measuring detector radiation damagefasffasf measuring detector radiation damage jose luis salinas,...

1
fasffasf Measuring Detector Radiation Damage Jose Luis Salinas, Joliet Junior College – CCI Program Rick J. Tesarek, Fermilab Abstract: Scintillator counters are used as fast accelerator loss monitors. These devices are capable of seeing losses from single RF buckets that are 20 ns apart. The booster uses these fast lost monitors as a tool to understand the beam. [1]. Radiation damage to the optical components of the detectors compromises their performance. The adhesive that is used to make the detectors is most affected. We wish to study how radiation affects the optical properties of the optical cement. Measuring Transparency: Transparency is the amount of light passing through the sample (R S ) divided by the amount of light passing through an empty holder (R E ). Calculate the ratio of the pulse heights the PMTs are giving off when there is no sample. Now, placing a sample in the setup will change the pulse heights of one of the PMTs. Calculate the ratio. Results: 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 100 0 100 200 300 400 Transmission angle BC600 #7 BC600 #8 BC600 #9 BC600 #10 BC600 #6 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 100 0 100 200 300 400 Transmission angle EJ500 #1 EJ500 #2 EJ500 #3 EJ500 #4 EJ500 #5 Figure 7: Light transmission as a function of the orientation of the sample. Left graph measures BC600. Right graph measures EJ500. The initial angle was set by a mark on the sample. By rotating the sample, we sent light through different parts of the sample to evaluate any imperfections it may contain. Dosimetry Measurements: α damage= 3.0x10 17 A/cm Φ = fluence I= leakage V = volume T= Temp (K) k B = Boltzmann constant Figure 3: Photograph of two samples of optical cement: BC600 (left) from St.Gobain Crystals [2] and EJ500 (right) [3] from Eljen Technologies. The samples are about .300 inch thick and ¾ inch in diameter. Damage: Figure 1 shows an FLM. This detector consists of two scintillator bars and two photomultiplier tubes (PMT) and G10 plating. Figure 2 shows two scintillator assemblies that were exposed to radiation. The darkest part of the assembly on the right is the adhesive that sticks the scintillator to the acrylic plastic. We will measure the transparency of the glue samples as a function of radiation exposure . Test Setup Calibration: We set the gain for each PMT to operate in the linear region. We evaluate the linearity by changing the amount of light the PMT receives by changing the neutral density filter. We then read the pulse height from an oscilloscope. Transparency Measurements: The transparency measurement setup is illustrated below. We use a 405 nm laser that sends a 40 picosecond wide pulse. 0 0.2 0.4 0.6 0.8 1 1.2 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.5 1 P AE / P BE Pulse Height (v) Filter transmission PMT A avg ratio f absorber laser Light Splitter Sample Holder PMT A (test) P = pulse height PMT A = P AE PMT B = P BE Ratio = P AE / P BE PMT B (control) Filter wheel (calibration) Silicon Photodiode We use a 1 cm x 1 cm x 300 μm thick silicon photodiode to measure radiation dose. The diode leakage current is proportional to the radiation dose and also depends on temperature [4]. References: [1] Woodworth, Brian. “Booster Beam Profile Measurements via Stripping Foil Losses.” Fermilab Undergraduate Poster Session, August 11, 2016. [2] SaintGobain Crystals, 17900 Great Lakes Parkway, Hiram, OH 442349661 [3] Eljen Technology, 1300 West Broadway, Sweetwater, TX 79556 [4] Barberis, E. et al . Nucl. Instrum. and Meth. A326 (1993) 373380. [5] www.arduino.cc I (Φ)= I (0) + V · Φ · I (T ) T 2 e -1.23(eV) 2k B T Summary: We developed a test setup that will allow us to measure the transparency of optical cement. We have the equipment to measure the radiation dose and the equipment to measure temperature. We made samples of two different glues and measured its initial transparency before exposing them to radiation. We can now put them into the booster and later on measure the transparency as a function of radiation. Figure 8: 1 cm x 1 cm x 300 micron silicon diode. Figure 1: Fast Lost Monitor (FLM). Consists of two black photomultiplier tubes, three green G10 plates, two acrylic plastic pieces (grey area) and two scintillators (blue plates). Figure 2: Two scintillator assemblies that underwent low (left) radiation dose and high (right) radiation dose. The darkest part of the picture right is the adhesive. Figure 4: The laser emits a light pulse that is split in half when it passes through a light splitter. Onehalf of the light goes to PMT B and the other half passes through the sample, through a filter wheel, and then into PMT A. Figure 5: Oscilloscope traces for the reference PMT (yellow) and the test PMT (blue) for three different neutral density filters. Figure 6: Pulse height vs. filter transmission for PMT operating in linear region. Glue Samples: We use a thermocouple attached to an Arduino microprocessor to record the temperature as a function of time [5]. Figure 9: Leakage current as a function of radiation dose from data collected inside CDF detector. Courtesy of CDF Radiation Monitoring Group. 0 5000 10000 15000 20000 25000 30000 0 10000 20000 30000 40000 50000 60000 Dose (Gy) I Leak (nA) 15 20 25 30 19:24:50 19:55:26 20:26:01 20:56:36 21:27:12 21:57:47 22:28:22 22:58:57 23:29:33 00:00:08 00:30:43 01:01:19 01:31:54 02:02:29 02:33:04 03:03:40 03:34:15 04:04:50 04:35:25 05:06:00 05:36:36 06:07:11 06:37:46 07:08:21 07:38:57 08:09:32 08:40:07 09:10:42 09:41:18 10:11:53 10:42:28 Temperature in celsius internal Temp external Temp Time Figure 10: Data collected overnight from Arduino. PMT PMT scintillator G10 acrylic acrylic acrylic scintillator scintillator adhesive

Upload: others

Post on 20-Mar-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Measuring Detector Radiation Damagefasffasf Measuring Detector Radiation Damage Jose Luis Salinas, Joliet Junior College – CCI Program Rick J. Tesarek , Fermilab Abstract: Scintillator/counters/are

fasffasf

Measuring Detector Radiation DamageJose Luis Salinas, Joliet Junior College – CCI Program

Rick J. Tesarek, FermilabAbstract:

Scintillator  counters  are  used  as  fast  accelerator  loss  monitors.  These  devices  are  capable  of  seeing  losses  from  single  RF  buckets  that  are  20  ns  apart.  The  booster  uses  these  fast  lost  monitors  as  a  tool  to  understand  the  beam.  [1].  Radiation  damage  to  the  optical  components  of  the  detectors  compromises  their  performance.  The  adhesive  that  is  used  to  make  the  detectors  is  most  affected.  We  wish  to  study  how  radiation  affects  the  optical  properties  of  the  optical  cement.  

Measuring  Transparency:  Transparency  is  the  amount  of  light  passing  through  the  sample  (RS)  divided  by  the  amount  of  light  passing  through  an  empty  holder  (RE).

Calculate  the  ratio  of  the  pulse  heights  the  PMTs  are  giving  off  when  there  is  no  sample.    

Now,  placing  a  sample  in  the  setup  will  change  the  pulse  heights  of  one  of  the  PMTs. Calculate  the  ratio.  

Results:

0.60.650.70.750.80.850.90.95

1

-­‐100 0 100 200 300 400Transm

ission  

angle

BC-­‐600  #7BC-­‐600  #8BC-­‐600  #9BC-­‐600  #10BC-­‐600  #6

0.60.650.70.750.80.850.90.95

1

-­‐100 0 100 200 300 400

Transm

ission

angle

EJ-­‐500  #1EJ-­‐500  #2EJ-­‐500  #3EJ-­‐500  #4EJ-­‐500  #5

Figure  7: Light  transmission  as  a  function  of  the  orientation  of  the  sample.  Left  graph  measures  BC-­‐600.  Right  graph  measures  EJ-­‐500.  The  initial  angle  was  set  by  a  mark  on  the  sample.  By  rotating  the  sample,  we  sent  light  through  different  parts  of  the  sample  to  evaluate  any  imperfections  it  may  contain.  

Dosimetry  Measurements:  

α damage= 3.0x10-­‐17  A/cm      Φ  =  fluence I= leakageV = volume

T= Temp  (K)kB=  Boltzmann  constant

Figure  3: Photograph  of  two  samples  of  optical  cement:  BC-­‐600  (left)    from  St.-­‐Gobain Crystals  [2]  and  EJ-­‐500  (right)  [3]    from  Eljen  Technologies.  The  samples  are  about  .300  inch  thick  and  ¾  inch  in  diameter.    

Damage:

Figure  1  shows  an  FLM.  This  detector  consists  of  two  scintillator  bars  and  two  photomultiplier  tubes  (PMT)  and  G-­‐10  plating.  Figure  2  shows  two  scintillator  assemblies  that  were  exposed  to  radiation.  The  darkest  part  of  the  assembly  on  the  right  is  the  adhesive  that  sticks  the  scintillator  to  the  acrylic  plastic.  We  will  measure  the  transparency  of  the  glue  samples  as  a  function  of  radiation  exposure  .

Test  Setup  Calibration:We  set  the  gain  for  each  PMT  to  operate  in  the  linear  region.  We  evaluate  the  linearity  by  changing  the  amount  of  light  the  PMT  receives  by  changing  the  neutral  density  filter.  We  then  read  the  pulse  height  from  an  oscilloscope.  

Transparency  Measurements:The  transparency  measurement  setup  is  illustrated  below.  We  use  a  405  nm  laser  that  sends  a  40  picosecond  wide  pulse.  

0

0.2

0.4

0.6

0.8

1

1.2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.5 1

P AE  /P

BE

Pulse

 Height  (v)  

Filter  transmission

PMT  A  avg

ratio

f

absorberlaser  Light  

SplitterSample  Holder

PMT  A(test)

P  =  pulse  heightPMT  A  =  PAE  PMT  B  =  PBERatio  =  PAE  /PBE

PMT  B(control)

Filter  wheel  (calibration)

Silicon  PhotodiodeWe  use  a  1  cm  x  1  cm  x  300  μm  thick  silicon  photodiode  to  measure  radiation  dose.  The diode  leakage  current  is  proportional  to  the  radiation  dose  and  also  depends  on  temperature  [4].  

References:[1]  Woodworth,  Brian.  “Booster  Beam  Profile  Measurements  via  Stripping  Foil  Losses.”  FermilabUndergraduate  Poster  Session,  August  11,  2016.[2]  Saint-­‐Gobain  Crystals,  17900  Great  Lakes  Parkway,  Hiram,  OH  44234-­‐9661[3]  Eljen Technology,  1300  West  Broadway,  Sweetwater,  TX  79556[4]  Barberis,  E.  et  al.  Nucl.  Instrum.  and  Meth.  A326  (1993)  373-­‐380.  [5]  www.arduino.cc

I(�) = I(0) + V · � · ↵

I(T ) ⇠ T 2e�1.23(eV)

2kBT

Summary:  We  developed  a  test  setup  that  will  allow  us  to  measure  the  transparency  of  optical  cement.  We  have  the  equipment  to  measure  the  radiation  dose  and  the  equipment  to  measure  temperature.  We  made  samples  of  two  different  glues  and  measured  its  initial  transparency  before  exposing  them  to  radiation.    We  can  now  put  them  into  the  booster  and  later  on  measure  the  transparency  as  a  function  of  radiation.  

Figure  8:  1  cm  x  1  cm  x  300  micron  silicon  diode.  

Figure  1:  Fast  Lost  Monitor  (FLM).  Consists  of  two  black  photomultiplier  tubes,  three  green  G-­‐10  plates,  two  acrylic  plastic  pieces  (grey  area)  and  two  scintillators  (blue  plates).

Figure  2:  Two  scintillator  assemblies  that  underwent  low  (left)  radiation  dose  and  high  (right)  radiation  dose.  The  darkest  part  of  the  picture  right  is  the  adhesive.  

Figure  4:  The  laser  emits  a  light  pulse  that  is  split  in  half  when  it  passes  through  a  light  splitter.  One-­‐half  of  the  light  goes  to    PMT  B  and  the  other  half  passes  through  the  sample,  through  a  filter  wheel,  and  then  into  PMT  A.  

Figure  5:  Oscilloscope  traces  for  the  reference  PMT  (yellow)  and  the  test  PMT  (blue)  for  three  different  neutral  density  filters.  

Figure  6: Pulse  height  vs.  filter  transmission  for  PMT  operating  in  linear  region.  

Glue  Samples:

We  use  a  thermocouple  attached  to  an  Arduino  microprocessor  to  record  the  temperature  as  a  function  of  time  [5].    

Figure  9:  Leakage  current  as  a  function  of  radiation  dose  from  data  collected  inside  CDF  detector.  Courtesy  of  CDF  Radiation  Monitoring  Group.  

0

5000

10000

15000

20000

25000

30000

0 10000 20000 30000 40000 50000 60000Dose (Gy)

I Leak

(nA)

5/20/15

x8608

Drawing: Counter Assembly 1/7

[email protected]:

Name:R.J. Tesarek Phone:

15

20

25

30

19:24:50

19:55:26

20:26:01

20:56:36

21:27:12

21:57:47

22:28:22

22:58:57

23:29:33

00:00:08

00:30:43

01:01:19

01:31:54

02:02:29

02:33:04

03:03:40

03:34:15

04:04:50

04:35:25

05:06:00

05:36:36

06:07:11

06:37:46

07:08:21

07:38:57

08:09:32

08:40:07

09:10:42

09:41:18

10:11:53

10:42:28

Tempe

rature  in  

celsius

internal  Tempexternal  Temp

Time

Figure  10:  Data  collected  overnight  from  Arduino.

PMT PMT

scintillator

G-­‐10

acrylic  

acrylic acrylic

scintillator scintillator

adhesive