me 37500 final exam thursday, may 5, 2016 hw id: three · 2017. 11. 6. · me 37500 final exam...

18
ME 37500 FINAL EXAM Thursday, May 5, 2016 8:00 – 10:00 am EE 129 Section (circle one): Chiu (11:30am) Deng (1:30pm) Zhang (3:30m) HW ID: ____________ Name: ___________________________ Instructions (1) This is a closed book examination, but you are allowed three single-sided hand-written 8.5×11 crib sheets. (2) You can only use the approved ME calculator for the exam. (3) Write your name and HW ID on the top of each page. (4) You must clearly identify your answers to receive credit. In Part A, you must show all of your work to receive any credit. Leaving multiple solutions and derivations without identifying the one that is to be considered will not receive any credit. (5) You must write neatly and should use a logical format to solve the problems. You are encouraged to really “think” about the problems before you start to solve them. (6) A table of Laplace transform pairs and properties of Laplace transforms is on the last page of the exam. PART A PART B Problem Score Problem Score 1. (20) 1. (10) 2. (30) 2. (10) 3. (30) 3. (15) 4. (20) 4. (10) 5. (15) 6. (10) 7. (10) 8. (10) 9. (10) Total (A) /100 Total (B) /100 TOTAL (A + B) /200

Upload: others

Post on 25-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • ME37500FINALEXAMThursday,May5,2016

    8:00–10:00amEE129

    Section(circleone):Chiu(11:30am)Deng(1:30pm)Zhang(3:30m)

    HWID:____________

    Name:___________________________

    Instructions(1) Thisisaclosedbookexamination,butyouareallowedthreesingle-sidedhand-written

    8.5×11cribsheets.

    (2) YoucanonlyusetheapprovedMEcalculatorfortheexam.(3) WriteyournameandHWIDonthetopofeachpage.

    (4) Youmustclearlyidentifyyouranswerstoreceivecredit.InPartA,youmustshowallofyourworktoreceiveanycredit.Leavingmultiplesolutionsandderivationswithoutidentifyingtheonethatistobeconsideredwillnotreceiveanycredit.

    (5) Youmustwriteneatlyandshouldusealogicalformattosolvetheproblems.Youareencouragedtoreally“think”abouttheproblemsbeforeyoustarttosolvethem.

    (6) AtableofLaplacetransformpairsandpropertiesofLaplacetransformsisonthelastpageoftheexam.

    PARTA PARTBProblem Score Problem Score

    1.(20) 1.(10) 2.(30) 2.(10)

    3.(30) 3.(15)

    4.(20) 4.(10) 5.(15)

    6.(10)

    7.(10) 8.(10)

    9.(10)

    Total(A) /100 Total(B) /100

    TOTAL(A+B) /200

  • PART A Name: HWID:

    Page 2 of 18

    Problem1(20points)Considertheclosed-loopsysteminthefiguretotherightwithalooptransferfunctionL(s)oftheform

    L(s)=K ⋅G(s) ,whereKisaconstantgain.TheBodediagramforG(s)(NOTincludingK)isgivenbelow

    (A) (10points)UsingtheaboveinformationfindtheminimalvalueofgainKtoensurethe

    magnitudeofthesteady-stateerror(e=r–y)foraunitstepdisturbance,d=1andzeroinput,r=0,islessthan0.001.

    e = r − y = −y ⇒ E(s) = −Y(s) = − 11+ L(s)

    ⋅R(s)

    eSS = lims→0

    sE(s) = lims→0− s 1

    1+ L(s)⋅R(s) = − lim

    s→0s 1

    1+ L(s)⋅ 1s= − lim

    s→0

    11+ L(s)

    = − lims→0

    11+ K ⋅ G(s)

    = − 11+ K ⋅ G(0)

    eSS = −1

    1+ K ⋅ G(0)< 0.001 = 1

    1000

    From Bode plot: G(0) = 20dB = 10 ⇒ − 11+ K ⋅ G(0)

    = 11+ 10K

    < 0.001 = 11000

    ⇒ 1+ 10K > 1000 ⇒ 10> 999 ⇒ K > 99.9

  • PART A Name: HWID:

    Page 3 of 18

    Problem1(continued)

    (B) (10points)Ignoredisturbance,i.e.letd=0andletK=1.Whatisthemagnitudeofthesteady-stateerrorforinputr=sin(9t),i.e.asinusoidalinputwithfrequency9[rad/sec]andmagnitude1?(Hint:youcanapproximate1+L( jω) ≈ L( jω) .)

    e = r − y ⇒ E(s) = 11+ L(s)

    ⋅R(s)

    For r = sin(9t) ⇒ eSS(t) =1

    1+ L( jω)ω=9⋅ sin(9t +φ)

    eSS(t) =1

    1+ L( jω)ω=9= 1

    1+ L( jω)ω=9

    ≈ 1L( jω)

    ω=9

    = 1L( j 9)

    From Bode plot: L( j 9) = 32dB = 39.8 or 40

    ⇒ eSS(t) =1

    39.8≈ 0.025

  • PART A Name: HWID:

    Page 4 of 18

    Problem2(30Points)

    Giventheunityfeedbacksystemshowntotheright,theplanttransferfunctionG(s)isgivenby

    G(s)= 50

    s (s /5)+1( ) andthecontrollerC(s)=1.

    (A) (10points)Thegaincross-overfrequencyis15.4[rad/sec].Calculatethephasemarginoftheclosed-loopsystem?

    Gain cross-over frquency ω gc = 15.4 [rad/sec]

    At ω gc, !G( jω gc) = 0− 90° −!( jω gc / 5+ 1) = 0− 90° − tan−115.4 5

    1

    ⎝⎜

    ⎠⎟

    = 0− 90° − 72° = −162°

    Phase Margin PM = 180° +!G( jω gc) = 180° − 162° = 18° = 0.314 [rad]

  • PART A Name: HWID:

    Page 5 of 18

    Problem2(Continue)

    (B) (10points)Designaleadcompensatoroftheform

    CL(s)=sω1

    +1sω2

    +1whereα =ω2

    ω1>1

    thatwillcreateaphaselead(φm)of55°atthegaincross-overfrequencyof15.4[rad/sec].Youwillneedtofindω1,ω2,andα.

    For a lead compensator, amount of maximum phase lead φm is

    φm = sin−1α − 1α + 1⎛⎝⎜

    ⎞⎠⎟ ⇒ α =

    1+ sinφm1− sinφm

    For φm = 55° ⇒ α =1+ sin55°1− sin55°

    = 1+ 0.8191− 0.819

    = 1.8190.181

    = 10.06 ≈ 10

    ωm =ω gc = 15.4=ω1 α ⇒ ω1 =ωmα= 15.4

    10= 4.87

    ω2 =α ⋅ω1 = 10 ⋅ω1 = 48.7

    ⇒α = 10,ω1 = 4.87 [rad/sec], and ω2 = 48.7 [rad/sec]

  • PART A Name: HWID:

    Page 6 of 18

    Problem2(Continue)

    (C) (10points)Withthecontrollerdesignedinpart(B),thenewclosed-loopsystem’sgaincross-overfrequencyisat40[rad/sec]withaphasemarginof50°.Iftheactualplanttransferfunctionincludedatime-delayofTD[sec],i.e.

    G(s)=G(s) ⋅e−TDs = 50

    s (s /5)+1( )⋅e−TDs

    DeterminethelargesttimedelayTDtheclosed-loopsystemwouldremainstable.(Hint:considertheadditionalphaselagintroducedbythetimedelayandbesuretouseconsistentunitsforthephaseangles.)

    Gain cross-over frequency ω gc = 40 [rad/sec]

    Phase margin PM = 50°

    To ensure stability, additional phase lab due to delay =TDω

    need to be less than the phase margin at ω gc, i.e.

    TDω gc < PM ⇒ 40 ⋅TD < 50° =50180

    ⋅ π = 0.873

    ⇒ TD <50π

    40 ⋅ 180= 0.022 ⇒ TD < 0.022 [sec]

  • PART A Name: HWID:

    Page 7 of 18

    Problem3(30Points)

    Givenastate-spacerepresentationofasingleinputsingleoutputsystem:

    !x = 0 1−6 −5

    ⎣⎢

    ⎦⎥x+ 01

    ⎣⎢

    ⎦⎥u

    y = 1 2⎡⎣ ⎤⎦x

    (A) (10points)Thedesiredclosed-loopsystemshouldhavea2%settlingtimelessthan1secondandapercentovershootlessthan4.32%.Onthecomplexplanebelow,clearlyidentify(intersectionwithreal-axisandtheappropriateangles)theregionforacceptableclosed-looppoles.

    2% settling time: 4ζωn

    < 1 ⇒ ζωn > 4

    ⇒ Real part of the roots < -4

    %OS = 100e−ζ π

    1−ζ 2 = 4.32%

    ⇒ζπ

    1−ζ 2= − ln 4.32

    100⎛⎝⎜

    ⎞⎠⎟

    ⇒ζ

    1−ζ 2= 1 ⇒ ζ 2 = 1

    2

    ⇒ ζ = 12= 0.707

    ⇒ sin−1ζ = 45°

    45° -4

  • PART A Name: HWID:

    Page 8 of 18

    Problem3(Continue)

    (B) (10points)Forthesystem,

    ifthedesiredclosed-looppolesistobe−5± j5 3 ,findthestatefeedbackgainvectorK,whereu=−K⋅x+r,andristhereferenceinput

    A = 0 1−6 −5

    ⎣⎢

    ⎦⎥ , B = 01

    ⎣⎢

    ⎦⎥ , K = K1 K2⎡⎣

    ⎤⎦

    A− BK = 0 1−6 −5

    ⎣⎢

    ⎦⎥−

    01

    ⎣⎢

    ⎦⎥ K1 K2⎡⎣

    ⎤⎦ =

    0 1−6− K1 −5− K2

    ⎣⎢

    ⎦⎥

    det[sI−(A− BK)]= s2 +(5+ K2)s +(6+ K1) = 0

    Desired CL Characteristic Eq: DCL(s) = (s + 5)2 +(5 3)2 = s2 + 10s + 100= 0

    DCL(s) = det[sI−(A− BK)]= s2 + 10s + 100= s2 +(5+ K2)s +(6+ K1)

    ⇒5+ K2 = 106+ K1 = 100

    ⇒K2 = 5K1 = 94

    ⇒ K = 94 5⎡⎣⎤⎦

    !x = 0 1−6 −5

    ⎣⎢

    ⎦⎥x+ 01

    ⎣⎢

    ⎦⎥u

    y = 1 2⎡⎣ ⎤⎦x

  • PART A Name: HWID:

    Page 9 of 18

    Problem3(Continue)

    (C) (10points)Findthesteady-stategainoftheclosed-looptransferfunctionfromreferenceinputrtotheoutputyforthestate-feedbackcontrolyoufindinpart(B).(Hint:calculatesteady-stategainoftheclosed-looptransferfunction,youmaybeabletofinditinthestandardcontrollablecanonicalform)

    Mathod 1:Closed-loop system:

    !x = 0 1−6− K1 −5− K2

    ⎣⎢

    ⎦⎥x+ 0

    1⎡

    ⎣⎢

    ⎦⎥r

    = 0 1−100 −10

    ⎣⎢

    ⎦⎥x+ 01

    ⎣⎢

    ⎦⎥r

    y = 1 2⎡⎣⎤⎦x

    ⇒ GCL(s) =2s + 1

    s2 + 10s + 100⇒ Steady-state gain = GCL(0) =

    1100

    = 0.01

    Mathod 2:Closed-loop system:

    GCL(s) = C sI− A+ BK⎡⎣ ⎤⎦−1

    B = 1 2⎡⎣⎤⎦Adj[sI− A+ BK]det[sI− A+ BK]

    01

    ⎣⎢

    ⎦⎥

    = 1 2⎡⎣⎤⎦

    x 1x s

    ⎣⎢

    ⎦⎥

    det[sI− A+ BK]01

    ⎣⎢

    ⎦⎥ =

    2s + 1s2 + 10s + 100

    ⇒ GCL(s) =2s + 1

    s2 + 10s + 100⇒ Steady-state gain = GCL(0) =

    1100

    = 0.01

  • PART A Name: HWID:

    Page 10 of 18

    Problem4(20points)

    Considerthefollowingfirstordersystemanditsstatespacerepresentation:

    G(s)= Y(s)

    U(s) =4s+2 ⇔

    !x =−2 ⋅ x+4 ⋅uy = x

    (A) (10points)Designastate-feedback+integralcontrol,i.e.

    u(t)=−k ⋅ x+kI ⋅ (r(τ )− y(τ ))dτ0t∫ ,

    sothattheresultingclosed-looppolesareat−5± j5 3 .FindkandkI.

    !x = −2x + 4u

    y = x

    Let u = −Kx + KI xI and xI = (r − y)dτ∫⇒ !xI = r − y = r − x

    Augmented syste:

    !x!xI

    ⎣⎢

    ⎦⎥ = −2 0

    −1 0⎡

    ⎣⎢

    ⎦⎥

    xxI

    ⎣⎢

    ⎦⎥+ 4

    0⎡

    ⎣⎢

    ⎦⎥ −K KI⎡⎣

    ⎤⎦

    xxI

    ⎣⎢

    ⎦⎥+ 0

    1⎡

    ⎣⎢

    ⎦⎥r

    = −2 0−1 0

    ⎣⎢

    ⎦⎥+

    −4K 4KI0 0

    ⎣⎢

    ⎦⎥

    ⎣⎢

    ⎦⎥

    xxI

    ⎣⎢

    ⎦⎥+ 0

    1⎡

    ⎣⎢

    ⎦⎥r

    = −2− 4K 4KI−1 0

    ⎣⎢

    ⎦⎥

    xxI

    ⎣⎢

    ⎦⎥+ 0

    1⎡

    ⎣⎢

    ⎦⎥r

    Closed-loop Characteristic Eq:

    det(sI− AE) =s + 2+ 4K −4KI

    1 s= s2 +(2+ 4K)s + 4KI

    Desired CL Char. Eq. DCL(s) = (s + 5)2 +(5 3)2 = s2 + 10s + 100= s2 +(2+ 4K)s + 4KI

    ⇒ 2+ 4K = 104KI = 100

    ⇒ K = 2KI = 25

  • PART A Name: HWID:

    Page 11 of 18

    Problem4(continued)

    (B) (10points)Assumethatinpart(B)theclosed-looptransferfunctionbetweenthereferenceinputrandtheoutputyassociatedwiththestate-space+integralfeedbackcontrolis

    GCL(s)=

    Y(s)R(s) =

    64s2+8s+64 .

    IftheyouaretoimplementacontrollerC(s)intheblockdiagramtotherighttoachievethesameclosed-looptransferfunctionGCL(s),findthecontrollertransferfunctionC(s).

    64s2 + 8s + 64

    =C(s) 4

    s + 21+ C(s) 4

    s + 2

    =4C(s)

    (s + 2)+ 4C(s)

    Solve for C(s)

    ⇒ 4(s2 + 8s + 64)C(s) = 64(s + 2)+ 256C(s)

    ⇒ 4s(s + 8)C(s)+ 256C(s) = 64(s + 2)+ 256C(s)

    ⇒ 4s(s + 8)C(s) = 64(s + 2)

    ⇒ C(s) =64(s + 2)4s(s + 8)

    =16(s + 2)s(s + 8)

  • PART B Name: HWID:

    Page 12 of 18

    Problem1(10points)–ZeroandstepresponseGiventhefollowingtwoclosed-looptransferfunctions

    G1(s)=

    (s+1)(s2+ s+1) and

    G2(s)=(0.1s+1)(s2+ s+1) ,

    whichonewillhavealargerovershootforastepinput?Brieflyexplainwhy?

    G1(s) has larger overshoot

    Both transfer functions have the same poles at - 12±- 3

    2G1(s) have zero at -1 and G2(s) has zero at -10zero at -1 is closer to the poles, hence G1(s) will have larger overshoot.

    Problem2(10points)–SensitivityGivenatransferfunction

    T(s)= A

    τ s2+ s+kA,

    determinethesensitivityofthetransferfunctionT(s)tochangesintheparameterA,i.e.SAT(s)

    SAT (s ) = AT (s )⋅ ∂T (s )∂A

    = AT (s )

    ⋅ (τ s2 + s + AK) − AK

    (τ s 2 + s + AK)2= A

    A(τ s 2 + s + AK)

    ⋅ τ s2 + s

    (τ s 2 + s + AK)2

    = τ s2 + s

    (τ s 2 + s + AK)=

    s (τ s + 1)(τ s 2 + s + AK)

  • PART B Name: HWID:

    Page 13 of 18

    Problem3(15points)–RouthstabilitytestConsiderthefollowingclosed-loopcharacteristicequation

    1+K 1

    s(s2+ s+1) =0

    (A) (10points)UsetheRouthtesttodeterminetherangeofKforwhichtheclosed-loopsystemisstable.

    Closed-loop Characteristic Eq.

    DCL(s) = 1+ K1

    s(s2 + s + 1)= 0 ⇒ s(s2 + s + 1)+ K = 0

    ⇒ s(s2 + s + 1)+ K = s3 + s2 + s + K = 0

    Routh test:

    s3 : 1 1s2 : 1 Ks : 1− K1: K

    ⇒ Stability ⇒ 1− K > 0K > 0

    ⇒ 0< K < 1

    (B) (5points)Findthejω-axiscrossingpoleswhenKisatthestabilitylimit.

    At statbility limit, substitute s = jω into CLCE

    ⇒ ( jω)3 +( jω)2 +( jω)+ K = 0

    ⇒ − jω 3 −ω 2 +( jω)+ K = 0

    ⇒Real part: K−ω 2 = 0

    Imaginary part: ω −ω 3 = 0⇒ K =ω

    2

    ω(1−ω 2) = 0

    ⇒ K = 1ω = 1

    ⇒ jω-axis cross poles are ± j

  • PART B Name: HWID:

    Page 14 of 18

    Problem4(10points)–RootlocusandPIDcontrolA positioning system with the following transfer function

    1( )( 1)

    G ss s

    =+

    is to be put under PID control. There can be 4 different PID controllers, namely, P control, PI control, PD control, and PID control. The following set of four Root Loci are the open-loop transfer function of G(s) with the 4 (P, PI, PD, PID) types of controllers.

    You are asked to match the 4 different Root Loci below with their corresponding controllers by circle the appropriate controller: Root Locus Controller

    (A) ⇔ P PI PD PID

    (B) ⇔ P PI PD PID

    (C) ⇔ P PI PD PID

    (D) ⇔ P PI PD PID

  • PART B Name: HWID:

    Page 15 of 18

    Problem5(10points)–DirectpoleplacementGiventhefollowingfeedbackcontrolsystem

    UsedirectpoleplacementdeterminethepolynomialsD(s)andN(s)sothattheclosed-loopcharacteristicequationisDCL(s)=s3+4s2+5s+8=0

    CLCE: s D(s)(s + 1)+ 2N(s) = s3 + 4s2 + 5s + 8

    ⇒D(s) = (s + a) 1st orderN(s) = (bs + c) 1st order

    ⇒ s(s + a)(s + 1)+ 2(bs + c) = s3 + 4s2 + 5s + 8

    ⇒ s3 +(1+ a)s2 +(a + 2b)s + 2c = s3 + 4s2 + 5s + 8

    ⇒1+ a = 4

    a + 2b = 52c = 8

    ⇒a = 3b = 1c = 4

    ⇒ C(s) = s + 4s(s + 3)

  • PART B Name: HWID:

    Page 16 of 18

    Problem6(15points)–State-spacerepresentationThefollowingthirdordersystemdifferentialequation:

    !!!y(t)+4 !!y(t)+5 !y(t)+6 y(t)=3!!u(t)+2!u(t)+u(t) canberepresentedasthefollowingblockdiagramandstate-spacerepresentation.Fillintheemptyblocksandmatrixelements.Thestatevariablesarenotedintheblockdiagram.

    and

    !x1

    !x2

    !x3

    ⎢⎢⎢⎢⎢

    ⎥⎥⎥⎥⎥

    =

    ⎢⎢⎢⎢⎢

    ⎥⎥⎥⎥⎥

    x1

    x2

    x3

    ⎢⎢⎢⎢⎢

    ⎥⎥⎥⎥⎥

    +

    ⎢⎢⎢⎢⎢

    ⎥⎥⎥⎥⎥

    u

    y = ⎡⎣⎢

    ⎦⎥

    x1

    x2

    x3

    ⎢⎢⎢⎢⎢

    ⎥⎥⎥⎥⎥

    Y(s)U(s)

    = 3s2 + 2s + 1

    s3 + 4s2 + 5s + 6

    Let: X(s) = 1s3 + 4s2 + 5s + 6

    U(s) ⇒ Y(s) = (3s2 + 2s + 1)X(s)

    4

    3

    2

    1

    5

    6

    0 0 0 0

    0 0 1

    11

    -4 -5 -6

    1 2 3

  • PART B Name: HWID:

    Page 17 of 18

    Problem7(10points)–ModulationanddemodulationAconstantvaluedsignalXDCundergoesamplitudemodulationusinga4kHzcarriersignalwithamplitude1.TheresultingAMsignaliseM(t)=XDC·sin(8000πt).Todemodulate,theAMsignalisfirstmultipliedbyitscarriersignal,resultingine’M(t)=XDC·sin2(8000πt).Whatarethefrequencycomponentsandtheassociatedmagnitudesofthesignale’M(t)?

    e'M(t) = XDC ⋅ sin2(8000πt) = XDC ⋅12− 1

    2cos(2⋅ 8000πt)⎡

    ⎣⎢⎤⎦⎥=

    XDC2−

    XDC2

    cos(2⋅ 8000πt)

    ⇒DC component: 0 [rad/sec] magnitude: XDC

    2

    16000π [rad/sec] or 8000 Hz: magnitude: XDC2

    Problem8(10points)–KarnaughmapThetruthtableofathreeinputoneoutputcombinationallogicisgivebythetruthtabletotherightwithA,B,andCastheinputsandYistheoutput.CompletetheKarnaughmapbelowtogenerateaminimalrepresenationofYasabinaryfunctionoftheinputsA,B,andC.

    Y =B + AC + AC

    00 01 11 10

    0

    1

    ABC

    A B C Y

    0 0 0 1

    0 0 1 1

    0 1 0 1

    0 1 1 0

    1 0 0 1

    1 0 1 1

    1 1 0 0

    1 1 1 10

    0 1 1

    1 1 1

    1

  • PART B Name: HWID:

    Page 18 of 18

    Problem9(10points)–GainmarginandphasemarginTheBodediagramofthelooptransferfunctionL(s)ofthefeedbacksystemtotherightisshownbelow.Identifythegainandphasecross-overfrequenciesandthecorrespondinggainmargin(GM)andphasemargin(PM).(YouneedtomarkontheBodediagramthetwocross-overfrequenciesandthecorrespondingmagnitudeandphaseinformationyouusedtocalculatetheGMandPM.)

    Gain cross-over frequency ω gc = 0.4 [rad/sec]: PM = 180° +(−80°) = 100°

    Phase cross-over frequency ωpc = 4 [rad/sec]: GM = 0−(−10dB) = 10dB= 3.16

    ~-80°

    ωgc = 0.4 rad/s

    ~-10 dB

    ωpc = 4 rad/s