(0.13)

256,062(0.042)

Kb

8,695,4851,011,477

545,34659

669,9907,013,959

153.207,513

5,557,385(0.79)

1,449,061(0.21)

137,257(0.09)

42,858(0.030)

Kc

17,292,4682,006,386

850,267199

2,508,51812,777,365

151.853,129

9,198,689(0.72)

3,575,547(0.28)

272,563(0.08)

80,374(0.022)

Sa16,963,375

1,804,460514,250

5851,985,671

13,172,659150.54

7,86110,935,169

(0.83)2,229,629

(0.17)321,674

(0.14)97,115

(0.044)Sb

13,939,6901,395,723

672,145117

1,286,67211,257,178

151.764,625

9,280,077(0.82)

1,972,476(0.18)

214,568(0.11)

62,941(0.032)

aA

nIllu

min

aH

iSeq2000w

asu

sed(see

Materials

and

Meth

odsfor

detailsabou

tsequ

encin

gan

dbioin

formatics).Low

-complexity

sequen

cesw

ererem

ovedw

ithdefau

ltsettin

gsby

BLA

STN

with

LSSUdatabase,LSSU

rRN

As

aresequ

ences

with

similarity

toLSSU

databasesequ

ences,pu

tativem

RN

As

aresequ

ences

belowth

reshold

inan

LSSUdatabase

search,an

dR

efSeqprotein

sequen

cesare

sequen

cesw

ithsim

ilarityto

RefSeq

proteindatabase

sequen

ces.N

um

bersin

parenth

esesfor

LSSUrR

NA

san

dpu

tativem

RN

As

arepercen

tagesofth

elast

colum

nu

nder

“Preprocessin

g.”N

um

bersin

parenth

esesfor

RefSeq

proteinan

dP

famsequ

ences

arepercen

tagesofth

epu

tativem

RN

As.

Peat Soil Metatranscriptomics

September 2014 Volume 80 Number 18 aem.asm.org 5763

on February 23, 2015 by U

NIV

ER

SIT

ET

SB

IBLIO

TE

KE

T I T

RO

MS

Ohttp://aem

.asm.org/

Dow

nloaded from

Page 4: Metatranscriptomic Analysis of Arctic Peat Soil ... - UiT

dent. Nevertheless, the synthesis of double-stranded cDNA waspossible with the amplified RNA from all samples.

Comparison of mRNA-enriched with original samples. Se-quencing with the Illumina HighSeq2000 platform yielded 7 to 16million overlapping sequences (Table 1). The fraction of putativemRNAs was 15 to 28% in the total RNA samples, while it was 39%in the mRNA-enriched sample (Km). Between 8% and 16% ofputative mRNAs had homology to known protein-coding genes(RefSeq BLASTx bit score, 50).

To assess potential biases introduced during mRNA enrich-ment, the relative abundance of transcripts annotated to Pfamswas compared between the mRNA-enriched (Km) and nonen-riched (Ka) metatranscriptomes. Linear regressions on the dou-ble-log scatter plots of the relative abundances of Pfams in tworandom subsamples from the Pfam profile of the same metatran-scriptomic library (Ka1 and Ka2 or Km1 and Km2) gave R2 valuesof �0.96 (Fig. 2). However, the R2 was �0.75 in the comparison ofmRNA-enriched (Km) and nonenriched samples (Ka) (Fig. 2),indicating that the relative abundances of transcripts were affectedby the mRNA enrichment procedures. The Pfam profiles of non-enriched top layer samples from the two different sites (Sa and Ka)were more similar than the profiles of the mRNA-enriched andnonenriched samples from the same site (Ka and Km) (Fig. 2).This is clearly illustrated in a CA plot in which Km separated fromKa to a similar extent as the two samples from the other site,Solvatn (Sa and Sb) (Fig. 3). However, no Pfams were particularlyaffected by the mRNA enrichment, as indicated by the compari-son of differences in relative abundances of transcripts for allPfams between Ka and Km (data not shown). Also, the taxonomicdistribution of mRNA transcripts homologous to protein-codinggenes in reference sequence genomes (RefSeq protein) showedthat no microbial taxa were specifically affected by the mRNAenrichment (data not shown).

Transcripts of polysaccharide hydrolysis, fermentation,methanogenesis, and methanotrophy. The development of aprotocol for peat soil metatranscriptomes has enabled deeper in-sights into the microbiology of Arctic peat soil. We have focusedon the following key steps of SOC degradation and CH4 cycling inpeat soils: hydrolysis of polysaccharides, the initial steps of SOCdegradation, methanogenesis, and CH4 oxidation. The bacterialcommunities in the top peat layers in Solvatn and Knudsenheiawere dominated by Alpha- and Deltaproteobacteria, Acidobacteria,Planctomycetes, and Actinobacteria (see Fig. S2 in the supplemen-tal material). In Knudsenheia, the relative abundance of Actino-bacteria increased substantially with depth, while the Planctomy-cetes and Acidobacteria populations decreased. In Solvatn, therewere only minor depth-related differences between the bacterialpopulations. The Eukarya profiles were dominated by 18S rRNAfragments assigned to plants (Viridiplantae), primarily mosses.The relative abundance of plant rRNA decreased with depth inboth Knudsenheia and Solvatn. Other large taxa were the Meta-zoa, Alveolata, and Rhizaria, all of which decreased with depth,particularly in Knudsenheia.

Transcripts related to the degradation of plant polysaccha-rides (cellulose, hemicellulose, and hemicellulose branches)and aromatic compounds (e.g., phenolic compounds) were in-vestigated in detail (Fig. 4). The relative abundances of tran-scripts for cellulose and aromatic degradation decreased withdepth, while transcripts for hemicellulose debranching en-zymes showed the opposite trend. Transcripts for hemicellu-lose degradation did not have a distinct depth-related pattern.The major glycoside hydrolase families involved in hemicellu-lose degradation were GH53 (galactosidase), GH26 (man-nanase), and GH10 (xylanase), involved in the cleavage ofgalactose and mannan from, e.g., galactomannans and glu-cogalactomannans and in xylan degradation, respectively. Par-

Fluo

resc

ence

Time (seconds)

100

80

60

40

20

0

8

4

0

12

16

8

4

0

12

16

8

4

0

12

16

16S

18S

23S

28S 16S

18S

23S

28S

16S

18S

23S

28S

604020 80 100

604020 80 100 604020 80 100

604020 80 100

(A) (B)

(C) (D)

Total RNA RiboMinus Bacteria

RiboMinus BacteriaMICROBExpress

RiboMinus BacteriaMICROBExpressRiboMinus Eukaryote

FIG 1 Relative abundances of different RNA fragments in the sample Ka. (A) Total RNA; (B) after treatment with the RiboMinus kit for bacteria; (C) aftertreatment with the RiboMinus kit for bacteria and the MICROBExpress kit; (D) after treatment with the RiboMinus kit for bacteria, the MICROBExpress kit, andthe RiboMinus kit for eukaryotes. Fluorescence and time are equivalent to the abundance and the size of RNA fragments, respectively. The relative abundancesof RNA fragments can be compared within and between treatments.

Tveit et al.

5764 aem.asm.org Applied and Environmental Microbiology

on February 23, 2015 by U

NIV

ER

SIT

ET

SB

IBLIO

TE

KE

T I T

RO

MS

Ohttp://aem

.asm.org/

Dow

nloaded from

Page 5: Metatranscriptomic Analysis of Arctic Peat Soil ... - UiT

ticularly abundant in the lower layers were the transcripts foralpha-L-fucosidases, rhamnosidases, and alpha-L-arabinofura-nosidases, which are involved in the degradation of highlybranched hemicelluloses of plant cell walls such as fucosidexyloglucans, rhamnogalacturonans (structural domains incomplex pectins), and arabinoxylan. The transcripts for all

four enzyme categories were taxonomically binned to a broadrange of bacterial taxa (see Fig. S3 in the supplemental mate-rial). A large fraction of the transcripts encoding oxidases wereassigned to Proteobacteria, while cellulases were predominantlyassigned to Actinobacteria. Transcripts for hemicellulases anddebranching enzymes were primarily assigned to Bacteroidetesand Actinobacteria.

Analyses of transcripts for pathways of anaerobic respirationindicated that both denitrification and sulfate reduction occurredin these soils (data not shown). However, the relative abundanceof transcripts for denitrification decreased with depth in both sites(chi-square contingency table test P value: Ka-Kb, 0.02; Ka-Kc,2e�8; Kb-Kc, 3e�13; and Sa-Sb, 4e�8), while transcripts for sul-fate reduction decreased only in Knudsenheia (chi-square contin-gency table test P value: Ka-Kb, 0.01; Ka-Kc, 7e�11; Kb-Kc, 0.003;and Sa-Sb, 0.2). The relative abundance of transcripts for fermen-tative pathways of glycolysis (KEGG pathway: glycolysis/gluco-neogenesis) (P value: Ka-Kc, 5e�7, and Kb-Kc, 3e�6), propi-onate fermentation (KEGG pathway: propanoate metabolism) (Pvalue: Ka-Kc, 4e�12, and Kb-Kc, 2e�10), and ethanol fermenta-tion (EC 1.1.1.1, EC 1.2.1.10, and EC 1.2.1.3) (P value: Ka-Kc,4e�13; Kb-Kc, 5e�7; and Sa-Sb, 0.02) was consistently lower inKc than in Ka and Kb, while there were no significant differencesbetween Ka and Kb and between Sa and Sb (with the exception ofethanol fermentation).

There was a significant increase in the relative abundance ofarchaeal 16S rRNA transcripts with depth (Fig. 5B), from �0.2%of the microbiota in the top layer to �7% in the lower layers inKnudsenheia and from �0.1% to �3% in Solvatn peat. The ma-

0.1 1 10 100

0.1

110

100

Ka replicate 1

Ka re

plic

ate

2

0.1 1 10 100

0.1

10

Km replicate 1

Km re

plic

ate

2

0.1 1 10 100

0.1

10

Ka replicate 1

Km re

plic

ate1

0.1 1 10 100

0.1

Ka replicate 1

Sa re

plic

ate

1 10

01

100

110

100

1

R2 = 0.95

R2 = 0.77

R2 = 0.97

R2 = 0.86

(A)

(B)

(C)

(D)

FIG 2 Double-log plots showing the abundance distribution between proteinfamilies (Pfam) in subsamples of Ka (A), Km (B), Ka and Km (C), and Ka andSa (D). The Pfam profiles for all samples were randomly subsampled two timesfor 30,000 transcripts, within the number of the sample with fewest transcriptsassigned to a Pfam. Replicate number indicates the specific random subsam-pling used in the comparison. Each comparison displays the transcript abun-dances of Pfams for two subsamples plotted on a logarithmic scale in XY plots.The logarithmic scale is used to reduce the effect of outliers in the comparison.Linear regression on each XY plot gives R2 values.

14−3−3

1−cysPrx_C

2CSK_N

2−Hacid_dh

2−Hacid_dh_C

2OG−FeII_Oxy

2OG−FeII_Oxy_2 2OG−FeII_Oxy_3

2−oxoacid_dh

2−ph_phosp

2TM

3Beta_HSD

3D

3−dmu−9_3−mt

3−HAO 3HBOH

3HCDH

3HCDH_N

4HB_MCP_1

4HBT

4HBT_3 5_3_exonuc

5_3_exonuc_N

5_nucleotid 5_nucleotid_C

5−FTHF_cyc−lig

5−nucleotidase 60KD_IMP

6PGD

7tm_3

7TM_transglut

7TM−7TMR_HD

7TMR−HDED A_deaminase

A2M

A2M_N

A2M_N_2

AA_kinase

AA_permease

AA_permease_2

AA_permease_C

AA_synth

Aa_trans

AAA

AAA_10

AAA_11

AAA_12

AAA_14

AAA_15

AAA_16

AAA_17 AAA_19

AAA_2

AAA_21

AAA_22 AAA_23

AAA_25 AAA_26

AAA_27

AAA_28

AAA_29

AAA_3

AAA_30

AAA_31 AAA_32

AAA_33 AAA_34

AAA_4

AAA_5

AAA_6

AAA_7

AAA_8 AAA_9

AAA_PrkA

AAA−ATPase_like

AAL_decarboxy

ABC_cobalt

ABC_membrane

ABC_membrane_2

ABC_sub_bind

ABC_tran

ABC_tran_2

ABC_transp

ABC_transp_aux

ABC1

ABC2_membrane

ABC2_membrane_2

ABC2_membrane_3

ABC2_membrane_4 ABC2_membrane_6

ABC−3

AbfB

ABG_transport

Abhydrolase_1 Abhydrolase_2

Abhydrolase_3

Abhydrolase_4 Abhydrolase_5 Abhydrolase_6

Abi

Abi_C ABM

AbrB−like

Acatn

ACBP ACCA

AceK

Acetate_kinase

AcetDehyd−dimer

AcetylCoA_hyd_C

AcetylCoA_hydro

Acetyltransf_1

Acetyltransf_10

Acetyltransf_11

Acetyltransf_2

Acetyltransf_3

Acetyltransf_4 Acetyltransf_5

Acetyltransf_6

Acetyltransf_7

Acetyltransf_9

Acid_phosphat_B

Aconitase Aconitase_2_N

Aconitase_B_N

Aconitase_C

ACOX

ACP_syn_III

ACP_syn_III_C

ACPS

ACR_tran

ACT

ACT_4

ACT_5

ACT_6

ACT_7

Acyl_CoA_thio

Acyl_transf_1

Acyl_transf_3

Acyl−ACP_TE

Acyl−CoA_dh_1 Acyl−CoA_dh_2

Acyl−CoA_dh_C

Acyl−CoA_dh_M

AcylCoA_DH_N

Acyl−CoA_dh_N

Acylphosphatase

Acyltransferase Ada_Zn_binding

Adap_comp_sub

Adaptin_N

ADC

Adenine_deam_C

Adenine_glyco

Adenosine_kin

Adenylsucc_synt ADH_N

ADH_N_assoc adh_short

adh_short_C2

ADH_zinc_N

ADH_zinc_N_2

ADK

ADK_lid

AdoHcyase

AdoHcyase_NAD

AdoMet_dc

AdoMet_Synthase

ADP_ribosyl_GH ADSL_C

AFG1_ATPase

AFOR_C

AFOR_N

AhpC−TSA

AHS1

AHS2

AHSA1

AICARFT_IMPCHas

AIG2

AIG2_2

AIM24

AIPR

AIRC

AIRS

AIRS_C

Ala_racemase_C

Ala_racemase_N

ALAD

AlaDh_PNT_C

AlaDh_PNT_N

Alba

Ald_Xan_dh_C

Ald_Xan_dh_C2

Aldedh

Aldo_ket_red

Aldolase

Aldolase_II

Aldose_epim

Alg14

Alg6_Alg8

Alginate_lyase

ALIX_LYPXL_bnd

Alk_phosphatase

AlkA_N

Allene_ox_cyc

ALO

Alph_Pro_TM

Alpha_L_fucos

Alpha−amylase

Alpha−amylase_C

Alpha−E

Alpha−L−AF_C

ALS_ss_C

Alum_res

Amidase

Amidase_2

Amidase_3

Amidase_6

Amidinotransf

Amido_AtzD_TrzD

Amidohydro_1 Amidohydro_2

Amidohydro_3

Amidohydro_4

Amidohydro_5

AMIN

Amino_oxidase

Aminotran_1_2

Aminotran_3

Aminotran_4

Aminotran_5

Aminotran_MocR AmiS_UreI

AMMECR1

Ammonium_transp

AMNp_N

AMO

AmoA

AMP_N AMP−binding

An_peroxidase

ANF_receptor

Ank

Ank_2 Ank_3 Ank_4

Ank_5

Annexin

Anoctamin

ANTAR

ANTH

Anth_synt_I_N

Antibiotic_NAT

Anticodon_1

Antitoxin−MazE

AOX AP_endonuc_2

AP_endonuc_2_N

AP2

ApbA

ApbA_C ApbE

APH

APH_6_hur

Apocytochr_F_C

APS_kinase

APS−reductase_C

ArabFuran−catal

Arabinose_bd

Arabinose_Iso_C

Arabinose_Isome AraC_binding

AraC_N

Arc

Arch_ATPase

Arch_flagellin

Archease

ARD

Arf

ArfGap

Arg_repressor

Arg_repressor_C

Arg_tRNA_synt_N Arginase

Arginosuc_synth

ArgJ

ArgK

Arm

ARPC4

Arr−ms

ArsA_ATPase

ArsC

ArsD

Arylsulfotrans

ASL_C

AsmA_2

Asn_synthase AsnA

AsnC_trans_reg

Asp

Asp_Arg_Hydrox

Asp_decarbox

Asp_Glu_race

Asp_protease_2

Asp23

Asp−Al_Ex

Asparaginase

Asparaginase_2

Asparaginase_II

ASRT

AstA

Astacin

AstB

AstE_AspA

ATC_hydrolase

ATE_C

ATE_N

ATG22

Atg8

ATP_bind_1

ATP_bind_2

ATP_bind_3

ATP_bind_4

ATP_synt_I

ATP12

ATPase_gene1

ATPase−cat_bd

ATP−cone

ATP−grasp

ATP−grasp_2

ATP−grasp_4

ATP−grasp_5

ATPgrasp_TupA

ATP−gua_Ptrans

ATP−gua_PtransN

AtpR

ATP−sulfurylase

ATP−synt

ATP−synt_A

ATP−synt_ab ATP−synt_ab_C

ATP−synt_ab_N

ATP−synt_B

ATP−synt_D

ATP−synt_DE

ATP−synt_DE_N

ATP−synt_Eps

ATP−synt_F

AurF Autoind_bind

Autoind_synth

Autotransporter Autotrns_rpt

AUX_IAA

Auxin_inducible

Auxin_repressed

Auxin_resp

AviRa

AWPM−19 AXE1

AzlC

AzlD

B_lectin

B12−binding

B12−binding_2

B12D

B3_4

B5

B56

BA14K

Bac_chlorC

Bac_DNA_binding

Bac_DnaA

Bac_DnaA_C

Bac_export_1

Bac_export_2

Bac_export_3

Bac_GDH

Bac_globin

Bac_luciferase

Bac_rhamnosid

Bac_rhamnosid_N

Bac_surface_Ag

Bac_transf

Bac_Ubq_Cox

BacA

BACON

Bact_transglu_N

Bactofilin bact−PGI_C

Band_7

Band_7_1

Barstar

BatA

BatD

BATS

Bax1−I

BaxI_1

BBE

BCA_ABC_TP_C

BCCT

BCDHK_Adom3

BCHF

BcrAD_BadFG

BcsB

Beach

BenE

Bestrophin

Beta_elim_lyase

Beta_helix

Beta_propel

Beta−Casp

Beta−lactamase

Beta−lactamase2

Bgal_small_N

Big_1 Big_2

Big_3_4

Big_5

Biopterin_H

Biotin_carb_C

Biotin_lipoyl

Biotin_lipoyl_2 BioY

BiPBP_C

BLUF

BMC

BMFP

Bmp

BNR_2

BolA

BON

BPD_transp_1

BPD_transp_2 BPL_C

BPL_LplA_LipB Branch

BRCT

Bre5

Brix

Bromodomain

BsmA

BsuBI_PstI_RE

BsuPI

BTAD

BTB

BTLCP

BtpA

BtrH

bZIP_1

C_GCAxxG_C_C

C2

C4dic_mal_tran

Caa3_CtaG Cache_2

Cadherin

CagX

Caleosin

Calmodulin_bind

Calreticulin

Calx−beta

CaMKII_AD

CAP

CAP_C

CAP_GLY

CAP_N

Caps_assemb_Wzi

Capsid_NCLDV

Capsule_synth

Carb_anhydrase

Carb_kinase Carboxyl_trans

CarboxypepD_reg

CarD_CdnL_TRCF Carn_acyltransf

Cas_Cas1

Cas_Cas2CT1978

Cas_Cas5d

CAS_CSE1

Cas_CT1975 Cas_GSU0053

CAT_RBD

Catalase

Catalase−rel

Cation_ATPase_C

Cation_ATPase_N

Cation_efflux

CbbQ_C

CBFD_NFYB_HMF

CbiA

CbiC

CbiD

CbiG_N

CbiJ CbiM

CbiQ CbiX

CBM_14

CBM_2

CBM_20

CBM_48

CBM_5_12 CBM_6

CBM_X

CBS CbtA

CbtB

CcdA

CCG

CcmB

CcmD

CcmE CcmH

CcoS

CCP_MauG

CD225

CD36

CDC48_N

CDC50

Cdd1

CdhC

CdhD

CDO_I

CDP−OH_P_tran_2

CDP−OH_P_transf

CelD_N Cellulase

Cellulase−like Cellulose_synt

CemA

Ceramidase

Ceramidase_alk

CGGC CH

ChaB

ChaC

CHAD

Chal_sti_synt_C

Chal_sti_synt_N

CHASE

CHASE2

CHASE3

CHASE4

CHAT

CHB_HEX_C

CHB_HEX_C_1

CheB_methylest

CheC

CheD

CheR

CheR_N

CheW CheX

CheZ

Chitin_bind_1

ChlI

Chlor_dismutase

Chloroa_b−bind

Choline_kinase

Choline_transpo

Chorein_N

Chorismate_bind

Chorismate_synt

CHRD

Chromate_transp

Chrome_Resist

Chromo

CHU_C

ChW

CIA30

CinA

CitF

CitG

CitMHS

Citrate_synt

CKS

Clat_adaptor_s

Clathrin

Clathrin_H_link

Clp_N

CLP_protease

ClpB_D2−small

ClpS

CM_1

CM_2

CMAS

CmcH_NodU CmcI

CMD

CN_hydrolase

Cna_B

Cna_B_2

cNMP_binding

CNP1

CO_deh_flav_C

CO_dh CoA_binding

CoA_binding_2

CoA_binding_3

CoA_trans

CoA_transf_3

CoaE

Coat_F

Coatamer_beta_C

CoatB

Coatomer_WDAD

Cob_adeno_trans

CobA_CobO_BtuR

CobD_Cbib

CobN−Mg_chel

CobS

CobS_N

CobT

CobT_C

CobU

cobW

CobW_C

COesterase

CofC

Cofilin_ADF

Cohesin

Col_cuticle_N

Colicin_V

Collagen

Collagen_bind_2

Collar

ComA

ComFB

Competence

Competence_A

Complex1_24kDa

Complex1_30kDa

Complex1_49kDa

Complex1_51K

Condensation

Cons_hypoth698 Cons_hypoth95

CopB

CopC

CopD

COPI_C

Copper−bind Coprogen_oxidas

COQ9 CorA

CorC_HlyC

Cornichon CotH

Couple_hipA

COX15−CtaA

COX2

COX2_TM

COX3

COX4_pro

COX4_pro_2

COX6B

COXG

CP_ATPgrasp_1

CP_ATPgrasp_2

CpcD

CpeT

Cpn10

Cpn60_TCP1

CPSase_L_chain

CPSase_L_D2

CPSase_L_D3

CPSase_sm_chain CPT

CpXC

CRAL_TRIO

CRCB

CreA

Creatinase_N

Creatininase

CreD

CRISPR_assoc

CRISPR_Cas2

CRM1_C

Crp

CRS1_YhbY

CrtC

Crystall

CsbD

CsgG

CsrA

CstA

CtaG_Cox11 CTI

CTP_synth_N

CTP_transf_1

CTP_transf_2 CTP_transf_3

Cu_amine_oxid

Cu2_monoox_C

Cu−binding_MopE

Cullin Cullin_Nedd8

Cu−oxidase

Cu−oxidase_2

Cu−oxidase_3

Cu−oxidase_4

Cupin_1

Cupin_2

Cupin_3 Cupin_4

Cupin_5

Cupin_6

Cupin_7

Cupin_8 Cupredoxin_1

CusF_Ec

CutA1 CutC CW_binding_2

CxxC_CxxC_SSSS

Cyanate_lyase

Cyclase Cyclase_polyket

Cyclin

Cyclin_N

Cyclophil_like

Cyc−maltodext_N Cys_Met_Meta_PP Cys_rich_CPXG

Cys_rich_CWC

CysG_dimeriser

Cystatin

Cyt_c_ox_IV

Cyt−b5

CYTH

Cytidylate_kin

Cytidylate_kin2

Cyto_ox_2

CytoC_RC

Cytochrom_B_C

Cytochrom_B_N

Cytochrom_B_N_2

Cytochrom_B559

Cytochrom_B559a

Cytochrom_B561

Cytochrom_C Cytochrom_C_2

Cytochrom_C_asm

Cytochrom_C1

Cytochrom_C552

Cytochrom_CIII

Cytochrom_D1

Cytochrom_NNT

Cytochrome_C554

Cytochrome_CBB3

Cytotoxic

Dabb

DAD

DAGK_cat

DAGK_prokar

DAHP_synth_1

DAHP_synth_2

Dak1

Dak1_2

Dak2

Dala_Dala_lig_C

Dala_Dala_lig_N

DALR_1

DALR_2

D−aminoacyl_C

DAO

DAP_epimerase

DapB_C

DapB_N

DBI_PRT

DbpA

DCD

dCMP_cyt_deam_1

dCMP_cyt_deam_2 DcpS_C

DctM

DctQ

DcuA_DcuB

DcuC

DDE_3

DDE_4

DDE_4_2

DDE_5

DDE_Tnp_1

DDE_Tnp_1_2 DDE_Tnp_1_3

DDE_Tnp_1_4

DDE_Tnp_1_5

DDE_Tnp_1_6 DDE_Tnp_1_assoc

DDE_Tnp_IS1

DDE_Tnp_IS1595

DDE_Tnp_IS240

DDE_Tnp_IS66

DDE_Tnp_IS66_C

DDE_Tnp_ISAZ013

DDE_Tnp_ISL3

DDE_Tnp_Tn3 DDOST_48kD DEAD

DEAD_assoc

DEDD_Tnp_IS110

DegT_DnrJ_EryC1

DegV

Dehalogenase

Dehydratase_LU

Dehydratase_MU

Dehydrin

DeoC

DeoRC

DER1

Desulfoferrod_N

Desulfoferrodox

DFP

DGOK

DHBP_synthase

DHC

DHC_N2

DHDPS

DHFR_1

DHFR_2

DHH

DHHA1

DHHA2

DHO_dh

DHODB_Fe−S_bind DHQ_synthase

DHQS

DHquinase_I

DHquinase_II

Dicistro_VP4 DICT

Dicty_CTDC

DIM1

Dimeth_Pyl

DinB

DinB_2

DIOX_N

Dioxygenase_C

Dioxygenase_N Diphthamide_syn

DiS_P_DiS

DisA_N

DisA−linker

Disintegrin

Disulph_isomer

DivIC

DivIVA

DJ−1_PfpI

DJ−1_PfpI_N DLH DM13

DmpG_comm

DMRL_synthase DmsC

DNA_alkylation

DNA_binding_1

DNA_gyraseA_C DNA_gyraseB

DNA_gyraseB_C

DNA_ligase_A_C

DNA_ligase_A_M

DNA_ligase_A_N

DNA_ligase_aden

DNA_ligase_OB

DNA_ligase_ZBD

DNA_methylase

DNA_mis_repair DNA_photolyase DNA_pol_A

DNA_pol_A_exo1

DNA_pol_B

DNA_pol_B_exo2

DNA_pol3_alpha

DNA_pol3_beta

DNA_pol3_beta_2 DNA_pol3_beta_3

DNA_pol3_chi

DNA_pol3_delta2

DNA_pol3_gamma3

DNA_processg_A

DNA_RNApol_7kD DNA_topoisoIV DnaA_N

DnaB

DnaB_2

DnaB_bind

DnaB_C

DnaJ

DnaJ_C

DnaJ_CXXCXGXG

DnaJ−X

DNase−RNase

DndB

dNK

Dockerin_1 Dodecin

DOMON

DOPA_dioxygen

DoxX

DoxX_2

DPBB_1

DPPIV_N

DRAT

DrsE

DrsE_2

DRTGG

DS

DSBA DsbB

DsbC

DsbC_N

DsbD

DsbD_2

dsDNA_bind

D−ser_dehydrat

DSHCT

DSPc

DsrC

DsrD

dsrm

dTDP_sugar_isom

DTW

DUF1003

DUF1006 DUF1007

DUF1009

DUF1013 DUF1015

DUF1016

DUF1021

DUF1025

DUF1028

DUF1036

DUF104

DUF1044

DUF1049

DUF1052

DUF1059

DUF106

DUF1077

DUF108

DUF1080

DUF1083 DUF1097 DUF11

DUF1109 DUF111

DUF1111

DUF1116

DUF1119

DUF1127

DUF1134

DUF1150

DUF1153

DUF1156

DUF116

DUF1161

DUF1173

DUF1175 DUF1178

DUF1186

DUF1192

DUF1194

DUF1203

DUF1206

DUF1207

DUF1211

DUF1212

DUF1214 DUF1215

DUF1223

DUF1228

DUF1230

DUF1232

DUF1236

DUF1237

DUF1244

DUF1246

DUF1249

DUF1254

DUF1255

DUF1257

DUF126

DUF1264

DUF1269

DUF1271

DUF1272

DUF1275

DUF128

DUF1285

DUF1287

DUF1289

DUF1290 DUF1294

DUF1295

DUF1297

DUF1302

DUF1304

DUF1305

DUF1311

DUF1318

DUF1326

DUF1328

DUF1329

DUF1330

DUF1338

DUF134

DUF1342

DUF1343

DUF1344

DUF1345

DUF1348

DUF1349

DUF1353

DUF1355 DUF1361 DUF1365

DUF1375

DUF1385

DUF1415

DUF1416

DUF1428

DUF1445

DUF1446

DUF1451

DUF1456

DUF1460

DUF1465

DUF1467

DUF1469

DUF1470

DUF1476

DUF1485

DUF1488

DUF1489

DUF1498

DUF1499

DUF150

DUF1504

DUF1508

DUF1512

DUF1524

DUF1529

DUF1537

DUF1540

DUF1551

DUF1565

DUF1566

DUF1569

DUF1570 DUF1571

DUF1572

DUF1573

DUF1579

DUF1583

DUF159

DUF1593

DUF1597

DUF1598

DUF1599

DUF1602

DUF1608

DUF161

DUF1611

DUF1614

DUF1616

DUF162

DUF1622

DUF1624

DUF1625

DUF1631

DUF1632

DUF1637

DUF1638

DUF164

DUF1648

DUF165 DUF1653 DUF167

DUF1670

DUF1674 DUF1680

DUF1681 DUF1684

DUF1688 DUF169

DUF1696 DUF1697

DUF1702

DUF1704

DUF1707

DUF1713

DUF1722

DUF1730

DUF1731

DUF1732 DUF1738

DUF1761

DUF1768

DUF177

DUF1778

DUF1786

DUF179

DUF1793

DUF1794

DUF1800

DUF1801

DUF1802

DUF1805

DUF1810

DUF1814

DUF1819

DUF1820

DUF1830

DUF1839

DUF1841

DUF1844

DUF1846

DUF1847

DUF1848

DUF1849

DUF1854

DUF1858 DUF1863

DUF187 DUF1876

DUF188

DUF1899

DUF190 DUF1900

DUF1902

DUF1905

DUF1918

DUF192

DUF1924 DUF1925

DUF1926

DUF1928

DUF1929

DUF1956

DUF1957

DUF1967

DUF1969

DUF1972

DUF1974 DUF1982

DUF1987

DUF1989

DUF1990

DUF1992

DUF1993

DUF1996

DUF1998 DUF2007

DUF2009

DUF2017

DUF202

DUF2024

DUF2029

DUF204

DUF2058

DUF2059

DUF2061

DUF2062 DUF2063

DUF2064

DUF2065

DUF2071 DUF2075

DUF2076

DUF2077

DUF2079

DUF2085 DUF2086

DUF2087

DUF2088 DUF2089 DUF2090

DUF2092

DUF2093

DUF2094

DUF21

DUF211 DUF2114

DUF212 DUF2124

DUF2126

DUF2127

DUF2128 DUF2130

DUF2132

DUF2133 DUF2136

DUF2141

DUF2145

DUF2147

DUF2154

DUF2155

DUF2156

DUF2157

DUF2158

DUF2160

DUF2167

DUF2169

DUF2171

DUF2172

DUF2177

DUF2179

DUF218

DUF2180

DUF2182

DUF2183

DUF2188

DUF2189 DUF2191

DUF2193 DUF2196

DUF2200

DUF2202

DUF2203

DUF2207

DUF221

DUF2219

DUF222

DUF2220

DUF2223

DUF2229

DUF2233

DUF2235

DUF2236 DUF2237

DUF2238

DUF2239

DUF2240

DUF2244

DUF2248

DUF2249

DUF2252

DUF2254 DUF2256

DUF2260

DUF2263

DUF2264

DUF2265

DUF2267 DUF2270

DUF2271

DUF2272

DUF2277 DUF2278

DUF2281 DUF2282

DUF2283

DUF2284

DUF2288

DUF2292

DUF2294

DUF2298

DUF2306

DUF2309

DUF2312

DUF2314

DUF2317

DUF2319

DUF2320

DUF2322

DUF2324

DUF2325

DUF2326

DUF2328

DUF2330

DUF2331

DUF2332

DUF2333

DUF2334 DUF2335

DUF2336

DUF2339

DUF2341

DUF2342

DUF2344

DUF2382

DUF2383

DUF2384 DUF2385

DUF2391

DUF2400

DUF2437

DUF2442

DUF2461 DUF2469

DUF2470

DUF2480

DUF2490

DUF2497

DUF2505

DUF2510

DUF2513

DUF2516

DUF2520

DUF255

DUF2550

DUF2551

DUF2568

DUF258

DUF2581

DUF2582

DUF2585 DUF2587

DUF2600

DUF262

DUF2625

DUF2628

DUF2630

DUF2631

DUF2699

DUF2721

DUF2723

DUF2735

DUF2752

DUF2760

DUF2769 DUF2779

DUF2782

DUF2784

DUF2786

DUF2789

DUF2791

DUF2794

DUF2795

DUF2797

DUF2804

DUF2806

DUF2807

DUF2809

DUF2817

DUF2823

DUF2828

DUF2834

DUF2845

DUF2847

DUF2848

DUF2849

DUF2851

DUF2852

DUF2853

DUF2855

DUF2863

DUF2865

DUF2874

DUF2887

DUF2889

DUF2891

DUF2892

DUF29

DUF2905

DUF2909

DUF2910

DUF2911

DUF2914

DUF2917

DUF2924

DUF2927

DUF2933

DUF2934

DUF2938

DUF294

DUF294_C

DUF2944

DUF2945

DUF2948

DUF2950

DUF2959

DUF296 DUF2961 DUF297

DUF2970 DUF2983

DUF2993

DUF2997

DUF3000

DUF3006

DUF3011

DUF3014

DUF3015

DUF3016

DUF3017

DUF3018

DUF302

DUF3027

DUF3029

DUF303 DUF3034

DUF3035

DUF3036

DUF3037

DUF3039

DUF304

DUF3040

DUF3043

DUF3046

DUF3047 DUF3048

DUF305

DUF3050

DUF3052 DUF3054

DUF3066

DUF3068

DUF307

DUF3071

DUF3073

DUF308

DUF3084

DUF3088

DUF3089

DUF309

DUF3090

DUF3093

DUF3095

DUF3096

DUF3097

DUF3098 DUF3099

DUF3105

DUF3106

DUF3107

DUF3108

DUF3109

DUF3117

DUF3124

DUF3126

DUF3127

DUF3141

DUF3145

DUF3149

DUF3151

DUF3152

DUF3155

DUF3159

DUF3160

DUF3179

DUF318

DUF3180

DUF3185

DUF3186

DUF3224

DUF3225

DUF3231

DUF3237

DUF3243

DUF3257

DUF3260

DUF3263

DUF3276

DUF328

DUF329

DUF3291

DUF3297

DUF3298

DUF3299

DUF330

DUF3300

DUF3301

DUF3302 DUF3303

DUF3305

DUF3306

DUF3307

DUF3308

DUF3309

DUF3313

DUF3315

DUF3326

DUF3329

DUF3332

DUF3333

DUF3335

DUF3339

DUF3340

DUF3341 DUF3343

DUF3347

DUF3349

DUF3353

DUF3358 DUF336

DUF3362

DUF3363

DUF3365

DUF3368

DUF3369

DUF3372

DUF3373

DUF3374

DUF3375

DUF3380

DUF3387

DUF3390 DUF3391

DUF3400 DUF3412

DUF3416

DUF3417

DUF3418

DUF3419

DUF342

DUF3421

DUF3422

DUF3423

DUF3426

DUF3427

DUF3429

DUF3443

DUF3445

DUF3448

DUF3455 DUF3457 DUF3458

DUF3460

DUF3463 DUF3467

DUF347

DUF3470

DUF3471 DUF3473

DUF3474

DUF3478

DUF3479

DUF348

DUF3485

DUF3488

DUF3489

DUF349 DUF3492

DUF3494

DUF3499

DUF35

DUF35_N

DUF350

DUF3500

DUF3501 DUF3502

DUF3516

DUF3520

DUF3529

DUF3536

DUF354

DUF3551

DUF3552

DUF3556

DUF3563

DUF3566

DUF3567

DUF3570

DUF3574

DUF3576

DUF3577 DUF3579

DUF3594

DUF3597

DUF360

DUF3604

DUF3606

DUF3616 DUF3617

DUF3618

DUF3619

DUF362

DUF3620

DUF3623

DUF3626 DUF3641

DUF3646

DUF3656

DUF3662

DUF3667

DUF367 DUF3670 DUF368 DUF3680

DUF3683

DUF3686

DUF370

DUF3700

DUF3703

DUF3708 DUF3710

DUF3731

DUF3734

DUF3738

DUF374

DUF3750 DUF3766

DUF3768

DUF377

DUF3775

DUF378

DUF3780

DUF3786

DUF3798

DUF3810

DUF3814

DUF3815 DUF3817

DUF382

DUF3820 DUF3822

DUF3830

DUF3833

DUF3842

DUF385

DUF386

DUF3864

DUF3866

DUF387 DUF3883

DUF389

DUF3892

DUF3897

DUF39

DUF393

DUF3943

DUF397

DUF3987

DUF399

DUF4007

DUF4008

DUF4009

DUF4010

DUF4011 DUF4012

DUF4013

DUF4015

DUF4019

DUF402

DUF4032

DUF4037

DUF4038

DUF4040

DUF4056

DUF4058

DUF4062

DUF4065

DUF4066 DUF4070

DUF4079

DUF4081

DUF4082 DUF4089

DUF4091

DUF4095

DUF4096

DUF4098

DUF4102

DUF4104

DUF4105

DUF4109

DUF411

DUF4112

DUF4113

DUF4114

DUF4115

DUF4116

DUF4117

DUF4118

DUF4123

DUF4124

DUF4126

DUF4130

DUF4131

DUF4135

DUF4136

DUF4137

DUF4139

DUF4142

DUF4143

DUF4147

DUF4148

DUF4149

DUF4150 DUF4153

DUF4154

DUF4157

DUF4158

DUF4159

DUF4160

DUF4161

DUF4164

DUF4167

DUF4169

DUF417

DUF4170

DUF4172

DUF4173 DUF4175

DUF4177

DUF418

DUF4180 DUF4184

DUF4188

DUF419

DUF4190

DUF4191

DUF4193

DUF4197

DUF4199

DUF420

DUF4202

DUF421

DUF4212

DUF4214

DUF4215

DUF422

DUF4229

DUF423

DUF4230

DUF4234 DUF4235

DUF4236

DUF4242 DUF4245

DUF4246

DUF4249

DUF4252 DUF4254

DUF4255

DUF4256

DUF4258

DUF4260

DUF4265

DUF4266

DUF427

DUF4270

DUF4276

DUF4277

DUF4280

DUF4281

DUF4282 DUF4287

DUF4289

DUF429

DUF4290

DUF4291

DUF4293 DUF4294 DUF4295

DUF4301

DUF4308

DUF4323

DUF4324

DUF4325 DUF433

DUF4331

DUF4332

DUF4337

DUF4338

DUF4339

DUF4340

DUF4341

DUF4342

DUF4344

DUF4347

DUF4349

DUF4351

DUF4357

DUF4360

DUF4365

DUF4369

DUF4372

DUF4379

DUF4380

DUF4383

DUF4384

DUF4386

DUF4388

DUF4389

DUF4390

DUF4392

DUF4393

DUF4394

DUF4395

DUF4396

DUF4397

DUF4398

DUF4399

DUF4402

DUF4404

DUF4407

DUF4411

DUF4415

DUF4416

DUF4418

DUF4419

DUF442

DUF4420

DUF4423

DUF444

DUF445

DUF447

DUF448

DUF45

DUF455

DUF456

DUF457

DUF458

DUF461

DUF463

DUF465

DUF466

DUF475

DUF479 DUF480

DUF481

DUF482

DUF484

DUF485

DUF486

DUF488 DUF489

DUF490

DUF493

DUF494

DUF497

DUF498 DUF500

DUF501

DUF502

DUF503

DUF506

DUF507

DUF512

DUF519

DUF520

DUF521

DUF523

DUF525

DUF533

DUF538 DUF547

DUF552

DUF554

DUF556

DUF559 DUF563

DUF58

DUF59

DUF599

DUF606

DUF608

DUF615

DUF647 DUF664

DUF676

DUF692

DUF694

DUF697

DUF706

DUF711

DUF718

DUF72

DUF721

DUF742

DUF748 DUF760

DUF763

DUF77

DUF770

DUF772

DUF779

DUF790

DUF791

DUF796

DUF799 DUF805

DUF808

DUF814

DUF815

DUF817

DUF82

DUF830

DUF836

DUF839

DUF849

DUF853

DUF86

DUF862

DUF866

DUF867

DUF87

DUF872

DUF876

DUF877

DUF879

DUF881

DUF883 DUF885

DUF89

DUF892

DUF898

DUF899

DUF900

DUF91

DUF917

DUF92

DUF924

DUF928

DUF932

DUF934

DUF937

DUF938

DUF940

DUF95 DUF951

DUF952

DUF955

DUF962

DUF965

DUF970

DUF971 DUF975

DUF983

DUF989

DUF992

DUF993

DUF998

Dus

dUTPase dUTPase_2

DXP_redisom_C

DXP_reductoisom

DXP_synthase_N DXPR_C

Dynamin_M

Dynamin_N

Dynein_heavy

Dynein_light

Dyp_perox

DYW_deaminase

DZR

E1_dh

E1−E2_ATPase

E3_binding

EAL

EamA

EB_dh

EBP

ECF−ribofla_trS

ECH

ECH_C

EcoEI_R_C

EcoR124_C

EcoRI_methylase

EcoRII−C

ECR1_N EcsC

EF_hand_3

EF_hand_4

EF_hand_5

EF_hand_6

EF_TS

EF1_GNE

EF1G

EFG_C

EFG_IV

efhand

EFP

EFP_N

EGF

EGF_3

EGF_CA

EHN

EIF_2_alpha eIF−1a

eIF2_C

eIF2A

eIF−3_zeta

eIF−3c_N

eIF−5_eIF−2B

eIF−5a

eIF−6

EIIA−man

EIIC−GAT

EIID−AGA

EII−GUT

EKR ELFV_dehydrog

ELFV_dehydrog_N

ELO

Elong−fact−P_C

EMG1

EMP70

Endonuc−BglII

Endonuclease_1

Endonuclease_5 Endonuclease_7 Endonuclease_NS

Endosulfine

Enolase_C

Enolase_N

Eno−Rase_FAD_bd

Eno−Rase_NADH_b

Enoyl_reductase

Entericidin

ENTH

Epimerase

Epimerase_2 Epimerase_Csub

EPSP_synthase

ER ER_lumen_recept

eRF1_1

eRF1_2

eRF1_3

ERG2_Sigma1R

ERG4_ERG24

Erythro_esteras

Esterase

Esterase_phd

ETC_C1_NDUFA4

ETF

ETF_alpha

ETF_QO

EthD

EutA EutB EutC

EutN_CcmL

EutQ EVE

ExbD

Exo_endo_phos

Exo70

ExoD

Exonuc_V_gamma

Exonuc_VII_L Exonuc_VII_S

Exonuc_X−T_C

Exosortase_EpsH

EXS

ExsB Extensin−like_C

F_actin_cap_B

F_bP_aldolase

F420_ligase

F420_oxidored

F5_F8_type_C

FA_desaturase

FA_desaturase_2

FA_hydroxylase

FA_synthesis

FAA_hydrolase

FabA

FAD_binding_1

FAD_binding_2

FAD_binding_3 FAD_binding_4 FAD_binding_5

FAD_binding_6

FAD_binding_7

FAD_oxidored FAD_syn

FAD−oxidase_C

Fae

FAE1_CUT1_RppA

Fapy_DNA_glyco

Fasciclin

FAT

F−box

F−box−like

FbpA

FBPase FBPase_2

FBPase_3

FBPase_glpX

FCD

FCSD−flav_bind

FdhD−NarQ

FdhE

FdsD

FdtA

FDX−ACB

Fe_dep_repr_C

Fe_dep_repress

Fe_hyd_lg_C

Fe_hyd_SSU

Fe−ADH

Fe−ADH_2

FecCD

FecR

FemAB

FeoA FeoB_C

FeoB_N

Fer2

Fer2_2

Fer2_3

Fer2_4

Fer2_BFD

Fer4

Fer4_10

Fer4_11

Fer4_12

Fer4_13

Fer4_14

Fer4_15

Fer4_16

Fer4_17

Fer4_18

Fer4_2

Fer4_5

Fer4_6 Fer4_7

Fer4_8 Fer4_9

Fer4_NifH

Ferric_reduct

Ferritin

Ferritin_2 Ferritin−like

Ferrochelatase

FeS

Fe−S_assembly

Fe−S_biosyn

FeThRed_A

FeThRed_B

FGase

FGE−sulfatase

FG−GAP

FG−GAP_2

FGGY_C

FGGY_N

FH2

FHA

FHIPEP

Fib_succ_major

Fibrillarin

Fibrinogen_C

Fic

Fic_N

Filamin FIST

FIST_C

FixH

FixO

FixQ

FKBP_C

FKBP_N

FlaA

FlaE FlaF

FlaG

Flagellar_rod

Flagellin_C

Flagellin_IN Flagellin_N

Flavin_Reduct

Flavodoxin_1

Flavodoxin_2

Flavodoxin_5

Flavokinase

Flavoprotein

FlbD

FlbT

Flg_bb_rod

Flg_bbr_C

Flg_hook

Flg_new

FlgD

FlgD_ig

FlgH

FlgI

FlgM

FlgN

FlhC FlhD

FliD_C FliD_N

FliE

FliG_C FliL

FliM

FliO

FliP

FliS

FliW

FliX

FlpD

FmdA_AmdA

FmdE

FMN_bind

FMN_bind_2 FMN_dh

FMN_red

FMO−like FmrO

fn3

Fn3_assoc Fn3−like

FolB

Form−deh_trans

Formyl_trans_C

Formyl_trans_N

FPN1

FragX_IP

Frankia_peptide Frataxin_Cyay

FRG

FrhB_FdhB_C

FrhB_FdhB_N Fructosamin_kin

FTCD

FTCD_C

FTCD_N

FTHFS

FTP

FTR

FTR_C

FTR1

FtsA

FtsH_ext FtsJ

Ftsk_gamma

FtsK_SpoIIIE

FtsL

FTSW_RODA_SPOVE

FtsX

FtsZ_C

Fucose_iso_C

Fucose_iso_N1

Fucose_iso_N2

FumaraseC_C

Fumarate_red_C

Fumarate_red_D Fumble Fumerase

Fumerase_C

FUR

FxsA

FYDLN_acid

G_glu_transpept

G3P_acyltransf

G5

G6PD_C

G6PD_N

GAD

GAF

GAF_2

GAF_3

gag−asp_proteas

Gal_mutarotas_2

Gal−bind_lectin

GalKase_gal_bdg

GalP_UDP_tr_C

GalP_UDP_transf

G−alpha

Gar1

GARS_A

GARS_C

GARS_N

Gas_vesicle

GATA

GATase

GATase_2

GATase_3 GATase_4

GATase_5

GATase_6

GATase_7

GatB_N

GatB_Yqey

Gate

GBA2_N

GBP

GCC2_GCC3

GCD14

GCHY−1

GcpE GcrA

GCS2

GCV_H

GCV_T

GCV_T_C

Gcw_chp

GD_AH_C

GDC−P

GDE_C

GDE_N GDI

GDPD

GDPD_2 GDYXXLXY

Gelsolin

GerE

Germane

GFA

GFO_IDH_MocA

GFO_IDH_MocA_C

GGDEF

GH3

GHMP_kinases_C

GHMP_kinases_N

GIDA

GIDA_assoc_3

GidB

GIDE

GIIM GILT

GIY−YIG GlcNAc GlcNAc_2−epim

GldH_lipo

GldM_C

GldM_N

GLF

GlnD_UR_UTase

GlnE

Gln−synt_C

Gln−synt_N

Glt_symporter Glu_cyclase_2

Glu_cys_ligase

Glu_syn_central

Glu_synthase

Glucan_synthase

Glucodextran_N

Glucokinase

Gluconate_2−dh3 Glucosamine_iso Glucosaminidase

Glug

Glutaminase

Glutaredoxin

GlutR_dimer

GlutR_N

Glu−tRNAGln

Gly_kinase

Gly_radical

Gly_rich

Glyco_hydro_1

Glyco_hydro_10

Glyco_hydro_100

Glyco_hydro_108 Glyco_hydro_12

Glyco_hydro_14

Glyco_hydro_15

Glyco_hydro_16

Glyco_hydro_17

Glyco_hydro_18

Glyco_hydro_19

Glyco_hydro_2

Glyco_hydro_2_C

Glyco_hydro_2_N

Glyco_hydro_20

Glyco_hydro_25

Glyco_hydro_26 Glyco_hydro_28 Glyco_hydro_3

Glyco_hydro_3_C

Glyco_hydro_30

Glyco_hydro_31

Glyco_hydro_32N

Glyco_hydro_35 Glyco_hydro_38

Glyco_hydro_38C

Glyco_hydro_39

Glyco_hydro_4

Glyco_hydro_42 Glyco_hydro_42C

Glyco_hydro_42M

Glyco_hydro_43

Glyco_hydro_44

Glyco_hydro_45 Glyco_hydro_47

Glyco_hydro_48

Glyco_hydro_4C

Glyco_hydro_52

Glyco_hydro_53

Glyco_hydro_57 Glyco_hydro_59

Glyco_hydro_6

Glyco_hydro_62

Glyco_hydro_63

Glyco_hydro_65C

Glyco_hydro_65m

Glyco_hydro_65N

Glyco_hydro_67C

Glyco_hydro_67M

Glyco_hydro_7

Glyco_hydro_75

Glyco_hydro_77

Glyco_hydro_8 Glyco_hydro_81

Glyco_hydro_88

Glyco_hydro_9

Glyco_hydro_92

Glyco_hydro_97

Glyco_tran_28_C

Glyco_tran_WbsX

Glyco_tran_WecB

Glyco_tranf_2_2

Glyco_tranf_2_3

Glyco_trans_1_2

Glyco_trans_1_3

Glyco_trans_1_4

Glyco_trans_2_3

Glyco_trans_4_2 Glyco_trans_4_3 Glyco_trans_4_4

Glyco_transf_10

Glyco_transf_11 Glyco_transf_20

Glyco_transf_21

Glyco_transf_28

Glyco_transf_34

Glyco_transf_36

Glyco_transf_4

Glyco_transf_41

Glyco_transf_5

Glyco_transf_7C

Glyco_transf_8

Glyco_transf_9

Glycoamylase Glycogen_syn

Glycolipid_bind

Glycolytic

Glycos_trans_3N

Glycos_transf_1

Glycos_transf_2

Glycos_transf_3

Glycos_transf_4

Glycos_transf_N

Glyoxal_oxid_N Glyoxalase

Glyoxalase_2

Glyoxalase_3

Glyoxalase_4

Glyphos_transf

Gly−zipper_Omp

Gly−zipper_OmpA

Gly−zipper_YMGG

Gmad2

GMC_oxred_C GMC_oxred_N

GMP_synt_C

GNAT_acetyltr_2

GntP_permease

GntR

GNVR

Got1

Gp_dh_C

Gp_dh_N

Gp23

Gp37_Gp68

Gp49

GPI

GPI−anchored

GPP34

GPW_gp25 Granulin

GRAS

GRDA

GreA_GreB GreA_GreB_N

Grp1_Fun34_YaaH

GrpE

GSCFA

GSDH

GshA

GSHPx

GSH−S_ATP

GSH−S_N

GSIII_N

GSP_synth GspH

GST_C

GST_C_2

GST_N

GST_N_2

GST_N_3

GT36_AF

GTP_CH_N

GTP_cyclohydro2 GTP_cyclohydroI

GTP_EFTU

GTP_EFTU_D2

GTP_EFTU_D3

GTP1_OBG

GTPase_Cys_C

GTP−bdg_N

Gtr1_RagA

GtrA

Guanylate_cyc

Guanylate_kin

GvpK

GvpL_GvpF GVQW

GXGXG

GYD

GyrI−like

H_kinase_N

H_lectin

H_PPase

H2TH

HA

HA2

HAD_2 Haem_bd

Haemagg_act

Haemolytic

Ham1p_like

HAMP

HATPase_c

HATPase_c_2 HATPase_c_3

HATPase_c_4

HD

HD_3

HD_4

HD_5

HD_assoc

HDOD He_PIG Head−tail_con

HEAT

HEAT_2

HEAT_PBS

HECT

Helicase_C

Helicase_C_2

Helicase_C_3

HEM4

Heme_oxygenase

Hemerythrin

HemN_C

HemolysinCabind

Hemopexin hemP

HemY_N

Hen1_L

Hep_Hag

Hepar_II_III

HEPN

Hexapep

Hexokinase_1

Hexokinase_2 HflK_N

HGD−D

HgmA

HGTP_anticodon

HHH

HHH_2 HHH_3

HhH−GPD

HI0933_like

HicB HIG_1_N

Hint

Hint_2 HipA_C

HipA_N

HIPIP

His_biosynth His_kinase

His_Phos_1

HisG

HisG_C

HisKA

HisKA_2

HisKA_3

Hist_deacetyl

Histidinol_dh

Histone

Histone_HNS

HIT

HK

H−kinase_dim

HlyD

HlyD_2

HlyD_3

HlyIII

HlyU

HMA

HMG_box

HMG−CoA_red

HMGL−like

HNH

HNH_2 HNH_3

Homoserine_dh

Host_attach

HpaB HpaB_N

HpcH_HpaI

HPP

HPPK

Hpr_kinase_C

Hpr_kinase_N

Hpt

HR_lesion

HrcA

HRDC

HrpB_C

HSCB_C

HsdM_N HSDR_N

HSDR_N_2

HSP20

HSP33

HSP70

HSP90

HTH_1

HTH_11

HTH_17

HTH_18

HTH_19

HTH_20

HTH_21

HTH_23

HTH_24

HTH_25

HTH_26 HTH_27

HTH_28

HTH_29

HTH_3

HTH_30

HTH_31

HTH_32

HTH_33 HTH_34 HTH_37

HTH_38 HTH_5

HTH_6

HTH_7

HTH_8

HTH_AraC

HTH_AsnC−type

HTH_Crp_2

HTH_DeoR

HTH_IclR

HTH_OrfB_IS605

HTH_Tnp_1

HTH_Tnp_IS66

HTH_Tnp_ISL3

HTH_WhiA

HTS

HupE_UreJ

HupE_UreJ_2

HupF_HypC

HWE_HK

HxlR HxxPF_rpt

HXXSHH

HycI

Hydant_A_N

Hydantoinase_A

Hydantoinase_B

Hydrolase

Hydrolase_2

Hydrolase_3

Hydrolase_4

Hydrolase_6

Hydrolase_like

Hydrolase_like2

HypA

HypD

Hypoth_Ymh

HYR

I_LWEQ

IalB

IBR

ICL

IclR

IcmF−related

ICMT

IDH

IDO

IF−2

IF2_assoc

IF2_N

IF−2B

IF3_C

IF3_N

IF4E

Ig_3

IGPD

IGPS IlvC

ILVD_EDD

IlvN

ImcF−related_N

ImpA−rel_N

IMPDH

ImpE

IMS IMS_C

IMS_HHH

Indigoidine_A

Inhibitor_I29

Inhibitor_I42 Inhibitor_I9

Inos−1−P_synth

Inositol_P

Ins134_P3_kin

Intg_mem_TP0381

Intron_maturas2 Ion_trans_2

iPGM_N

IPPT

Iron_permease

Iron_traffic

I−set

Iso_dh

Isochorismatase

IspA

IspD

IstB_IS21

IstB_IS21_ATP IU_nuc_hydro

JAB

K_trans

KaiB

KaiC KAP_NTPase

Kazal_1

Kazal_2

Kdo_hydroxy

KdpA

KdpC KdpD

KduI Kelch_1

Kelch_3

Kelch_4

Kelch_5

Kelch_6

Keratin_assoc

ketoacyl−synt

Ketoacyl−synt_2

Ketoacyl−synt_C

KfrA_N KGG

KH_1

KH_2

KH_3

KH_4

KH_5

Kinase−PPPase

Kinesin

KorB KorB_C

KOW

KR

KTSC

Ku

Kua−UEV1_localn

KWG La

LAB_N

LacAB_rpiB LacI

Lact_bio_phlase

Lactamase_B Lactamase_B_2

Lactamase_B_3

Lactate_perm

Lactonase

LAGLIDADG_1

LAGLIDADG_2

LAM_C

LamB

LamB_YcsF Laminin_EGF

Laminin_G_3

Lant_dehyd_N

LCCL

LCM Ldh_1_C

Ldh_1_N

Ldh_2

Ldl_recept_a

LEA_2

LEA_5

Lectin_C

Lectin_legB Legionella_OMP

LEH

LemA

LepA_C

Leu_Phe_trans

LeuA_dimer

Leuk−A4−hydro_C

LexA_DNA_bind

LGFP

LGT

LHC

LigA

Ligase_CoA

LigB

LigD_N LigT_PEase LIM

Lin0512_fam

Linker_histone Linocin_M18

LIP Lip_A_acyltrans

Lipase_3

Lipase_GDSL_2

Lipid_DES

Lipl32

Lipocalin_2

Lipocalin_5 Lipoprotein_15

Lipoprotein_19

Lipoprotein_9

Lipoprotein_Ltp

Lipoxygenase

LMF1

LMWPc

LolA

LON Lon_2

Lon_C Longin

LPAM_2 LptC

LpxB

LpxC

LpxD LpxK

LrgA

LRR_1

LRR_4

LRR_5

LRR_6

LRR_7

LRR_8

LRRNT_2

LSM

Lsr2 LssY_C

LTD LtrA

LTXXQ

LUC7 Lum_binding

LVIVD

Lyase_1

Lyase_aromatic

Lycopene_cycl

Lys−AminoMut_A

LysE

Lysine_decarbox

LysM

LysR_substrate

Lysyl_oxidase

LYTB

LytR_C LytR_cpsA_psr

LytTR

LZ_Tnp_IS481

LZ_Tnp_IS66

M16C_assoc

M20_dimer

MA3

Mac

MacB_PCD

Macro

Maf

MAF_flag10

Mago_nashi

Malate_DH

Malate_synthase Malectin

malic

Malic_M

Mannitol_dh

Mannitol_dh_C

MannoseP_isomer

MaoC_dehydratas MAPEG

MarC

MarR

MarR_2

MASE1

MatC_N MatE

MazG

MBF1

MBOAT

MbtH

MCD MCE

MCH

MCM

MCPsignal

MCPsignal_assoc

MCR_beta_N

MCR_C

MCR_D

MCR_gamma

MDMPI_N

MdoG

MEDS

Melibiase Mem_trans

Memo

MerR

MerR_1

MerR_2

MerR−DNA−bind

Met_10

Met_asp_mut_E

Met_synt_B12

META

Metal_hydrol Metalloenzyme

Metallophos

Metallophos_2

Metallophos_C

Metallothio_Pro

Meth_synt_1

Meth_synt_2

Methylase_S

Methyltrans_RNA

Methyltrans_SAM

Methyltransf_10

Methyltransf_11

Methyltransf_12

Methyltransf_13

Methyltransf_14

Methyltransf_18

Methyltransf_19

Methyltransf_2

Methyltransf_20

Methyltransf_21

Methyltransf_23

Methyltransf_24

Methyltransf_26

Methyltransf_28 Methyltransf_29

Methyltransf_3

Methyltransf_30

Methyltransf_31

Methyltransf_32

Methyltransf_4

Methyltransf_5

Methyltransf_6

Methyltransf_9

MethyltransfD12

Methyltrn_RNA_3

Methyltrn_RNA_4

MethyTransf_Reg

MetW

MFS_1

MFS_1_like

MFS_2

MFS_3 Mg_chelatase

Mg_chelatase_2

Mg_trans_NIPA

MG1

MGDG_synth

Mg−por_mtran_C

MGS

MgsA_C

MgtC

MgtE

MgtE_N

MHYT

MiaE

MiaE_2

MIF MIF4G

MinC_C

MinC_N

MinE

MIP

MipA

MipZ MitMem_reg

Mito_carr

Mito_fiss_Elm1

Mitovir_RNA_pol

Mlo

MlrC_C

MltA

MM_CoA_mutase MmgE_PrpD

MMPL

MMR_HSR1

MMR_HSR1_C

Mn_catalase

MnhB

MNHE

Mo25

MoaC

MoaE

Mob_synth_C

Mob1_phocein

MobA_MobL

MobB

MoCF_biosynth

MoCo_carrier

Mo−co_dimer

MoeA_C

MoeA_N

MoeZ_MoeB

MOFRL

Molybdop_Fe4S4

Molybdopterin

Molydop_binding

Mo−nitro_C

MORN

MORN_2

MOSC

MOSC_N

MotA_ExbB

MotB_plug

Motile_Sperm

Mpt_N

Mpv17_PMP22

Mqo

MR_MLE MR_MLE_C

MR_MLE_N

MraZ

MreB_Mbl

MreC

Mrr_cat

Mrr_N

MS_channel

MscL

MSP

MT0933_antitox

MtaB

MTD

MtfA

MTH865 MTHFR

MTHFR_C

MtmB

MtrA

MtrC

MtrD

MtrF

MtrH

MTS

MttA_Hcf106

MTTB

MucB_RseB Multi_Drug_Res

Multi−haem_cyto

Mur_ligase

Mur_ligase_C

Mur_ligase_M

MurB_C

MutL

MutL_C

Mu−transpos_C

MutS_I

MutS_II

MutS_III

MutS_IV

MutS_V

MVIN

MVP_shoulder

Myb_DNA−bind_6

Myb_DNA−binding

Myosin_head

Myosin_tail_1

N_methyl

N_methyl_2

N6_Mtase

N6_N4_Mtase

Na_Ala_symp

Na_Ca_ex

Na_H_antiport_1 Na_H_Exchanger

Na_Pi_cotrans

Na_sulph_symp

NAC

NAD_binding_1

NAD_binding_10 NAD_binding_2

NAD_binding_3

NAD_binding_4

NAD_binding_5

NAD_binding_7

NAD_binding_8 NAD_binding_9

NAD_Gly3P_dh_C

NAD_Gly3P_dh_N

NAD_kinase

NAD_synthase

NadA

NAD−GH NADH_4Fe−4S

NADHdh

NADH−G_4Fe−4S_3

NAF

NAGidase

NAGLU

NAM

NAP

NapB

NapE

NAPRTase

NdhL

NDK

NDUFA12

NERD

NeuB

Neur_chan_LBD NfeD

Nfu_N

NgoMIV_restric

NhaB

NHase_alpha

NHase_beta

NHL

Ni_hydr_CYTB

NicO

NIF

Nif11

NIF3

NiFeSe_Hases

NifU

NifU_N

NikR_C

NIL

NIPSNAP

NIR_SIR

NIR_SIR_ferr

Nit_Regul_Hom

Nitrate_red_del

Nitrate_red_gam Nitro_FeMo−Co

Nitroreductase

NLPC_P60

NMN_transporter

NMO NmrA

NMT_C

NMT1

NMT1_2

NnrS

NnrU NO_synthase

NOG1

NOGCT Nol1_Nop2_Fmu

Nop

Nop10p

NOP5NT

NosD

Notch

NotI

NPCBM

NQR2_RnfD_RnfE

NQRA

NQRA_SLBB

Nramp

NRDD

NRDE NrfD

NTase_sub_bind

Nterm_IS4

NTF2

NTP_transf_2

NTP_transf_3

NTP_transf_4

NTP_transferase

NTPase_1

NTPase_I−T

Nuc_deoxyrib_tr

Nuc_H_symport

Nuc_sug_transp

Nucleos_tra2_C

Nucleos_tra2_N

Nuc−transf

NUDIX

Nudix_N

NUMOD4

NUP

NusA_N

NusB

NusG NYN NYN_YacP

OAD_beta

OAD_gamma

O−antigen_lig

OB_NTP_bind

OB_RNB

OCD_Mu_crystall

Octopine_DH

OEP OHCU_decarbox

OKR_DC_1 OKR_DC_1_C

OKR_DC_1_N

Oleosin oligo_HPY

Oligomerisation

OmdA

OMP_b−brl

OMP_b−brl_2

OmpA

OMPdecase

OmpH

OmpW

OpcA_G6PD_assem

OpgC_C

OppC_N

OprB OPT

OpuAC

ORF6N OrfB_IS605

OrfB_Zn_ribbon Orn_Arg_deC_N

Orn_DAP_Arg_deC

OSCP

OsmC

OstA

OstA_2

OstA_C

OST−HTH

OTCace

OTCace_N Oxidored_FMN

Oxidored_molyb

Oxidored_nitro

Oxidored_q1

Oxidored_q1_N

Oxidored_q2

Oxidored_q3

Oxidored_q4

Oxidored_q5_N Oxidored_q6

OxoDH_E1alpha_N

Oxysterol_BP

P_proprotein

P21−Arc

P34−Arc p450

P63C

PA

PA14

PaaA_PaaC

PaaB

PAAR_motif

PaaX

PaaX_C

PABP

PAC2

PAD_porph

PadR PAF−AH_p_II

Paired_CXXCH_1

PALP

PAN_4

Pan_kinase

Pantoate_ligase

Pantoate_transf

PAP_assoc

PAP2

PAP2_3

PAPS_reduct

ParA

ParBc ParBc_2

ParcG

PARP

PAS

PAS_10

PAS_2

PAS_3

PAS_4

PAS_5

PAS_7

PAS_8

PAS_9

PASTA

Patatin

PB1

PbH1

PBP

PBP_dimer

PBP_like

PBP_like_2

PBP5_C

PBS_linker_poly

PCI PCMT

PCNA_N

PCP_red

PcrB

PCRF

PCYCGC

PD40

PDDEXK_1

PDDEXK_2

PDDEXK_3

PDGLE

PDH

PDT

PduL PdxA PdxJ

PDZ

PDZ_2

Pec_lyase

Pec_lyase_C

Pectate_lyase

Pectate_lyase_3

Pectinesterase

PEGA

PemK

PEMT

Pencillinase_R

Penicil_amidase

Pentapeptide

Pentapeptide_3 Pentapeptide_4

Pep_deformylase

PEP_mutase

PEPcase

PEPcase_2

PEPCK

PEPCK_ATP

PepSY PepSY_2

PepSY_TM_1

PepSY_TM_3

Pept_tRNA_hydro

Peptidase_A22B

Peptidase_A24

Peptidase_A6

Peptidase_A8

Peptidase_C1

Peptidase_C1_2 Peptidase_C10

Peptidase_C11

Peptidase_C13 Peptidase_C14

Peptidase_C15 Peptidase_C2

Peptidase_C25

Peptidase_C26

Peptidase_C39 Peptidase_C39_2 Peptidase_C69

Peptidase_M1

Peptidase_M10

Peptidase_M10_C

Peptidase_M13

Peptidase_M13_N

Peptidase_M14

Peptidase_M15

Peptidase_M15_2 Peptidase_M15_3

Peptidase_M15_4

Peptidase_M16 Peptidase_M16_C

Peptidase_M17

Peptidase_M17_N

Peptidase_M18

Peptidase_M19

Peptidase_M2

Peptidase_M20

Peptidase_M22

Peptidase_M23

Peptidase_M24

Peptidase_M28

Peptidase_M29

Peptidase_M3

Peptidase_M3_N

Peptidase_M32

Peptidase_M36

Peptidase_M4

Peptidase_M4_C

Peptidase_M41

Peptidase_M42

Peptidase_M43

Peptidase_M48

Peptidase_M49

Peptidase_M50

Peptidase_M50B

Peptidase_M54

Peptidase_M55

Peptidase_M56

Peptidase_M57

Peptidase_M6

Peptidase_M61

Peptidase_M64

Peptidase_M74

Peptidase_M75

Peptidase_MA_2

Peptidase_S10

Peptidase_S11

Peptidase_S13

Peptidase_S15

Peptidase_S24

Peptidase_S26

Peptidase_S37 Peptidase_S41

Peptidase_S46

Peptidase_S49 Peptidase_S51

Peptidase_S55

Peptidase_S58

Peptidase_S66

Peptidase_S74

Peptidase_S8

Peptidase_S9

Peptidase_S9_N

Peptidase_U32

PEP−utilisers_N

PEP−utilizers

PEP−utilizers_C

PepX_C

Peripla_BP_1

Peripla_BP_2 Peripla_BP_3

Peripla_BP_4

Peripla_BP_5

Peripla_BP_6

Permease

peroxidase

PFK

PfkB

PFL

PFO_beta_C

PG_binding_1

PGA_cap PGAP1

PGI

PGK PGM_PMM_I

PGM_PMM_II

PGM_PMM_III

PGM_PMM_IV

PgpA PGPGW

PHA_gran_rgn

PhaC_N

PhaG_MnhG_YufB

Phasin

Phasin_2

PHB_acc

PHB_acc_N

PHB_depo_C

PHBC_N

PHD

PhdYeFM_antitox

Phe_tRNA−synt_N

Phenol_Hydrox

Phenol_MetA_deg

PHF5 PhnA

PhnA_Zn_Ribbon

PhnG

PhnH

PhnI

PhnJ

PHO4 PhoD

PhoH

PhoPQ_related

Phos_pyr_kin

PhosphMutase

Phosphodiest

Phosphoesterase

Phospholip_B

Phosphonate−bd

Phosphorylase

PhoU

PhoU_div

PHP

PHP_C

PHY

Phycobilisome

PhyH

Phytase

Phytase−like

Phytochelatin

PhzC−PhzF PI3_PI4_kinase

PI3Ka PIF1

PIG−L

PIG−U

P−II

Pilin

Pilin_PilA

PilN

PilO

PilP Pilus_CpaD

Pilus_PilP

PilX_N

PilZ PIN

PIN_2

PIN_3

PIN_4

PIP5K

PI−PLC−X

PI−PLC−Y

Pirin

Pirin_C

PITH Piwi

PK

PK_C

PKD

Pkinase

Pkinase_Tyr

PLA1

PLAC8

Plasmid_killer

Plasmid_stabil Plasmid_Txe

PLAT

PLATZ PLDc

PLDc_2

PLDc_N

Plug

Plug_translocon

PmbA_TldD

PMI_typeI

PMM

PmoA

Pmp3

PMSR

PMT_2

PNP_UDP_1

PNPase

PNPOx_C

PNTB

PocR

PolC_DP2

Poly_export

PolyA_pol PolyA_pol_arg_C PolyA_pol_RNAbd

Polyketide_cyc

Polyketide_cyc2

polyprenyl_synt

Polysacc_deac_1

Polysacc_deac_2

Polysacc_lyase

Polysacc_syn_2C

Polysacc_synt

Polysacc_synt_2

POR

POR_N

Porin_1

Porin_2

Porin_3

Porin_4

Porin_O_P

Porphobil_deam

Porphobil_deamC

Potass_KdpF

POTRA_1

POTRA_2

PP_kinase

PP_kinase_C PP_kinase_N

PP2C

PP2C_2

PP−binding

PPC

PPDK_N

PPK2

PPR_2 Ppx−GppA

PqiA

PQ−loop

PQQ

PQQ_2

PqqA

PqqD

PRA1

PRA−CH

PRAI

PRA−PH

PRC

PrcB_C PRCH

Prefoldin

Prefoldin_2 Prenyltrans

Prenyltrans_1

Prenyltrans_2

Prenyltransf

PRiA4_ORF3

Pribosyltran

Pribosyltran_N

Prim−Pol

Prismane

PRK

PrkA

PrmA

PRMT5

Pro_CA

Pro_dh

Pro_isomerase

Pro_racemase

PROCN

PROCT

Profilin

Prok−E2_E

Prok−JAB Pro−kuma_activ Propeptide_C1

ProQ

ProRS−C_1

Proteasome

Proteasome_A_N

Protein_K

PRP38

PRP8_domainIV

PrpF PrsW−protease

PS_Dcarbxylase

PS_pyruv_trans

PsaA_PsaB

PsaD

PsaL

PsaM

PsbH

PsbI

PsbK

PsbL

PsbP

PsbR

PsbW PSCyt1

PSCyt2

PSCyt3

PSD1

PSD2

PSD3

PSD4

PSD5

PseudoU_synth_1

PseudoU_synth_2

PSI_PsaE

PSI_PsaF

PSI_PsaJ

PsiE

PsiF_repeat

PSII

PSK_trans_fac

PSP1

PspA_IM30

PspC

PSS

PT

PTA_PTB

PTE

Pterin_4a

Pterin_bind

PTH2

PT−HINT

PTPA PTPLA

PTPS

PTR2

PTS_2−RNA

PTS_EIIA_1

PTS_EIIA_2

PTS_EIIB

PTS_EIIC

PTS_IIB

PTS−HPr

PTSIIB_sorb

PUA

PUA_2

PUCC

PucR

PUF Pup

Pup_ligase

Pur_DNA_glyco

PurA

PurS

Put_DNA−bind_N

PvlArgDC

PX

PYC_OADA

PYNP_C

Pyr_redox

Pyr_redox_2

Pyr_redox_3

Pyr_redox_dim PyrI

PyrI_C

Pyridox_ox_2

Pyridox_oxidase

Pyridoxal_deC

Pyrophosphatase

QRPTase_C

QRPTase_N

Queuosine_synth

R_equi_Vir

R3H

RabGAP−TBC

Rad51

Rad60−SLD

RadC Radical_SAM

Radical_SAM_N

Raffinose_syn

RAMP4

RAMPs

Ran_BP1

Rap_GAP

RapA_C

Ras

RasGAP

RasGEF

RBFA

RbsD_FucU

RCC1

RCC1_2

Rcd1

RDD

RdgC

RdRP

RdRP_1

RdRP_3

RdRP_4 Rdx

RE_ApaLI RE_Eco29kI

RecA RecO_C

RecO_N

Recombinase

RecR

RecT

RecX

Redoxin

REF Reg_prop

RelA_SpoT

RelB RelB_N

Rep_3

RepA_C

Repair_PSII

Reprolysin_2

Reprolysin_3

Rer1

RES

ResB

ResIII

Resolvase

Response_reg

Reticulon

RF−1

Rft−1

RGP

RgpF

RhaA

Rhamno_transf

RhaT

RHH_1 RHH_2

RHH_3

RHH_4

Rho_GDI

Rho_N

Rho_RNA_bind

Rhodanese

RhoGAP

RhoGEF

Rhomboid

RHS_repeat

Rib_5−P_isom_A

RibD_C

Ribonuc_L−PSP

Ribonuc_red_2_N

Ribonuc_red_lgC Ribonuc_red_lgN

Ribonuc_red_sm

Ribonuclease

Ribonuclease_3

Ribonuclease_P

Ribonuclease_T2

Ribophorin_I

Ribophorin_II

Ribos_L4_asso_C

Ribosomal_60s

Ribosomal_L1

Ribosomal_L10

Ribosomal_L11 Ribosomal_L11_N

Ribosomal_L12

Ribosomal_L13

Ribosomal_L13e

Ribosomal_L14

Ribosomal_L14e

Ribosomal_L15e

Ribosomal_L16

Ribosomal_L17

Ribosomal_L18_c

Ribosomal_L18ae

Ribosomal_L18e Ribosomal_L18p

Ribosomal_L19

Ribosomal_L19e

Ribosomal_L2 Ribosomal_L2_C

Ribosomal_L20

Ribosomal_L21e

Ribosomal_L21p

Ribosomal_L22

Ribosomal_L22e

Ribosomal_L23

Ribosomal_L23eN Ribosomal_L24e

Ribosomal_L25p

Ribosomal_L27

Ribosomal_L27e

Ribosomal_L28

Ribosomal_L28e

Ribosomal_L29

Ribosomal_L29e

Ribosomal_L3

Ribosomal_L30

Ribosomal_L30_N

Ribosomal_L31

Ribosomal_L31e Ribosomal_L32e

Ribosomal_L32p

Ribosomal_L33

Ribosomal_L34

Ribosomal_L34e

Ribosomal_L35Ae

Ribosomal_L35p

Ribosomal_L36

Ribosomal_L36e

Ribosomal_L37ae

Ribosomal_L37e Ribosomal_L38e

Ribosomal_L39

Ribosomal_L4

Ribosomal_L40e

Ribosomal_L44

Ribosomal_L5 Ribosomal_L5_C

Ribosomal_L6

Ribosomal_L6e

Ribosomal_L6e_N

Ribosomal_L7Ae

Ribosomal_L9_C

Ribosomal_L9_N

Ribosomal_S10

Ribosomal_S11

Ribosomal_S12

Ribosomal_S13

Ribosomal_S13_N

Ribosomal_S14 Ribosomal_S15

Ribosomal_S16

Ribosomal_S17

Ribosomal_S17e

Ribosomal_S18

Ribosomal_S19

Ribosomal_S19e

Ribosomal_S2

Ribosomal_S20p

Ribosomal_S21

Ribosomal_S21e

Ribosomal_S23p

Ribosomal_S24e

Ribosomal_S25

Ribosomal_S26e Ribosomal_S27

Ribosomal_S27e

Ribosomal_S28e

Ribosomal_S3_C

Ribosomal_S30

Ribosomal_S30AE

Ribosomal_S3Ae

Ribosomal_S4

Ribosomal_S4e

Ribosomal_S5

Ribosomal_S5_C

Ribosomal_S6

Ribosomal_S6e

Ribosomal_S7

Ribosomal_S7e

Ribosomal_S8

Ribosomal_S8e

Ribosomal_S9

Ribul_P_3_epim

Ricin_B_lectin

RicinB_lectin_2

Rick_17kDa_Anti

Rieske

Rieske_2 RimK

RimM

Ring_hydroxyl_A

Ring_hydroxyl_B

RINGv

RIO1

RLAN

RloB

RmlD_sub_bind

RMMBL

RmuC RNA_GG_bind

RNA_helicase

RNA_pol RNA_pol_A_bac

RNA_pol_A_CTD RNA_pol_L

RNA_pol_L_2 RNA_pol_N RNA_pol_Rpb1_1

RNA_pol_Rpb1_2

RNA_pol_Rpb1_3

RNA_pol_Rpb1_4

RNA_pol_Rpb1_5

RNA_pol_Rpb2_1

RNA_pol_Rpb2_2

RNA_pol_Rpb2_3

RNA_pol_Rpb2_4

RNA_pol_Rpb2_45

RNA_pol_Rpb2_6

RNA_pol_Rpb2_7

RNA_pol_Rpb4

RNA_pol_Rpb5_C

RNA_pol_Rpb6

RNase_E_G

RNase_H

RNase_H_2

RNase_HII

RNase_PH

RNase_PH_C

RNase_T

RNB RnfC_N

Rnf−Nqr

Robl_LC7

Rod−binding

ROK

ROS_MUCR

Rossmann−like

Rotamase

Rotamase_2

Rotamase_3

RPA

RPE65

RQC

RRF

Rrf2

RRM_1

RRM_5

RRM_6

RrnaAD

RRXRR

RS4NT

RsbRD_N

Rsd_AlgQ

RseA_N

RseC_MucC

RskA

RTC

RuBisCO_large

RuBisCO_large_N RuBisCO_small

Rubredoxin

Rubrerythrin

RuvA_C

RuvA_N

RuvB_C

RuvB_N

RuvC rve

rve_2

rve_3

RVT_1

RVT_3

RVT_N

RyR

S1

S1_2

S10_plectin

S1−P1_nuclease

S4

S4_2 S6PP

Saccharop_dh

Saccharop_dh_N

S−AdoMet_synt_C

S−AdoMet_synt_M

S−AdoMet_synt_N

SAF

SAF_2

SAICAR_synt

SAM_1

SAM_adeno_trans

SAM_decarbox

SAM_MT

SAP

SapB_1

SapC

SASP_gamma

SATase_N

SBBP

SbcCD_C

SBDS

SBF

SbmA_BacA SBP

SBP_bac_1

SBP_bac_10

SBP_bac_11

SBP_bac_3

SBP_bac_5

SBP_bac_6

SBP_bac_7

SBP_bac_8

SBP_bac_9

SBP56

SCAMP

ScdA_N

SCFA_trans

SCO1−SenC

SCP2 SCP2_2

ScpA_ScpB

SCPU

Scramblase

SDF

SDH_alpha

SDH_beta

Sdh_cyt

SDH_sah

Sdh5

SdpI

SE

Sec_GG Sec61_beta

Sec63

Sec7 SecA_DEAD

SecA_PP_bind

SecA_SW

SecB

SEC−C

SecD_SecF

SecD−TM1

SecE

SecG

Secretin

Secretin_N

SecY

Se−cys_synth_N

Sedlin_N

SEFIR

Sel1

SelA

SelB−wing_2

SelB−wing_3

SelR

Semialdhyde_dh

Semialdhyde_dhC

Senescence

Sensor_TM1

Ser_hydrolase

Serinc

Serpin Seryl_tRNA_N

SET

SF3b10

SfsA

SGL SH2

SH3_1

SH3_3

SH3_4

SHD1

Shikimate_DH

Shikimate_dh_N

SHMT

SHOCT

SHS2_FTSA

Sigma54_activat

Sigma54_AID

Sigma54_CBD

Sigma54_DBD

Sigma70_ECF

Sigma70_ner

Sigma70_r1_1

Sigma70_r1_2

Sigma70_r2

Sigma70_r3

Sigma70_r4

Sigma70_r4_2 SIMPL

SIP

SIR2

SIR2_2

SirA

SirB

SIS

SIS_2

SKI

Skp1

Skp1_POZ

SLBB

SLH

Slp

SLT

SLT_2

SlyX

SMC_hinge SMC_N

S−methyl_trans

SmpA_OmlA

SmpB

Smr

SNARE_assoc

SNase

SNF

SNF2_N

Snf7

SNO

SnoaL

SnoaL_2

SnoaL_3

SnoaL_4

Sod_Cu

Sod_Fe_C

Sod_Fe_N

Sod_Ni

Solute_trans_a SOR_SNZ

Sortase

SOUL

SoxD

SoxY SoxZ

SpecificRecomb

Spermine_synth

Spherulin4

SpoA

SpoIID

SpoIIE

Spond_N

SPOR

Spore_YtfJ

SpoU_methylase SpoU_sub_bind

SPOUT_MTase

SpoVAD

SpoVG

SpoVR

SpoVS SprA_N

SprA−related

Spt4 Spt5−NGN

SpvB

SPW

SQS_PSY

SrfB

SRP_SPB

SRP54

SRP54_N

SRP−alpha_N

SSB

SSF

SsgA

SspB

STAS

STAS_2

Steroid_dh

Sterol_MT_C

Sterol−sensing

Stig1 Stimulus_sens_1

STN

Strep_67kDa_ant

STT3

SUA5

Sua5_yciO_yrdC Suc_Fer−like

Succ_CoA_lig

Succ_DH_flav_C

Sucrose_synth

SufE

SUFU Sugar_tr

Sugar−bind

SUI1

Sulf_transp

Sulfatase

Sulfate_tra_GLY

Sulfate_transp Sulfotransfer_3

Sulphotransf

SurA_N

SurA_N_3

SurE

Surf_Ag_VNR

SURF1

SURNod19

SusD

SusD−like

SusD−like_2

SusD−like_3

SWIB SWM_repeat Syja_N

Synaptobrevin

T_hemolysin

T2SE

T2SE_Nter

T2SF

T2SG

T2SK

T2SM_b

T2SS−T3SS_pil_N

T4SS−DNA_transf

T6SS−SciN

Tad

TadE

Tagatose_6_P_K

Tannase

TAT_signal

TatC

TatD_DNase

TauD

TauE

Tautomerase

TB2_DP1_HVA22

TBP

TcdB_toxin_midC

TcdB_toxin_midN

TctA

TctB

TctC

TCTP

TehB TelA

TENA_THI−4

TerB

TerC

TerD

Terminase_2

Terminase_GpA

TetR

TetR_C_4

TetR_C_6

TetR_N

Tetraspannin

Tex_N TF_Zn_Ribbon

TFIIB

TfoX_C

TfoX_N

TfuA

TGS

TGT

THF_DHG_CYH

THF_DHG_CYH_C Thg1

Thg1C Thi4

ThiC

ThiC−associated

ThiF ThiG

ThiI

Thioesterase

Thiolase_C

Thiolase_N

Thiol−ester_cl

Thioredoxin

Thioredoxin_2

Thioredoxin_3

Thioredoxin_4

Thioredoxin_7

Thioredoxin_8

ThiS

ThiW

Thr_dehydrat_C ThuA

Thy1

ThylakoidFormat

Thymidylat_synt

Thymidylate_kin

Thymosin

Thyroglobulin_1

Tic20

tify

TIG

TIL

TilS_C

TIM

Tim44

TIM−br_sig_trns

TIP49

TipAS

TIR_2

TIR−like

TK TLC

TM_helix

TM2

TMA7

Tmemb_14

TMP−TENI

TnpB_IS66 TOBE

TOBE_2

TOBE_3

Tocopherol_cycl

Tol_Tol_Ttg2

TolB_N

Toluene_X

TonB

TonB_2

TonB_dep_Rec

Topo_C_assoc

Topoisom_bac

Topoisom_I

Topo−VIb_trans

Toprim

Toprim_4

Toprim_C_rpt

Toprim_Crpt

Toprim_N

Toxin_YhaV

TP_methylase

TPK_catalytic

TPMT

TPP_enzyme_C

TPP_enzyme_M

TPP_enzyme_N

TPPK_C

TPR_1

TPR_10 TPR_11

TPR_12

TPR_14

TPR_16

TPR_17

TPR_18 TPR_2

TPR_6

TPR_7

TPR_8

TPR_9

TPT

TraB

TraG−D_C

TRAM

TRAM_LAG1_CLN8

Trans_reg_C

Transaldolase

Transcrip_reg

Transglut_core

Transglut_core2 Transglut_core3

Transgly

Transgly_assoc

Transglycosylas

Transket_pyr Transketolase_C

Transketolase_N

Translin

Transp_cyt_pur

Transpeptidase

Transposase_20

Transposase_31

Transposase_mut

Transthyretin

TRAP−gamma

TrbC

TrbI

TRCF Trehalase

Trehalose_PPase

Trigger_C

Trigger_N

TrkA_C TrkA_N

TrkH

TRL Trm112p

TrmB

TrmE_N

tRNA_anti

tRNA_anti_2

tRNA_anti−like

tRNA_bind

tRNA_m1G_MT

tRNA_Me_trans

tRNA_NucTran2_2

tRNA_SAD

tRNA_synt_2f

tRNA_U5−meth_tr

tRNA−synt_1

tRNA−synt_1_2

tRNA−synt_1b

tRNA−synt_1c

tRNA−synt_1c_C tRNA−synt_1d

tRNA−synt_1e

tRNA−synt_1f

tRNA−synt_1g tRNA−synt_2

tRNA−synt_2b

tRNA−synt_2c

tRNA−synt_2d

tRNA−synt_2e

tRNA−synt_His

tRNA−Thr_ED

Trns_repr_metal

Tropomyosin

TROVE

Trp_dioxygenase

Trp_halogenase

Trp_repressor

Trp_syntA

TruB_N

TruB−C_2

TruD

TrwB_AAD_bind

TrwC

Trypsin

Trypsin_2

TSCPD

TSP_1

TSP_3

TspO_MBR

Tub

Tub_2

Tubulin

Tubulin_2

Tubulin_C

TUDOR

TylF

Tyr_Deacylase

Tyrosinase

UBA

UBA_e1_thiolCys

UBACT

UbiA

UbiD

Ubie_methyltran

Ubiq_cyt_C_chap

ubiquitin

U−box

Ub−RnfH UCH

UCR_Fe−S_N

UCR_UQCRX_QCR9

UDG

UDPG_MGDP_dh

UDPG_MGDP_dh_C

UDPG_MGDP_dh_N

UDPGP

UDPGT

UFD1

Ufm1

Uma2

UnbV_ASPIC Unstab_antitox

UPF0004

UPF0014

UPF0016

UPF0020

UPF0027

UPF0029

UPF0041

UPF0047

UPF0051

UPF0052 UPF0054

UPF0058

UPF0060

UPF0061

UPF0066

UPF0075

UPF0079

UPF0081 UPF0093

UPF0102

UPF0104

UPF0114

UPF0118

UPF0126

UPF0147

UPF0149

UPF0150

UPF0157

UPF0160

UPF0167 UPF0175

UPF0182

UPF0197

UPF0227

UPF0233

UPF0261

UPF0262 UPF0278

UPF0547

UQ_con

Urease_alpha

Urease_beta

Urease_gamma

UreD

UreE_C

UreE_N

UreF

Ureidogly_hydro

Uricase

Urocanase

URO−D

Usg

Usher

Usp

UT

UTRA UvdE

UVR

UvrB

UvrC_HhH_N

UvrD_C

UvrD_C_2

UvrD−helicase

UxaC

UxuA

V_ATPase_I V4R

VacJ

Val_tRNA−synt_C

VanW

VanY

VanZ vATP−synt_AC39

vATP−synt_E

Vault

VCBS

VHS

Viral_coat

VirJ

Virul_Fac

Virul_fac_BrkB

Virulence_fact

Virulence_RhuM

VIT

VIT_2 VIT1

Vitellogenin_N

VitK2_biosynth

VKG_Carbox

VKOR

Voltage_CLC

VPEP

Vps35

Vps55

Vsr

VTC VWA

VWA_2

VWA_3

VWA_CoxE

vWF_A

W2

WbqC

WCOR413

WD40

WES_acyltransf

WGR

WHG

WhiA_N Whib

WRKY

WW

WXG100

WYL Wyosine_form

Wzy_C

Wzz

Xan_ur_permease

XdhC_C

XdhC_CoxI

XFP

XFP_C

XFP_N

XhoI

XisH

XisI

XPG_I

XPG_N

Y_phosphatase Y_phosphatase3

Y_phosphatase3C

Y_Y_Y

Y1_Tnp

Y2_Tnp

Yae1_N

YaeQ

YajC

YARHG

YbaB_DNA_bd YbaK

YbjN

YbjQ_1 YcaO

YccV−like

YceG

YceI

Ycf4

Ycf66_N

Ycf9

YcfA

YchF−GTPase_C YCII

YcxB YdfA_immunity

YdjC YfhO

YfiO

YgbA_NO

YgbB

YGGT

YhhN

YHS

YHYH

YiaAB

YibE_F

YicC_N

YiiD_Cterm

Yippee

YjeF_N

YjfB_motility

YjgP_YjgQ

YkuD

YkuD_2

YmdB

YMF19

YpzG YqcI_YcgG

YqeY

YqjK

YscJ_FliF

YscJ_FliF_C

YtkA

YTV

YtxH

YukD

YWTD

Z1

ZapA

zf−A20

zf−AN1

zf−B_box

zf−C2H2

zf−C3HC4_3

zf−C4_ClpX

zf−C4_Topoisom

zf−CCCH zf−CCHC

zf−CDGSH

zf−CGNR zf−CHC2

zf−CHCC

zf−CHY

zf−dskA_traR

zf−FPG_IleRS

zf−H2C2_2

zf−HC2 zf−HYPF

zf−LITAF−like

zf−MaoC

zf−MYND

zf−NADH−PPase

zf−PARP

zf−RanBP

zf−rbx1

zf−ribbon_3

zf−RING_2

zf−Sec23_Sec24

zf−TFIIB

zf−trcl

zf−UBP

zf−ZPR1

zinc_ribbon_2

zinc_ribbon_4

zinc_ribbon_5

Zip

ZipA_C

Zn_clus Zn_peptidase

Zn_peptidase_2

Zn_ribbon_2

Zn_Tnp_IS1595

Zn_Tnp_IS91

ZZ

KbKc

Km

Sa

Sb

MCR_alpha MCR_beta

Actin

DUF1501

gpD

RNA_replicase_B

SASP

ATP−synt_C

COX1

Flp_Fap Monooxygenase_B

Photo_RC

AmoC CSD

Ka

−0.2 0.0 0.2 0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.6

22.6

%

46.3%

FIG 3 Biplot of correspondence analysis of sample Pfam profiles, illustratingthe difference in gene expression. Pfam profiles corresponding to the differentdepths of Knudsenheia (Ka, Kb, and Kc) and Solvatn (Sa and Sb) are shown inblue. Individual Pfams responsible for the majority of the differences betweensamples are shown in red. The x axis represents the first dimension, whichexplained 46.3% of the inertia (a measure of the total difference between sam-ple profiles); the y axis represents the second dimension, which explained22.6% of the inertia. The distance between the sample Pfam profiles indicatesthe difference in gene expression between samples. The length of the lineconnecting Pfams to the center of the plot is equivalent to the weight of par-ticular Pfams in the final solution, given the inertia of the dimensions it crosses(i.e., the longer the line, the larger part of the inertia it explains). The directionof the line indicates the sample orientation of its weight (e.g., if a line pointstoward deeper-layer samples, the relative abundance of transcripts for thatPfam is highest in the deeper layers).

Peat Soil Metatranscriptomics

September 2014 Volume 80 Number 18 aem.asm.org 5765

on February 23, 2015 by U

NIV

ER

SIT

ET

SB

IBLIO

TE

KE

T I T

RO

MS

Ohttp://aem

.asm.org/

Dow

nloaded from

Page 6: Metatranscriptomic Analysis of Arctic Peat Soil ... - UiT

jority of the archaeal 16S rRNAs were assigned to known metha-nogenic taxa, with the family Methanosaetaceae being the overallmost abundant (�10% of Archaea in the top layer and �40% inlower layers), followed by Methanosarcinaceae and the ordersMethanomicrobiales and Methanobacteriales (50% in the top layerof Knudsenheia) (Fig. 5B). Similarly, at Knudsenheia, the relativeabundance of mRNAs assigned to Archaea was low in the toplayers and increased with depth, from �0.5% (�1,500 reads) to�8% (�25,000 reads) of all taxonomically assigned mRNAs (Fig.5A). For the Solvatn site, archaeal mRNA transcripts increasedfrom �0.5% (�1,500 reads) to �1.5% (�3,000 reads). MostmRNAs stemmed from the Methanosaetacaea, followed byMethanosarcinaceae and Methanomicrobiales. A detailed analysisof the transcripts encoding enzymes of methanogenesis pathwaysshowed that all major pathways were present (Fig. 6). In general,the relative abundance of transcripts for all pathways increasedwith depth. Among these, the transcripts encoding subunits ofmethyl coenzyme M reductase (methyl-CoM reductase [MCR];EC 2.8.4.1) were most abundant. Corresponding to the highabundance of Methanosaetaceae identified by 16S rRNA andmRNA annotation, the transcripts for AMP-forming acetate-co-

enzyme A ligase (EC 6.2.1.1), a key enzyme for acetoclastic metha-nogenesis by Methanosaetaceae, was the most abundant. In linewith this, there was also a high relative abundance of transcriptsfor the carbon monoxide dehydrogenase, catalyzing the reductionof acetyl-coenzyme A to 5-methyl tetrahydromethanopterin inacetoclastic methanogens. The transcripts encoding enzymes foracetoclastic methanogenesis typical for the Methanosarcinaceaewere of low relative abundance (acetate kinase, EC 2.7.2.1, andphosphate acetyltransferase, EC 2.3.1.8). Among the hydrog-enotrophic branches of methanogenic pathways, the transcriptsfor the pathway for methanogenesis from formate were present atthe highest relative abundance (key enzyme, formate dehydroge-nase, EC 1.2.1.2), while those specific for the reduction of CO2

with reducing power from H2 (ferredoxin hydrogenase, EC1.12.7.2) were present at a low relative abundance. The transcriptsfor the remaining steps of hydrogenotrophic methanogenesis,which are common to both H2 and formate metabolism, werepresent at relative abundances similar to that of formate dehydro-genase. Transcripts related to methylotrophic methanogenesiswere at lower relative abundances, with methanol-related tran-scripts (EC 2.1.1.246) being highest, followed by trimethylamine-

0

Ka Kb Kc Sa Sb

Hemicellulases

GH8 GH11 GH10

GH12 GH26 GlH28 GH53

0Ka Kb Kc Sa Sb

Cellulases

GH6 GH9 GH48

GH44 GH45 Cellulase Cellulase-like

0

2e-4

4e-4

6e-4

8e-4

1e-3

1.2e.-3

Ka Kb Kc Sa Sb

Oxidases active on lignin and phenolic compounds

Dioxygenase C Cu-oxidase Cu-oxidase 2Cu-oxidase 3 Cu-oxidase 4 peroxidase

0

Ka Kb Kc Sa Sb

Debranching enzymes

GH62 GH67C GH67MAlpha-L-AF C ArabFuran-catal Bac rhamnosid

Bac rhamnosid N Alpha L fucos

Frac

tion

of a

ll id

entifi

ed P

fam

dom

ains

2e-4

4e-4

6e-4

8e-4

1e-3

2e-4

4e-4

6e-4

8e-4

4e-4

8e-4

1.2e.-3

1.6e.-3

2e.-3

(A) (B)

(C) (D)

*** (*)

***

*

***

*

***

(*)(**)

FIG 4 Relative abundances of transcripts encoding enzymes involved in plant polymer decomposition at different depths in Knudsenheia (Ka, Kb, and Kc) andSolvatn (Sa and Sb). (A) Oxidases that catalyze the degradation of lignin and other phenolic compounds; (B) cellulases that hydrolyze cellulose; (C) endohemi-cellulases that hydrolyze the core chain of hemicelluloses; (D) debranching enzymes that hydrolyze the side chains of hemicelluloses. Protein family domains wereidentified by searches in the protein family database Pfam. Each name given for the color code represents a Pfam domain. The whole range of enzymatic functionsassociated with glycoside hydrolases (GH) and other Pfam domains can be found in the Pfam (http://pfam.sanger.ac.uk/) and CAZy (carbohydrate-activeenzymes) (http://www.cazy.org/) databases. Note that some Pfams have overlapping activities and that the grouping of these into categories is based on their mainor one of their main functions. Significant differences in the number of transcripts for the categories of polymer decomposition between peat soil depths areindicated as follows: “*” over Kb means that there is a difference between Ka and Kb, “*” over Kc means that there is a difference between Ka and Kc, “(*)” overKc means that there is a difference between Kb and Kc, and “*” over Sb means that there is a difference between Sa and Sb. P value confidence levels: *, �0.05;**, �0.01; and ***, �0.001.

Tveit et al.

5766 aem.asm.org Applied and Environmental Microbiology

on February 23, 2015 by U

NIV

ER

SIT

ET

SB

IBLIO

TE

KE

T I T

RO

MS

Ohttp://aem

.asm.org/

Dow

nloaded from

Page 7: Metatranscriptomic Analysis of Arctic Peat Soil ... - UiT

related transcripts (EC 2.1.1.250), with transcripts for dimethyl-amine (EC 2.1.1.249) and monomethylamine (EC 2.1.1.248) atthe lowest abundances.

The relative abundance of SSU rRNA assigned to the methane-oxidizing bacteria (MOB) within Methylococcaceae increased withdepth (Fig. 7). The majority of these sequences were assigned toMethylobacter, being most similar to the 16S rRNA of Methylobac-ter tundripaludum (33). Correspondingly, there was also an in-crease in the relative abundance of mRNA assigned to Methylococ-caceae (Fig. 7). The majority of the mRNA transcripts were mostsimilar to homologues encoded in the genome of M. tundripalu-dum SV96 (34) (see Table S4 in the supplemental material). Thetranscripts encoding the subunits of the particulate methanemonooxygenase (pMMO) were the most abundant, being �5-fold higher than transcripts encoding enzymes for the down-stream steps of methane oxidation: methanol, formaldehyde, andformate oxidation (see Table S4). Other methanotrophic taxa,such as the candidate division NC10 (relative abundance � 2e�3)and the Methylocystaceae (�1.5e�4), were observed at lower rel-ative abundances.

DISCUSSION

A major limitation for the utilization of metatranscriptomics inthe study of active microorganisms in the environment is the shorthalf-lives of mRNA molecules (35) and the variations in half-livesbetween species and different genes (1). Thus, changes in the soilconditions upon sample retrieval might cause a change in thetranscript patterns. RNA isolation from soils is particularly chal-lenging due to the inaccessibility of cells located on and within soilparticles, inefficient cell lysis, the adsorption of RNA to soil parti-cles, and the presence of RNases (1). In our study, changes intranscript patterns were counteracted by rapid flash-freezing ofsamples in liquid nitrogen immediately after sampling, whilehigh-efficiency extraction was achieved by grinding the peat soil inliquid nitrogen before NA extraction.

Due to the absence of poly(A) tails in prokaryotic mRNAs,common enrichment strategies mostly rely on the removal ofrRNAs (3, 4). Soil contains organisms from all the three domains,Bacteria, Archaea, and Eukarya, making it difficult to synthesize acompatible combination of probes for subtractive hybridization.

Frac

tion

of m

RNA

(A)

Thermoplasmatales Halobacteriales MethanobacterialesMethanosarcinales Methanosarcinaceae MethanosaetaceaeMethanomicrobiales Other Euryarchaeota ThaumarchaeotaCrenarchaeota Other Archaea

0

2e-2

4e-2

6e-2

Ka Sa

1e-2

3e-2

5e-2

0

2e-2

4e-2

6e-2

8e-2

1e-1

Kb Kc Sb

***

***

***

(***)

0

6e-4

9e-4

1.2e-3

1.5e-3

3e-4

1.8e-3

Ka Sa Kb Kc Sb

1e-2

2e-2

3e-2

4e-2

5e-2

0

6e-2

7e-2 *** ***

***

Frac

tion

of rR

NA

(B)

FIG 5 Archaeal community profiles based on mRNA (A) and SSU rRNA (B) at the different peat depths of Knudsenheia (Ka, Kb, and Kc) and Solvatn (Sa andSb). Column sizes represent the fraction of sequences assigned to taxa within Archaea at order-level taxonomy or higher. Methanosarcinales was split into thefamilies Methanosarcinaceae and Methanosaetaceae. Those assigned as Methanosarcinales could not be further assigned to family level with the thresholds applied(see Materials and Methods). Other Euryarchaeota, Crenarchaeota, and Thaumarchaeota include orders that made up very small fractions of the total; thus, thesewere pooled. Other Archaea include sequences belonging to other phyla or could not be assigned to phylum with the thresholds applied. Significant differencesin the number of transcripts between peat soil depths are indicated as explained in the Fig. 4 legend.

Peat Soil Metatranscriptomics

September 2014 Volume 80 Number 18 aem.asm.org 5767

on February 23, 2015 by U

NIV

ER

SIT

ET

SB

IBLIO

TE

KE

T I T

RO

MS

Ohttp://aem

.asm.org/

Dow

nloaded from

Page 8: Metatranscriptomic Analysis of Arctic Peat Soil ... - UiT

Eukaryotes have been shown to comprise 10% or more of therRNA in soil metatranscriptomes (2, 10), stemming from fungi,protists, and metazoa. Therefore, a removal of the eukaryotes isessential to achieve a high fraction of mRNA. Subtractive hybrid-ization using custom-generated probes, constructed only from thebacterial rRNA, was shown to reduce the rRNA fraction to 50 to60%, leaving 40 to 50% of putative mRNA in marine metatran-scriptomes (for an example, see reference 9). This is similar to thekit-based rRNA removal from the high-Arctic peat soils per-formed in this study, where the rRNA fraction was reduced to60%, leaving 40% putative mRNA (Km) (Table 1). Thus, the com-mercial kit-based method was as efficient as the custom probe-based method. This might in part be due to the efficient utilizationof two kits with different probe compatibilities with bacterialrRNA and one kit compatible with eukaryotic rRNA, removingthe 16S and 23S and the 18S and 28S fractions of the rRNA, re-

spectively (Fig. 1; see also Fig. S1 in the supplemental material). Ina polycyclic aromatic carbon-contaminated soil microcosm,mRNA enrichment with MICROBExpress (Ambion) gave a finalfraction of putative mRNA at �18% (16), less than half that ob-tained in our mRNA enrichment. MICROBExpress was one of thethree kits used with the peat microbiota, and the higher fraction ofputative mRNA obtained might be explained by the utilization oftwo additional kits.

Organic molecules such as humic and tannic acids have beenshown to inhibit PCR by affecting the polymerase activity or bind-ing the template, rendering it inaccessible to the enzyme (11, 36).The activities of hydrolytic extracellular enzymes as well as generalbacterial activity are inhibited by accumulated phenolic com-pounds in the anoxic layers of peat soils (13). The cDNA synthesisfrom the deeper layers in Arctic peat soils was severely inhibiteddespite the extraction of high-quality RNA and purification of the

0

1e-4

2e-4

3e-4

6.2.1.1 2.7.2.1 2.3.1.8 1.2.99.2

Acetate

0

5e-4

1e-3

1e-3

2.1.1.86 2.8.4.1 1.8.98.1

Ka Kb Kc Sa Sb

0

5e-5

1e-4

2.1.1.250 2.1.1.249 2.1.1.248 2.1.1.246

Methylamines and Methanol

Acetate

CH4

H2/CO2

Monomethylamine

Dimethylamine

1.2.1.2

1.12.98.1

5,10-Methylene-THMPT

5 - Methyl-THMPT

Acetyl-P 2.7.2.1

2.3.1.8

6.2.1.1

Acetyl-CoA

Methyl-CoM

1.5.99.9

2.1.1.86

1.2.99.2

Methanol

1.5.99.11

5,10 - Methenyl-THMPT

Formate

Trimethylamine2.1.1.250

2.1.1.249

2.1.1.248

2.1.1.2462.8.4.1

1.8.98.1

CoM

Formate and H2/CO2

Frac

tion

of a

ll as

sign

ed m

RNA

1.2.1.2 1.12.7.2 1.5.99.9 1.12.98.1 1.5.99.110

1e-4

2e-4

3e-4

1.12.7.2

(A)

(B)

***

***

**

***

***

*** **

* (*

)

***

***

***

***

***

** ***

(*)

***

***

***

***

***

*** ***

***

***

FIG 6 Relative abundances of transcripts for key enzymes in methanogenesis (A) and the specific catalytic steps for the enzymes in the different pathways ofmethanogenesis (B). Red arrows indicate omitted pathway steps. Abbreviations: THMPT, tetrahydromethanopterin (THSPT [S for Sarcina] within Methano-sarcinales); CoA, coenzyme A; CoM, coenzyme M. Enzyme categories (EC): 6.2.1.1, acetate-CoA ligase (AMP forming); 2.7.2.1, acetate kinase; 2.3.1.8, phosphateacetyltransferase; 1.2.99.2, carbon monoxide dehydrogenase; 1.2.1.2, formate dehydrogenase; 1.12.7.2, ferredoxin hydrogenase; 1.5.99.9, 5,10-methylene-THMPT dehydrogenase; 1.12.98.1, coenzyme F420 hydrogenase; 1.5.99.11, 5,10-methylene-THMPT reductase; 2.1.1.250, trimethylamine methyltransferase;2.1.1.249, dimethylamine methyltransferase; 2.1.1.248, monomethylamine methyltransferase; 2.1.1.246, methanol methyltransferase; 2.1.1.86, tetrahydro-methanopterin S-methyltransferase; 2.8.4.1, methyl-CoM reductase (CoB-CoM heterodisulfide reductase). Significant differences in the number of transcriptsbetween peat soil depths are indicated as explained in the Fig. 4 legend.

Tveit et al.

5768 aem.asm.org Applied and Environmental Microbiology

on February 23, 2015 by U

NIV

ER

SIT

ET

SB

IBLIO

TE

KE

T I T

RO

MS

Ohttp://aem

.asm.org/

Dow

nloaded from

Page 9: Metatranscriptomic Analysis of Arctic Peat Soil ... - UiT

extracts. To circumvent the inhibition problem, the RNA sampleswere diluted and linearly amplified after poly(A) tailing. Thisproved to be an efficient method for generating high RNA yields.Linear amplification is not prone to skewing the relative abun-dances of different mRNAs, since the templates for the RNA syn-thesis are cDNA fragments that after initial reverse transcriptionare present at the same concentration throughout the amplifica-tion step. However, the amplification of RNA has been shown toincrease the mRNA fraction of the metatranscriptomes (6, 9). Ithas been suggested that this is due to a preferential polyadenyla-tion of mRNA and an inefficient amplification of molecules with ahigh degree of secondary structure (6). This was also observed inour study, with the fraction of putative mRNA ranging from 15 to28%, 2- to 4-fold higher than that observed in previously obtainedmetatranscriptomes processed from the same soil samples with-out amplification (putative mRNA, �5 to 7%) (10). Compared tothe moderate mRNA enrichment during the rRNA removal pro-cedures, the RNA amplification step was particularly powerfuland in parallel circumvented the inhibition problems.

Comparison between the gene expression profiles of themRNA-enriched library and the mRNA fraction of the total RNAin human stool samples has shown that there was little effect onthe relative abundance of mRNAs (double-log scatterplot R2 val-ues, 0.91 and 0.94) (8). Also, subtractive hybridization with sam-ple-specific probes had a low impact on the relative abundances ofmRNAs (9). In contrast to this, our study showed that the mRNAenrichment had substantial effects on the relative abundances oftranscripts within many different protein families. Ideally, thetranscripts in an mRNA-enriched library should be a larger sub-sample of the nonenriched library; however, the differences ob-served were larger than that obtained between two random sam-plings from the same set of annotated mRNA sequence tags (e.g.,Ka replicate 1 and Ka replicate 2) (Fig. 2A). The difference was alsoshown to be larger than that observed between the nonenrichedlibraries from two different peat microbiotas (Ka and Sa). It wasnot possible to determine the exact cause for the observed skew inrelative abundances of transcripts for different Pfams. It wasshown that the relative abundances of transcripts for some Pfams

were particularly high in Ka relative to Km, while other Pfamswere higher in Km. Also, the taxonomic annotation of mRNAindicated that no specific taxonomic lineages were affected by themRNA enrichment. Rather, the effect was broad as shown by thelow R2 value in the double-log scatter plots (Fig. 2A). Thus, it canbe speculated that the skew was due to unspecific mRNA degra-dation during the prolonged sample processing. Consideringthese limitations and the high-throughput sequencing technolo-gies available, we recommend performing deep sequencing onlinearly amplified or nonamplified peat soil metatranscriptomes,leaving out the time-consuming subtractive hybridization steps.

Metatranscriptomics allows for a holistic study of microbialprocesses in response to environmental changes. Particularly, itenables the study of microbial transcription of genes that are tax-onomically diverse and those that encode enzymes involved incomplex pathways, including many enzymes with different rolesin different organisms. In anoxic peat soils, extracellular degrada-tion of plant polymers and methanogenesis are the initial and laststeps in the mineralization of SOC, and both are difficult to studyusing targeted primer PCR-based methods due to the diversity oforganisms and metabolic pathways involved. The partly degradedpeat soil matrix contains a mixture of polysaccharides, proteins,and aromatic (e.g., lignin and other phenolic compounds) andaliphatic compounds which differs depending on the vegetationinput to the soil (37). The Arctic peat soils studied in this work arecharacterized by a cover of moss species interspersed by grasses(10). Mosses and grasses contain many similar cell wall polysac-charides, but some are unique to each of them and many arepresent at different proportions (38). Also, while grasses are richin lignin, mosses are not, but they contain other types of phenoliccompounds (38). The degradation of these compounds is initiallycatalyzed by extracellular hydrolytic and oxidative enzymes. Thevegetation input in these soils is reflected in the relative abundanceof transcripts for polymer-degrading enzymes. In particular, thehigh relative abundance of transcripts for cellulases in the toplayers of both Knudsenheia and Solvatn correspond to the highcellulose content in both moss and grass cell walls (38). Also, con-sidering hemicelluloses, the high relative abundance of galactosi-

0

0.002

0.004

0.006

0.008

0.01

0.012

Ka Kb Kc Sa SbMethylococcaceae(not assigned further)

Methylomonas Methylobacter

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Ka Kb Kc Sa Sb

(A) (B)

Methylomicrobium Methylothermus Methylosarcina

Methylosoma Methylocaldum

***

***(***)

***

******

(***)

***

FIG 7 Relative abundances of 16S rRNA sequences (A) and mRNA assigned to methanotrophic taxa (relative to total assigned sequences) (B) at the differentdepths of Knudsenheia (Ka, Kb, and Kc) and Solvatn (Sa and Sb). Due to the low number of genomes, particularly from Arctic regions, within the Methylococ-caceae, mRNA sequence tags were not assigned further to genus level taxonomy. The majority of mRNA was assigned to the genome of Methylobactertundripaludum SV96 (see Table S4 in the supplemental material for details). Significant differences in the number of transcripts between peat soil depths areindicated as explained in the Fig. 4 legend.

Peat Soil Metatranscriptomics

September 2014 Volume 80 Number 18 aem.asm.org 5769

on February 23, 2015 by U

NIV

ER

SIT

ET

SB

IBLIO

TE

KE

T I T

RO

MS

Ohttp://aem

.asm.org/

Dow

nloaded from

Page 10: Metatranscriptomic Analysis of Arctic Peat Soil ... - UiT

dases (GH53) and mannanases (GH26) reflects the high fractionof mosses, which are known to contain larger proportions ofgalactomannans and glucogalactomannans than grasses (38). In-terestingly, the decreased relative abundance of cellulase tran-scripts and increase in transcripts for the degradation of highlybranched hemicelluloses indicate that the SOC in deeper peat lay-ers contained less cellulose. Thus, it appears that the microbiotametabolism had shifted toward degradation of highly branchedhemicelluloses containing fucose, arabinose, and rhamnose.These are known as fucoside xyloglucans, heteroxylans, and rh-amnogalacturonans and are more common in grasses than mosses(38), indicating that these parts of the grass cell walls are particu-larly recalcitrant to decomposition and/or that the contribution ofgrasses to peat accumulation has been higher in the past. Extracel-lular hydrolytic degradation of polysaccharides has been consid-ered a potential rate-limiting step in SOC mineralization (13, 39).Therefore, the characterization of changes in microbial transcrip-tion patterns might help to identify the specific compounds thatmake up the substrates for limiting steps in decomposition indifferent peat deposits and the dynamics of their decomposition.Genes encoding plant polymer-degrading enzymes are found inthe genomes of members of a broad range of bacterial phyla (40,41). Thus, it has been difficult to investigate which members of agiven bacterial community are involved in the decomposition ofplant polymers and the dynamics of these particular communities.Taxonomic annotation of transcripts encoding extracellular en-zymes has allowed us to investigate these microbial taxa, showingthat many different phyla are involved in polymer decomposition.However, Bacteroidetes seemed to be particularly important in thedecomposition of branched hemicelluloses, Actinobacteria in cel-lulose and hemicellulose degradation, and Proteobacteria in thedegradation of phenolic compounds.

Most major groups of methanogens in the Svalbard peat soilshave been observed earlier, including Methanomicrobiales, Metha-nobacteriales, Methanosaetaceae, and Methanosarcinales (10, 42).Correspondingly, all these groups were identified in this study(Fig. 5). Several studies have shown that methanogenic commu-nities switch from hydrogenotrophic to acetoclastic methanogen-esis with peat depth (43–45), while others have shown that theproportion of hydrogenotrophic methanogenesis increased withdepth (46). Our results indicate that acetoclastic methanogenswere both more abundant and more active in the deeper layers,while hydrogenotrophs were more abundant in the top layers.However, mRNA analysis showed that genes for a broad range ofmethanogenic pathways were transcribed, including methano-genesis from formate, methanol, and methylamines in addition toacetate. Particularly, transcripts for methanogenesis from acetateand formate were abundant in the deeper layers. It has been shownthat at low temperature, acetoclastic methanogenesis predomi-nates, possibly due to the activity of homoacetogenic bacteria (39,47–49). This might also be the case for these peats, as the relativeabundance of transcripts for methanogenesis from H2/CO2 werelow compared to those for methanogenesis from acetate and for-mate. However, whether this is due to homoacetogenic competi-tion for H2 or to formate and acetate being major fermentationproducts while H2 is not was not clear from our results. Whilepathways of methanogenesis from methanol and methylamineshave received little attention in earlier studies, our results indi-cated that these pathways might be important for methanogenesisin the Arctic peat soils.

Bacteria closely related to M. tundripaludum were the mostabundant MOB at both Knudsenheia and Solvatn at all peatdepths, similar to previous studies (10). The increase in relativeabundances of 16S rRNA and mRNA of M. tundripaludum withdepth indicated that this species has means of coping with anoxicconditions, enabling the cells to sustain a high number of ribo-somes and mRNA. However, whether this is due to an anaerobicenergy metabolism involving methane oxidation utilizing pMMOand intracellularly produced O2 (50), alternative energy metabo-lism (51–53), or an ability to survive longer periods of starvation isnot evident from the current data set.

Conclusion. The utilization of metatranscriptomics has beenlimited in part due to the difficulties associated with generatinghigh-quality cDNA from the total RNA extracted from the peatsoils. In this paper, we have described the generation of metatran-scriptomes from soil samples with inhibitory components. Wehave tested the application of kit-based mRNA enrichment oncomplex peat soil ecosystems, finding that the introduced biasoutweighs the advantages of this approach. Particularly in poorlystudied ecosystems, it can be of advantage to simultaneously ob-tain broad information about present and active organisms (de-rived from rRNA) in addition to the transcript profile (derivedfrom mRNA). We have demonstrated the analysis of such data setsand how these holistic community system analyses can providenew knowledge about microbial activities in peat soils, ecosystemsimportant to the global carbon cycle. In particular, the transcriptpatterns reveal the gradual shift from aerobic to anaerobic micro-biotas and metabolisms in the deeper peat layers, correspondingto a transition from CO2- to CH4-dominated greenhouse gasemissions with depth.

ACKNOWLEDGMENTS

We thank Peter Frenzel, Vigdis Torsvik, and Ricardo Alves for importantcontributions during the fieldwork in Ny-Ålesund, Svalbard. The se-quencing service was provided by the Norwegian High-Throughput Se-quencing Centre (http://www.sequencing.uio.no).

This work was funded through The Research Council of Norway,grant 191696/V49.

REFERENCES1. Carvalhais LC, Dennis PG, Tyson GW, Schenk PM. 2012. Application of

metatranscriptomics to soil environments. J. Microbiol. Methods 91:246 –251. http://dx.doi.org/10.1016/j.mimet.2012.08.011.

2. Urich T, Lanzen A, Qi J, Huson DH, Schleper C, Schuster SC. 2008.Simultaneous assessment of soil microbial community structure andfunction through analysis of the meta-transcriptome. PLoS One 3:e2527.http://dx.doi.org/10.1371/journal.pone.0002527.

3. He S, Wurtzel O, Singh K, Froula JL, Yilmaz S, Tringe SG, Wang Z,Chen F, Lindquist EA, Sorek R, Hugenholtz P. 2010. Validation of tworibosomal RNA removal methods for microbial metatranscriptomics.Nat. Methods 7:807– 812. http://dx.doi.org/10.1038/nmeth.1507.

4. Sorek R, Cossart P. 2010. Prokaryotic transcriptomics: a new view onregulation, physiology and pathogenicity. Nat. Rev. Genet. 11:9 –16. http://dx.doi.org/10.1038/nrg2695.

5. Yi H, Cho Y-J, Won S, Lee J-E, Yu HJ, Kim S, Schroth GP, Luo S, ChunJ. 2011. Duplex-specific nuclease efficiently removes rRNA for prokary-otic RNA-seq. Nucleic Acids Res. 39:e140. http://dx.doi.org/10.1093/nar/gkr617.

6. Frias-Lopez J, Shi Y, Tyson GW, Coleman ML, Schuster SC, ChisholmSW, DeLong EF. 2008. Microbial community gene expression in oceansurface waters. Proc. Natl. Acad. Sci. U. S. A. 105:3805–3810. http://dx.doi.org/10.1073/pnas.0708897105.

7. Gifford SM, Sharma S, Rinta-Kanto JM, Moran MA. 2011. Quantitativeanalysis of a deeply sequenced marine microbial metatranscriptome.ISME J. 5:461– 472. http://dx.doi.org/10.1038/ismej.2010.141.

Tveit et al.

5770 aem.asm.org Applied and Environmental Microbiology

on February 23, 2015 by U

NIV

ER

SIT

ET

SB

IBLIO

TE

KE

T I T

RO

MS

Ohttp://aem

.asm.org/

Dow

nloaded from

Page 11: Metatranscriptomic Analysis of Arctic Peat Soil ... - UiT

8. Giannoukos G, Ciulla DM, Huang K, Haas BJ, Izard J, Levin JZ, LivnyJ, Earl AM, Gevers D, Ward DV, Nusbaum C, Birren BW, Gnirke A.2012. Efficient and robust RNA-seq process for cultured bacteria andcomplex community transcriptomes. Genome Biol. 13:r23. http://dx.doi.org/10.1186/gb-2012-13-3-r23.

9. Stewart FJ, Ottesen EA, DeLong EF. 2010. Development and quantita-tive analyses of a universal rRNA-subtraction protocol for microbialmetatranscriptomics. ISME J. 4:896 –907. http://dx.doi.org/10.1038/ismej.2010.18.

10. Tveit A, Schwacke R, Svenning MM, Urich T. 2013. Organic carbontransformations in high-Arctic peat soils: key functions and microorgan-isms. ISME J. 7:299 –311. http://dx.doi.org/10.1038/ismej.2012.99.

11. Arbeli Z, Fuentes CL. 2007. Improved purification and PCR amplifica-tion of DNA from environmental samples. FEMS Microbiol. Lett. 272:269 –275. http://dx.doi.org/10.1111/j.1574-6968.2007.00764.x.

12. Freeman C, Ostle N, Kang H. 2001. An enzymic ‘latch’ on a global carbonstore—a shortage of oxygen locks up carbon in peatlands by restraining asingle enzyme. Nature 409:149. http://dx.doi.org/10.1038/35051650.

13. Fenner N, Freeman C. 2011. Drought-induced carbon loss in peatlands.Nat. Geosci. 4:895–900. http://dx.doi.org/10.1038/ngeo1323.

14. Bailly J, Fraissinet-Tachet L, Verner MC, Debaud JC, Lemaire M,Wesolowski-Louvel M, Marmeisse R. 2007. Soil eukaryotic functionaldiversity, a metatranscriptomic approach. ISME J. 1:632– 642. http://dx.doi.org/10.1038/ismej.2007.68.

15. Damon C, Lehembre F, Oger-Desfeux C, Luis P, Ranger J, Fraissinet-Tachet L, Marmeisse R. 2012. Metatranscriptomics reveals the diversityof genes expressed by eukaryotes in forest soils. PLoS One 7:e28967. http://dx.doi.org/10.1371/journal.pone.0028967.

16. de Menezes A, Clipson N, Doyle E. 2012. Comparative metatranscrip-tomics reveals widespread community responses during phenanthrenedegradation in soil. Environ. Microbiol. 14:2577–2588. http://dx.doi.org/10.1111/j.1462-2920.2012.02781.x.

17. Schink B. 1997. Energetics of syntrophic cooperation in methanogenicdegradation. Microbiol. Mol. Biol. Rev. 61:262–280.

18. Schink B, Stams AM. 2013. Syntrophism among prokaryotes, p 471– 493.In Rosenberg E, DeLong E, Lory S, Stackebrandt E, Thompson F (ed), Theprokaryotes. Springer, Berlin, Germany.

19. Whitman WB, Bowen TL, Boone DR. 2006. The methanogenic bacteria,p 165–207. In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stacke-brandt E (ed), The prokaryotes, 3rd ed, vol 2. Springer, New York, NY.

20. Bowman J. 2006. The methanotrophs—the families Methylococcaceaeand Methylocystaceae, p 266 –289. In Dworkin M, Falkow S, Rosenberg E,Schleifer K-H, Stackebrandt E (ed), The prokaryotes, 3rd ed, vol 2.Springer, New York, NY.

21. Dunfield PF, Yuryev A, Senin P, Smirnova AV, Stott MB, Hou S, Ly B,Saw JH, Zhou Z, Ren Y, Wang J, Mountain BW, Crowe MA, WeatherbyTM, Bodelier PL, Liesack W, Feng L, Wang L, Alam M. 2007. Methaneoxidation by an extremely acidophilic bacterium of the phylum Verruco-microbia. Nature 450:879 – 882. http://dx.doi.org/10.1038/nature06411.

22. Wartiainen I, Hestnes AG, Svenning MM. 2003. Methanotrophic diver-sity in high arctic wetlands on the islands of Svalbard (Norway)—denaturing gradient gel electrophoresis analysis of soil DNA and enrich-ment cultures. Can. J. Microbiol. 49:602– 612. http://dx.doi.org/10.1139/w03-080.

23. Liebner S, Rublack K, Stuehrmann T, Wagner D. 2009. Diversity ofaerobic methanotrophic bacteria in a permafrost active layer soil of theLena Delta, Siberia. Microb. Ecol. 57:25–35. http://dx.doi.org/10.1007/s00248-008-9411-x.

24. Smemo KA, Yavitt JB. 2007. Evidence for anaerobic CH4 oxidation infreshwater peatlands. Geomicrobiol. J. 24:583–597. http://dx.doi.org/10.1080/01490450701672083.

25. Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD.2012. PANDAseq: PAired-eND Assembler for Illumina sequences. BMCBioinformatics 13:31. http://dx.doi.org/10.1186/1471-2105-13-31.

26. Schmieder R, Edwards R. 2011. Quality control and preprocessing ofmetagenomic datasets. Bioinformatics 27:863– 864. http://dx.doi.org/10.1093/bioinformatics/btr026.

27. Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W,Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: a new generation ofprotein database search programs. Nucleic Acids Res. 25:3389 –3402. http://dx.doi.org/10.1093/nar/25.17.3389.

28. Lanzén A, Jørgensen SL, Huson DH, Gorfer M, Grindhaug SH, Jona-ssen I, Øvreas L, Urich T. 2012. CREST— classification resources for

environmental sequence tags. PLoS One 7:e49334. http://dx.doi.org/10.1371/journal.pone.0049334.

29. Mitra S, Rupek P, Richter D, Urich T, Gilbert J, Meyer F, Wilke A,Huson D. 2011. Functional analysis of metagenomes and metatranscrip-tomes using SEED and KEGG. BMC Bioinformatics 12:S21. http://dx.doi.org/10.1186/1471-2105-12-S1-S21.

30. R Development Core Team. 2009. R: a language and environment forstatistical computing. R Foundation for Statistical Computing, Vienna,Austria.

31. Greenacre M. 2010. Biplots in practice, p 79 – 88. Fundación BBVA, Bil-bao, Spain. http://www.multivariatestatistics.org/biplots.html.

32. Greenacre M. 2007. Computation of correspondence analysis, p 213–259. In Keiding N, Morgan B, Speed T, van der Heijden P (ed), Corre-spondence analysis in practice, 2nd ed. Chapman and Hall/CRC, BocaRaton, FL.

33. Wartiainen I, Hestnes AG, McDonald IR, Svenning MM. 2006.Methylobacter tundripaludum sp. nov., a methane-oxidizing bacteriumfrom Arctic wetland soil on the Svalbard islands, Norway (78 degreesN). Int. J. Syst. Evol. Microbiol. 56:109 –113. http://dx.doi.org/10.1099/ijs.0.63728-0.

34. Svenning MM, Hestnes AG, Wartiainen I, Stein LY, Klotz MG, Kalyu-zhnaya MG, Spang A, Bringel F, Vuilleumier S, Lajus A, Medigue C,Bruce DC, Cheng JF, Goodwin L, Ivanova N, Han J, Han CS, Hauser L,Held B, Land ML, Lapidus A, Lucas S, Nolan M, Pitluck S, Woyke T.2011. Genome sequence of the Arctic methanotroph Methylobacter tun-dripaludum SV96. J. Bacteriol. 193:6418 – 6419. http://dx.doi.org/10.1128/JB.05380-11.

35. Deutscher MP. 2006. Degradation of RNA in bacteria: comparison ofmRNA and stable RNA. Nucleic Acids Res. 34:659 – 666. http://dx.doi.org/10.1093/nar/gkj472.

36. Opel KL, Chung D, McCord BR. 2010. A study of PCR inhibition mech-anisms using real time PCR. J. Forensic Sci. 55:25–33. http://dx.doi.org/10.1111/j.1556-4029.2009.01245.x.

37. Kögel-Knabner I. 2000. Analytical approaches for characterizing soil or-ganic matter. Org. Geochem. 31:609 – 625. http://dx.doi.org/10.1016/S0146-6380(00)00042-5.

38. Sarkar P, Bosneaga E, Auer M. 2009. Plant cell walls throughout evolu-tion: towards a molecular understanding of their design principles. J. Exp.Bot. 60:3615–3635. http://dx.doi.org/10.1093/jxb/erp245.

39. Kotsyurbenko OR. 2005. Trophic interactions in the methanogenic mi-crobial community of low-temperature terrestrial ecosystems. FEMS Mi-crobiol. Ecol. 53:3–13. http://dx.doi.org/10.1016/j.femsec.2004.12.009.

40. Berlemont R, Martiny AC. 2013. Phylogenetic distribution of potentialcellulases in bacteria. Appl. Environ. Microbiol. 79:1545–1554. http://dx.doi.org/10.1128/AEM.03305-12.

41. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Hen-rissat B. 2009. The Carbohydrate-Active EnZymes database (CAZy): anexpert resource for glycogenomics. Nucleic Acids Res. 37:D233–D238.http://dx.doi.org/10.1093/nar/gkn663.

42. Høj L, Olsen RA, Torsvik VL. 2005. Archaeal communities in HighArctic wetlands at Spitsbergen, Norway (78°N) as characterized by 16SrRNA gene fingerprinting. FEMS Microbiol. Ecol. 53:89 –101. http://dx.doi.org/10.1016/j.femsec.2005.01.004.

43. Cadillo-Quiroz H, Brauer S, Yashiro E, Sun C, Yavitt J, Zinder S. 2006.Vertical profiles of methanogenesis and methanogens in two contrastingacidic peatlands in central New York State, U. S. A. Environ. Microbiol.8:1428 –1440. http://dx.doi.org/10.1111/j.1462-2920.2006.01036.x.

44. Galand PE, Saarnio S, Fritze H, Yrjala K. 2002. Depth related diversity ofmethanogen Archaea in Finnish oligotrophic fen. FEMS Microbiol. Ecol.42:441– 449. http://dx.doi.org/10.1111/j.1574-6941.2002.tb01033.x.

45. Merilä P, Galand PE, Fritze H, Tuittila ES, Kukko-oja K, Laine J, YrjalaK. 2006. Methanogen communities along a primary succession transect ofmire ecosystems. FEMS Microbiol. Ecol. 55:221–229. http://dx.doi.org/10.1111/j.1574-6941.2005.00030.x.

46. Kotsyurbenko OR, Chin KJ, Glagolev MV, Stubner S, Simankova MV,Nozhevnikova AN, Conrad R. 2004. Acetoclastic and hydrogenotrophicmethane production and methanogenic populations in an acidic West-Siberian peat bog. Environ. Microbiol. 6:1159 –1173. http://dx.doi.org/10.1111/j.1462-2920.2004.00634.x.

47. Schulz S, Matsuyama H, Conrad R. 1997. Temperature dependence ofmethane production from different precursors in a profundal sediment(Lake Constance). FEMS Microbiol. Ecol. 22:207–213. http://dx.doi.org/10.1111/j.1574-6941.1997.tb00372.x.

Peat Soil Metatranscriptomics

September 2014 Volume 80 Number 18 aem.asm.org 5771

on February 23, 2015 by U

NIV

ER

SIT

ET

SB

IBLIO

TE

KE

T I T

RO

MS

Ohttp://aem

.asm.org/

Dow

nloaded from

Page 12: Metatranscriptomic Analysis of Arctic Peat Soil ... - UiT

48. Schulz S, Conrad R. 1996. Influence of temperature on pathways tomethane production in the permanently cold profundal sediment of LakeConstance. FEMS Microbiol. Ecol. 20:1–14. http://dx.doi.org/10.1111/j.1574-6941.1996.tb00299.x.

49. Fey A, Conrad R. 2000. Effect of temperature on carbon and electron flowand on the archaeal community in methanogenic rice field soil. Appl.Environ. Microbiol. 66:4790 – 4797. http://dx.doi.org/10.1128/AEM.66.11.4790-4797.2000.

50. Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, KuypersMMM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J,Wessels H, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT,den Camp H, Janssen-Megens EM, Francoijs KJ, Stunnenberg H, Weis-senbach J, Jetten MSM, Strous M. 2010. Nitrite-driven anaerobic meth-

ane oxidation by oxygenic bacteria. Nature 464:543–548. http://dx.doi.org/10.1038/nature08883.

51. Smemo KA, Yavitt JB. 2010. Anaerobic oxidation of methane: an undera-ppreciated aspect of methane cycling in peatland ecosystems? Biogeosci-ences 7:7945–7983. http://dx.doi.org/10.5194/bgd-7-7945-2010.

52. Kalyuzhnaya MG, Yang S, Rozova ON, Smalley NE, Clubb J, Lamb A,Gowda GA Nagana, Raftery D, Fu Y, Bringel F, Vuilleumier S, BeckDAC, Trotsenko YA, Khmelenina VN, Lidstrom ME. 2013. Highlyefficient methane biocatalysis revealed in a methanotrophic bacterium.Nat. Commun. 4:2785. http://dx.doi.org/10.1038/ncomms3785.

53. Roslev P, King GM. 1995. Aerobic and anaerobic starvation metabo-lism in methanotrophic bacteria. Appl. Environ. Microbiol. 61:1563–1570.

Tveit et al.

5772 aem.asm.org Applied and Environmental Microbiology

on February 23, 2015 by U

NIV

ER

SIT

ET

SB

IBLIO

TE

KE

T I T

RO

MS

Ohttp://aem

.asm.org/

Dow

nloaded from