measurement and scaling of trailing-edge noisem. herr > 01.10..2009 measurement and scaling of...

38
M. Herr > 01.10..2009 Measurement and Scaling of Trailing-Edge Noise * Michaela Herr Institute of Aerodynamics and Flow Technology DLR Braunschweig 13 th CEAS-ASC Workshop and 4 th Workshop of X 3 -Noise, “Resolving Uncertainties in Airframe Noise Testing and CAA Validation”, Bucharest, Romania, 1-2 October 2009 *rather an extensive look at the scaling of the related source quantities

Upload: others

Post on 02-Mar-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Measurement and Scaling of Trailing-Edge NoiseM. Herr > 01.10..2009 Measurement and Scaling of Trailing-Edge Noise * Michaela Herr Institute of Aerodynamics and Flow Technology DLR

M. Herr > 01.10..2009

Measurement and Scaling of Trailing-Edge Noise*

Michaela Herr

Institute of Aerodynamics and Flow TechnologyDLR Braunschweig

13th CEAS-ASC Workshop and 4th Workshop of X3-Noise, “Resolving Uncertainties in Airframe Noise Testing and CAA

Validation”, Bucharest, Romania, 1-2 October 2009

*rather an extensive look at the scaling of the related source quantities

Page 2: Measurement and Scaling of Trailing-Edge NoiseM. Herr > 01.10..2009 Measurement and Scaling of Trailing-Edge Noise * Michaela Herr Institute of Aerodynamics and Flow Technology DLR

CEAS-ASC/ X3-Noise Workshop 2009, Bucharest, (Romania) > M. Herr > 01.10.2009

2

BackgroundPrimary goals

Set-up of an experimental database which is suitable for parametric trailing-edge (TE) noise source studies and for CAA validationImprove DLR’s TE noise measurement and prediction methods

With reference to the upcoming “Workshop on Benchmark Problems for Airframe Noise Computations-I” to be held on June 10-11, 2010

ApproachDefinition of a simple generic test setup in the Acoustic Wind-Tunnel Braunschweig (AWB) with a reduced set of parameters, including realistic (HLD) Reynolds numbersComparison with theoretical approaches and with other available test data to provide

Validation of the chosen measurement data correctionsEstimates of systematic uncertainty contributions

Page 3: Measurement and Scaling of Trailing-Edge NoiseM. Herr > 01.10..2009 Measurement and Scaling of Trailing-Edge Noise * Michaela Herr Institute of Aerodynamics and Flow Technology DLR

CEAS-ASC/ X3-Noise Workshop 2009, Bucharest, (Romania) > M. Herr > 01.10.2009

3

Plate model0.15 mm

1 mm

Generic Test Setup - Acoustic Wind-Tunnel Braunschweig (AWB)

u

5 deglc

= 0.8–2.0 mu∞

= 40–60 m/sRe

= 2.1 Mio–7.9 Mio

= 0 deg

= 0 deg

LE tripping

Nozzle exit:0.8 m x 1.2 m

Exchangeable TE sections

Page 4: Measurement and Scaling of Trailing-Edge NoiseM. Herr > 01.10..2009 Measurement and Scaling of Trailing-Edge Noise * Michaela Herr Institute of Aerodynamics and Flow Technology DLR

CEAS-ASC/ X3-Noise Workshop 2009, Bucharest, (Romania) > M. Herr > 01.10.2009

4

Trailing-Edge Noise Data AssessmentMeasurement of related scaling parameters in the source region Measurement of the farfield TE noise; estimation of absolute levels

TBL mean velocity profiles and integral scales

Unsteady surface pressure point and cross spectra

Farfield TE noise spectra (re. unit distance and span)

Brooks & Hodgson (1981): )()1²(²2

)( 03

SMr

bMS

V

xV

00

Page 5: Measurement and Scaling of Trailing-Edge NoiseM. Herr > 01.10..2009 Measurement and Scaling of Trailing-Edge Noise * Michaela Herr Institute of Aerodynamics and Flow Technology DLR

CEAS-ASC/ X3-Noise Workshop 2009, Bucharest, (Romania) > M. Herr > 01.10.2009

5

Trailing-Edge Noise Data Assessment

TBL thickness wall friction velocity uw

/∞

, TBL edge velocity ue

Chase (1987):

Estimation of the surface pressure spectrum from TBL data

23

21 kkk

²21

212 k

ubVkk

|/²²|²

)(²)(²...................

...1|/²²|

²²

|/²²|)(

),(

22132

0

20

2

254

25

2

42/520

2

32

0

ckkkb

bkbkkbbb

ckkb

kckb

bkuP

k

Goody (2004), based on Howe (2000):

757.07.375.0

2

20

/1.15.0/

/3)/)((

ete

e

w

e

uRu

uuS

)//()/( 2 uuR et

Page 6: Measurement and Scaling of Trailing-Edge NoiseM. Herr > 01.10..2009 Measurement and Scaling of Trailing-Edge Noise * Michaela Herr Institute of Aerodynamics and Flow Technology DLR

CEAS-ASC/ X3-Noise Workshop 2009, Bucharest, (Romania) > M. Herr > 01.10.2009

6

Part I – Measured TBL Mean Velocity Profiles Hot-wire (CTA) measurement resultsue

/u∞

= 0.98 ±

0.02 (40:1)

u =40, 50, 60 m/s

lc = 0.8 mlc = 1.2 mlc = 1.6 mlc = 2.0 m

x2, mm

u/u e

0 10 20 30 400

1

Page 7: Measurement and Scaling of Trailing-Edge NoiseM. Herr > 01.10..2009 Measurement and Scaling of Trailing-Edge Noise * Michaela Herr Institute of Aerodynamics and Flow Technology DLR

CEAS-ASC/ X3-Noise Workshop 2009, Bucharest, (Romania) > M. Herr > 01.10.2009

7

u =40, 50, 60 m/s

lc = 0.8 mlc = 1.2 mlc = 1.6 mlc = 2.0 m

x2+

u+

100 101 102 103 1040

10

20

30

40

u+ = x2+

u+ = 1/0.41 ln x2+ + 5

Scaling based on inner scale, ∞/u

);( 2 xf

uuu

uxx 22

u =40, 50, 60 m/s

lc = 0.8 mlc = 1.2 mlc = 1.6 mlc = 2.0 m

x2, mm

u/u e

0 10 20 30 400

1

Part I – Measured TBL Mean Velocity Profiles

Page 8: Measurement and Scaling of Trailing-Edge NoiseM. Herr > 01.10..2009 Measurement and Scaling of Trailing-Edge Noise * Michaela Herr Institute of Aerodynamics and Flow Technology DLR

CEAS-ASC/ X3-Noise Workshop 2009, Bucharest, (Romania) > M. Herr > 01.10.2009

8

u =40, 50, 60 m/s

lc = 0.8 mlc = 1.2 mlc = 1.6 mlc = 2.0 m

x2/99

u/u e

10-3 10-2 10-1 1000

1

u/ue = 0.084 ln(x2/99) + 0.82

Scaling based on outer scale,

);( *2xF

uuue

2*

2xx

u =40, 50, 60 m/s

lc = 0.8 mlc = 1.2 mlc = 1.6 mlc = 2.0 m

x2, mm

u/u e

0 10 20 30 400

1

Part I – Measured TBL Mean Velocity Profiles

Page 9: Measurement and Scaling of Trailing-Edge NoiseM. Herr > 01.10..2009 Measurement and Scaling of Trailing-Edge Noise * Michaela Herr Institute of Aerodynamics and Flow Technology DLR

CEAS-ASC/ X3-Noise Workshop 2009, Bucharest, (Romania) > M. Herr > 01.10.2009

9

Part I – Derived ParametersReconstruction of the velocity profiles, Coles’ (1956) Law of the Wake

;)ln(1122

sin15.0)ln(1 22

B

uuxBxu e

x2, mm

u/u e

0 10 20 30 400

1

u =40 m/s50 m/s60 m/s

99

1

,, 2

, H12

uw

These are used in the following for the scaling of unsteady surface pressure and TE noise data.

/u

Page 10: Measurement and Scaling of Trailing-Edge NoiseM. Herr > 01.10..2009 Measurement and Scaling of Trailing-Edge Noise * Michaela Herr Institute of Aerodynamics and Flow Technology DLR

CEAS-ASC/ X3-Noise Workshop 2009, Bucharest, (Romania) > M. Herr > 01.10.2009

10

Unsteady surface pressure point and cross spectra

Part II – Unsteady Surface Pressure Data

Farfield TE noise spectra (re. unit distance and span)

TBL mean velocity profiles and integral scales

Point PSD close to the TEStreamwise and spanwise coherence decayStreamwise and spanwise coherence lengthsConvection velocities

Page 11: Measurement and Scaling of Trailing-Edge NoiseM. Herr > 01.10..2009 Measurement and Scaling of Trailing-Edge Noise * Michaela Herr Institute of Aerodynamics and Flow Technology DLR

CEAS-ASC/ X3-Noise Workshop 2009, Bucharest, (Romania) > M. Herr > 01.10.2009

11

f, kHz

10lo

g(S

0(f)/

p2 ref)

=L p(

f=

1H

z),d

B

100 10160

65

70

75

80

85

90lc=0.8 mlc=1.2 mlc=1.6 mlc=2.0 m

u =40 m/s50 m/s60 m/s

Part II – Point PSDs close to the TE

TE

u∞

Page 12: Measurement and Scaling of Trailing-Edge NoiseM. Herr > 01.10..2009 Measurement and Scaling of Trailing-Edge Noise * Michaela Herr Institute of Aerodynamics and Flow Technology DLR

CEAS-ASC/ X3-Noise Workshop 2009, Bucharest, (Romania) > M. Herr > 01.10.2009

12

1/ue

10lo

g[S

0(

)ue/q

e2 1],

dB

10-1 100 101-65

-60

-55

-50

-45

-40

-35lc=0.8 mlc=1.2 mlc=1.6 mlc=2.0 m

u =40 m/s50 m/s60 m/s

f, kHz

10lo

g(S

0(f)/

p2 ref)

=L p(

f=

1H

z),d

B

100 10160

65

70

75

80

85

90lc=0.8 mlc=1.2 mlc=1.6 mlc=2.0 m

u =40 m/s50 m/s60 m/s

Part II – Point PSDs close to the TE Scaling based on outer scales:

Pressure scale: qe

= ½∞

ue2

Time scale: 1

/ue or 99

/ue

Page 13: Measurement and Scaling of Trailing-Edge NoiseM. Herr > 01.10..2009 Measurement and Scaling of Trailing-Edge Noise * Michaela Herr Institute of Aerodynamics and Flow Technology DLR

CEAS-ASC/ X3-Noise Workshop 2009, Bucharest, (Romania) > M. Herr > 01.10.2009

13

Scaling based on “mixed” scalesPressure scale: w

=∞

u2Time scale: 1

/u

, 99

/u

, 1

/ue

, 99

/ue

Scaling based on inner scalesPressure scale: wTime scale: ∞

/u2

Part II – Point PSDs close to the TE

99/u

10lo

g[S

0(

)u/

w2 99

],dB

101 102 103-35

-30

-25

-20

-15

-10

-5lc=0.8 mlc=1.2 mlc=1.6 mlc=2.0 m

u =40 m/s50 m/s60 m/s

-0.8

0.3

-1

/u2

10lo

g[S

0(

)u2 /

w2 ],

dB

10-2 10-1 1000

5

10

15

20

25

30lc=0.8 mlc=1.2 mlc=1.6 mlc=2.0 m

u =40 m/s50 m/s60 m/s

/u2 = 0.3

Page 14: Measurement and Scaling of Trailing-Edge NoiseM. Herr > 01.10..2009 Measurement and Scaling of Trailing-Edge Noise * Michaela Herr Institute of Aerodynamics and Flow Technology DLR

CEAS-ASC/ X3-Noise Workshop 2009, Bucharest, (Romania) > M. Herr > 01.10.2009

14

Part II – Current Prediction Models for point PSDs Chase (1987) model:

99/ue

10lo

g[S

0(

)ue/

w2 99

],dB

100 101 102-20

-15

-10

-5

0

5

10lc=0.8 mlc=1.2 mlc=1.6 mlc=2.0 m

u =40 m/s50 m/s60 m/s

Chase (1987)

99/ue

10lo

g[S

0(

)ue/

w2 99

],dB

100 101 102-20

-15

-10

-5

0

5

10lc=0.8 mlc=1.2 mlc=1.6 mlc=2.0 m

u =40 m/s50 m/s60 m/s

Page 15: Measurement and Scaling of Trailing-Edge NoiseM. Herr > 01.10..2009 Measurement and Scaling of Trailing-Edge Noise * Michaela Herr Institute of Aerodynamics and Flow Technology DLR

CEAS-ASC/ X3-Noise Workshop 2009, Bucharest, (Romania) > M. Herr > 01.10.2009

15

Part II – Current Prediction Models for point PSDs Chase (1987) model:

Empirical factors need a more detailed experimental assessment

99/ue

10lo

g[S

0(

)ue/

w2 99

],dB

100 101 102-20

-15

-10

-5

0

5

10lc=0.8 mlc=1.2 mlc=1.6 mlc=2.0 m

u =40 m/s50 m/s60 m/s

Chase (1987)

99/ue

10lo

g[S

0(

)ue/

w2 99

],dB

100 101 102-20

-15

-10

-5

0

5

10lc=0.8 mlc=1.2 mlc=1.6 mlc=2.0 m

u =40 m/s50 m/s60 m/s

coefficientschanged acc.to Schewe (1993)

99/ue

10lo

g[S

0(

)ue/

w2 99

],dB

100 101 102-20

-15

-10

-5

0

5

10lc=0.8 mlc=1.2 mlc=1.6 mlc=2.0 m

u =40 m/s50 m/s60 m/s

Page 16: Measurement and Scaling of Trailing-Edge NoiseM. Herr > 01.10..2009 Measurement and Scaling of Trailing-Edge Noise * Michaela Herr Institute of Aerodynamics and Flow Technology DLR

CEAS-ASC/ X3-Noise Workshop 2009, Bucharest, (Romania) > M. Herr > 01.10.2009

16

Part II – Current Prediction Models for point PSDs Goody (2004) model

RT = 123

RT = 51

Goody (2004)

99/ue

10lo

g[S

0(

)ue/

w2 99

],dB

100 101 102-20

-15

-10

-5

0

5

10lc=0.8 mlc=1.2 mlc=1.6 mlc=2.0 m

u =40 m/s50 m/s60 m/s

Page 17: Measurement and Scaling of Trailing-Edge NoiseM. Herr > 01.10..2009 Measurement and Scaling of Trailing-Edge Noise * Michaela Herr Institute of Aerodynamics and Flow Technology DLR

CEAS-ASC/ X3-Noise Workshop 2009, Bucharest, (Romania) > M. Herr > 01.10.2009

17

Part II – Current Prediction Models for point PSDs Goody (2004) model

High frequency data corrections have to be taken with care!Existing deviations are due to application of high-frequency data corrections which seem to overvalue actual levels

RT = 123

RT = 51

Goody (2004)

99/ue

10lo

g[S

0(

)ue/

w2 99

],dB

100 101 102-20

-15

-10

-5

0

5

10lc=0.8 mlc=1.2 mlc=1.6 mlc=2.0 m

u =40 m/s50 m/s60 m/s

RT = 123

RT = 51

Goody (2004)

99/ue

10lo

g[S

0(

)ue/

w2 99

],dB

100 101 102-20

-15

-10

-5

0

5

10lc=0.8 mlc=1.2 mlc=1.6 mlc=2.0 m

u =40 m/s50 m/s60 m/s

Page 18: Measurement and Scaling of Trailing-Edge NoiseM. Herr > 01.10..2009 Measurement and Scaling of Trailing-Edge Noise * Michaela Herr Institute of Aerodynamics and Flow Technology DLR

CEAS-ASC/ X3-Noise Workshop 2009, Bucharest, (Romania) > M. Herr > 01.10.2009

18

Part II – Current Prediction Models for point PSDs Goody (2004) model

High frequency data corrections have to be taken with care!Existing deviations are due to application of high-frequency data corrections which seem to overvalue actual levels

A combination of both models might apply.

RT = 123

RT = 51

Goody (2004)

99/ue

10lo

g[S

0(

)ue/

w2 99

],dB

100 101 102-20

-15

-10

-5

0

5

10lc=0.8 mlc=1.2 mlc=1.6 mlc=2.0 m

u =40 m/s50 m/s60 m/s

RT = 123

RT = 51

Goody (2004)

99/ue

10lo

g[S

0(

)ue/

w2 99

],dB

100 101 102-20

-15

-10

-5

0

5

10lc=0.8 mlc=1.2 mlc=1.6 mlc=2.0 m

u =40 m/s50 m/s60 m/s

RT = 123

RT = 51

combined approach

99/ue

10lo

g[S

0(

)ue/

w2 99

],dB

100 101 102-20

-15

-10

-5

0

5

10lc=0.8 mlc=1.2 mlc=1.6 mlc=2.0 m

u =40 m/s50 m/s60 m/s

Page 19: Measurement and Scaling of Trailing-Edge NoiseM. Herr > 01.10..2009 Measurement and Scaling of Trailing-Edge Noise * Michaela Herr Institute of Aerodynamics and Flow Technology DLR

CEAS-ASC/ X3-Noise Workshop 2009, Bucharest, (Romania) > M. Herr > 01.10.2009

19

Part II – Coherence Decay and Coherence LengthsCorcos’ (1963) similarity approach:

Streamwise

Spanwise

TE

u∞

3x

1x)()(

),( 3,1

ji

xijij SS

S

1111 ),(/),( xvxxxij kV

),(/ 1 xv Vk

Currently restricted to 2-m-plate only!

x1,3/V(x1, )

ij

0 5 10 15 200

0.2

0.4

0.6

0.8

1

x3 = 0.714

x1 = 0.16

3 mm 0.10

7 mm 0.2317,16 mm 0.56,0.52

|x1,3| = |x1,3|/99=

u = 60 m/s

20,23 mm 0.65,0.75

4 mm 0.13

),(/exp),(

),(/exp),(

1333

1111

xxxxij

xxxxij

V

V

Page 20: Measurement and Scaling of Trailing-Edge NoiseM. Herr > 01.10..2009 Measurement and Scaling of Trailing-Edge Noise * Michaela Herr Institute of Aerodynamics and Flow Technology DLR

CEAS-ASC/ X3-Noise Workshop 2009, Bucharest, (Romania) > M. Herr > 01.10.2009

20

Part II – Coherence Decay and Coherence LengthsCorcos’ (1963) similarity approach:

Streamwise

Spanwise

TE

u∞

3x

1x)()(

),( 3,1

ji

xijij SS

S

1111 ),(/),( xvxxxij kV

),(/ 1 xv Vk

Currently restricted to 2-m-plate only!

),(/exp),(

),(/exp),(

1333

1111

xxxxij

xxxxij

V

V

x1,3/V(x1, )

ij

0 5 10 15 200

0.2

0.4

0.6

0.8

1

x3 = 0.714x1 = 0.17

3 mm 0.10

7 mm 0.2217,16 mm 0.54,0.51

|x1,3| = |x1,3|/99=

u = 50 m/s

20,23 mm 0.64,0.73

4 mm 0.13

Page 21: Measurement and Scaling of Trailing-Edge NoiseM. Herr > 01.10..2009 Measurement and Scaling of Trailing-Edge Noise * Michaela Herr Institute of Aerodynamics and Flow Technology DLR

CEAS-ASC/ X3-Noise Workshop 2009, Bucharest, (Romania) > M. Herr > 01.10.2009

21

Part II – Coherence Decay and Coherence LengthsCorcos’ (1963) similarity approach:

Streamwise

Spanwise

TE

u∞

3x

1x)()(

),( 3,1

ji

xijij SS

S

1111 ),(/),( xvxxxij kV

),(/ 1 xv Vk

Currently restricted to 2-m-plate only!

),(/exp),(

),(/exp),(

1333

1111

xxxxij

xxxxij

V

V

x1,3/V(x1, )

ij

0 5 10 15 200

0.2

0.4

0.6

0.8

1

x3 = 0.714x1 = 0.19

3 mm 0.09

7 mm 0.2217,16 mm 0.53,0.50

|x1,3| = |x1,3|/99=

u = 40 m/s

20,23 mm 0.62,0.71

4 mm 0.12

Page 22: Measurement and Scaling of Trailing-Edge NoiseM. Herr > 01.10..2009 Measurement and Scaling of Trailing-Edge Noise * Michaela Herr Institute of Aerodynamics and Flow Technology DLR

CEAS-ASC/ X3-Noise Workshop 2009, Bucharest, (Romania) > M. Herr > 01.10.2009

22

Part II – Coherence Decay and Coherence Lengths

x1

x3

f(peak)

f, kHz

x1,

3/99

5 10 15

0.5

1

1.52

2.5u =40 m/s50 m/s60 m/s

333

111

//1//1

xvxx

xvxx

VkVk

Currently restricted to 2-m-plate only!

Assuming a constant V

0.65 u∞

Streamwise

Spanwise

Page 23: Measurement and Scaling of Trailing-Edge NoiseM. Herr > 01.10..2009 Measurement and Scaling of Trailing-Edge Noise * Michaela Herr Institute of Aerodynamics and Flow Technology DLR

CEAS-ASC/ X3-Noise Workshop 2009, Bucharest, (Romania) > M. Herr > 01.10.2009

23

Farfield TE noise spectra (re. unit distance and span)

Part III – Farfield TE Noise Data

TBL mean velocity profiles and integral scales

Unsteady surface pressure point and cross spectra

Absolute 1/3-octave band SPL re 1m span and 1m observer distance

Brooks & Hodgson (1981): )()1²(²2

)( 03

SMr

bMS

V

xV

00

¼``- Microphone

Page 24: Measurement and Scaling of Trailing-Edge NoiseM. Herr > 01.10..2009 Measurement and Scaling of Trailing-Edge Noise * Michaela Herr Institute of Aerodynamics and Flow Technology DLR

CEAS-ASC/ X3-Noise Workshop 2009, Bucharest, (Romania) > M. Herr > 01.10.2009

24

Estimation of absolute levels (re 1m span and 1m observer distance) requires extensive data corrections, as shown in the following…

Part III – Farfield TE Noise DataPrediction from the surface pressure data, assuming constant V

0.65 u∞

Currently restricted to 2-m-plate only!

fm, kHz

L p(1/

3),d

B

2 4 6 8 1030

40

50

60

70

80

90

100

u =40 m/s50 m/s60 m/s

Surface Pressure Kulite Data

FF TE Noise Mirror Data

fm, kHz

L p(1/

3),d

B

2 4 6 8 1030

40

50

60

70

80

90

100

u =40 m/s50 m/s60 m/s

Surface Pressure Kulite Data

FF TE Noise PredictionFF TE Noise Mirror Data

fm, kHz

L p(1/

3),d

B

2 4 6 8 1030

40

50

60

70

80

90

100

u =40 m/s50 m/s60 m/s

Surface Pressure Kulite Data

Brooks & Hodgson (1981): )()1²(²2

)( 03

SMr

bMS

V

xV

00

Page 25: Measurement and Scaling of Trailing-Edge NoiseM. Herr > 01.10..2009 Measurement and Scaling of Trailing-Edge Noise * Michaela Herr Institute of Aerodynamics and Flow Technology DLR

CEAS-ASC/ X3-Noise Workshop 2009, Bucharest, (Romania) > M. Herr > 01.10.2009

25

Part III – Elliptic Mirror SetupElliptic mirror specifics:

Focal distance: 1.15 mReflector diameter D = 1.4 mResolution width Aperture: 63 deg

Data correction for:Background noise (S/N

3 dB)

Sound wave convectionFrequency response function (gain, resolution)Shear layer refraction/scattering

¼``- Microphone

x

y

Page 26: Measurement and Scaling of Trailing-Edge NoiseM. Herr > 01.10..2009 Measurement and Scaling of Trailing-Edge Noise * Michaela Herr Institute of Aerodynamics and Flow Technology DLR

CEAS-ASC/ X3-Noise Workshop 2009, Bucharest, (Romania) > M. Herr > 01.10.2009

26

Part III – Elliptic Mirror SetupCorrection for frequency response (Schlinker, 1977)

21 )(2)(

JH

DRcxfD

3

2/

2/ 3

22

)(b

b

M

dxH

bGp

p

fm, kHz

L p(1

/3)co

rrec

tion,

dB

5 10 15 20

-40

-30

-20

-10

0

10

gain correctionresolution correctiontotal correction

Page 27: Measurement and Scaling of Trailing-Edge NoiseM. Herr > 01.10..2009 Measurement and Scaling of Trailing-Edge Noise * Michaela Herr Institute of Aerodynamics and Flow Technology DLR

CEAS-ASC/ X3-Noise Workshop 2009, Bucharest, (Romania) > M. Herr > 01.10.2009

27

Part III – Effect of Data Corrections1.6-m plate model with blunt TE (h = 1 mm)Focusing measurement techniques must be used because TE noise is buried by the tunnel self-noise!

fm, kHz

L p(1

/3),

dB

5 10 15 2030

40

50

60

70

80

uncorrected

empty test section

u= 60 m/s

fm, kHz

L p(1

/3),

dB

5 10 15 2030

40

50

60

70

80

uncorrectedLp (1/3) M

empty test section

u= 60 m/s

fm, kHz

L p(1

/3),

dB

5 10 15 2030

40

50

60

70

80

uncorrectedLp (1/3) MLp (1/3) M, shear-layer corrected

empty test section

u= 60 m/s

fm, kHz

L p(1

/3),

dB

5 10 15 2030

40

50

60

70

80

uncorrectedLp (1/3) MLp (1/3) M, shear-layer correctedLp (1/3) TE (b = 1 m)

empty test section

u= 60 m/s

mirror focus at TE

fm, kHz

L p(1

/3),

dB

5 10 15 2030

40

50

60

70

80

farfield mic. plate airfoilfarfield mic. BGNmirror mic. plate airfoil TE

u= 60 m/sb = 1.2 mr = 1.15 m(origin at TE, midspan)

Page 28: Measurement and Scaling of Trailing-Edge NoiseM. Herr > 01.10..2009 Measurement and Scaling of Trailing-Edge Noise * Michaela Herr Institute of Aerodynamics and Flow Technology DLR

CEAS-ASC/ X3-Noise Workshop 2009, Bucharest, (Romania) > M. Herr > 01.10.2009

28

Part III – Effect of Data Corrections1.6-m plate model with blunt TE (h = 1 mm)Focusing measurement techniques must be used because TE noise is buried by the tunnel self-noise!“Validation” of the procedure by alternative measurement techniques: COP

fm, kHz

L p(1

/3),

dB

5 10 15 2030

40

50

60

70

80

uncorrected

empty test section

u= 60 m/s

fm, kHz

L p(1

/3),

dB

5 10 15 2030

40

50

60

70

80

uncorrectedLp (1/3) M

empty test section

u= 60 m/s

fm, kHz

L p(1

/3),

dB

5 10 15 2030

40

50

60

70

80

uncorrectedLp (1/3) MLp (1/3) M, shear-layer corrected

empty test section

u= 60 m/s

fm, kHz

L p(1

/3),

dB

5 10 15 2030

40

50

60

70

80

uncorrectedLp (1/3) MLp (1/3) M, shear-layer correctedLp (1/3) TE (b = 1 m)

empty test section

u= 60 m/s

mirror focus at TE

fm, kHz

L p(1

/3),

dB

5 10 15 2030

40

50

60

70

80

farfield mic. plate airfoilfarfield mic. BGNmirror mic. plate airfoil TE

u= 60 m/sb = 1.2 mr = 1.15 m(origin at TE, midspan)

fm, kHz

L p(1

/3),

dB

5 10 15 2020

30

40

50

60

70

directional microphoneCOP

u= 40 m/s

b = 1.2 m

u= 60 m/s

Page 29: Measurement and Scaling of Trailing-Edge NoiseM. Herr > 01.10..2009 Measurement and Scaling of Trailing-Edge Noise * Michaela Herr Institute of Aerodynamics and Flow Technology DLR

CEAS-ASC/ X3-Noise Workshop 2009, Bucharest, (Romania) > M. Herr > 01.10.2009

29

fm/u

L p(1/

3)no

rm,d

B

0.1 1100

110

120

130

AWB (h = 0.15 mm)

Lp(1/3)norm= Lp(1/3)- 10 log (M5b/ r2)

u=40 m/s50 m/s60 m/s

fm/u

L p(1/

3)no

rm,d

B

0.1 1100

110

120

130

AWB (h = 0.15 mm)

Lp(1/3)norm= Lp(1/3)- 10 log (M5b/ r2)

u=40 m/s50 m/s60 m/s

BPM, sharp TE

Part III – Comparisons with Published TE Noise Data NACA0012 data by Brooks et al. (1986): COP semi-empirical prediction method (BPM, NAFNoise)

18 deg

0.4-m 2D-”NACA0012” with varying TE thickness

Page 30: Measurement and Scaling of Trailing-Edge NoiseM. Herr > 01.10..2009 Measurement and Scaling of Trailing-Edge Noise * Michaela Herr Institute of Aerodynamics and Flow Technology DLR

CEAS-ASC/ X3-Noise Workshop 2009, Bucharest, (Romania) > M. Herr > 01.10.2009

30

fm/u

L p(1/

3)no

rm,d

B

0.1 1100

110

120

130

AWB (h = 0.15 mm)

Lp(1/3)norm= Lp(1/3)- 10 log (M5b/ r2)

u=40 m/s50 m/s60 m/s

fm/u

L p(1/

3)no

rm,d

B

0.1 1100

110

120

130

AWB (h = 0.15 mm)

Lp(1/3)norm= Lp(1/3)- 10 log (M5b/ r2)

u=40 m/s50 m/s60 m/s

BPM, sharp TE

Part III – Comparisons with Published TE Noise Data NACA0012 data by Herrig et al.(2008): CPV 18 deg

0.4-m 2D-”NACA0012” with varying TE thickness

fm/u

L p(1/

3)no

rm,d

B

0.1 1100

110

120

130

AWB (h = 0.15 mm)AWB (h = 1 mm)

Lp(1/3)norm= Lp(1/3)- 10 log (M5b/ r2)

u=40 m/s50 m/s60 m/s

fm/u

L p(1/

3)no

rm,d

B

0.1 1100

110

120

130

AWB (h = 0.15 mm)AWB (h = 1 mm)

Lp(1/3)norm= Lp(1/3)- 10 log (M5b/ r2)

u=40 m/s50 m/s60 m/sHerrig et al.

(h = 1 mm)

Page 31: Measurement and Scaling of Trailing-Edge NoiseM. Herr > 01.10..2009 Measurement and Scaling of Trailing-Edge Noise * Michaela Herr Institute of Aerodynamics and Flow Technology DLR

CEAS-ASC/ X3-Noise Workshop 2009, Bucharest, (Romania) > M. Herr > 01.10.2009

31

Conclusions Presentation of a parametric plate model TE noise data set which (with the limitation to nonzero angles-of-attack and =

= /2) could

help to validate current CAA approaches, maximum Re

of 7.9 MioExcellent agreement of the plate model data set with theoretical modelsFair agreement with published data sets as derived at comparable but not identical test conditions (e.g. zero-pressure gradient surface pressure data covered by the Goody model), estimation of absolute TE noise levels was cross-checked by comparisons of additional NACA0012 measurement results with available NACA0012 dataLiterature review: Considerable uncertainty with regard to the measurement of farfield TE noise and its related source quantities prevails even for very simple generic test configurations Need of benchmarks for TE noise measurement (with major focus on the necessary frequency response corrections and facility-related effects) to provide the necessary data quality for CAA validation

Page 32: Measurement and Scaling of Trailing-Edge NoiseM. Herr > 01.10..2009 Measurement and Scaling of Trailing-Edge Noise * Michaela Herr Institute of Aerodynamics and Flow Technology DLR

CEAS-ASC/ X3-Noise Workshop 2009, Bucharest, (Romania) > M. Herr > 01.10.2009

32

Outlook Conduct RANS/CAA based predictions (PIANO-RPM) for the presented plate model experiment

respective RANS/CAA based predictions for a NACA0012, (published in Ewert et al., AIAA 2009-3269) were promising

Page 33: Measurement and Scaling of Trailing-Edge NoiseM. Herr > 01.10..2009 Measurement and Scaling of Trailing-Edge Noise * Michaela Herr Institute of Aerodynamics and Flow Technology DLR

CEAS-ASC/ X3-Noise Workshop 2009, Bucharest, (Romania) > M. Herr > 01.10.2009

33

Outlook Conduct RANS/CAA based predictions (PIANO-RPM) for the presented plate model experiment

respective RANS/CAA based predictions for a NACA0012, (published in Ewert et al., AIAA 2009-3269) were promising

Detailed comparison of directional microphone data with corresponding microphone array data

NACA0012 data available, but not yet analysedNumerical simulation of the mirror system transfer function (including shear-layer effects)Still open questions: determination of the various empirical coefficients in existing surface pressure models, estimation of based on mean TBL velocity profiles

See you in June 10-11, 2010 at the “Workshop on Benchmark Problems for Airframe Noise Computations-I”?

),( 1 xV

Page 34: Measurement and Scaling of Trailing-Edge NoiseM. Herr > 01.10..2009 Measurement and Scaling of Trailing-Edge Noise * Michaela Herr Institute of Aerodynamics and Flow Technology DLR

CEAS-ASC/ X3-Noise Workshop 2009, Bucharest, (Romania) > M. Herr > 01.10.2009

34

Thank you for your attention!

[email protected]

Page 35: Measurement and Scaling of Trailing-Edge NoiseM. Herr > 01.10..2009 Measurement and Scaling of Trailing-Edge Noise * Michaela Herr Institute of Aerodynamics and Flow Technology DLR

CEAS-ASC/ X3-Noise Workshop 2009, Bucharest, (Romania) > M. Herr > 01.10.2009

35

Appendix

Page 36: Measurement and Scaling of Trailing-Edge NoiseM. Herr > 01.10..2009 Measurement and Scaling of Trailing-Edge Noise * Michaela Herr Institute of Aerodynamics and Flow Technology DLR

CEAS-ASC/ X3-Noise Workshop 2009, Bucharest, (Romania) > M. Herr > 01.10.2009

36

Part II – Convection velocity

TE

u∞

3x

1x

1111 ),(/),( xvxxxij kV ),(/ 1 xv Vk

Currently restricted to 2-m-plate only!

(99/u)peak

Eq. 5.2

99/u

V(

x1,

)/u

200 400 600 800

0.4

0.6

0.8

1

1.2 u =40 m/s50 m/s60 m/s

(99/u)peak

99/u

V(

x1,

)/u

200 400 600 800

0.4

0.6

0.8

1

1.2

3 mm 0.17 mm 0.2

20 mm 0.6-0.7|x1| = |x1|/99=

u =40 m/s50 m/s60 m/s

Page 37: Measurement and Scaling of Trailing-Edge NoiseM. Herr > 01.10..2009 Measurement and Scaling of Trailing-Edge Noise * Michaela Herr Institute of Aerodynamics and Flow Technology DLR

CEAS-ASC/ X3-Noise Workshop 2009, Bucharest, (Romania) > M. Herr > 01.10.2009

37

Part III – Elliptic Mirror Setup

fm, kHz

SP

L 1/3

Cor

rect

ion,

dB

5 10 15 200

1

2

3

4

5

Position 2Position 3Position 4

Shear-layer effect at:

Shear-layer correction from comparative measurements at different x- positions, re Position 1

x

z

x

y1 2 3 4

Page 38: Measurement and Scaling of Trailing-Edge NoiseM. Herr > 01.10..2009 Measurement and Scaling of Trailing-Edge Noise * Michaela Herr Institute of Aerodynamics and Flow Technology DLR

CEAS-ASC/ X3-Noise Workshop 2009, Bucharest, (Romania) > M. Herr > 01.10.2009

38

Part III – Elliptic Mirror SetupMeasured “point source” frequency response function (Dobrzynski et al.,1998)

fm, kHz

w,1

0-3

m

10 20 30 40

20

40

60

80100

u∞=0 m/s40 m/s50 m/s60 m/s

theoretical prediction

��

� ��

������

�����������

fm, kHz

G,d

B

10 20 30 40

20

25

30

35

40

45u∞ =0 m/s40 m/s50 m/s60 m/s

theoretical prediction

η

H(η

),d

B

-2 0 2 4 6

-10

-5

0

fm = 2.5 kHzfm = 5 kHzfm = 10 kHz

Eq. 2.17�

� �

����� ���� �� ����

��

��21 )(2)(

JH