mechanical measurement lab , 17.06.2011 t.dijoud

26
Mechanical Measurement Lab, 17.06.2011 T.Dijoud Characterisation of the Strain Gauge Factor at Cryogenic Temperature

Upload: sema

Post on 13-Jan-2016

76 views

Category:

Documents


0 download

DESCRIPTION

Characterisation of the Strain Gauge Factor at Cryogenic Temperature. Mechanical Measurement Lab , 17.06.2011 T.Dijoud. Summary. Introduction Goal of the study Method Results Conclusion. Introduction : Strain gauges. APPLICATION : Strain measurement  Stress analysis MATERIALS : - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Mechanical Measurement Lab , 17.06.2011 T.Dijoud

Mechanical Measurement Lab, 17.06.2011

T.Dijoud

Characterisation of the Strain Gauge Factor at Cryogenic Temperature

Page 2: Mechanical Measurement Lab , 17.06.2011 T.Dijoud

2Mechanical Measurement Lab [email protected]

2011.17.06

• Introduction

• Goal of the study

• Method

• Results

• Conclusion

Summary

Page 3: Mechanical Measurement Lab , 17.06.2011 T.Dijoud

3Mechanical Measurement Lab [email protected]

2011.17.06

• APPLICATION:

Strain measurement Stress analysis

• MATERIALS:

Measuring grid (5μm thickness) : Chromium-Nickel alloys, Copper-Nickel alloys

Support (25μm thickness):Polyimide

All type for several applications

Introduction : Strain gauges

Between 0.6 and 160 mm Between 0.6 and 160 mm

Page 4: Mechanical Measurement Lab , 17.06.2011 T.Dijoud

4Mechanical Measurement Lab [email protected]

2011.17.06

Close bond between the strain gauge and the object

Strain on the object transferred without loss to the strain gauge

PRINCIPLE:

WIRE RESISTANCE CHANGING WITH LENGTH OF WIRE

R = ρL/S (ρ: resistivity (Ω.m); L: length (m); S: section (m2))

∆R/R = ε (1 + 2ν) + ∆ ρ/ ρ (ε: strain = ∆L/L (μm/m); ν: Poisson coefficient)

Introduction : Strain gauges

F (N)

F (N)

Page 5: Mechanical Measurement Lab , 17.06.2011 T.Dijoud

5Mechanical Measurement Lab [email protected]

2011.17.06

Bridgman’s law: ∆ρ/ρ = C ∆v/v (C: Bridgman constant, ranging from 1.13 to 1.15)

∆R/R = ε ((1 + 2ν) + C(1 – 2ν)) k = (1 + 2ν) + C(1 – 2ν)

∆R/R = k ε

k : Strain gauge factor = Strain gauge sensitivity

Depends on: • Material of measuring grid• TEMPERATURE

Introduction : Strain gauges

∆L/L (μm/m)

∆R/R (μΩ/Ω)

Page 6: Mechanical Measurement Lab , 17.06.2011 T.Dijoud

6Mechanical Measurement Lab [email protected]

2011.17.06

Goal of the study

• GOAL: Characterise the strain gauge factor at 293K, 77K and 4.2K

NEW STRAIN GAUGES, NEW ADHESIVE, MORE ADVANCED DATA ACQUISITION SYSTEM

• WHY? Measurement conditions at CERN: 1.9 K to 500 K Strain measurements must be accurate

Application: Stress measurements during assembly and cryogenic cool down at 4.2 K of short magnet coil

Page 7: Mechanical Measurement Lab , 17.06.2011 T.Dijoud

7Mechanical Measurement Lab [email protected]

2011.17.06

COMPARISON BETWEEN 2 TECHNIQUES OF STRAIN MEASUREMENT

Reference sensor Strain gauges

Strain Resistance relative change

(∆L/Lo)Ref ∆R/Ro = (∆V/Vo)SG

Tests procedure

k =

�̃

• STEPS:

Find a way to measure strain with a great accuracy

Identify the set up for the measurements at room and cryogenic temperature

Page 8: Mechanical Measurement Lab , 17.06.2011 T.Dijoud

8Mechanical Measurement Lab [email protected]

2011.17.06

Strain measurement

Cryogenic temperature = cryostat

• WHAT IS NEEDED:

Sensor inside the cryostat Must work at low temperature Not too big, easy to install Great accuracy

• TECHNIQUE:

STRAIN = EXTENSION (∆L) / INITIAL LENGTH (L)

LVDT (Inductive sensor) : Infinite resolution Low linearity error

Page 9: Mechanical Measurement Lab , 17.06.2011 T.Dijoud

9Mechanical Measurement Lab [email protected]

2011.17.06

Method

LVDT and extension support

Strain gauge on each side

(¼ Bridge (X2))

LVDT

LO = 60 mm

Sample instrumentation

TENSILE TEST

Page 10: Mechanical Measurement Lab , 17.06.2011 T.Dijoud

10Mechanical Measurement Lab [email protected]

2011.17.06

Method: Set up

CRYOSTAT

77 K Nitrogen 4.2 K Helium

Sample

Fmax = 5kN

Vacuum

Tensile machine

Bellow

Page 11: Mechanical Measurement Lab , 17.06.2011 T.Dijoud

11Mechanical Measurement Lab [email protected]

2011.17.06

Sample design

F max 5 kNWidth 12 mm

Thickness 1,5 mmSection 18 mm2

L0 60 mmStress 278 MPa

E 193000 MPaε (μm/m) 1439 µm/m

(∆L)LVDT 90.7 µm

Aluminum Copper Stainless Steel

Young modulus E (MPa) 69000 128000 193000

Yield limit σe (MPa) 50 70 290

Max strain εm (μm/m) 725 547 1503 εm = e

Requirements:

- Strain does not exceed the yield limit of the material

Page 12: Mechanical Measurement Lab , 17.06.2011 T.Dijoud

12Mechanical Measurement Lab [email protected]

2011.17.06

FIRST RESULTS

Page 13: Mechanical Measurement Lab , 17.06.2011 T.Dijoud

13Mechanical Measurement Lab [email protected]

2011.17.06

Test at 293K

y = 2.1823x + 13.166R² = 1

0

500

1000

1500

2000

2500

0 500 1000 1500

Output signal (μV/V)

Strain (μm/m)

293K (Up#1)

Gauge factor

UP#1 2.18

UP#2 2.17

UP#3 2.16Force (kN) LVDT 1 (μm) LVDT 2 (μm)

1 3 292 11 553 24 77

3,8 36 91

Page 14: Mechanical Measurement Lab , 17.06.2011 T.Dijoud

14Mechanical Measurement Lab [email protected]

2011.17.06

Test at 77K: Set up

Page 15: Mechanical Measurement Lab , 17.06.2011 T.Dijoud

15Mechanical Measurement Lab [email protected]

2011.17.06

Test at 77K: Results

Gauge factor

UP#1 2.32

UP#2 2.32

UP#3 2.32

y = 2.3176x - 18.468R² = 1

0

500

1000

1500

2000

2500

0 500 1000 1500

Output signal (μV/V)

Strain (μm/m)

77K (Up#1)

Force (kN) LVDT 1 (μm) LVDT 2 (μm)1 11 182 23 393 36 584 49 78

Page 16: Mechanical Measurement Lab , 17.06.2011 T.Dijoud

16Mechanical Measurement Lab [email protected]

2011.17.06

Accuracy of the measurements

• Displacement (LVDT)- DAQ Linearity : 0.02 % FS

ULDAQ = (0.02*2)/3 = 0.013 %- DAQ Precision : (0.05 % Meas. Value + 0.05 % FS)

UPDAQ = (0.05*4)/3 = 0.067 % UDis = 0.18 %- Linearity error LVDT : 0.25 % FS

UL = (0.25*2)/3 = 0.17 % UStrain = 0.19 %

• Initial length - Resolution of the caliper + Repeatability:

ULength = 0.071 %• Output signal (SG)

- DAQ Linearity: 0.013 %- DAQ Precision: 0.067 % UOS = 2.67 %- Accuracy of strain gauge measurement: 2.67%

GAUGE FACTOR ACCURACY : Uk = (0.192+2.672)1/2 = +/- 5.35 %

Page 17: Mechanical Measurement Lab , 17.06.2011 T.Dijoud

17Mechanical Measurement Lab [email protected]

2011.17.06

Conclusion

Gauge factor (293K) Gauge factor (77K)

UP#1 2.18 +/- 0.12 2.32 +/- 0.12

UP#2 2.17 +/- 0.12 2.32 +/- 0.12

UP#3 2.16 +/- 0.12 2.32 +/- 0.12

Average 2.17 2.32

Theoretical 2.2 +/- 0.022 /

• k-factor value satisfactorily close to the value given by the manufacturer • What we are looking for: Variations of the gauge factor • Between 293K and 77K, k-factor increases by 6.9%• Set up (sample instrumentation) validated for the measurements

NEXT STEPS:

• Tests with others samples Check the reproducibility of the experiment• Use the original cryostat for the tests at 293K, 77K and 4.2K

Page 18: Mechanical Measurement Lab , 17.06.2011 T.Dijoud

18Mechanical Measurement Lab [email protected]

2011.17.06

Thanks to

Thanks to Ofelia Capatina and Ramon Folch for this period at CERN

Thanks to Michael, Eugenie, Andrey, Raul, Alex, Robin,

Jean-Michel, Kurt and Rosmarie

Thank you for your attention!

Page 19: Mechanical Measurement Lab , 17.06.2011 T.Dijoud

19Mechanical Measurement Lab [email protected]

2011.17.06

Questions?

Page 20: Mechanical Measurement Lab , 17.06.2011 T.Dijoud

20Mechanical Measurement Lab [email protected]

2011.17.06

Stress versus strain

Steel 304 L (AISI) 293 K 77 K

Young Modulus(MPa) 193000 208000

y = 0.2004x + 6.1235R² = 0.9998

0.0

50.0

100.0

150.0

200.0

250.0

0 500 1000 1500

Stress (MPa)

Strain (μm/m)

293K (Up#1)

y = 0.2164x + 5.5506R² = 1

0

50

100

150

200

250

0 500 1000 1500

Stress (MPa)

Strain (μm/m)

77K (Up#1)

Page 21: Mechanical Measurement Lab , 17.06.2011 T.Dijoud

21Mechanical Measurement Lab [email protected]

2011.17.06

Last study

k factor changing with temperature

last study: 1995

Page 22: Mechanical Measurement Lab , 17.06.2011 T.Dijoud

22Mechanical Measurement Lab [email protected]

2011.17.06

y = 198,93x + 1,5105R² = 0,9999

y = 199.08x - 3.0614R² = 0.9999

-250

-200

-150

-100

-50

0

50

100

150

200

250

-1,5 -1 -0,5 0 0,5 1 1,5

Output sig(mV/V)

Displacement (mm)

Signal versus displacement

Up #1

Down #1

Linear (Up #1)

Linear (Down #1)

LVDT 1 calibration at room temperature

y = 1.003x - 0.9999R² = 1

y = 1.002x - 22.954R² = 0.9998-1500

-1000

-500

0

500

1000

1500

-1500 -1000 -500 0 500 1000 1500

LVDT (μm)

Displacement (μm)

Up 3Down 3Linear (Up 3)Linear (Down 3)

Micrometer

Page 23: Mechanical Measurement Lab , 17.06.2011 T.Dijoud

23Mechanical Measurement Lab [email protected]

2011.17.06

LVDT 2 calibration at room temperature

y = 197.31x - 0.2624R² = 0.9999

y = 197.24x + 4.4976R² = 0.9999

-250

-200

-150

-100

-50

0

50

100

150

200

250

-1,5 -1 -0,5 0 0,5 1 1,5

Signal output (mV/V)

Displacement (mm)

Up #1

Down #1

Linear (Up #1)

Linear (Down #1)

y = 1.0009x - 11.286R² = 0.9999

y = 0.9996x + 13R² = 0.9999

-1500

-1000

-500

0

500

1000

1500

-1500 -500 500 1500

Displacement (μm)

Displacement (µm)

Up1

Down 1

Linear (Up1)

Linear (Down 1)

Page 24: Mechanical Measurement Lab , 17.06.2011 T.Dijoud

24Mechanical Measurement Lab [email protected]

2011.17.06

Wheatstone bridge

Bridge equation:

Vout/Vin =

Application with strain gauges:

Vout/Vin =

Configuration:- ¼ bridge- half bridge- full bridge

For the experiment: 1/4 bridge

R1+∆R1

R2+∆R2

Very low ∆R can be measuredFor 2000 µm/m, ∆R = 11µΩ

R3+∆R3

R4+∆R4

Page 25: Mechanical Measurement Lab , 17.06.2011 T.Dijoud

25Mechanical Measurement Lab [email protected]

2011.17.06

Sample

Page 26: Mechanical Measurement Lab , 17.06.2011 T.Dijoud

26Mechanical Measurement Lab [email protected]

2011.17.06

LVDT: Principle