me 533 introduction to icf assignment 4 solutionsassignment 4 solutions problem 1 starting from...

13
ME 533 Introduction to ICF Assignment 4 Solutions Problem 1 Starting from hot-spot mass equation ( ) = . βˆ— / We define normalized variables β€² , β€² , β€² normalized to no-Ξ± stagnation quantities , and ( ) as found in assignment 3. Also define β€² = ( for now unknown) We get ( ) β€² ( β€² β€² β€² ) = . βˆ— / β€² / β€² To simplify this as β€² ( β€² β€² )= β€² β€² / ( ……. Eqn. 1) , we need =( .βˆ— ) / Let ≑ β€² β€² we can write (1) as / β€² = β€² ⟹ ( ) β€² =( ) β€²

Upload: others

Post on 22-Jul-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ME 533 Introduction to ICF Assignment 4 SolutionsAssignment 4 Solutions Problem 1 Starting from hot-spot mass equation F 𝑷 G= . βˆ—πœΏ / We define normalized variables 𝑷′,

ME 533 Introduction to ICF

Assignment 4 Solutions

Problem 1

Starting from hot-spot mass equation

𝒅

𝒅𝒕(

π‘·π‘ΉπŸ‘

π‘»πŸŽ) = 𝟎. πŸ–πŸ” βˆ— πœΏπŸŽπ‘»πŸŽ

πŸ“/πŸπ‘Ή

We define normalized variables 𝑷′, 𝑹′, 𝒕′ normalized to no-Ξ± stagnation

quantities 𝑷𝒔, 𝑹𝒔 and 𝒕𝒔(𝑹𝒔

π‘½π’Š) as found in assignment 3. Also define

π‘»πŸŽβ€² =

π‘»πŸŽ

π‘»πŸŽπ’” ( for now π‘»πŸŽπ’” unknown)

We get

(𝟏

π’•π’”π‘»πŸŽπ’”)

𝒅

𝒅𝒕′(

π‘·β€²π‘Ήβ€²πŸ‘

π‘»πŸŽβ€² ) 𝑷𝒔𝑹𝒔

πŸ‘ = 𝟎. πŸ–πŸ” βˆ— πœΏπŸŽπ‘»πŸŽπ’”πŸ“/πŸπ‘»πŸŽ

β€²πŸ“/πŸπ‘Ήπ’”π‘Ήβ€²

To simplify this as

𝒅

𝒅𝒕′ (π‘·β€²π‘Ήβ€²πŸ‘) = π‘Ήβ€²π‘»πŸŽ

β€²πŸ“/𝟐 ( ……. Eqn. 1) , we need π‘»πŸŽπ’” = (

π‘·π’”π‘Ήπ’”π‘½π’Š

𝟎.πŸ–πŸ”βˆ—πœΏπŸŽ)𝟐/πŸ•

Let 𝑿 β‰‘πŸ

π‘»πŸŽβ€²π‘Ήβ€²πŸ we can write (1) as π‘ΏπŸ“/𝟐 𝒅𝑿

𝒅𝒕′ =𝟏

π‘Ήβ€²πŸ’

⟹ 𝒅 (𝑿

πŸ•πŸ)

𝒅𝒕′= (

πŸ•

𝟐)

𝟏

π‘Ήβ€²πŸ’

Page 2: ME 533 Introduction to ICF Assignment 4 SolutionsAssignment 4 Solutions Problem 1 Starting from hot-spot mass equation F 𝑷 G= . βˆ—πœΏ / We define normalized variables 𝑷′,

⟹ 𝒅 (𝑿

πŸ•πŸ)

𝒅𝒕′= (

πŸ•

𝟐)

𝟏

(𝟏 + π’•β€²πŸ)𝟐

Integrating in mathematica and using B.C 𝑿 ⟢ ∞ 𝒂𝒔 𝑹′ β†’ 𝟎

⟹ 𝑿 = (πŸ•

πŸ’(

𝒕′

𝟏 + π’•β€²πŸ+ π‘»π’‚π’βˆ’πŸ(𝒕′) +

𝝅

𝟐))𝟐/πŸ•

⟹ π‘»πŸŽβ€² =

𝟏

(𝟏 + π’•β€²πŸ)𝟐(πŸ•

πŸ’(

𝒕′

𝟏 + π’•β€²πŸ+ π‘»π’‚π’βˆ’πŸ(𝒕′) +

𝝅

𝟐))βˆ’πŸ/πŸ•

Problem 2

Normalization of equation for Newton`s second law for shell

motion is straight forward, and we derived normalized hot-spot

mass/temperature equation in problem 1.

Starting from hot-spot energy equation with alpha heating

𝒅

𝒅𝒕(π‘·π‘ΉπŸ“) = ππ‘·πŸπ‘ΉπŸ“π‘»πŸŽ

𝟏.𝟏

Expanding the derivative and defining normalized variables as

in problem 1, we get

𝐝𝐏′

𝐝𝐭′+

πŸ“πβ€²

𝐑′

𝐝𝐑′

𝐝𝐭′= 𝛍𝐭𝐬𝐏𝐬(π“πŸŽπ¬π“πŸŽ

β€²)𝟏.πŸŽπŸπβ€²πŸ

Also, at stagnation 𝑰. π‘¬π’‰π’π’•βˆ’π’”π’‘π’π’• = 𝑲. π‘¬π’”π’‰π’†π’π’βˆ’π’Žπ’‚π’™

⟹ π‘·π’”π‘Ήπ’”πŸ‘ = (

𝟏

πŸ’π…)π‘΄π’”π’‰π‘½π’Šπ’Žπ’‘

𝟐

Page 3: ME 533 Introduction to ICF Assignment 4 SolutionsAssignment 4 Solutions Problem 1 Starting from hot-spot mass equation F 𝑷 G= . βˆ—πœΏ / We define normalized variables 𝑷′,

Also using from problem 1, π‘»πŸŽπ’” = (π‘·π’”π‘Ήπ’”π‘½π’Š

𝟎.πŸ–πŸ”βˆ—πœΏπŸŽ)𝟐/πŸ• we get,

𝒅

𝒅𝒕(πβ€²π‘β€²πŸ“

) = πƒπ’π’βˆ’πœΆπβ€²πŸπ‘β€²πŸ“

π“πŸŽβ€²πŸ.𝟎𝟏

With πƒπ’π’βˆ’πœΆ = π›π­π¬ππ¬π“πŸŽπ¬πŸ.𝟎𝟏 =

π›π‘π¬ππ¬π“πŸŽπ¬πŸ.𝟎𝟏

π‘½π’Š

πƒπ’π’βˆ’πœΆ = 𝝁(𝟎. πŸ–πŸ”πœΏπŸŽ)βˆ’πŸ.𝟎𝟐/πŸ•π‘½π’Š

πŸπŸ‘.πŸŽπŸ”/πŸ•(π†πš«)πŸ—.𝟎𝟐/πŸ•

Problem 3

πœ‰π‘π‘Ÿπ‘–π‘‘ = 1.07 (𝑠𝑒𝑒 π‘Žπ‘‘π‘‘π‘Žπ‘β„Žπ‘’π‘‘ π‘šπ‘Žπ‘‘β„Žπ‘’π‘šπ‘Žπ‘‘π‘–π‘π‘Ž π‘›π‘œπ‘‘π‘’π‘π‘œπ‘œπ‘˜)

Singular solution at πœ‰π‘›π‘œβˆ’π›Ό = 1.07

Page 4: ME 533 Introduction to ICF Assignment 4 SolutionsAssignment 4 Solutions Problem 1 Starting from hot-spot mass equation F 𝑷 G= . βˆ—πœΏ / We define normalized variables 𝑷′,

Problem 4

Plots of hot-spot pressure for various values of πœ‰π‘›π‘œβˆ’π›Ό

Problem 5

πŒπ’π’βˆ’πœΆ β‰‘πœ‰π‘›π‘œβˆ’π›Ό

πœ‰π‘π‘Ÿπ‘–π‘‘

> 1

Substituting for πœ‰π‘›π‘œβˆ’π›Ό

Page 5: ME 533 Introduction to ICF Assignment 4 SolutionsAssignment 4 Solutions Problem 1 Starting from hot-spot mass equation F 𝑷 G= . βˆ—πœΏ / We define normalized variables 𝑷′,

⟹ πŒπ’π’βˆ’πœΆ = (𝟏

𝟏. πŸŽπŸ•) βˆ— (

πœΊπœΆπ‘Ίπ’‡π“πŸŽπ¬πŸ.𝟎𝟏

πŸπŸ’)

Substituting for π“πŸŽπ¬, we get

⟹ πŒπ’π’βˆ’πœΆ = 𝟎. πŸ–πŸ– βˆ— 𝜿𝟎𝟏/πŸ‘ βˆ— (

πœΊπœΆπ‘Ίπ’‡(π†πš«)𝟐/πŸ‘π“πŸŽπ¬πŸ.πŸπŸ–

πŸπŸ’)

Use neutron averaged quantities

< 𝑇 >= 0.53π“πŸŽπ¬ & < 𝝆𝐑 >= 𝟎. πŸ–πŸ– π†πš«

and 𝜺𝜢 = πŸ‘. πŸ“ 𝑴𝒆𝒗, 𝑺𝒇 = πŸ•. πŸ“ βˆ— πŸπŸŽβˆ’πŸπŸ‘ π’ŽπŸ‘

𝒔 π‘²π’†π‘½πŸ‘.𝟎𝟏 , 𝜿𝟎 = πŸ‘. πŸ•πŸ’ βˆ— πŸπŸŽπŸ”πŸ— π‘±πŸ/πŸ“

π’Žβˆ—π’”

We finally get

πŒπ’π’βˆ’πœΆ = 𝟎. πŸŽπŸ‘ < π†π‘π’π’βˆ’πœΆ >𝟐/πŸ‘< π‘»π’π’βˆ’πœΆ >𝟐.πŸπŸ–

Page 6: ME 533 Introduction to ICF Assignment 4 SolutionsAssignment 4 Solutions Problem 1 Starting from hot-spot mass equation F 𝑷 G= . βˆ—πœΏ / We define normalized variables 𝑷′,

Problem 3D[P[t] R[t]^3 / T[t], t]

R[t]3 Pβ€²[t]

T[t]+3 P[t] R[t]2 Rβ€²[t]

T[t]-P[t] R[t]3 Tβ€²[t]

T[t]2

xi = 1.07eps = 10^-2NDSolve[{R''[t] β©΅ R[t]^2 P[t], P'[t] + 5 P[t] / R[t] R'[t] β©΅ xi P[t]^2 T[t]^1.01,

D[P[t] R[t]^3 / T[t], t] β©΅ T[t]^5 / 2 R[t], R[0] β©΅ 1 / eps, P[0] β©΅ eps^5,R'[0] β©΅ -1, T[0] β©΅ eps}, {R[t], P[t] , T[t]}, {t, 0, 500}]

1.07

1

100

NDSolve::ndsz : At t == 100.53605397419585` , step size is effectively zero; singularity or stiff system suspected.

R[t] β†’ InterpolatingFunctionDomain: {{0., 101.}}Output: scalar

[t],

P[t] β†’ InterpolatingFunctionDomain: {{0., 101.}}Output: scalar

[t],

T[t] β†’ InterpolatingFunctionDomain: {{0., 101.}}Output: scalar

[t]

Page 7: ME 533 Introduction to ICF Assignment 4 SolutionsAssignment 4 Solutions Problem 1 Starting from hot-spot mass equation F 𝑷 G= . βˆ—πœΏ / We define normalized variables 𝑷′,

xi = 1.04eps = 10^-1NDSolve[{R''[t] β©΅ R[t]^2 P[t], P'[t] + 5 P[t] / R[t] R'[t] β©΅ xi P[t]^2 T[t]^1.01,

D[P[t] R[t]^3 / T[t], t] β©΅ T[t]^5 / 2 R[t], R[0] β©΅ 1 / eps, P[0] β©΅ eps^5,R'[0] β©΅ -1, T[0] β©΅ eps}, {R[t], P[t] , T[t]}, {t, 0, 50}]

1.04

1

10

R[t] β†’ InterpolatingFunctionDomain: {{0., 50.}}Output: scalar

[t],

P[t] β†’ InterpolatingFunctionDomain: {{0., 50.}}Output: scalar

[t],

T[t] β†’ InterpolatingFunctionDomain: {{0., 50.}}Output: scalar

[t]

Problem 4xiCrit = 1.05getRandP[xi_, eps_] :=

NDSolve[{R''[t] β©΅ R[t]^2 P[t], P'[t] + 5 P[t] / R[t] R'[t] β©΅ xi P[t]^2 T[t]^1.01,D[P[t] R[t]^3 / T[t], t] β©΅ T[t]^5 / 2 R[t], R[0] β©΅ 1 / eps, P[0] β©΅ eps^5,R'[0] β©΅ -1, T[0] β©΅ eps}, {R[t], P[t] , T[t]}, {t, 0, 50}]

1.05

2 assn_4 (1).nb

Page 8: ME 533 Introduction to ICF Assignment 4 SolutionsAssignment 4 Solutions Problem 1 Starting from hot-spot mass equation F 𝑷 G= . βˆ—πœΏ / We define normalized variables 𝑷′,

S = getRandP[0 / xiCrit, 10^-1];Plot[Evaluate[{R[t]} /. S], {t, 0, 20}, PlotStyle β†’ Automatic]a = Plot[Evaluate[{P[t]} /. S], {t, 0, 20}, PlotRange β†’ {{5, 15}, {0, 2.5}}]Plot[Evaluate[{T[t]} /. S], {t, 0, 20}, PlotRange β†’ All]

5 10 15 20

2

4

6

8

10

6 8 10 12 14

0.5

1.0

1.5

2.0

2.5

5 10 15 20

0.2

0.4

0.6

0.8

1.0

assn_4 (1).nb 3

Page 9: ME 533 Introduction to ICF Assignment 4 SolutionsAssignment 4 Solutions Problem 1 Starting from hot-spot mass equation F 𝑷 G= . βˆ—πœΏ / We define normalized variables 𝑷′,

S1 = getRandP[0.1 * xiCrit, 10^-1];Plot[Evaluate[{R[t]} /. S], {t, 0, 20}, PlotStyle β†’ Automatic]a1 = Plot[Evaluate[{P[t]} /. S1], {t, 0, 20}, PlotRange β†’ {{5, 15}, {0, 2.5}}]Plot[Evaluate[{T[t]} /. S], {t, 0, 20}, PlotRange β†’ All]

5 10 15 20

2

4

6

8

10

6 8 10 12 14

0.5

1.0

1.5

2.0

2.5

5 10 15 20

0.2

0.4

0.6

0.8

1.0

4 assn_4 (1).nb

Page 10: ME 533 Introduction to ICF Assignment 4 SolutionsAssignment 4 Solutions Problem 1 Starting from hot-spot mass equation F 𝑷 G= . βˆ—πœΏ / We define normalized variables 𝑷′,

S2 = getRandP[0.5 * xiCrit, 10^-1];Plot[Evaluate[{R[t]} /. S], {t, 0, 20}, PlotStyle β†’ Automatic]a2 = Plot[Evaluate[{P[t]} /. S2], {t, 0, 20}, PlotRange β†’ {{5, 15}, {0, 2.5}}]Plot[Evaluate[{T[t]} /. S], {t, 0, 20}, PlotRange β†’ All]

5 10 15 20

2

4

6

8

10

6 8 10 12 14

0.5

1.0

1.5

2.0

2.5

5 10 15 20

0.2

0.4

0.6

0.8

1.0

assn_4 (1).nb 5

Page 11: ME 533 Introduction to ICF Assignment 4 SolutionsAssignment 4 Solutions Problem 1 Starting from hot-spot mass equation F 𝑷 G= . βˆ—πœΏ / We define normalized variables 𝑷′,

S3 = getRandP[0.9 * xiCrit, 10^-1];Plot[Evaluate[{R[t]} /. S], {t, 0, 20}, PlotStyle β†’ Automatic]a3 = Plot[Evaluate[{P[t]} /. S3], {t, 0, 20}, PlotRange β†’ {{5, 15}, {0, 2.5}}]Plot[Evaluate[{T[t]} /. S], {t, 0, 20}, PlotRange β†’ All]

5 10 15 20

2

4

6

8

10

6 8 10 12 14

0.5

1.0

1.5

2.0

2.5

5 10 15 20

0.2

0.4

0.6

0.8

1.0

6 assn_4 (1).nb

Page 12: ME 533 Introduction to ICF Assignment 4 SolutionsAssignment 4 Solutions Problem 1 Starting from hot-spot mass equation F 𝑷 G= . βˆ—πœΏ / We define normalized variables 𝑷′,

S = getRandP[xiCrit, 10^-1];Plot[Evaluate[{R[t]} /. S], {t, 0, 20}, PlotStyle β†’ Automatic]a4 = Plot[Evaluate[{P[t]} /. S], {t, 0, 20}, PlotRange β†’ All,

AxesLabel β†’ {Style["P", Bold, 14], Style["t", Bold, 14]}, PlotStyle β†’ FontSize]Plot[Evaluate[{T[t]} /. S], {t, 0, 20}, PlotRange β†’ All]

NDSolve::ndsz : At t == 10.402023057183255` , step size is effectively zero; singularity or stiff system suspected.

5 10 15 20

-1.5Γ—1054

-1.0Γ—1054

-5.0Γ—1053

5 10 15 20P

5.0Γ—1044

1.0Γ—1045

1.5Γ—1045

2.0Γ—1045

2.5Γ—1045

3.0Γ—1045

t

5 10 15 20

5.0Γ—1039

1.0Γ—1040

1.5Γ—1040

2.0Γ—1040

2.5Γ—1040

assn_4 (1).nb 7

Page 13: ME 533 Introduction to ICF Assignment 4 SolutionsAssignment 4 Solutions Problem 1 Starting from hot-spot mass equation F 𝑷 G= . βˆ—πœΏ / We define normalized variables 𝑷′,

Show[{a1, a2, a3}]

6 8 10 12 14

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Plot[{Evaluate[{P[t]} /. S], Evaluate[{P[t]} /. S1], Evaluate[{P[t]} /. S2],Evaluate[{P[t]} /. S3]}, {t, 0, 20}, PlotRange β†’ {{5, 15}, {0, 2.5}},

AxesLabel β†’ {Style["P'", Bold, 14], Style["t'", Bold, 14]},PlotLegends β†’ Placed[{"0", "0.1", "0.525", "0.945"}, Above]]

0 0.1 0.525 0.945

6 8 10 12 14P'

0.5

1.0

1.5

2.0

2.5t'

1.05 * 0.9

0.945

ealpha = 3.5 * 1.6 * 10^-13; (to Joules)sf = 7.5 * 10^-23;k0 = 3.74 * 10^69;

coeff = (0.88 * k0^(1 / 3) * sf * 0.53^2.18 * 0.88^2 / 3) / 24

0.0276093

8 assn_4 (1).nb