membrane structure results in selective permeability a cell must exchange materials with its...

21
Membrane structure results in selective permeability A cell must exchange materials with its surroundings, a process controlled by the plasma membrane Plasma membranes are selectively permeable, regulating the cell’s molecular traffic Hydrophobic (nonpolar) molecules, such as hydrocarbons, can dissolve in the lipid bilayer and pass through the membrane rapidly Polar molecules, such as sugars, do not cross the membrane easily Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Upload: christal-kennedy

Post on 04-Jan-2016

217 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Membrane structure results in selective permeability A cell must exchange materials with its surroundings, a process controlled by the plasma membrane

Membrane structure results in selective permeability

• A cell must exchange materials with its surroundings, a process controlled by the plasma membrane

• Plasma membranes are selectively permeable, regulating the cell’s molecular traffic

• Hydrophobic (nonpolar) molecules, such as hydrocarbons, can dissolve in the lipid bilayer and pass through the membrane rapidly

• Polar molecules, such as sugars, do not cross the membrane easily

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Page 2: Membrane structure results in selective permeability A cell must exchange materials with its surroundings, a process controlled by the plasma membrane

Concept 7.3: Passive transport is diffusion of a substance across a membrane with no energy investment

• Diffusion is the tendency for molecules to spread out evenly into the available space

• Although each molecule moves randomly, diffusion of a population of molecules may exhibit a net movement in one direction

• At dynamic equilibrium, as many molecules cross one way as cross in the other direction

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Page 3: Membrane structure results in selective permeability A cell must exchange materials with its surroundings, a process controlled by the plasma membrane

Fig. 7-11Molecules of dye Membrane (cross section)

WATER

Net diffusion Net diffusion Equilibrium

(a) Diffusion of one solute

Net diffusion

Net diffusion

Net diffusion

Net diffusion

Equilibrium

Equilibrium

(b) Diffusion of two solutes

Page 4: Membrane structure results in selective permeability A cell must exchange materials with its surroundings, a process controlled by the plasma membrane

Effects of Osmosis on Water Balance

• Osmosis is the diffusion of water across a selectively permeable membrane

• Water diffuses across a membrane from the region of lower solute concentration to the region of higher solute concentration

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Page 5: Membrane structure results in selective permeability A cell must exchange materials with its surroundings, a process controlled by the plasma membrane

Lowerconcentrationof solute (sugar)

Fig. 7-12

H2O

Higher concentrationof sugar

Selectivelypermeablemembrane

Same concentrationof sugar

Osmosis

Page 6: Membrane structure results in selective permeability A cell must exchange materials with its surroundings, a process controlled by the plasma membrane

Water Balance of Cells Without Walls

• Tonicity is the ability of a solution to cause a cell to gain or lose water

• Isotonic solution: Solute concentration is the same as that inside the cell; no net water movement across the plasma membrane

• Hypertonic solution: Solute concentration is greater than that inside the cell; cell loses water

• Hypotonic solution: Solute concentration is less than that inside the cell; cell gains water

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Page 7: Membrane structure results in selective permeability A cell must exchange materials with its surroundings, a process controlled by the plasma membrane

Fig. 7-13

Hypotonic solution

(a) Animal cell

(b) Plant cell

H2O

Lysed

H2O

Turgid (normal)

H2O

H2O

H2O

H2O

Normal

Isotonic solution

Flaccid

H2O

H2O

Shriveled

Plasmolyzed

Hypertonic solution

Page 8: Membrane structure results in selective permeability A cell must exchange materials with its surroundings, a process controlled by the plasma membrane

• Hypertonic or hypotonic environments create osmotic problems for organisms

• Osmoregulation, the control of water balance, is a necessary adaptation for life in such environments

• The protist Paramecium, which is hypertonic to its pond water environment, has a contractile vacuole that acts as a pump

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Page 9: Membrane structure results in selective permeability A cell must exchange materials with its surroundings, a process controlled by the plasma membrane

Fig. 7-14

Filling vacuole 50 µm

(a) A contractile vacuole fills with fluid that enters from a system of canals radiating throughout the cytoplasm.

Contracting vacuole

(b) When full, the vacuole and canals contract, expelling fluid from the cell.

Page 10: Membrane structure results in selective permeability A cell must exchange materials with its surroundings, a process controlled by the plasma membrane

Water Balance of Cells with Walls

• Cell walls help maintain water balance

• A plant cell in a hypotonic solution swells until the wall opposes uptake; the cell is now turgid (firm)

• If a plant cell and its surroundings are isotonic, there is no net movement of water into the cell; the cell becomes flaccid (limp), and the plant may wilt

• In a hypertonic environment, plant cells lose water; eventually, the membrane pulls away from the wall, a usually lethal effect called plasmolysis

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Page 11: Membrane structure results in selective permeability A cell must exchange materials with its surroundings, a process controlled by the plasma membrane

Facilitated Diffusion: Passive Transport Aided by Proteins

• In facilitated diffusion, transport proteins speed the passive movement of molecules across the plasma membrane

• Channel proteins provide corridors that allow a specific molecule or ion to cross the membrane

• Channel proteins include

– Aquaporins, for facilitated diffusion of water

– Ion channels that open or close in response to a stimulus (gated channels)

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Page 12: Membrane structure results in selective permeability A cell must exchange materials with its surroundings, a process controlled by the plasma membrane

Fig. 7-15

EXTRACELLULAR FLUID

Channel protein

(a) A channel protein

Solute CYTOPLASM

Solute Carrier protein

(b) A carrier protein

Page 13: Membrane structure results in selective permeability A cell must exchange materials with its surroundings, a process controlled by the plasma membrane

The Need for Energy in Active Transport

• Active transport moves substances against their concentration gradient

• Active transport requires energy, usually in the form of ATP

• Active transport is performed by specific proteins embedded in the membranes

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Page 14: Membrane structure results in selective permeability A cell must exchange materials with its surroundings, a process controlled by the plasma membrane

• Active transport allows cells to maintain concentration gradients that differ from their surroundings

• The sodium-potassium pump is one type of active transport system

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Page 15: Membrane structure results in selective permeability A cell must exchange materials with its surroundings, a process controlled by the plasma membrane

2

EXTRACELLULAR

FLUID [Na+] high [K+] low

[Na+] low

[K+] high

Na+

Na+

Na+

Na+

Na+

Na+

CYTOPLASM ATP

ADP P

Na+ Na+

Na+

P 3

K+

K+ 6

K+

K+

5 4

K+

K+

P P

1

Fig. 7-16-7

Page 16: Membrane structure results in selective permeability A cell must exchange materials with its surroundings, a process controlled by the plasma membrane

Fig. 7-17Passive transport

Diffusion Facilitated diffusion

Active transport

ATP

Page 17: Membrane structure results in selective permeability A cell must exchange materials with its surroundings, a process controlled by the plasma membrane

Exocytosis

• In exocytosis, transport vesicles migrate to the membrane, fuse with it, and release their contents

• Many secretory cells use exocytosis to export their products

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Page 18: Membrane structure results in selective permeability A cell must exchange materials with its surroundings, a process controlled by the plasma membrane

Endocytosis

• In endocytosis, the cell takes in macromolecules by forming vesicles from the plasma membrane

• Endocytosis is a reversal of exocytosis, involving different proteins

• There are three types of endocytosis:

– Phagocytosis (“cellular eating”)

– Pinocytosis (“cellular drinking”)

– Receptor-mediated endocytosis

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Page 19: Membrane structure results in selective permeability A cell must exchange materials with its surroundings, a process controlled by the plasma membrane

Fig. 7-20PHAGOCYTOSIS

EXTRACELLULARFLUID

CYTOPLASM

Pseudopodium

“Food”orother particle

Foodvacuole

PINOCYTOSIS

1 µm

Pseudopodiumof amoeba

Bacterium

Food vacuole

An amoeba engulfing a bacteriumvia phagocytosis (TEM)

Plasmamembrane

Vesicle

0.5 µm

Pinocytosis vesiclesforming (arrows) ina cell lining a smallblood vessel (TEM)

RECEPTOR-MEDIATED ENDOCYTOSIS

Receptor Coat protein

Coatedvesicle

Coatedpit

Ligand

Coatprotein

Plasmamembrane

A coated pitand a coatedvesicle formedduringreceptor-mediatedendocytosis(TEMs)

0.25 µm

Page 20: Membrane structure results in selective permeability A cell must exchange materials with its surroundings, a process controlled by the plasma membrane

Fig. 7-UN3

Environment:0.01 M sucrose

0.01 M glucose

0.01 M fructose

“Cell”

0.03 M sucrose

0.02 M glucose

Page 21: Membrane structure results in selective permeability A cell must exchange materials with its surroundings, a process controlled by the plasma membrane

Fig. 7-UN4