mech593 finite element methods finite element analysis (f.e.a.) of 1-d problems dr. wenjing ye

32
MECH593 Finite Element Methods Finite Element Analysis (F.E.A.) of 1-D Problems Dr. Wenjing Ye

Upload: reynard-merritt

Post on 03-Jan-2016

232 views

Category:

Documents


3 download

TRANSCRIPT

MECH593 Finite Element Methods

Finite Element Analysis (F.E.A.) of 1-D Problems

Dr. Wenjing Ye

FEM Formulation of Axially Loaded Bar – Governing Equations

• Differential Equation

• Weighted-Integral Formulation

• Weak Form

Lxxfdx

duxEA

dx

d

0 0)()(

0)()(0

dxxf

dx

duxEA

dx

dw

L

LL

dx

duxEAwdxxwf

dx

duxEA

dx

dw

00

)()()(0

Approximation Methods – Finite Element Method

Example:

Step 1: Discretization

Step 2: Weak form of one element P2P1x1 x2

0)()()()()(2

1

2

1

x

x

x

x dx

duxEAxwdxxfxw

dx

duxEA

dx

dw

0)()()( 1122

2

1

PxwPxwdxxfxw

dx

duxEA

dx

dwx

x

Approximation Methods – Finite Element Method

Example (cont):

Step 3: Choosing shape functions - linear shape functions

2211 uuu

lx1 x2

x

l

xx

l

xx 12

21 ;

2

1 ;

2

121

11 2

1 ;1

2x

lxxx

l

Approximation Methods – Finite Element Method

Example (cont):

Step 4: Forming element equation

Let , 1w 2 2

1 1

2 11 1 2 2 1 1 1

10

x x

x x

u uEA dx f dx x P x P

l l

1121

2

1

Pdxful

EAu

l

EAx

x

Let , 2w 2 2

1 1

2 12 2 2 2 2 1 1

10

x x

x x

u uEA dx f dx x P x P

l l

2221

2

1

Pdxful

EAu

l

EAx

x

2

1

2

1

1

1 1 1 1

2 2 2 2

2

1 1

1 1

x

x

x

x

fdxu P f PEAu P f Pl

fdx

E,A are constant

0)()()( 1122

2

1

PxwPxwdxxfxw

dx

duxEA

dx

dwx

x

Approximation Methods – Finite Element Method

Example (cont):

Step 5: Assembling to form system equation

Approach 1:

Element 1:

1 1 1

2 2 2

1 1 0 0

1 1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

I I I

I I II I

I

u f P

u f PE A

l

Element 2:1 1 1

2 2 2

0 0 0 0 0 0 0

0 1 1 0

0 1 1 0

0 0 0 0 0 0 0

II II IIII II

II II IIII

u f PE A

u f Pl

Element 3:

1 1 1

2 2 2

0 0 00 0 0 0

0 0 00 0 0 0

0 0 1 1

0 0 1 1

III III

III III IIIIII

III III III

E Au f Pl

u f P

Approximation Methods – Finite Element Method

Example (cont):

Step 5: Assembling to form system equation

Assembled System:

1 1 1

2 2 2

3 3 3

4 4 4

0 0

0

0

0 0

I I I I

I I

I I I I II II II II

I I II II

II II II II III III III III

II II III III

III III III III

III III

E A E A

l lu f PE A E A E A E Au f Pl l l lu f PE A E A E A E Au f Pl l l l

E A E A

l l

1 1

2 1 2 1

2 1 2 1

2 2

I I

I II I II

II III II III

III III

f P

f f P P

f f P P

f P

Approximation Methods – Finite Element Method

Example (cont):

Step 5: Assembling to form system equation

Approach 2: Element connectivity table Element 1 Element 2 Element 3

1 1 2 3

2 2 3 4

global node index (I,J)

local node (i,j)

eij IJk K

Approximation Methods – Finite Element Method

Example (cont):

Step 6: Imposing boundary conditions and forming condense system

Condensed system:

2 2

3 3

4 4

00

0

0

I I II II II II

I II II

II II II II III III III III

II II III III

III III III III

III III

E A E A E A

l l l u fE A E A E A E A

u fl l l l

u f PE A E A

l l

Approximation Methods – Finite Element Method

Example (cont):

Step 7: solution

Step 8: post calculation

dx

du

dx

du

dx

du 22

11

2211 uuu dx

dEu

dx

dEuE 2

21

1

Summary - Major Steps in FEM

• Discretization

• Derivation of element equation

• weak form

• construct form of approximation solution over one element

• derive finite element model

• Assembling – putting elements together

• Imposing boundary conditions

• Solving equations

• Postcomputation

Exercises – Linear Element

Example 4.1:E = 100 GPa, A = 1 cm2

Linear Formulation for Bar Element

2

1

2212

1211

2

1

2

1

u

u

KK

KK

f

f

P

P

2

1

2

1

, x

x

ii

x

x

jiji

ij dxffKdxdx

d

dx

dEAKwhere

x=x1 x=x2

2 1

x

x=x1 x= x2

u1 u2

1P 2Pf(x)

L = x2-x1

u

x

Higher Order Formulation for Bar Element

(x)u(x)u(x)u(x)u 332211

)x(u)x(u)x(u)x(u(x)u 44332211

1 3

u1 u3u

x

u2

2

1 4

u1 u4

2

u

x

u2 u3

3

)x(u)x(u)x(u)x(u)x(u(x)u nn44332211

1 n

u1 un

2

u

x

u2u3

3

u4 ……………

4 ……………

Natural Coordinates and Interpolation Functions

2

1 ,

2

121

Natural (or Normal) Coordinate:

x=x1 x= x2

=-1 =1

x

0x x l

1xxx 1 2

2/ 2

x xx

l

1 32

=-1 =1

1 2

=-1 =1

1 42

=-1 =1

3

2

1 ,11 ,

2

1321

13

11

16

27 ,1

3

1

3

1

16

921

3

1

3

11

16

9 ,1

3

11

16

2743

Quadratic Formulation for Bar Element

2

1

1

1

nd , , 1, 2, 32

x

i i i

x

la f f dx f d i j

2

1

1

1

2

xj ji i

ij ji

x

d dd dwhere K EA dx EA d K

dx dx d d l

3

2

1

332313

232212

131211

3

2

1

3

2

1

u

u

u

KKK

KKK

KKK

f

f

f

P

P

P

=-1 =0 =1

Quadratic Formulation for Bar Element

u1 u3u2f(x)P3

P1

P2

=-1 =0 =11x 2x 3x

2

1u11u

2

1u)(u)(u)(u)(u 321332211

2

1 ,11 ,

2

1321

1 1 2 2 3 32 2 1 2 4 2 2 1, ,

d d d d d d

dx l d l dx l d l dx l d l

1 2

2/ 2

x xx

l

2

ld dx

2d

dx l

Quadratic Formulation for Bar Element

u1 u3u2f(x)P3

P1

P2

=-1 =0 =11x 2x 3x

7 8 1

8 16 83

1 8 7

EAK

l

Exercises – Quadratic Element

Example 4.2:

E = 100 GPa, A1 = 1 cm2; A1 = 2 cm2

Some Issues

Non-constant cross section:

Interior load point:

Mixed boundary condition:k

Application - Plane Truss Problems

Example 4.3: Find forces inside each member. All members have the same length.

F

Arbitrarily Oriented 1-D Bar Element on 2-D Plane

Q2 , v2

11 u ,P

22 u ,P

P2 , u2

Q1 , v1

P1 , u1

2

2

1

1

2

2

1

1

cossin00

sincos00

00cossin

00sincos

0

0

v

u

v

u

v

u

v

u

Relationship Between Local Coordinates and Global Coordinates

2

2

1

1

2

1

cossin00

sincos00

00cossin

00sincos

0

0

Q

P

Q

P

P

P

Stiffness Matrix of 1-D Bar Element on 2-D Plane

2

2

1

1

2

2

1

1

cossin00

sincos00

00cossin

00sincos

cossin00

sincos00

00cossin

00sincos

v

u

v

u

K

Q

P

Q

P

ij

0000

0101

0000

0101

L

AEK ij

Q2 , v2

11 , uP

22 u ,P

P2 , u2

Q1 , v1

P1 , u1

2

2

1

1

22

22

22

22

2

2

1

1

sincossinsincossin

cossincoscossincos

sincossinsincossin

cossincoscossincos

v

u

v

u

L

AE

Q

P

Q

P

Arbitrarily Oriented 1-D Bar Element in 3-D Space

2

2

2

1

1

1

zzz

yyy

xxx

zzz

yyy

xxx

2

2

2

1

1

1

w

v

u

w

v

u

000

000

000

000

000

000

0w

0v

u

0w

0v

u

x, x, x are the Direction Cosines of the bar in the x-y-z coordinate system

- - -

11 u ,Px

22 u ,P

x

x xy

z2

1

--

-

2

2

2

1

1

1

2

2

2

1

1

1

000

000

000

000

000

000

0

0

0

0

R

Q

P

R

Q

P

R

Q

P

R

Q

P

zzz

yyy

xxx

zzz

yyy

xxx

Stiffness Matrix of 1-D Bar Element in 3-D Space

2

2

2

1

1

1

22

22

22

22

22

22

2

2

2

1

1

1

w

v

u

w

v

u

L

AE

R

Q

P

R

Q

P

xxxxxxxxxx

xxxxxxxxxx

xxxxxxxxxx

xxxxxxxxxx

xxxxxxxxxx

xxxxxxxxxx

11 u ,Px

22 u ,P

x

x xy

z2

1

--

-

0w

0v

u

0w

0v

u

000000

000000

001001

000000

000000

001001

L

AE

0R

0Q

P

0R

0Q

P

2

2

2

1

1

1

2

2

2

1

1

1

Matrix Assembly of Multiple Bar Elements

2

2

1

1

2

2

1

1

0000

0101

0000

0101

v

u

v

u

L

AE

Q

P

Q

P

Element I

Element II

Element II I

3

3

2

2

3

3

2

2

3333

3131

3333

3131

4

v

u

v

u

L

AE

Q

P

Q

P

3

3

1

1

3

3

1

1

3333

3131

3333

3131

4

v

u

v

u

L

AE

Q

P

Q

P

Matrix Assembly of Multiple Bar Elements

3

3

2

2

1

1

3

3

2

2

1

1

000000

000000

000000

000404

000000

000404

4

v

u

v

u

v

u

L

AE

Q

P

Q

P

Q

P

Element I

3

3

2

2

1

1

3

3

2

2

1

1

333300

313100

333300

313100

000000

000000

4

v

u

v

u

v

u

L

AE

Q

P

Q

P

Q

P

3

3

2

2

1

1

3

3

2

2

1

1

330033

310031

000000

000000

330033

310031

4

v

u

v

u

v

u

L

AE

Q

P

Q

P

Q

P

Element II

Element II I

Matrix Assembly of Multiple Bar Elements

3

3

2

2

1

1

3

3

2

2

1

1

v

u

v

u

v

u

33333333

33113131

33303000

31301404

33003030

31043014

L4

AE

S

R

S

R

S

R

0v

0u

0v

?u

?v

0u

603333

023131

333300

313504

330033

310435

L4

AE

?S

?R

?S

FR

0S

?R

3

3

2

2

1

1

3

3

2

2

1

1

Apply known boundary conditions

Solution Procedures

0v

0u

0v

?u

?v

0u

603333

023131

333300

310435

330033

313504

L4

AE

?S

?R

?S

?R

0S

FR

3

3

2

2

1

1

3

3

2

1

1

2

u2= 4FL/5AE, v1= 0

0v

0u

0vAE5

FL4u

0v

0u

603333

023131

333300

310435

330033

313504

L4

AE

?S

?R

?S

?R

0S

FR

3

3

2

2

1

1

3

3

2

1

1

2

Recovery of Axial Forces

05

40

54

05

40

0

0000

0101

0000

0101

2

2

1

1

2

2

1

1

F

vAE

FLu

v

u

L

AE

Q

P

Q

P

Element I

Element II

Element II I

53

51

535

1

0

0

05

4

3333

3131

3333

3131

4

3

3

2

2

3

3

2

2

F

v

u

vAE

FLu

L

AE

Q

P

Q

P

0

0

0

0

0

0

0

0

3333

3131

3333

3131

4

3

3

1

1

3

3

1

1

v

u

v

u

L

AE

Q

P

Q

P

Stresses inside members

Element I

Element II

Element II I

A

F

5

4

5

41

FP

5

42

FP

FP5

12

FQ5

32

FQ5

33

FP5

13