md pv asme v0.1

35
Doc. No. Date Revision 0 1 1. Introduction Sheet No. 1 of 1 This guide is intended to outline a program for mechnical design of pressure vessels in accordance with ASME. 2. References The program is based on the following, which shall be referred to for further understanding. Design ASME Sec. VIII, Div. 1 Materials ASME Sec. II - D Technicals Process Vessel Design Manual, Dennis R. Moss Design of Process Equipment, 3rd Ed., K. K. Mahajan Catalogues for Flanges 3. Future Development Nozzle Conical Section Shell Flange Header, Box Type Support Saddle Leg Lug Skirt Lifting Lug Nozzle External Load External Pressure Tall Tower Davit 4. Program Architecture Inside the Program " IS " Input and Summary Sheet " shell " Calculation Sheet for Shell " head " Calculation Sheet for Head " consec " Calculation Sheet for conical Section " s.flg " Calculation Sheet for Shell Flange " tube " Calculation Sheet for Tube " HD " Calculation Sheet for Header " cv " Calculation Sheet for Cover for Header " Nx " Calculation Sheet for Nozzle Data Files " materials ASTM " Stress Values of ASTM / ASME materials " materials common " Material Index, Flange Data, Modulus of Elasticity, …... " materials JIS " Stress Values of JIS materials " materials KS " Stress Values of KS materials 5. General Information Data are inputed via cells with blue words / numbers and comboboxes. Attention shall be paid to cells with red words / numbers. 각 Sheet 의 하단에 나타나는 회사명을 바꾸려면 아래에 있는 푸른색 회사명을 바꾸기만 하면 된다. NTES Narai Thermal Engineering Services Program User Guide : Description 05. 8. 15. 0.1 05. 8. 15. 0.1 PUG - MDPV - 000 2005. 8. 15. Mechanical Design of P / V in acc. with ASME Date Version Remarks 05. 8. 15. 0.1

Upload: rtrajanmech5408

Post on 08-Apr-2016

42 views

Category:

Documents


6 download

DESCRIPTION

wqew

TRANSCRIPT

Page 1: MD PV ASME v0.1

Doc. No.

Date

Revision 0 1

1. Introduction Sheet No. 1 of 1

This guide is intended to outline a program for mechnical design of pressure vessels in accordance with

ASME.

2. References

The program is based on the following, which shall be referred to for further understanding.

Design ASME Sec. VIII, Div. 1

Materials ASME Sec. II - D

Technicals Process Vessel Design Manual, Dennis R. Moss

Design of Process Equipment, 3rd Ed., K. K. Mahajan

Catalogues for Flanges

3. Future Development

Nozzle

Conical Section

Shell Flange

Header, Box Type

Support Saddle

Leg

Lug

Skirt

Lifting Lug

Nozzle External Load

External Pressure

Tall Tower

Davit

4. Program Architecture

Inside the Program

" IS " Input and Summary Sheet

" shell " Calculation Sheet for Shell

" head " Calculation Sheet for Head

" consec " Calculation Sheet for conical Section

" s.flg " Calculation Sheet for Shell Flange

" tube " Calculation Sheet for Tube

" HD " Calculation Sheet for Header

" cv " Calculation Sheet for Cover for Header

" Nx " Calculation Sheet for Nozzle

Data Files

" materials ASTM " Stress Values of ASTM / ASME materials

" materials common " Material Index, Flange Data, Modulus of Elasticity, …...

" materials JIS " Stress Values of JIS materials

" materials KS " Stress Values of KS materials

5. General Information

Data are inputed via cells with blue words / numbers and comboboxes.

Attention shall be paid to cells with red words / numbers.

각 Sheet 의 하단에 나타나는 회사명을 바꾸려면 아래에 있는 푸른색 회사명을 바꾸기만 하면 된다.

NTES Narai Thermal Engineering Services

Program User Guide :

Description

05. 8. 15. 0.1

05. 8. 15. 0.1

PUG - MDPV - 000

2005. 8. 15.

Mechanical Design of P / V in acc. with ASME

Date Version Remarks

05. 8. 15. 0.1

Page 2: MD PV ASME v0.1

Doc. No.

Date

Revision 0

1. Introduction Sheet No. 1 of 1

These notes are intended to help designers follow normal design practices, and further reach an optimum

design.

2. Notes

Flange

The procedures are from Taylor Forge Bulletin No. 502, 7th Ed., " Modern Flange Design ".

In general, bolts should be used in multiples of four(4).

For large diameter flanges, many smaller bolts on a tight bolt circle are recommended to reduce the flange

thickness.

NTES Narai Thermal Engineering Services

Design Notes :

DN - MDPV - 000

2005. 7. 28.

Mechanical Design of P / V in acc. with ASME

Page 3: MD PV ASME v0.1

Date

1 of 1

D E S I G N D A T A UG - 16 ( b )

Code ASME Sec. VIII Div. 1 Minimum Thickness of Press. Retaining Parts

Service acc. to UG-16 (b) General

General P. R. Parts

Design Pressure kPa.g kg/cm2.g Unfired Steam Boiler Shell & Head

Design Temperature ℃ ℃ Compressed Air Shell & Head

Test Press. / Test Method kPa.g / Hydrostatic Steam Shell & Head

Water Shell & Head

* Excluding corrosion allowance,

Corrosion Allowance mm after forming,

C O N S T R U C T I O N D A T A regardless of material.

t

Shell plate ###

Head plate 2:1 Ellipsoidal Thick Reduction after Forming 15 %

Shell #2 plate

Conical Sec. plate Conical Length > Concentric BSA BSP GW Wt

Flat Head forging Flanged Bolt > ASTM A 193-B7,<=2.5" Thk Redu ### ### ### 1" 48

Shell Flange forging AWWA Ring NZ.t > 14 Gasket> Confined Spiral W.,SUS 15 % ### ### ### 1" 48

tube U-tube ###

Triangular Pitch, Trans. Long.

Header, Inlet pipe Circular C.A. 0 ###

Blind Flg, Inletplate Welded Bolt > BSA GW

Flange > Gasket>

Header, Outletpipe Circular C.A. 0 ###

Blind Flg, Outletplate Flanged Bolt > ASTM A 193-B8, <=3/4" BSA GW

Flange > ANSI Slip-on Gasket> ConfinedSpiral W.,SUS ### ###

N O Z Z L E S

A1, Manhole plate Inserted Location > Shell ###

Pad > plate Ar ### Sr ### Access or Inspection Opening > Yes

K1 & K2 pipe Inserted Location > Shell ###

Pad > Ar ### Sr ### Access or Inspection Opening > No

Notes : 1. - N/R - : Not Required. Ar Area Requirement BSA Requirement for Bolt Sectional Area

2. - N/A - : Not Applicable Sr Strength Requirement BSP Requirement for Bolt Spacing

3. GW Requirement for Gasket Width

4. Bolt Bolt Detail, Size / Q'ty

4.6

I N T E R N A L E X T E R N A L

0.85 2500

Code

A 516-70

3

Tube

OD

###### 14 #######ASTM

ASTM

#######

ASTM

A 516-70

ID

3

300

340 30

Pipe SizeI.D., mm

3 0

Judge

Incinerator Chamber

F - 37040 - 3100 - 25

Sohar Refinery Project Project Service

H E A D N O Z Z L E T U B E

Item No.

S H E L L

MD - IS - 000

Sheet No.

Revision 0

2005. 8. 15.

Doc. No.I N P U T & S U M M A R Y S H E E T f o r P / V M E C H . D E S I G N

t, min. t, req. t, usedDescription Type Joint Eff.

Materials

Spec. No.

Job No.

Nozzle ID>

std size>

5.4 ###### 141

#######

######A 105 1450

####### * t std >

M. Input >

19.4 ###### 3

- N/A -std size>

KS

###### 12.0

Pad Th'k > 14

ASTM A 516-70 1 585.6

ASTM 1160

STS 304 TB E 1

A 516-70

ASTM

Pad OD >

ASTM A 516-70

Pad OD >

150 lb

A 106-B 1

14 #######0.85 1450 4.6 ######

15 #######

- N/A -

#############

######KS STS 304 1

Pad Th'k >

Sch.10S

50.8

Sch.16024"

###### ######125 A Sch.80

80 A Sch.80

24" Sch.40

15 A

######

######

######

######

######

######

JIS SUS 304 1

KS STS 304 TP E 1 ######

#######

Thickness, mm

2.4

######KS STS 304 TP E 1 ###### ######

A 105

6

2.4

2.4

Partt,min-CA

1.6

150 lb

############

############ ######XX-STR

ASTM

Service

###### ###### ####### 1 1/2"

###### ######

* t std > ######

######

######

#######

#######

M. Input > ###### 95 #######

#######

ASTM A 516-70 0.85 5.4 ###### Bolt920

70.5

#######

14 #######

50

Page 4: MD PV ASME v0.1

NTES Narai Thermal Engineering Services

Page 5: MD PV ASME v0.1

Doc. No.

Job No. : 0 - 3100 - 25

Project : Sohar Refinery Project

Client : JGC

Contractor : HCEI

Item No. : F - 3704

Service Incinerator Chamber

5

4

3

2

1

0 Issued for approval.

Tel.

Homepage Fax.

E-mail

NTES Narai Thermal Engineering Services

ApprovedReviewed

Narai Thermal Engineering Services

LTG Lee

Rev. PreparedDescriptionDate

S. J. Lee05. 8. 15.

M E C H A N I C A L D E S I G N

P R E S S U R E V E S S E L

MD - PV - 000

Page 6: MD PV ASME v0.1

P R E S S U R E V E S S E L : Doc. No.

Date

Rev. 0

Sheet No. 1 of 1

1. Design Data and Summary

2. Shell

3.

4.

5.

6.

7.

8.

9.

10.

NTES Narai Thermal Engineering Services

MD - PV - 000

05. 8. 15.

T a b l e of C o n t e n t s

M E C H A N I C A L D E S I G N

Page 7: MD PV ASME v0.1

P R E S S U R E V E S S E L : Doc. No.

Date

1 Revision 0

2 Sheet No. 1 x

3

4 Project Sohar Refinery Project

5 Item No. F - 3704

6 Service Incinerator Chamber

7

8

9

10 Code ASME Sec. VIII Div. 1

11

12 Pressure kPa.g

13 Temperature ℃

14 Method

15 Pressure kPa.g

16 Ambient Temperature ℃

17

18 Shell mm

19 Head mm

20 Nozzle mm

21 Tube mm

22

23

24

25 Min. Req. Used

26

27 Shell A 516-70 4.6 #### 14

28 Head 2:1 Ellipsoidal A 516-70 5.4 #### 14

29 Shell #2 A 516-70 4.6 #### 14

30 Conical Sec. Conical Concentric A 516-70 2500 1450 5.4 #### 14 L = 920 mm

31 Flat Head Flanged A 105 Nz ID. 1450 #### 50 Bolt = A 193-B7,<=2.5"

32 Shell Flange AWWA / Ring A 105 Nz Thk 14 #### 95 Gasket = Spiral W.,SUS

33

34

35

36 Req. Used.

37

38 Tube U-tube STS 304 TB E 19.4 25.4 #### 3

39 Header, Inlet Circular STS 304 TP E ##### ##### #### #### 125 A / Sch.80

40 Blind Flg, Inlet Welded STS 304 #### 15

41 Header, Outlet Circular STS 304 TP E ##### ##### #### #### 80 A / Sch.80

42 Blind Flg, Outlet Flanged SUS 304 #### #### ANSI / Slip-on / 150 lb

43

44

45

46 Req. Used. OD t

47

48 A1, Manhole A 516-70 585.6 609.6 #### 12.0 1160 14

49 K1 & K2 A 106-B ##### ##### #### ####

50

51

52

53

54 Remarks :

55

56

57

58

59

60

NTES Narai Thermal Engineering Services

Design

MD - PV - 000

M E C H A N I C A L D E S I G N

D E S I G N D A T A

***

3

3

05. 8. 15.

of

E X T E R N A L

340

0

Hydrostatic

30

I N T E R N A L

300

Joint Efficiency RadiographyCorrosion Allowance

Spot0.85

Pressure Test

3

D E S I G N S U M M A R Y

No or Full1

***

******0

N O Z Z L E S

Description

Description TypeID

mm

Thickness

1450

RemarksMaterial

2500

Remarks

T U B E & H E A D E R

Description Material LocationID

mm

Material

mm

Remark

Shell

Shell A 516-70

ODThickness Pad

Type Material

mm

ThicknessID OD

Page 8: MD PV ASME v0.1

P R E S S U R E V E S S E L : Doc. No.

Date

Revision 0

Sheet No. 0 x

ASME Sec. VIII, Div. 1

UG - 27 Thickness of Shells under Internal Pressure * Circumferential stress governs.

( c ) ( 1 ) Circumferential Stress in the Longitudinal Joint So, calculation for long. stress is omitted.

Material Code ASTM

Material A 516-70

Internal design pressure P kPa.g

Design temperature ℃

Inside diameter of the shell course under consideration Uncorroded mm

Inside diameter of the shell course under consideration Corroded D mm

Inside radius Corroded R mm

Maximum allowable stress value S kPa

Joint efficiency for, or the efficiency of, appropriate joint E

Corrosion allowance α mm

Minimum Required Thickness of Shell

Checks : t = ## R = -> ##

P = ## 0.385 S E = -> ##

0.6 P - 0.6

NTES Narai Thermal Engineering Services

MD - PV - 000

05. 8. 15.

ofM E C H A N I C A L D E S I G N

t =P R

+S E -

Part Shell

Code

D E S I G N D A T A

= ######

3.0

mm

α =300.0 1,253

## 14 mm used.

+300.00.85

#VALUE!->

#VALUE!

2,500

2,506

300

1,253

#VALUE!

0.85

340

300

###### 0.5 626.5

#VALUE!

3

C A L C U L A T I O N

Page 9: MD PV ASME v0.1

P R E S S U R E V E S S E L : Doc. No.

Date

Revision 0

Sheet No. 0 x

ASME Sec. VIII, Div. 1

UG - 32 Formed Heads, and Sections, Pressure on Concave Side

( d ), ( e ) or ( f )

Material Code ASTM

Material A 516-70

Internal design pressure P kPa.g

Design temperature ℃Inside diameter of the head Uncorroded mm

Inside diameter of the head Corroded D mm

Inside radius Corroded R mm

Maximum allowable stress value S kPa

Joint efficiency E

Corrosion allowance α mm

Thickness reduction rate after forming rt %

Inside spherical or crown radius = D L mm

Minimum Required Thickness of Head before Forming

2:1 Ellipsoidal * UG - 32 ( d )

Check : t / L = ## -> ##

100

2 - 0.2 100 - 15

10% Dished * UG - 32 ( e )

Check : t / L = ## -> ##

100

- 0.1 100 - 15

Hemi-spherical * UG - 32 ( f )

Checks : t = ## L = -> ##

P = ## 0.665 S E = -> ##

100

2 - 0.2 100 - 15

NTES Narai Thermal Engineering Services

-> #VALUE!= ###### mm ## 14 mm used.

+ 3.0 )2 S E - 0.2 P 100 - rt 1 300.0

= (2,267

+ α )100

t = (P L

-> #VALUE!

300.0=

#VALUE!

0.885100 2,267

300.0

= ###### mm ##

###### 0.356

300

( )

3.0 )S E - 0.1 P 100 - rt 1 300.0

( +t = (0.885 P L

+ α

###### 0.002

3.0 )300.0

15

2,267

+300.01

## 14 mm used.

###### 0.002

100 - rt

1,253

#VALUE!

1

340

14 mm used.

100

#VALUE!

0.9045

)

#VALUE!->

(

C A L C U L A T I O N

= ###### mm

α =2,506

D E S I G N D A T A

t =P D

+2 S E - 0.2 P

3

2,500

2,506

300

#VALUE!

806.9

#VALUE!

MD - PV - 000

05. 8. 15.

ofM E C H A N I C A L D E S I G N

Part Head

Code

Page 10: MD PV ASME v0.1

P R E S S U R E V E S S E L : Doc. No.

Date

Revision 0

Sheet No. 0 x

ASME Sec. VIII, Div. 1

UG - 27 Thickness of Shells under Internal Pressure * Circumferential stress governs.

( c ) ( 1 ) Circumferential Stress in the Longitudinal Joint So, calculation for long. stress is omitted.

Material Code ASTM

Material A 516-70

Internal design pressure P kPa.g

Design temperature ℃

Inside diameter of the shell course under consideration Uncorroded mm

Inside diameter of the shell course under consideration Corroded D mm

Inside radius Corroded R mm

Maximum allowable stress value S kPa

Joint efficiency for, or the efficiency of, appropriate joint E

Corrosion allowance α mm

Minimum Required Thickness of Shell

Checks : t = ## R = -> ##

P = ## 0.385 S E = -> ##

0.6 P - 0.6

NTES Narai Thermal Engineering Services

300

###### 0.5 364

#VALUE!

1,456

300

728

#VALUE!

0.85

340

mm used.

+300.00.85

#VALUE!->

#VALUE!

= ######

3.0

mm

α =300.0 728

## 14

Code

D E S I G N D A T A

=P R

+S E -

C A L C U L A T I O N

t

3

1,450

MD - PV - 000

05. 8. 15.

ofM E C H A N I C A L D E S I G N

Part Shell #2

Page 11: MD PV ASME v0.1

P R E S S U R E V E S S E L : Doc. No.

Date

Revision 0

Sheet No. 0 x

ASME Sec. VIII, Div. 1

UG - 32 Formed Heads, and Sections, Pressure on Concave Side

( g ) Conical Sections ( Without Transition Knuckle )

Material Code ASTM

Material A 516-70

Configuration Concentric

Internal design pressure P kPa.g

Design temperature ℃Inside diameter of the shell, larger Uncorroded mm

Inside diameter of the shell, larger Corroded D mm

Inside radius Corroded R mmInside diameter of the shell, smaller Uncorroded mm

Inside diameter of the shell, smaller Corroded mm

Inside radius Corroded mm

Axial length of conical section L mm

One half apex angle Θ deg

Maximum allowable stress value S kPa

Joint efficiency for, or the efficiency of, appropriate joint E

Corrosion allowance α mm

Minimum Required Thickness of Conical Shell

Checks : Θ = < Θmax = deg -> OK !

x

2 cos Θ ( S E - 0.6 P ) 2 cos ( ) ( - 0.6 )

NTES Narai Thermal Engineering Services

MD - PV - 000

05. 8. 15.

ofM E C H A N I C A L D E S I G N

t = +

Part Conical Sec.

Code

D E S I G N D A T A

= ######

3.0+300.00.85

#VALUE!

#VALUE!

mm

α

300

1,253

340

1,450

1,456

## 14 mm used. ->

C A L C U L A T I O N

29.7

P D

29.7

2,506300.0

2,500

2,506

=

728

920

29.7

30

3

#VALUE!

0.85

Page 12: MD PV ASME v0.1

P R E S S U R E V E S S E L : Doc. No.

Date

Revision 0

Sheet No. 0 x

ASME Sec. VIII, Div. 1

UG - 34 Unstayed Flat Heads and Covers

( c ) ( 2 ) Sketch ( j )

Material Code ASTM

Material A 105

Internal design pressure P kPa.g

Design temperature ℃Diameter measured as indicated in Fig. UG-34 d mm

Maximum allowable stress value S kPa

Joint efficiency for, or the efficiency of, appropriate joint E

Factor depending upon the method of attachment of head, shell dimensions C

Total Bolt load W kPa.mm2

Gasket moment arm, radial distance from bolt center to line of gasket reaction hG mm

Corrosion allowance α mm

Minimum Required Thickness of Flat Head

t = d C P / S E + 1.9 W hG / S E d3

+ α

* Operating Condition

to = / + 1.9 / ^3

+

= mm

* Gasket Seating

tg = / + 1.9 / ^3

+

= mm

t = Larger of to or tg

= mm ## mm used. -> ##

Flange Data

Diameter at location of gasket load reaction d mm t = *Std

Basic gasket seating width b0 mm **Effective gasket seating width b mm

Gasket Spiral W.,SUSGasket factor, Table 2-5.1 m

Gasket unit seating load y kPa

Nominal bolt size *Actual bolt diameter mm

Root diameter d2 mm

No. of bolts n Shell ID

Bolt spacing mm -> ###

" ", "TEMA min. / max. / mm

Total Bolt Load

* Operating Condition

W = Wm1 = H + Hp = 0.785 d2 P + ( 2 b 3.14 d m P )

= ^2

+ ( 2 ) =

* Gasket Seating

Wm2 = 3.14 b d y = =

Sb = kPa * Allowable bolt stress at design temp.

Sa = kPa * Allowable bolt stress at atmospheric temp.

Am1 = Wm1 / Sb = / =

Am2 = Wm2 / Sa = / =

Am = Larger of Am1 or Am2 = * total required cross-sectional area of bolts

Ab = π / 4 d22 n = * cross-sectional area of the bolts using the root diameter

* Ab ## Am -> ###

* Required gasket width = Ab Sa / 2 y π d = ## Gasket width, used = -> ###

W = ( Am + Ab ) Sa / 2 =

NTES Narai Thermal Engineering Services

######

136.5

#VALUE!

1

340

300

1,505

3.0

3

Code

D E S I G N D A T A

Bolted with a confined gasket Flange to Shell

MD - PV - 000

05. 8. 15.

ofM E C H A N I C A L D E S I G N

Part Flat Head

300.0 1,505

###### 50

1,505

######

1,505 0.30 0.0

Width

######

1,505

####### 1

C A L C U L A T I O N

###### #######601,244,3370.30

d

##

##

##

##

##

##

0.3

1,5

21

20.0

30

hG

50

Gasket68947.6

1

1

1,4

50

1,505

10.0

8.0

######

36

##

#

300.0

3.0

######

#VALUE!####### 1 ###### #######

1,505

3

601,244,337

##########

#######

#######

***

#VALUE!

300 8.0 3.14 1,505

#VALUE!

######

######

######

17,063

68947.6

###### 20.0

#######

1"

25.4

21.3

48

3.14 8.0 1,505

57

0.785

#######

601,244,337

2,596,510,385

1,505 3

Page 13: MD PV ASME v0.1

P R E S S U R E V E S S E L : Doc. No.

Date

Revision 0

Sheet No. 0 x

ASME Sec. VIII, Div. 1

UG - 34 Unstayed Flat Heads and Covers

( c ) ( 2 ) Sketch ( p )

Material Code ASTM

Material A 105

Internal design pressure P kPa.g

Design temperature ℃

Diameter measured as indicated in Fig. UG-34 d mm

Maximum allowable stress value S kPa

Joint efficiency for, or the efficiency of, appropriate joint E

Factor depending upon the method of attachment of head, shell dimensions C

Corrosion allowance α mm

Minimum Required Thickness of Flat Head

t

t = d + α *

= / + 3.0

= mm ## mm used. -> ##

Shell ID

NTES Narai Thermal Engineering Services

3

0.25

C A L C U L A T I O N

##

#

C P / S E

1,4

50

##

##

##

d =

###### 50

###### 0.25 300.0 #VALUE! 1

300

#VALUE!

Bolted with a full-face gasket to Shell

MD - PV - 000

05. 8. 15.

ofM E C H A N I C A L D E S I G N

#VALUE!

1

340

Part Flat Head

Code

D E S I G N D A T A

Page 14: MD PV ASME v0.1

P R E S S U R E V E S S E L : Doc. No.

Date

Revision 0

Sheet No. 0 x

ASME Sec. VIII, Div. 1

UG - 34 Unstayed Flat Heads and Covers

( c ) ( 2 ) Sketch ( e ) or ( f )

Material Code ASTM

Material A 105

Internal design pressure P kPa.g

Design temperature ℃

Diameter measured as indicated in Fig. UG-34 Uncorroded mm

Diameter measured as indicated in Fig. UG-34 Corroded d mm

Maximum allowable stress value S kPa

Joint efficiency for, or the efficiency of, appropriate joint E

Factor depending upon the method of attachment of head, shell dimensions C

Corrosion allowance α mm

Minimum Required Thickness of Flat Head

m = the ratio, tr / ts = / =

Where, tr Required thickness of seamless shell

ts Nominal thickness of shell

C = m = x =

t = d + α = / +

= mm ## mm used. -> ##

NTES Narai Thermal Engineering Services

3.0

#VALUE!

1

0.2

1

###### 14 ######

###### 300.0 #VALUE!

M E C H A N I C A L D E S I G N

###### 50

C P / S E 1,456

0.33 0.33 ###### ###### * min.

Code

C A L C U L A T I O N

D E S I G N D A T A

300

1450

1456

340

Welded to Shell

3

***

Part Flat Head

MD - PV - 000

05. 8. 15.

of

ts

d t

ts

d t

Sketch (e) Sketch (f)

Page 15: MD PV ASME v0.1

P R E S S U R E V E S S E L : Doc. No.

Date

Revision 0

Sheet No. 0 x

ASME Sec. VIII, Div. 1

UG - 34 Unstayed Flat Heads and Covers

( c ) ( 2 ) Sketch ( a )

Material Code ASTM

Material A 105

Internal design pressure P kPa.g

Design temperature ℃

Diameter measured as indicated in Fig. UG-34 Uncorroded mm

Diameter measured as indicated in Fig. UG-34 Corroded d mm

Maximum allowable stress value S kPa

Joint efficiency for, or the efficiency of, appropriate joint E

Factor depending upon the method of attachment of head, shell dimensions C

Corrosion allowance α mm

Thickness reduction rate after forming rt %

Minimum Required Thickness of Flat Head

100

100 - r 100 - 15

= mm ## mm used. -> ##

NTES Narai Thermal Engineering Services

3.0t C P / S E +100

= ( d α ) /= ( 1,456 0.17

1456

#VALUE!

1

0.17

###### 50

3

C A L C U L A T I O N

#VALUE!

15

)1 +300.0

300

340

1450

Part Flat Head

Code

Formed & Welded to Shell

D E S I G N D A T A

MD - PV - 000

M E C H A N I C A L D E S I G N05. 8. 15.

of

ts

d t

Sketch (a)

r = 3 t min.

W.L T.L.

Page 16: MD PV ASME v0.1

1 Project Sohar Refinery Project Doc. No.

2 Item No. F - 3704 Serivice Incinerator Chamber Sheet No. 1 of 1

3 Description * Design result ### Revision 0

4 Design Pressure kPa.g

5 Design Temperature ℃

6 Atm. Temp. ℃ Material ASTM Material ASTM

7 Corrosion Allowance mm at Design Temp.Sfo kPa at Design Temp.Sb kPa

8 at Atm. Temp. Sfa kPa at Atm. Temp. Sa kPa

9 Gasket Material Wm2 = b π G y kPa.mm2 Am = greater of Wm2/Sa

10 Gasket Width, N mm HP = 2 b π G m P kPa.mm2 or Wm1/Sb

11 m H = G2 π P / 4 kPa.mm2 Ab = π / 4 d2

2 n mm2

12 y kPa Wm1 = HP + H kPa.mm2 Check Ab > Am

13 b0 / b mm W = 0.5 ( Am + Ab ) SakPa.mm2

14 G mm

15 Bolt Size / Q'ty, n Required Gasket Width

16 Bolt Dia. / Root Dia., d2 mm Nr = Ab Sa / 2 y π G < N

17 Bolt Spacing mm <- * Min. / Max., TEMA /

18 HD = π B2 P / 4 hD = R + 0.5 g1 MD = HD hD

19 HG = Wm1 - H hG = 0.5 ( C - G ) MG = HG hG

20 HT = H - HD hT = 0.5 ( R + g1 + hG ) MT = HT hT

21 Mo = MD + MG + MT

22 HG = W hG = 0.5 ( C - G ) Mo' = HG hG

23

24 K = A / B h / h0

25 T F

26 Z V

27 Y f t = h =

28 U e = F / h0 * STD

29 g1 / g0 U

30 h0 = Bg0 V

31 E =

32 t hG R =

33 α = t e + 1 hT hD

34 β = 4/3 t e + 1

35 γ = α / T

36 δ = t3 / d

37 λ = γ + δ

38 mo = Mo / B g0=

39 mG = Mo' / B tn =

40 If bolt spacing exceeds 2 dB + t, mo and mG in above equations are B =

41 multiplied by ID, uncorroded

42 dB : Nominal Bolt Dia. Unit : mm

Longitudinal Hub, Longitudinal Hub,

SH = f mo / λ g12

SH = f mG / λ g12

Radial Flange Radial Flange

SR = β mo / λ t2

SR = β mG / λ t2

Tangential Flange Tangential Flange

ST = mo Y / t2 - Z SR ST = mG Y / t

2 - Z SR

Greater of 0.5( SH + SR ) Greater of 0.5( SH + SR )

or 0.5( SH + ST ) or 0.5( SH + ST )

NTES Narai Thermal Engineering Services

*HD

#VALUE!

HT

HG

g1=

####

##

##

##

######

Shell Flange

C =

G =

##

##

##

S H A P E F A C T O R S

S T R E S S F O R M U L A F A C T O R S

######

Load, kPa.mm2

#VALUE!

#VALUE!

#VALUE!

#VALUE!

W

#VALUE!

#VALUE!

#VALUE!

95

####

mm2#VALUE!

#VALUE!

#######

h0 g02

#VALUE!

4

#VALUE!

#VALUE!

#VALUE!

#VALUE!

d =

#VALUE!

#VALUE!

###### ######

#VALUE!

#VALUE!

95.000

######

#VALUE!

2 3

6

5

#VALUE!

#VALUE!#VALUE!

DF - WNFLG - 100

Allowable Stresses

D E S I G N C O N D I T I O N

G A S K E T & B O L T D E T A I L S

Flange

L O A D & B O L T C A L C U L A T I O N S

M O M E N T C A L C U L A T I O N S

#VALUE!

1

300

Bolting

S K E T C H

x

#VALUE!

#VALUE!

#VALUE!

#VALUE!

499,498,152

###mm

Operating Condition

Moment, kPa.mm2-mm

#VALUE!

#VALUE!

#VALUE!

#VALUE!

2 dB + t

Bolt Spacing

S T R E S S C A L C U L A T I O N S, unit - kPa

Allowable Stress Gasket SeatingAllowable Stress

7

1,450A =

1,456

Sfo Sfa

#VALUE!

#VALUE!

#VALUE!######

#VALUE!

#VALUE!#VALUE!

#VALUE!

1.5 Sfo

Sfo

Sfo

1.5 Sfa

Sfa

Sfa

#VALUE! #VALUE!

#VALUE!

######

######

#VALUE!

######

#VALUE!

######

#VALUE!

#VALUE!

#VALUE!

######

#VALUE!

#VALUE!

#VALUE!

#VALUE!

#VALUE!

#VALUE!

#VALUE!######

#VALUE!

######

#VALUE!

#VALUE!

3

68,948

Spiral W.,SUS

#VALUE!

#VALUE!

#VALUE!

340

30

3 #VALUE!

A 105 A 193-B7,<=2.5"

#VALUE! #VALUE!

=Lever Arm, mm

######

Operating Condition

#VALUE!

#VALUE!

######

######

Gasket Seating

#VALUE!

#VALUE!

#VALUE!

#VALUE!

##

##

##

######

######

W E L D I N G N E C K F L A N G E D E S I G N

46

43

44

45

###### ######

###### ######

14

######

#####

##

##

##

#VALUE!

####

Page 17: MD PV ASME v0.1

1 Project Sohar Refinery Project Doc. No.

2 Item No. F - 3704 Serivice Incinerator Chamber* Type Loose Sheet No. 1 of 1

3 Description * Design result ### Revision 0

4 Design Pressure kPa.g

5 Design Temperature ℃

6 Atm. Temp. ℃ Material ASTM Material ASTM

7 Corrosion Allowance mm at Design Temp.Sfo kPa at Design Temp.Sb kPa

8 at Atm. Temp. Sfa kPa at Atm. Temp. Sa kPa

9 Gasket Material Wm2 = b π G y kPa.mm2 Am = greater of Wm2/Sa

10 Gasket Width, N mm HP = 2 b π G m P kPa.mm2 or Wm1/Sb

11 m H = G2 π P / 4 kPa.mm2 Ab = π / 4 d2

2 n mm2

12 y kPa Wm1 = HP + H kPa.mm2 Check Ab > Am

13 b0 / b mm W = 0.5 ( Am + Ab ) SakPa.mm2

14 G mm

15 Bolt Size / Q'ty, n Required Gasket Width

16 Bolt Dia. / Root Dia., d2 mm Nr = Ab Sa / 2 y π G < N

17 Bolt Spacing mm <- * Min. / Max., TEMA /

18 HD = π B2 P / 4 hD = 0.5 ( C - B ) MD = HD hD

19 HG = Wm1 - H hG = 0.5 ( C - G ) MG = HG hG

20 HT = H - HD hT = 0.5 ( hD + hG ) MT = HT hT

21 Mo = MD + MG + MT

22 HG = W hG = 0.5 ( C - G ) Mo' = HG hG

23

24 K = A / B h / h0

25 T FL

26 Z VL

27 Y f t = h =

28 U e = FL / h0 * STD

29 g1 / g0 U

30 h0 = Bg0 VL

31 E =

32 t hG R =

33 α = t e + 1 hT

34 β = 4/3 t e + 1 hD

35 γ = α / T

36 δ = t3 / d HD

37 λ = γ + δ g0 =

38 mo = Mo / B tn =

39 mG = Mo' / B

40 If bolt spacing exceeds 2 dB + t, mo and mG in above equations are B =

41 multiplied by ID, uncorroded

42 dB : Nominal Bolt Dia. Unit : mm

Longitudinal Hub, Longitudinal Hub,

SH = mo / λ g12

SH = mG / λ g12

Radial Flange Radial Flange

SR = β mo / λ t2

SR = β mG / λ t2

Tangential Flange Tangential Flange

ST = mo Y / t2 - Z SR ST = mG Y / t

2 - Z SR

Greater of 0.5( SH + SR ) Greater of 0.5( SH + SR )

or 0.5( SH + ST ) or 0.5( SH + ST )

NTES Narai Thermal Engineering Services

*

A 193-B7,<=2.5"

#VALUE!

#VALUE!

######

#VALUE!

#VALUE!

2 dB + t

#VALUE!

Bolt Spacing

S T R E S S C A L C U L A T I O N S, unit - kPa

Allowable Stress Gasket SeatingAllowable Stress

7

#VALUE!

#VALUE!

#VALUE!

#VALUE! ######

######

95

4

#VALUE!

5

#VALUE!

S H A P E F A C T O R S

Gasket Seating

######

###### #######

#VALUE!

#VALUE!

Operating Condition

Lever Arm, mm

######

Load, kPa.mm2

#VALUE!

Spiral W.,SUS

L O A D & B O L T C A L C U L A T I O N S

#VALUE!

#VALUE!

###### ######

68,948

#VALUE!

###### ######

#VALUE!

#VALUE!h0 g0

2 d =

2 3

3

#VALUE!

G A S K E T & B O L T D E T A I L S

6

95.000

S T R E S S F O R M U L A F A C T O R S

#VALUE!

#VALUE!

#VALUE!

DF - SOFLG - 100

Allowable Stresses

D E S I G N C O N D I T I O N

S K E T C H

x

#VALUE!

#VALUE!

#VALUE!

#VALUE!

514,706,916

1

300

Shell Flange

#VALUE!

Bolting

#VALUE!

mm2#VALUE!

#VALUE!

#VALUE!

1,450A =

1,478

Operating Condition

C =

G =

Sfo Sfa

#VALUE!

#VALUE!

#VALUE!######

#VALUE!

#VALUE!#VALUE!

#VALUE!

#VALUE!

######

1.5 Sfo

Sfo

Sfo

#VALUE!

#VALUE!

######

#VALUE!

######

#VALUE!

#VALUE!

#VALUE!

######

#VALUE!

#VALUE!

1.5 Sfa

Sfa

Sfa

#VALUE!

#VALUE!

#VALUE!

#VALUE!######

#VALUE!

#VALUE!

#VALUE!

#VALUE!

#VALUE!

#VALUE!

#VALUE!

#VALUE!

######

######

30

3 #VALUE!

Flange

A 105

#VALUE!

#VALUE!

#VALUE!

#VALUE!

#VALUE!

######

######

####

#VALUE!

Moment, kPa.mm2-mm

###

=

W

##

##

##

##

##

##

##

##

##

14

46

43

44

45

######

##########

##

##

##

g1=HT

HG

####

######

######mm

#VALUE!

340

#VALUE!

S L I P - O N F L A N G E D E S I G N

#VALUE!

M O M E N T C A L C U L A T I O N S

Page 18: MD PV ASME v0.1

1 Project Sohar Refinery Project Doc. No.

2 Item No. F - 3704 Serivice Incinerator Chamber* Type Loose Sheet No. 1 of 1

3 Description * Design result ### Revision 0

4 Design Pressure kPa.g

5 Design Temperature ℃

6 Atm. Temp. ℃ Material ASTM Material ASTM

7 Corrosion Allowance mm at Design Temp.Sfo kPa at Design Temp.Sb kPa

8 at Atm. Temp. Sfa kPa at Atm. Temp. Sa kPa

9 Gasket Material Wm2 = b π G y + H'GY kPa.mm2 Am = greater of Wm2/Sa

10 HP = 2 b π G m P kPa.mm2 or Wm1/Sb

11 m H'P = ( hG / h

'G ) HP Ab = π / 4 d2

2 n mm2

12 y kPa H = G2 π P / 4 kPa.mm2 Check Ab > Am

13 b = ( C - B ) / 4 mm Wm1 = HP + H'P + H kPa.mm2 W = 0.5 ( Am + Ab ) SakPa.mm2

14 G = C - 2 hG mm H'GY = ( hG / h

'G ) b π G y

15 Bolt Size / Q'ty, n

16 Bolt Dia. / Root Dia., d2 mm Bolt Hole Dia., dh mm

17 Bolt Spacing mm <- * Min. / Max., TEMA /

18 HD = π B2 P / 4 hD = 0.5 ( C - B ) MD = HD hD

19 HT = H - HD hT = 0.5 ( hD + hG ) MT = HT hT

20 Mo = MD + MT

23 K = A / B h / h0

24 T FL t = h =

25 Z VL * STD

26 Y f

27 U e = FL / h0

28 g1 / g0 U H'G E =

29 h0 = Bg0 VL h'G

30

hG R =

hT

31 t mo = Mo / B hD

32 α = t e + 1

33 β = 4/3 t e + 1 HD

34 γ = α / T g0 =

35 δ = t3 / d tn =

36 λ = γ + δ

37 If bolt spacing exceeds 2 dB + t, mo and mG in above equations are B =

38 multiplied by ID, uncorroded

39 dB : Nominal Bolt Dia. Unit : mm

Longitudinal Hub,

SH = mo / λ g12

Radial Flange

SR = β mo / λ t2

Tangential Flange

ST = mo Y / t2 - Z SR

Greater of 0.5( SH + SR )

or 0.5( SH + ST )

Radial Stress at Bolt Circle

NTES Narai Thermal Engineering Services

*

S K E T C H

######

W######

#VALUE!

#VALUE!

#VALUE!

#VALUE!

#VALUE!=

#VALUE!

#VALUE!

#VALUE!

#VALUE!

#VALUE!

43

40

41

42

#VALUE!

95

#VALUE!

Reverse Moment, kPa.mm2-mm

h'G = #VALUE!

( A - C ) ( 2 A + C )

6 ( C + A )

Lever Arm, mm

#VALUE!

M O M E N T C A L C U L A T I O N S

Load, kPa.mm2

#VALUE!

4

Operating Condition

#VALUE!

###### ######

#VALUE!

######

######

######

#VALUE! MG HG h"G

340

30

3

#VALUE!

#VALUE!

3

68,948

Spiral W.,SUS

#VALUE!

#VALUE!

= Moment, kPa.mm2-mm

1.5 Sfo

Sfo

Sfo

#VALUE!

#VALUE!

######

######

#VALUE!

######

Sfo

#VALUE!

#VALUE!

#VALUE!######

#VALUE!

#VALUE!#VALUE!

#VALUE!

1,450A =

C =

2 dB + t

Bolt Spacing

1,478

G =

Allowable Stress

7

Operating Condition

S T R E S S C A L C U L A T I O N S, unit - kPa

######

##

##

##

##

##

##

##

##

##

14

g1= ######HT

####

x

###### #######

######

Lever Arm, mm

######

Bolting

G A S K E T & B O L T D E T A I L S

#VALUE!

6 ( B + C )=

514,706,916

###### ######

hG

( C - B ) ( 2 B + C )21

22

DF - SOFFG - 100

Allowable Stresses

D E S I G N C O N D I T I O N1

300

S H A P E F A C T O R S

hG + h'G

h"G

Flange

#VALUE!

#VALUE!

#VALUE!

#VALUE!

HG

#VALUE!

W - H=hG h

'G

#VALUE!

#VALUE!

#VALUE!

=

h0 g02

95.000

##

##

##

2 3

6

5

#VALUE!

#VALUE!

#VALUE!

#VALUE!

#VALUE!

mm2

#VALUE!

HG

####

S T R E S S F O R M U L A F A C T O R S

d =

44 Sfo #VALUE!

A 193-B7,<=2.5"

#VALUE!

######

#VALUE!

#VALUE!

#VALUE!

#VALUE!

#VALUE!

#VALUE!

#VALUE!

###### SRAD =

6 MG

t2 ( π C - n dh )

A 105

#VALUE!

#VALUE!

#VALUE!

#VALUE!

L O A D & B O L T C A L C U L A T I O N S

#VALUE!

Shell Flange

S L I P - O N, F U L L F A C E G A S K E T F L A N G E D E S I G N

Page 19: MD PV ASME v0.1

1 Project Sohar Refinery Project Doc. No.

2 Item No. F - 3704 Serivice Incinerator Chamber* Type Loose Sheet No. 1 of 1

3 Description * Design result ### Revision 0

4 Design Pressure kPa.g

5 Design Temperature ℃

6 Atm. Temp. ℃ Material ASTM Material ASTM

7 Corrosion Allowance mm at Design Temp.Sfo kPa at Design Temp.Sb kPa

8 at Atm. Temp. Sfa kPa at Atm. Temp. Sa kPa

9 Gasket Material Wm2 = b π G y kPa.mm2 Am = greater of Wm2/Sa

10 Gasket Width, N mm HP = 2 b π G m P kPa.mm2 or Wm1/Sb

11 m H = G2 π P / 4 kPa.mm2 Ab = π / 4 d2

2 n mm2

12 y kPa Wm1 = HP + H kPa.mm2 Check Ab > Am

13 b0 / b mm W = 0.5 ( Am + Ab ) SakPa.mm2

14 G mm

15 Bolt Size / Q'ty, n Required Gasket Width

16 Bolt Dia. / Root Dia., d2 mm Nr = Ab Sa / 2 y π G < N

17 Bolt Spacing mm <- * Min. / Max., TEMA /

18 HD = π B2 P / 4 hD = 0.5 ( C - B ) MD = HD hD

19 HG = Wm1 - H hG = 0.5 ( C - G ) MG = HG hG

20 HT = H - HD hT = 0.5 ( hD + hG ) MT = HT hT

21 Mo = MD + MG + MT

22 HG = W hG = 0.5 ( C - G ) Mo' = HG hG

23

24 K = A / B

25

26

27 Y t =

28 * STD

29

30

31 E =

32 t hG R =

33 hT

34 hD h =

35

36 HD

37

38 mo = Mo / B

39 mG = Mo' / B g0 =

40 If bolt spacing exceeds 2 dB + t, mo and mG in above equations are B = tn =

41 multiplied by ID, uncorroded

42 dB : Nominal Bolt Dia. Unit : mm

NTES Narai Thermal Engineering Services

R I N G F L A N G E D E S I G N

Lever Arm, mm

48

S H A P E F A C T O R S

*

#VALUE!

S K E T C H

30.0

26.0g1=

######

HT

HG

95

######

###### #######

#VALUE!

#VALUE!

Moment, kPa.mm2-mm

######

#VALUE!

#VALUE!

#VALUE!

#VALUE!

95.000

43

Operating Condition

2 dB + t

mO Y

Sfo

t = ######

44

Bolt Spacing

68,948

10.00 7.97

1"

S T R E S S F O R M U L A F A C T O R S

=

1

300

Bolting

######### 17063.2

#VALUE!

#VALUE!

3

#VALUE!

Spiral W.,SUS

20.00#VALUE!

340

30

3 #VALUE!

A 105 A 193-B7,<=2.5"

###

#VALUE!

mm2

#########

x

57.0

######

DF - RFLG - 100

Allowable Stresses

D E S I G N C O N D I T I O N

Shell Flange

#########

#########

G A S K E T & B O L T D E T A I L S

Flange

L O A D & B O L T C A L C U L A T I O N S

M O M E N T C A L C U L A T I O N S

1505.1

3

#VALUE!

213.7

mm

5

#VALUE!

Gasket Seating

#VALUE!

#VALUE!

#VALUE!

#VALUE!

514,706,916

#VALUE!

6

2

19,021,440

4

25.40 21.27

Load, kPa.mm2

Operating Condition

67,820,941

#VALUE!

21.5

##

##

## 2

8.6

W

####

t =mG Y

Sfa

######

R E Q U I R E D T H I C K N E S S, unit - mm

Allowable Stress Gasket SeatingFormula

7

A =

C =

G =

######

141,478

1,450

##

##

##

##

##

##

1,5

05

Page 20: MD PV ASME v0.1

1 Project Sohar Refinery Project Doc. No.

2 Item No. F - 3704 Serivice Incinerator Chamber* Type Loose Sheet No. 1 of 1

3 Description * Design result ### Revision 0

4 Design Pressure kPa.g

5 Design Temperature ℃

6 Atm. Temp. ℃ Material ASTM Material ASTM

7 Corrosion Allowance mm at Design Temp.Sfo kPa at Design Temp.Sb kPa

8 at Atm. Temp. Sfa kPa at Atm. Temp. Sa kPa

9 Gasket Material Wm2 = b π G y + H'GY kPa.mm2 Am = greater of Wm2/Sa

10 HP = 2 b π G m P kPa.mm2 or Wm1/Sb

11 m H'P = ( hG / h

'G ) HP Ab = π / 4 d2

2 n mm2

12 y kPa H = G2 π P / 4 kPa.mm2 Check Ab > Am

13 b = ( C - B ) / 4 mm Wm1 = HP + H'P + H kPa.mm2 W = 0.5 ( Am + Ab ) SakPa.mm2

14 G = C - 2 hG mm H'GY = ( hG / h

'G ) b π G y

15 Bolt Size / Q'ty, n

16 Bolt Dia. / Root Dia., d2 mm Bolt Hole Dia., dh mm

17 Bolt Spacing mm <- * Min. / Max., TEMA /

18 HD = π B2 P / 4 hD = 0.5 ( C - B ) MD = HD hD

19 HT = H - HD hT = 0.5 ( hD + hG ) MT = HT hT

20 Mo = MD + MT

23 K = A / B

24 t =

25 * STD

26 Y

27

28 H'G E =

29 h'G

30

hG R =

hT

31 t mo = Mo / B hD h =

32

33 HD

34

35

36 g0 =

37 If bolt spacing exceeds 2 dB + t, mo and mG in above equations are B = tn =

38 multiplied by ID, uncorroded

39 dB : Nominal Bolt Dia. Unit : mm

Tangential Flange

ST = mo Y / t2

Radial Stress at Bolt Circle

NTES Narai Thermal Engineering Services

Spiral W.,SUS

3

#VALUE!

#VALUE!

#VALUE!

R I N G, F U L L F A C E G A S K E T F L A N G E D E S I G N

#VALUE!#VALUE!

#VALUE!

###### SRAD =

6 MG

t2 ( π C - n dh )

#VALUE!44 Sfo #VALUE!

#VALUE!

Moment, kPa.mm2-mm=

*

1,478

g1=

6

5

#VALUE!

S H A P E F A C T O R S

S T R E S S F O R M U L A F A C T O R S

2 3

HG = #VALUE!

###### #######

Operating Condition

#VALUE!

#VALUE!

Bolting

G A S K E T & B O L T D E T A I L S

Flange

95.000

=W - H

Lever Arm, mm

######

A 105 A 193-B7,<=2.5"

DF - RFFG - 100

Allowable Stresses

D E S I G N C O N D I T I O N1

300

Shell Flange

#VALUE!

Lever Arm, mm

( A - C ) ( 2 A + C )

6 ( C + A )6 ( B + C )

Reverse Moment, kPa.mm2-mm

21

22 h"G

( C - B ) ( 2 B + C ) hG =

95

S K E T C H

######

MG

#VALUE!

h'G =

######

######

#VALUE!

#VALUE!

#VALUE!

#VALUE!

L O A D & B O L T C A L C U L A T I O N S

#VALUE!

Bolt Spacing

S T R E S S C A L C U L A T I O N S, unit - kPa

Allowable Stress

7

1,450A =

C =

Operating Condition

#VALUE!#VALUE!

2 dB + t

#######VALUE!Sfo

#VALUE!

mm2

HG

####

43

40

41

42

##

##

## ####

#VALUE!

W

######

#VALUE! #VALUE!

#VALUE!

#VALUE!

14

#VALUE!

######

######

#VALUE!HG h"G=

######

#VALUE!

4

514,706,916

###### ######

x

###### ######

M O M E N T C A L C U L A T I O N S

Load, kPa.mm2

######

hG + h'G

hG h'G

#VALUE!

G =

#VALUE!

##

##

##

##

##

##

##

##

##

######

HT

340

30

#VALUE!

#VALUE!

3

68,948

Page 21: MD PV ASME v0.1

P R E S S U R E V E S S E L : Doc. No.

Date

Revision 0

Sheet No. 0 x

ASME Sec. VIII, Div. 1

UG - 27 Thickness of Shells under Internal Pressure * Circumferential stress governs.

( c ) ( 1 ) Circumferential Stress in the Longitudinal Joint So, calculation for long. stress is omitted.

Material Code KS

Material STS 304 TB E

Internal design pressure P kPa.g

Design temperature ℃Outside diameter of the tube course under consideration mm

Nominal thickness of the tube mm

Inside diameter of the tube Uncorroded mm

Inside diameter of the tube Corroded D mm

Inside radius Corroded R mm

Maximum allowable stress value S kPa

Joint efficiency for, or the efficiency of, appropriate joint E

Corrosion allowance α mm

Minimum Required Thickness of Shell

Checks : t = ## R = -> ##

P = ## 0.385 S E = -> ##

0.6 P - 0.6

Minimum Tube Wall Thickness in the Bent Portion before Bending * TEMA RCB - 2. 31 U-bend Requirements

Minimum required thickness, calculated above t mm

Outside tube diameter do mm

Mean radius of bend R mm

4 x

NTES Narai Thermal Engineering Services

19.4

300

9.7

#VALUE!

1

340

25.4

3

## 3 mm used.

+300.01

#VALUE!->

α =

Code

D E S I G N D A T A

#######t =

P R+

S E -

0

19.4

t0 = t [

MD - PV - 000

05. 8. 15.

ofM E C H A N I C A L D E S I G N

Part Tube

] = ###### [1 +4 R

do

C A L C U L A T I O N

= ######

0.0

mm

###### 0.5

300

300.0 9.7

]

= ###### mm ## 3 mm used. -> #VALUE!

1

4.85

#VALUE!

#VALUE!

25.4

37.5

25.4+

37.5

Page 22: MD PV ASME v0.1

P R E S S U R E V E S S E L : Doc. No.

Date

Revision 0

Sheet No. 0 x

ASME Sec. VIII, Div. 1

UG - 27 Thickness of Shells under Internal Pressure * Circumferential stress governs.

( c ) ( 1 ) Circumferential Stress in the Longitudinal Joint So, calculation for long. stress is omitted.

Material Code KS

Material STS 304 TP E 125 A / Sch.80

Internal design pressure P kPa.g

Design temperature ℃

Inside diameter of the shell course under consideration Uncorroded mm

Inside diameter of the shell course under consideration Corroded D mm

Inside radius Corroded R mm

Maximum allowable stress value S kPa

Joint efficiency for, or the efficiency of, appropriate joint E

Corrosion allowance α mm

Minimum Required Thickness of Shell

Checks : t = ## R = -> ##

P = ## 0.385 S E = -> ##

0.6 P - 0.6

NTES Narai Thermal Engineering Services

300.0

C A L C U L A T I O N

=

300

#VALUE!

#VALUE!

1

340

######

0.0

mm

α =300.0 #VALUE!

###### 1

->

Code

D E S I G N D A T A

t =P R

+S E -

0

#VALUE!

#VALUE!

MD - PV - 000

05. 8. 15.

ofM E C H A N I C A L D E S I G N

Part Header, Inlet

###### 0.5

300

#VALUE!

#VALUE!

#VALUE!## ###### mm used.

+

Page 23: MD PV ASME v0.1

P R E S S U R E V E S S E L : Doc. No.

Date

Revision 0

Sheet No. 0 x

ASME Sec. VIII, Div. 1

UG - 34 Unstayed Flat Heads and Covers

( c ) ( 2 ) Sketch ( e ) or ( f )

Material Code KS

Material STS 304

Internal design pressure P kPa.g

Design temperature ℃

Diameter measured as indicated in Fig. UG-34 Uncorroded mm

Diameter measured as indicated in Fig. UG-34 Corroded d mm

Maximum allowable stress value S kPa

Joint efficiency for, or the efficiency of, appropriate joint E

Factor depending upon the method of attachment of head, shell dimensions C

Corrosion allowance α mm

Minimum Required Thickness of Flat Head

m = the ratio, tr / ts = / =

Where, tr Required thickness of seamless shell

ts Nominal thickness of shell

C = m = x =

t = d + α = / +

= mm ## mm used. -> ##

NTES Narai Thermal Engineering Services

Code

C A L C U L A T I O N

D E S I G N D A T A

300

#VALUE!

#VALUE!

340

Welded to Shell

MD - PV - 000

05. 8. 15.

ofM E C H A N I C A L D E S I G N

Part Blind Flg, Inlet

###### 15

C P / S E ###### ###### 300.0

###### ###### ######

0.33 0.33 ###### ######

0

***

0.0

#VALUE!

1

* min. 0.2

###### 1

ts

d t

ts

d t

Sketch (e) Sketch (f)

Page 24: MD PV ASME v0.1

P R E S S U R E V E S S E L : Doc. No.

Date

Revision 0

Sheet No. 0 x

ASME Sec. VIII, Div. 1

UG - 34 Unstayed Flat Heads and Covers

( c ) ( 2 ) Sketch ( p )

Material Code KS

Material STS 304

Internal design pressure P kPa.g

Design temperature ℃

Diameter measured as indicated in Fig. UG-34 d mm

Maximum allowable stress value S kPa

Joint efficiency for, or the efficiency of, appropriate joint E

Factor depending upon the method of attachment of head, shell dimensions C

Corrosion allowance α mm

Minimum Required Thickness of Flat Head

t

t = d + α

= / +

= mm ## mm used. -> ##

Shell ID

NTES Narai Thermal Engineering Services

D E S I G N D A T A

300

#VALUE!

Bolted with a full-face gasket to Shell

MD - PV - 000

05. 8. 15.

ofM E C H A N I C A L D E S I G N

#VALUE!

1

340

Part Blind Flg, Inlet

Code

###### 15

C P / S E

###### 0.25 300.0

0

0.25

0.0###### 1

C A L C U L A T I O N

##

##

##

##

###

##

##

d =

Page 25: MD PV ASME v0.1

P R E S S U R E V E S S E L : Doc. No.

Date

Revision 0

Sheet No. 0 x

ASME Sec. VIII, Div. 1

UG - 34 Unstayed Flat Heads and Covers

( c ) ( 2 ) Sketch ( j )

Material Code KS

Material STS 304

Internal design pressure P kPa.g

Design temperature ℃Diameter measured as indicated in Fig. UG-34 d mm

Maximum allowable stress value S kPa

Joint efficiency for, or the efficiency of, appropriate joint E

Factor depending upon the method of attachment of head, shell dimensions C

Total Bolt load W kPa.mm2

Gasket moment arm, radial distance from bolt center to line of gasket reaction hG mm

Corrosion allowance α mm

Minimum Required Thickness of Flat Head

t = d C P / S E + 1.9 W hG / S E d3

+ α

* Operating Condition

to = / + 1.9 / ^3

+

= mm

* Gasket Seating

tg = / + 1.9 / ^3

+

= mm

t = Larger of to or tg

= mm ## mm used. -> ##

Flange Data

Diameter at location of gasket load reaction d mm t = *Std

Basic gasket seating width b0 mm

Effective gasket seating width b mm

GasketGasket factor, Table 2-5.1 m

Gasket unit seating load y kPa

Nominal Bolt Size

Actual Bolt Dia. mm

Root Dia. d2 mm

No. of Bolts n Shell ID

Total Bolt Load

* Operating Condition

W = Wm1 = H + Hp = 0.785 d2 P + ( 2 b 3.14 d m P )

= ^2

+ ( 2 ) =

* Gasket Seating

Wm2 = 3.14 b d y = =

Sb = kPa * Allowable bolt stress at design temp.

Sa = kPa * Allowable bolt stress at atmospheric temp.

Am1 = Wm1 / Sb = / =

Am2 = Wm2 / Sa = / =

Am = Larger of Am1 or Am2 = * total required cross-sectional area of bolts

Ab = π / 4 d22 n = * cross-sectional area of the bolts using the root diameter

* Ab ## Am -> ##

* Required gasket width = Ab Sa / 2 y π G = ## Gasket width, used = -> ###

W = ( Am + Ab ) Sa / 2 =

NTES Narai Thermal Engineering Services

#######

#######

######

######

######

######

3.14 ###### ######

#VALUE!

######

######

######

######

0.0

###### ######

#VALUE!

#VALUE!

#######

#######

#VALUE!

#VALUE!

***

#VALUE!

0.785 ###### 300 ###### 3.14 ###### 0 300.0

0.0

######

#VALUE!###### 1 ###### ######

######

0

0.0

1

1 ######

##

##

##

######

######

######

######

##

##

##

##

#

d

##

##

##

##

##

##

0

0.3

##

##

##

######

##

#hG

15

Gasket

Width

######

0.0###### 1

C A L C U L A T I O N

###### #######VALUE!0.30 300.0 ######

###### 15

######

######

###### 0.30 0.0

D E S I G N D A T A

300

#VALUE!

Bolted with a confined gasket Flanget to Shell

MD - PV - 000

05. 8. 15.

ofM E C H A N I C A L D E S I G N

#VALUE!

1

340

Part Blind Flg, Inlet

Code

Page 26: MD PV ASME v0.1

P R E S S U R E V E S S E L : Doc. No.

Date

Revision 0

Sheet No. 0 x

ASME Sec. VIII, Div. 1

UG - 27 Thickness of Shells under Internal Pressure * Circumferential stress governs.

( c ) ( 1 ) Circumferential Stress in the Longitudinal Joint So, calculation for long. stress is omitted.

Material Code KS

Material STS 304 TP E 80 A / Sch.80

Internal design pressure P kPa.g

Design temperature ℃

Inside diameter of the shell course under consideration Uncorroded mm

Inside diameter of the shell course under consideration Corroded D mm

Inside radius Corroded R mm

Maximum allowable stress value S kPa

Joint efficiency for, or the efficiency of, appropriate joint E

Corrosion allowance α mm

Minimum Required Thickness of Shell

Checks : t = ## R = -> ##

P = ## 0.385 S E = -> ##

0.6 P - 0.6

NTES Narai Thermal Engineering Services

MD - PV - 000

05. 8. 15.

ofM E C H A N I C A L D E S I G N

t =P R

+S E -

Part Header, Outlet

Code

D E S I G N D A T A

= ######

0.0

mm

α =300.0 #VALUE!

######

## ###### mm used.

+300.01

-> #VALUE!

#VALUE!

#VALUE!

300

#VALUE!

#VALUE!

1

340

###### 0.5

300

#VALUE!

#VALUE!

0

C A L C U L A T I O N

Page 27: MD PV ASME v0.1

P R E S S U R E V E S S E L : Doc. No.

Date

Revision 0

Sheet No. 0 x

ASME Sec. VIII, Div. 1

UG - 34 Unstayed Flat Heads and Covers

( c ) ( 2 ) Sketch ( e ) or ( f )

Material Code JIS

Material SUS 304

Internal design pressure P kPa.g

Design temperature ℃

Diameter measured as indicated in Fig. UG-34 Uncorroded mm

Diameter measured as indicated in Fig. UG-34 Corroded d mm

Maximum allowable stress value S kPa

Joint efficiency for, or the efficiency of, appropriate joint E

Factor depending upon the method of attachment of head, shell dimensions C

Corrosion allowance α mm

Minimum Required Thickness of Flat Head

m = the ratio, tr / ts = / =

Where, tr Required thickness of seamless shell

ts Nominal thickness of shell

C = m = x =

t = d + α = / +

= mm ## mm used. -> ##

NTES Narai Thermal Engineering Services

0.0

* min. 0.2

###### 1300.0

###### ###### ######

0.33 0.33 ###### ######

Code

###### ######

C P / S E ###### ######

Welded to Shell

MD - PV - 000

05. 8. 15.

ofM E C H A N I C A L D E S I G N

Part Blind Flg, Outlet

C A L C U L A T I O N

D E S I G N D A T A

300

#VALUE!

#VALUE!

#VALUE!

1

0

***

340

ts

d t

ts

d t

Sketch (e) Sketch (f)

Page 28: MD PV ASME v0.1

P R E S S U R E V E S S E L : Doc. No.

Date

Revision 0

Sheet No. 0 x

ASME Sec. VIII, Div. 1

UG - 34 Unstayed Flat Heads and Covers

( c ) ( 2 ) Sketch ( p )

Material Code JIS

Material SUS 304

Internal design pressure P kPa.g

Design temperature ℃

Diameter measured as indicated in Fig. UG-34 d mm

Maximum allowable stress value S kPa

Joint efficiency for, or the efficiency of, appropriate joint E

Factor depending upon the method of attachment of head, shell dimensions C

Corrosion allowance α mm

Minimum Required Thickness of Flat Head

t

t = d + α

= / +

= mm ## mm used. -> ##

Shell ID

NTES Narai Thermal Engineering Services

##

##

##

d =

###### ######

C A L C U L A T I O N

C P / S E

##

##

##

##

#

###### 0.25 300.0 ###### 1 0.0

340

#VALUE!

#VALUE!

1

0.25

0

Part Blind Flg, Outlet

Code

Bolted with a full-face gasket to Shell

D E S I G N D A T A

300

MD - PV - 000

M E C H A N I C A L D E S I G N05. 8. 15.

of

Page 29: MD PV ASME v0.1

P R E S S U R E V E S S E L : Doc. No.

Date

Revision 0

Sheet No. 0 x

ASME Sec. VIII, Div. 1

UG - 34 Unstayed Flat Heads and Covers

( c ) ( 2 ) Sketch ( j )

Material Code JIS

Material SUS 304

Internal design pressure P kPa.g

Design temperature ℃Diameter measured as indicated in Fig. UG-34 d mm

Maximum allowable stress value S kPa

Joint efficiency for, or the efficiency of, appropriate joint E

Factor depending upon the method of attachment of head, shell dimensions C

Total Bolt load W kPa.mm2

Gasket moment arm, radial distance from bolt center to line of gasket reaction hG mm

Corrosion allowance α mm

Minimum Required Thickness of Flat Head

t = d C P / S E + 1.9 W hG / S E d3

+ α

* Operating Condition

to = / + 1.9 / ^3

+

= mm

* Gasket Seating

tg = / + 1.9 / ^3

+

= mm

t = Larger of to or tg

= mm ## mm used. -> ##

Flange Data

Diameter at location of gasket load reaction d mm t = *Std

Basic gasket seating width b0 mm

Effective gasket seating width b mm

Gasket Spiral W.,SUSGasket factor, Table 2-5.1 m

Gasket unit seating load y kPa

Nominal Bolt Size

Actual Bolt Dia. mm

Root Dia. d2 mm

No. of Bolts n Shell Id

Total Bolt Load

* Operating Condition

W = Wm1 = H + Hp = 0.785 d2 P + ( 2 b 3.14 d m P )

= ^2

+ ( 2 ) =

* Gasket Seating

Wm2 = 3.14 b d y = =

Sb = kPa * Allowable bolt stress at design temp.

Sa = kPa * Allowable bolt stress at atmospheric temp.

Am1 = Wm1 / Sb = / =

Am2 = Wm2 / Sa = / =

Am = Larger of Am1 or Am2 = * total required cross-sectional area of bolts

Ab = π / 4 d22 n = * cross-sectional area of the bolts using the root diameter

* Ab ## Am -> ##

* Required gasket width = Ab Sa / 2 y π G = ## Gasket width, used = -> ###

W = ( Am + Ab ) Sa / 2 =

NTES Narai Thermal Engineering Services

######

######

#VALUE!

######

###### ######

#VALUE! ####### ######

#######

#######

#VALUE! #######

#VALUE!

3.14 ###### ###### 68947.6 #VALUE!

3.14 ###### 3 300.00.785 ###### 300 ######

###### Width ######

######

######

######

Gasket d

##

##

##

##

##

##

##

##

##

##

##

##

##

#

######

###### hG

######

##

##

##

3 ######

##

#

68947.6

######

###### ######

###### ###### ######

#VALUE! ###### ###### 1 ###### 0.0

###### 1 ###### 0.0

######

###### 0.30 0.0 ###### 1

#VALUE!

0

C A L C U L A T I O N

###### 0.30 300.0 ###### 1 #VALUE! ######

340

#VALUE!

#VALUE!

1

0.3

***

Part Blind Flg, Outlet

Code

Bolted with a confined gasket Flanget to Shell

D E S I G N D A T A

300

MD - PV - 000

M E C H A N I C A L D E S I G N05. 8. 15.

of

Page 30: MD PV ASME v0.1

P R E S S U R E V E S S E L : Doc. No.

Date

Revision 0

Sheet No. 0 x

ASME Sec. VIII, Div. 1

UG - 45 Nozzle Neck Thickness

UW - 16 Minimum Requirements for Attachment Welds at Openings

Material Code ASTM ASTM

Material specification A 516-70 A 516-70

Internal design pressure P kPa.g kPa.g

Design temperature ℃ ℃Inside diameter Uncorroded mm mm

Inside diameter Corroded D mm Dn mm

Inside radius Corroded R mm Rn mm

Maximum allowable stress value S kPa Sn kPa

Joint efficiency E En

Corrosion allowance α mm αn mm

Nominal wall thickness Uncorroded mm mm

Wall thickness Corroded t mm tn mm

Minimum Nozzle Wall Thickness * UG - 45

UG - 45 ( a ) & UG - 27 ( c ) ( 1 )

Checks : tr1 = ## R = -> ##

P = ## 0.385 S E = -> ##

0.6 P - 0.6

UG - 45 ( b )

( 1 ) Shell or head thickness ( E = 1 ) tr2 = mm

UG - 16 ( b ) Minimum thickness tr3 = mm

( 4 ) Minimum thickness of standard wall pipe tr4 = mmLarger of tr2 or tr3 tr5 = mm

tr6 = Smaller of tr4 or tr5 = mm

-> Larger of tr1 or tr6 = mm ## mm used. -> ##

Size of Weld Required * UW - 16 ( c )

Inner Fillet Weld tmin = Smaller of 19 mm or tn or te =

tc min = Smaller of 6 mm or 0.7 tmin =

tc act = 0.7 Leg41 = -> OK !

Outer Fillet Weld tmin = Smaller of 19 mm or te or t =

tw min = 0.5 tmin =

tw act = 0.7 Leg42 = -> OK !

-> The weld is satisfactory.

## ## ##

## ##

NTES Narai Thermal Engineering Services

1,253

5.50

6.30

9.00

6.00

7.00

11.00

14

#VALUE!

0.85

3

αn =

11

+ 3.0300.0

C A L C U L A T I O N

###### 0.5 147.9

9.00

MD - PV - 000

05. 8. 15.

ofM E C H A N I C A L D E S I G N

tr1 =P Rn

+Sn En -

12.00

- N/A -

Part

Code

300

Nozzle > A1, Manhole

300

N O Z Z L EShell

D E S I G N D A T A

4.60

4.60

585.6

591.6

295.8

#VALUE!

1

3

mm

12.00

1

4.60

- N/A -

300 #VALUE!

= ######300.0 295.8

#######

340340

2,500

2,506

######

Page 31: MD PV ASME v0.1

P R E S S U R E V E S S E L : Doc. No.

Date

Revision 0

Sheet No. 1 x

Code UG - 37 Reinforcements required for Openings in Shells and Formed Heads

Nozzle Placemenent Inserted

Finished diameter of circular opening = Dn d mm

Corrction factor F

Required thickness of a seamless shell or head tr mm

Required thickness of a seamless nozzle wall trn mm

Allowable stress value in tension, Nozzle Sn kPa

Allowable stress value in tension, Vessel Sv kPaStrength reduction factor, ≤ 1.0 = Sn/Sv fr1Strength reduction factor, ≤ 1.0 = Sn/Sv fr2

E1

Pad material code ASTM

Pad material specification A 516-70

Pad O.D. mm

Pad thickness te mm

Allowable stress value in reinforcing element Sp kPaStrength reduction factor, ≤ 1.0 =( lesser of Sn or Sp )/ Sv fr3 kPaStrength reduction factor, ≤ 1.0 = Sp/Sv fr4

Size of Weld Required * UW - 16 ( c )

Leg41 mm * Min.

Leg42 mm * Min.

Leg43 mm * Min.

Limit of reinforcement * UG - 40 mm * Larger of d or Rn + tn + t

Outside diameter of reinforcing element Dp mm

= A, Area required = d tr F + 2 tn tr F ( 1 - fr1 )

= mm2

= A1, Area available in shell

= Larger of d ( E1 t - F tr ) - 2 tn ( E1 t - F tr ) ( 1 - fr1 ) or 2 ( t + tn ) ( E1 t - F tr ) - 2 tn ( E1 t - F tr ) ( 1 - fr1 )

= mm2

= A2, Area available in nozzle projecting outward = Smaller of 5 ( tn - trn ) fr2 t or 2 ( tn - trn ) ( 2.5 tn + te ) fr2

= mm2

= A3, Aea available in inward nozzle = Smallest of 5 t ti fr2, 5 ti ti fr2 or 2 h ti fr2

= mm2

= A41, Area available in outward weld = outward nozzle weld = (leg)^2 fr3

= mm2

= A42, Area available in outer weld = outer element weld = (leg)^2 fr4

= mm2

= A43, Area available in inward weld = inward nozzle weld = (leg)^2 fr2

= mm2

= A5, Area available in element = ( Dp - d - 2 tn ) te fr4

= mm2

A1 + A2 + A41 + A42 + A5 = A = ## ##

NTES Narai Thermal Engineering Services

- N/A -

#VALUE!

######

######

#######

10.0

#VALUE!

#VALUE! #VALUE!######

#######

######

591.6

######

1

######

#VALUE!

- N/A -

1160.0

- N/A -

#VALUE!

591.6

#VALUE!

#VALUE!

of

8.5

7.8

######

9.0

1

1160

14

#######

D E S I G N D A T A

C A L C U L A T I O N

Nozzle > A1, ManholePart

MD - PV - 000

M E C H A N I C A L D E S I G N05. 8. 15.

t R

Dp

trn

tr

c

h ti

d

t

t

* 1 : Smaller of 2.5 t or 2.5 tn + te

* 2 : Smallest of h, 2.5 t, or 2.5 ti

Larger of

d or Rn + tn +

For nozzle wall inserted

Larger of

d or Rn + tn + t

For nozzle wall abutting

the vessel wall through the vessel wall

* 1

* 2

Page 32: MD PV ASME v0.1

P R E S S U R E V E S S E L : Doc. No.

Date

Revision 0

Sheet No. 2 x

Code UG - 41 Strength of Reinforcement

Allowable Unit Stresses * UG - 45 ( c ) & UW - 15 ( c )

Fillet Weld Shear Sfs = x = kPa

Nozzle Wall Shear Sns = x = kPa

Groove Weld Tension Sgt = x = kPa

Groove Weld Shear Sgs = x = kPa

Strength of Connection Elements * Dimensions are in m.

Inner Fillet Weld Shear

(a) = π / 2 x Nozzle OD x Weld Leg x Sfs= π / 2 x x x = KN = N

Nozzle Wall Shear

(b) = π / 2 x Mean Nozzle Dia. x tn x Sns

= π / 2 x x x = KN = N

Groove Weld Tension

(c) = π / 2 x Nozzle OD x t x Sgt

= π / 2 x x x = KN = N

Outer Fillet Weld Shear

(d) = π / 2 x Pad OD x Weld Leg x Sfs

= π / 2 x x x = KN = N

Upper Groove Weld Tension

(e) = π / 2 x Nozzle OD x te x Sgt

= π / 2 x x x = KN = N

Lower Fillet Weld Shear

(f) = π / 2 x Nozzle OD x Weld Leg x Sfs

= π / 2 x x x = KN = N

Load to be carried by Welds * UG - 41 ( b ) ( 1 ) & ( 2 )

Weld Load for Strength Path 1 - 1

W1-1 = ( A2 + A5 + A41 + A42 ) Sv = KN = N

Weld Load for Strength Path 2 - 2

W2-2 = ( A2 + A3 + A41 + A43 + 2 tn t fr1 ) Sv = KN = N

Weld Load for Strength Path 3 - 3

W3-3 = ( A2 + A3 + A5 + A41 + A42 + A43 + 2 tn t fr1 ) Sv = KN = N

Total Weld Load

W = [ A - A1 + 2 tn fr1 ( E1 t - F tr ) ] Sv = KN = N

Check Strength Paths * UG - 41 ( b ) ( 1 ) & ( 2 )

Path 1-1 (d) + (b) = + = N -> ##

Load for Path 1-1 = Smaller of W1-1 or W = N

Path 2-2 (a) + (c) + (e) = + + = N -> ##

Load for Path 2-2 = Smaller of W2-2 or W = N

Path 3-3 (d) + (c) = + = N -> ##

Load for Path 3-3 = Smaller of W3-3 or W = N

-> ## ##

NTES Narai Thermal Engineering Services

#VALUE!

#VALUE! #VALUE! #VALUE!

#VALUE! #VALUE! #VALUE!

#VALUE!

#VALUE!

#VALUE! #VALUE! #VALUE! #VALUE!

#VALUE! #VALUE!

#VALUE! #VALUE!

#VALUE! #VALUE!

#VALUE! #VALUE!

#VALUE! #VALUE!

0.49 #VALUE! #VALUE!

0.7 #VALUE! #VALUE!

0.74 #VALUE! #VALUE!

0.6 #VALUE! #VALUE!

A1, ManholePart

MD - PV - 000

M E C H A N I C A L D E S I G N05. 8. 15.

of

Nozzle >

C A L C U L A T I O N

#VALUE!

0.6006 0.009 #VALUE! #VALUE! #VALUE!

0.6096 0.01 #VALUE! #VALUE!

#VALUE! #VALUE!

#VALUE!

0.6096 0.011 #VALUE! #VALUE! #VALUE!

1.16 0.009

#VALUE!

0.6096 - N/A - #VALUE! - N/A - - N/A -

0.6096 0.014

Page 33: MD PV ASME v0.1

P R E S S U R E V E S S E L : Doc. No.

Date

Revision 0

Sheet No. 0 x

ASME Sec. VIII, Div. 1

UG - 45 Nozzle Neck Thickness

UW - 16 Minimum Requirements for Attachment Welds at Openings

Material Code ASTM ASTM

Material specification A 516-70 A 106-B / 1 1/2" / XX-STR

Internal design pressure P kPa.g kPa.g

Design temperature ℃ ℃Inside diameter Uncorroded mm mm

Inside diameter Corroded D mm Dn mm

Inside radius Corroded R mm Rn mm

Maximum allowable stress value S kPa Sn kPa

Joint efficiency E En

Corrosion allowance α mm αn mm

Nominal wall thickness Uncorroded mm mm

Wall thickness Corroded t mm tn mm

Minimum Nozzle Wall Thickness * UG - 45

UG - 45 ( a ) & UG - 27 ( c ) ( 1 )

Checks : tr1 = ## R = -> ##

P = ## 0.385 S E = -> ##

0.6 P - 0.6

UG - 45 ( b )

( 1 ) Shell or head thickness ( E = 1 ) tr2 = mm

UG - 16 ( b ) Minimum thickness tr3 = mm

( 4 ) Minimum thickness of standard wall pipe tr4 = mmLarger of tr2 or tr3 tr5 = mm

tr6 = Smaller of tr4 or tr5 = mm

-> Larger of tr1 or tr6 = mm ## mm used. -> ##

##

Size of Weld Required * UW - 16 ( c )

Inner Fillet Weld tmin = Smaller of 19 mm or tn or t =

tc min = Smaller of 6 mm or 0.7 tmin =

tc act = 0.7 Leg41 = -> ##

Outer Fillet Weld tmin = Smaller of 19 mm or te or t =

tw min = 0.5 tmin =

tw act = 0.7 Leg42 = -> - N/A -

-> ##

Strength cal. for welds are NOT required for this detail which conforms to Fig. UW - 16. 1, sketch ( c ) ~ ( e ).

## ## ##

## ##

NTES Narai Thermal Engineering Services

340340

2,500

2,506

######

4.60

######

300 #VALUE!

= ######300.0 #VALUE!

####### 1

######

######

######

#VALUE!

#VALUE!

#VALUE!

#VALUE!

1

3

mm

######

Code

300

Nozzle > K1 & K2

300

N O Z Z L EShell

D E S I G N D A T A

tr1 =P Rn

+Sn En -

MD - PV - 000

05. 8. 15.

ofM E C H A N I C A L D E S I G N

Part

#VALUE!

11

+ 3.0300.0

C A L C U L A T I O N

###### 0.5 #VALUE!

#VALUE!

#VALUE!

0.85

3

αn =

1,253

- N/A -

- N/A -

######

######

######

- N/A -

14

Page 34: MD PV ASME v0.1

P R E S S U R E V E S S E L : Doc. No.

Date

Revision 0

Sheet No. 1 x

Code UG - 37 Reinforcements required for Openings in Shells and Formed Heads

Nozzle Placemenent Inserted

Finished diameter of circular opening = Dn d mm

Corrction factor F

Required thickness of a seamless shell or head tr mm

Required thickness of a seamless nozzle wall trn mm

Allowable stress value in tension, Nozzle Sn kPa

Allowable stress value in tension, Vessel Sv kPaStrength reduction factor, ≤ 1.0 = Sn/Sv fr1Strength reduction factor, ≤ 1.0 = Sn/Sv fr2

E1

Pad material code - N/A -

Pad material specification - N/A -

Pad O.D. mm

Pad thickness te mm

Allowable stress value in reinforcing element Sp kPaStrength reduction factor, ≤ 1.0 =( lesser of Sn or Sp )/ Sv fr3 kPaStrength reduction factor, ≤ 1.0 = Sp/Sv fr4

Size of Weld Required * UW - 16 ( c )

Leg41 mm * Min.

Leg42 mm * Min.

Leg43 mm * Min.

Limit of reinforcement * UG - 40 mm * Larger of d or Rn + tn + t

Outside diameter of reinforcing element Dp mm

= A, Area required = d tr F + 2 tn tr F ( 1 - fr1 )

= mm2

= A1, Area available in shell

= Larger of d ( E1 t - F tr ) - 2 tn ( E1 t - F tr ) ( 1 - fr1 ) or 2 ( t + tn ) ( E1 t - F tr ) - 2 tn ( E1 t - F tr ) ( 1 - fr1 )

= mm2

= A2, Area available in nozzle projecting outward = Smaller of 5 ( tn - trn ) fr2 t or 5 ( tn - trn ) fr2 tn

= mm2

= A3, Aea available in inward nozzle = Smallest of 5 t ti fr2, 5 ti ti fr2 or 2 h ti fr2

= mm2

= A41, Area available in outward weld = outward nozzle weld = (leg)^2 fr2

= mm2

= A42, Area available in outer weld = outer element weld = (leg)^2 fr4

= mm2

= A43, Area available in inward weld = inward nozzle weld = (leg)^2 fr2

= mm2

= A5, Area available in element = ( Dp - d - 2 tn ) te fr4

= mm2

A1 + A2 + A41 = A = ## ##

NTES Narai Thermal Engineering Services

C A L C U L A T I O N

Nozzle > K1 & K2Part

MD - PV - 000

M E C H A N I C A L D E S I G N05. 8. 15.

D E S I G N D A T A

of

######

- N/A -

- N/A -

- N/A -

1

- N/A -

- N/A -

#######

######

- N/A -

- N/A -

- N/A -

- N/A -

#VALUE!

######

#VALUE!

- N/A -

#VALUE!

#VALUE! #VALUE!######

- N/A -

- N/A -

######

######

1

######

- N/A -

#VALUE!

######

######

#######

t R

Dp

trn

tr

c

h ti

d

t

t

* 1 : Smaller of 2.5 t or 2.5 tn + te

* 2 : Smallest of h, 2.5 t, or 2.5 ti

Larger of

d or Rn + tn +

For nozzle wall inserted

Larger of

d or Rn + tn + t

For nozzle wall abutting

the vessel wall through the vessel wall

* 1

* 2

Page 35: MD PV ASME v0.1

P R E S S U R E V E S S E L : Doc. No.

Date

Revision 0

Sheet No. 2 x

Code UG - 41 Strength of Reinforcement

Allowable Unit Stresses * UG - 45 ( c ) & UW - 15 ( c )

Fillet Weld Shear Sfs = x = kPa

Nozzle Wall Shear Sns = x = kPa

Groove Weld Tension Sgt = x = kPa

Groove Weld Shear Sgs = x = kPa

Strength of Connection Elements * Dimensions are in m.

Inner Fillet Weld Shear

(a) = π / 2 x Nozzle OD x Weld Leg x Sfs= π / 2 x x x = KN = N

Nozzle Wall Shear

(b) = π / 2 x Mean Nozzle Dia. x tn x Sns

= π / 2 x x x = KN = N

Groove Weld Tension

(c) = π / 2 x Nozzle OD x t x Sgt

= π / 2 x x x = KN = N

Outer Fillet Weld Shear

(d) = π / 2 x Pad OD x Weld Leg x Sfs

= π / 2 x x x = KN = N

Upper Groove Weld Tension

(e) = π / 2 x Nozzle OD x te x Sgt

= π / 2 x x x = KN = N

Lower Fillet Weld Shear

(f) = π / 2 x Nozzle OD x Weld Leg x Sfs

= π / 2 x x x = KN = N

Load to be carried by Welds * UG - 41 ( b ) ( 1 ) & ( 2 )

Weld Load for Strength Path 1 - 1

W1-1 = ( A2 + A5 + A41 + A42 ) Sv = KN = N

Weld Load for Strength Path 2 - 2

W2-2 = ( A2 + A3 + A41 + A43 + 2 tn t fr1 ) Sv = KN = N

Weld Load for Strength Path 3 - 3

W3-3 = ( A2 + A3 + A5 + A41 + A42 + A43 + 2 tn t fr1 ) Sv = KN = N

Total Weld Load

W = [ A - A1 + 2 tn fr1 ( E1 t - F tr ) ] Sv = KN = N

Check Strength Paths * UG - 41 ( b ) ( 1 ) & ( 2 )

Path 1-1 (d) + (b) = + = N -> ##

Load for Path 1-1 = Smaller of W1-1 or W = N

Path 2-2 (a) + (c) + (e) = + + = N -> ##

Load for Path 2-2 = Smaller of W2-2 or W = N

Path 3-3 (d) + (c) = + = N -> ##

Load for Path 3-3 = Smaller of W3-3 or W = N

-> ## ##

NTES Narai Thermal Engineering Services

- N/A -

###### - N/A - #VALUE! - N/A - - N/A -

###### - N/A - #VALUE! - N/A -

- N/A -

###### 0.011 #VALUE! #VALUE! #VALUE!

- N/A - - N/A -

#VALUE!

###### ###### #VALUE! #VALUE! #VALUE!

###### ###### #VALUE! #VALUE!

C A L C U L A T I O N

Part

MD - PV - 000

M E C H A N I C A L D E S I G N05. 8. 15.

of

Nozzle > K1 & K2

0.74 #VALUE! #VALUE!

0.6 #VALUE! #VALUE!

#VALUE! #VALUE!

#VALUE! #VALUE!

0.49 #VALUE! #VALUE!

0.7 #VALUE! #VALUE!

0 #VALUE! #VALUE!

#VALUE!

#VALUE! - N/A -

#VALUE! #VALUE!

#VALUE! #VALUE!

#VALUE!

0 #VALUE! #VALUE!

#VALUE!

#VALUE! #VALUE! 0 #VALUE!