mehdi akbarian (mit) mehdi akbarian.pdfuse in a lca 50 yr ghg emissions of two pavement scenarios...

20
Mehdi Akbarian (MIT)

Upload: others

Post on 30-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Mehdi Akbarian (MIT)

  • Introduction Pavement-Vehicle Interaction

    Model Results: LTPP Network Analysis

    Conclusion and Future Work

    O u t l i n e

  • Why Bother: Transportation Accounts for 20% of US CO2 Emissions

    LCA & LCCA Boundaries

    Pavement Vehicle Interaction: 72%

  • Introduction Pavement-Vehicle Interaction

    Model Results: LTPP Network Analysis

    Conclusion and Future Work

    O u t l i n e

  • Pavement-Vehicle Interaction

    Pavement Deflection

    Structure and Material

    Pavement Roughness*

    * Zabaar and Chatti (2010) Calibration of HDM-4 Models for Estimating the Effect of Pavement Roughness on Fuel Consumption for U.S. Conditions

  • Literature: Empirical Studies on Pavement Deflection

    Empirical Database:

    - High uncertainty

    - High variability

    - Question of objectivity

    - Binary material view:

    - Asphalt vs. concrete

    - No structural consideration

    Need:

    - Model is missing to relate fuel consumption to:

    - Deflection

    - Structure

    - Material

  • Introduction Pavement-Vehicle Interaction

    Model Results: LTPP Network Analysis

    Conclusion and Future Work

    O u t l i n e

  • PVI Deflection Model

    Research Problem:

    β€’ Evaluate, in first order, the mechanics behind pavement vehicle interaction

    Research Goal:

    β€’ Create a model that relates fuel consumption to:

    β€’ Deflection

    β€’ Structure

    β€’ Material properties

    Simplest model:

    β€’ Bernoulli Euler beam on viscoelastic foundation

    β€’ Calibrate model parameters

    β€’ Validate with experimental data

  • Bernoulli Euler beam on viscoelastic foundation

    πΈπΌπœ•4𝑦

    πœ•π‘₯4+π‘šπœ•2𝑦

    πœ•π‘‘2+ π‘πœ•π‘¦

    πœ•π‘‘+ π‘˜π‘¦ = π‘ž(π‘₯, 𝑑)

    πΈπΌπœ•4𝑦

    πœ•Ξ·4+π‘šπœ•2𝑦

    πœ•π‘‘2βˆ’ 2π‘‰πœ•2𝑦

    πœ•π‘‘πœ•Ξ·+ 𝑉2πœ•2𝑦

    πœ•Ξ·2+ 𝑐(πœ•π‘¦

    πœ•π‘‘βˆ’ π‘‰πœ•π‘¦

    πœ•Ξ·) + π‘˜π‘¦ = π‘ž(Ξ·, 𝑑)

    Moving coordinate system: πœ‚ = π‘₯ βˆ’ 𝑉𝑑

    𝛏 and π›€βˆ— are tranformed fields of π›ˆ and 𝐭

    𝑦 Ξ· =1

    2πœ‹

    𝑄(ΞΎ)

    𝐸𝐼ξ4 βˆ’π‘šπ‘‰2ΞΎ2 + π‘˜(1 + 2𝑖΢)𝑒𝑖ξη𝑑ξ

    ∞

    βˆ’βˆž

    𝑄 ΞΎ = π‘ž π‘’βˆ’π‘–ΞΎΞ·π‘‘Ξ·π‘Ž/2

    βˆ’π‘Ž/2

    Input: 𝐄: Elastic Modulus of Top Layer 𝐑: Thickness of Top Layer 𝐀: Elastic Modulus of Subgrade 𝛇: Damping Ratio 𝐦:Mass of beam per unit length

    [π‘’π‘ž. 1]

    [π‘’π‘ž. 2]

    [π‘’π‘ž. 3]

    [π‘’π‘ž. 4]

    [π‘’π‘ž. 5]

    (* in the case of periodic load, not considered in what follows) Output π’š 𝜼 : Deflection

  • Model Parameter Study

    Inputs:

    β€’ E: Top layer modulus

    β€’ h: Top layer thickness

    β€’ k: Substrate modulus

    β€’ M: Vehicle mass

    𝐼𝐹𝐢~𝑀2 Γ— πΈβˆ’12 π‘˜βˆ’12 β„Žβˆ’32

    Ls

    w

    β€’ 𝐼𝐹𝐢~ 𝐺𝑅 Γ— 𝑀 Γ— g : Gradient Force

    β€’ 𝐺𝑅~𝑀

    𝐿𝑠

    β€’ 𝑀 ~ 𝑀1 πΈβˆ’14 π‘˜βˆ’

    34 β„Žβˆ’

    34

    β€’ 𝐿𝑠 ~ 𝐸14 π‘˜βˆ’

    14 β„Ž34

    * Mechanistic Approach to Pavement-Vehicle

    Interaction and Its Impact in LCA - Journal of the

    Transportation Research Board, 2012.

    GR

  • Calibration – validation: FHWA DATA

    Validation Calibration

    FWD Time Histories:

    1. Calibration: Arrival time of signal

    2. Validation: Maximum deflection at offsets

  • Role of Damping

    Ξ”

    Effect of damping:

    1- Distance lag Ξ” due to increase in

    damping.

    2- Decrease in maximum deflection.

    3- But, second-order effect.

    Effect of distance lag Ξ”:

    - Maximum deflection behind the

    load

    - Wheels are on a constant slope

  • Introduction Pavement-Vehicle Interaction

    Model Results: LTPP Network Analysis

    Conclusion and Future Work

    O u t l i n e

  • LTPP Monitored Sections

    Asphalt Concrete

    Data used:

    β€’ Top layer modulus E

    β€’ Subgrade modulus k

    β€’ Top layer thickness h

    β€’ Loading condition q

    β€’ Traffic Volume (AADT, AADTT)

    Total of 5643 sections: 1079 rigid, 4564 flexible

  • Monte-Carlo Procedure

    PVI Deflection Fuel Consumption

    Sample Data (log space)

    Calculate Fuel Consumption

    Check convergence

    πœ‡, 𝜎 β‰ˆ (πœ‡, 𝜎)

    inputs samples

    q (ΞΌ,Οƒ)

    E (ΞΌ,Οƒ) k (ΞΌ,Οƒ)

    h (ΞΌ,Οƒ)

  • Deflection Induced Fuel Consumption

    Trucks:

    Cars:

    Report: *Akbarian M., Ulm J-F. 2012. Model Based Pavement-Vehicle Interaction Simulation for Life Cycle Assessment of Pavements.

    Concrete Sustainability Hub. MIT

  • Use in a LCA

    50 yr GHG Emissions of Two Pavement Scenarios Relative to a β€œFlat” Pavement

    π‘‡π‘œπ‘‘π‘Žπ‘™ 𝐼𝐹𝐢~πΈβˆ’12 π‘˜βˆ’12 β„Žβˆ’32 (𝑁𝑖 π‘Šπ‘–

    2)

    𝑖

    0

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    1800

    2000

    Concrete Asphalt

    GH

    G E

    mis

    sio

    ns

    (Mg

    CO

    2e

    )

    PVI Deflection 95%

    Production + M&R

    Maintenance and Rehabilitation Schedules: Asphalt Year 17: Mill and Replace Year 28: Mill and Replace Year 38: Mill and Replace Year 47: Mill and Replace Concrete Year 20: Diamond Grind Year 40: AC Overlay

    *Embodied GWP for Canadian High Volume Traffic Scenario : Athena (2006)

  • Introduction Pavement-Vehicle Interaction

    Model Results: LTPP Network Analysis Conclusion and Future Work

    O u t l i n e

  • Conclusion

    Developed:

    β€’ Relationship between material and structural pavement properties with PVI

    β€’ Calibration – Validation of model

    β€’ Model provides realistic estimates of FC for vehicles and current trends

    Future Work:

    β€’ More accurate pavement model

    β€’ Realistic vehicle model

    β€’ Network application

  • Use in a LCA – with roughness

    Embodied GWP for Canadian High Volume Traffic Scenario : Athena (2006)

    IRI design criterion = 160 in/mile

    0

    1000

    2000

    3000

    4000

    5000

    6000

    Concrete Asphalt

    GH

    G E

    mis

    sio

    ns

    (Mg

    CO

    2e

    )

    PVI Roughness 95%PVI Deflection 95%Production + M&R

    Maintenance and Rehabilitation Schedules: Asphalt Year 17: Mill and Replace Year 28: Mill and Replace Year 38: Mill and Replace Year 47: Mill and Replace Concrete Year 20: Diamond Grind Year 40: AC Overlay