measurement of resistivity dominated collimator wake eld...

13
Measurement of Resistivity Dominated Collimator Wakefield Kicks at the SLC M.Seidel, DESY D.Onoprienko, Brunell Univ. UK, P.Tenenbaum, SLAC June 4, 2002 Motivation for the Experiment Principle of the Experiment Geometric and Resistive Wakefield Kicks Theoretical and Measured Results Discussion M. Seidel, DESY, EPAC 2002

Upload: others

Post on 18-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Measurement of Resistivity Dominated Collimator Wake eld ...accelconf.web.cern.ch/accelconf/e02/TALKS/WEAGB002.pdf · D.Onoprienko, Brunell Univ. UK, P.Tenenbaum, SLAC June 4, 2002

Measurement of Resistivity Dominated

Collimator Wakefield Kicks at the SLC

M.Seidel, DESY

D. Onoprienko, Brunell Univ. UK, P. Tenenbaum, SLAC

June 4, 2002

• Motivation for the Experiment

• Principle of the Experiment

• Geometric and Resistive Wakefield Kicks

• Theoretical and Measured Results

• Discussion

M. Seidel, DESY, EPAC 2002

Page 2: Measurement of Resistivity Dominated Collimator Wake eld ...accelconf.web.cern.ch/accelconf/e02/TALKS/WEAGB002.pdf · D.Onoprienko, Brunell Univ. UK, P.Tenenbaum, SLAC June 4, 2002

Motivation

• in linear colliders (also FEL’s) small gap collimation is needed;induced wakefields (geometric, resistive) are critical for beam emit-tance and lead to jitter amplification

• theory of short range wakefields is complicated; numerical calcula-tions are difficult

• measurements, if possible, are more direct !

• graphite as spoiler material is excellent from mechanical point ofview; low conductivity is one of the problems→ reliable predictionof resistive wall wakefield is important

M. Seidel, DESY, EPAC 2002

Page 3: Measurement of Resistivity Dominated Collimator Wake eld ...accelconf.web.cern.ch/accelconf/e02/TALKS/WEAGB002.pdf · D.Onoprienko, Brunell Univ. UK, P.Tenenbaum, SLAC June 4, 2002

Spoiler and Absorber Concept

Beam

Spoiler Absorber

function: halo cleaning; machine protectionproblems: full beam survival; transverse wakefields

Typical Parametersat spoiler:

E ≈ 250 GeV

P ≈ 10 MW

σx × σy ≈ 150× 7µm2

spoiler gap ≈ 1 mm

spoiler thickness ≈ 0.5 radiation length

M. Seidel, DESY, EPAC 2002

Page 4: Measurement of Resistivity Dominated Collimator Wake eld ...accelconf.web.cern.ch/accelconf/e02/TALKS/WEAGB002.pdf · D.Onoprienko, Brunell Univ. UK, P.Tenenbaum, SLAC June 4, 2002

Principle of the Experiment

• use the high quality damped SLC beam in sector II

• beam trajectory is measured upstream and downstream of the col-limator pair

• center of mass kick at collimator is determined for different verticalcenter offsets of the collimator

incoming Beam outgoing Beammovable Collimator

M. Seidel, DESY, EPAC 2002

Page 5: Measurement of Resistivity Dominated Collimator Wake eld ...accelconf.web.cern.ch/accelconf/e02/TALKS/WEAGB002.pdf · D.Onoprienko, Brunell Univ. UK, P.Tenenbaum, SLAC June 4, 2002

Mechanical Layout

• aluminum cassette with 5 remotely interchangeable inserts

• precision vertical position adjustment

• beam view:

Cu C C

slot change movement

empty

roun

d slot

shor

t cop

per j

aws

shor

t grap

hite j

aws

long g

raphit

e jaw

s

unus

ed sl

ot

jaw vs beamadjustment

• short and long jaws:

8 inches 12 inches

M. Seidel, DESY, EPAC 2002

Page 6: Measurement of Resistivity Dominated Collimator Wake eld ...accelconf.web.cern.ch/accelconf/e02/TALKS/WEAGB002.pdf · D.Onoprienko, Brunell Univ. UK, P.Tenenbaum, SLAC June 4, 2002

In Reality. . .

M. Seidel, DESY, EPAC 2002

Page 7: Measurement of Resistivity Dominated Collimator Wake eld ...accelconf.web.cern.ch/accelconf/e02/TALKS/WEAGB002.pdf · D.Onoprienko, Brunell Univ. UK, P.Tenenbaum, SLAC June 4, 2002

Material Properties

we use a high density graphite with good vacuum properties(after baking at 400C)

Selected parameters for copper and graphite.

density conductivity skin-depth at[g/cm3] [Ω−1m−1] 500 GHz [µm]

Copper 8.9 5.9 · 107 0.1Graphite 1.95 5.5 · 104 3.0

M. Seidel, DESY, EPAC 2002

Page 8: Measurement of Resistivity Dominated Collimator Wake eld ...accelconf.web.cern.ch/accelconf/e02/TALKS/WEAGB002.pdf · D.Onoprienko, Brunell Univ. UK, P.Tenenbaum, SLAC June 4, 2002

Beam Properties

• damped SLC beam at 1.19 GeV, γ = 2330

εx = 15 nm εy = 0.8 nmσx = 200µm σy = 50µmσz = 650µm

• bunch charge: 2 · 1010, 9Hz

• typical scan: 15 (vertical motion) × 25 (pulses); all automatedwith correlation plot feature of operating system

M. Seidel, DESY, EPAC 2002

Page 9: Measurement of Resistivity Dominated Collimator Wake eld ...accelconf.web.cern.ch/accelconf/e02/TALKS/WEAGB002.pdf · D.Onoprienko, Brunell Univ. UK, P.Tenenbaum, SLAC June 4, 2002

Geometric Wakefield Kick

Transverse Geometric Wakefield Kick, averaged over Gaussian Bunch, see G. V. Stupakov,SLAC-Pub-8857 (2001)

θ

l_f l_t

g g_0

y_0

long taper:

for 0.2θth

2

σzg(≈ 18!) < 1 :

〈∆y′〉y0

=2√πθthNpreσzγg2

short taper - diffraction, neglects taper → expect overestimation:

〈∆y′〉y0

=4Npreγg2

M. Seidel, DESY, EPAC 2002

Page 10: Measurement of Resistivity Dominated Collimator Wake eld ...accelconf.web.cern.ch/accelconf/e02/TALKS/WEAGB002.pdf · D.Onoprienko, Brunell Univ. UK, P.Tenenbaum, SLAC June 4, 2002

Resistive Wakefield Kick

see A. Piwinski, DESY-94 068 (1994):

θ

l_f l_t

g g_0

y_0

⟨∆y′⟩

=Γ(1

4)√

2

Npreγ

1√σzσZ0

·

lf sin(

2πy0

g

)+ 2πy0

g

g2(

1 + cos(

2πy0

g

)) +2lt

g0 − g

tan(πy0

g

)g

−tan(πy0

g0

)g0

⟨∆y′⟩

= a · y0 + b · y30 +O

(y5

0

)

→ use cubic fit-function

M. Seidel, DESY, EPAC 2002

Page 11: Measurement of Resistivity Dominated Collimator Wake eld ...accelconf.web.cern.ch/accelconf/e02/TALKS/WEAGB002.pdf · D.Onoprienko, Brunell Univ. UK, P.Tenenbaum, SLAC June 4, 2002

Measured Deflection Curves

short graphite and Cu jaws

-6

-4

-2

0

2

4

6

8

-1.5 -1 -0.5 0 0.5 1 1.5

cm k

ick

angl

e [µ

rad]

gap position [mm]

Copperfit

short Graphitefit

long graphite jaws

-30

-20

-10

0

10

20

30

40

-1.5 -1 -0.5 0 0.5 1 1.5

cm k

ick

angl

e [µ

rad]

gap position [mm]

long Graphitefit

the fit functions contain a linear and a cubic term; the linear coefficientis compared to theory

M. Seidel, DESY, EPAC 2002

Page 12: Measurement of Resistivity Dominated Collimator Wake eld ...accelconf.web.cern.ch/accelconf/e02/TALKS/WEAGB002.pdf · D.Onoprienko, Brunell Univ. UK, P.Tenenbaum, SLAC June 4, 2002

Comparison with Theory

Predicted geometric and resistive kick angles in [µrad/mm]:

collimator resistive part geom part sumtaper flat tot

short copper 0.001 0 0.001 6.7 6.7short graphite 0.67 0 0.67 6.7 7.4long graphite 0.67 6.1 6.8 6.7 13.5

Measured kick angles and inferred resistive part obtained by subtract-ing the kick of the copper jaws, in [µrad/mm]:

collimator measured total inferred resistiveshort copper 2.6±0.3 (0)

short graphite 3.9±0.3 1.3±0.6long graphite 10.8±0.4 8.2±0.7

M. Seidel, DESY, EPAC 2002

Page 13: Measurement of Resistivity Dominated Collimator Wake eld ...accelconf.web.cern.ch/accelconf/e02/TALKS/WEAGB002.pdf · D.Onoprienko, Brunell Univ. UK, P.Tenenbaum, SLAC June 4, 2002

Discussion• result for graphite, gap width 3.8 mm, flat length of 4 inches, taper

angle of 10: w⊥ = 3± 0.3 V/pC/mm.

• geometric theory not well applicable for this taper angle; diffractionformula overestimates; resistive theory agrees relatively well

• graphite wakefield may be too strong for linear collider application→ coating or different material

• better faith in theoretical predictions for other materials

• planned: dependence on bunch length; smaller taper angles

Thanks to the colleagues atSLAC for the great collaborationon this subject!

M. Seidel, DESY, EPAC 2002