matthew m. osmond & sarah p. otto · 2020. 11. 5. · crossing tness-valleys without mendel matthew...

51
Crossing fitness-valleys without Mendel Matthew M. Osmond & Sarah P. Otto Biodiversity Research Centre & Department of Zoology University of British Columbia, Vancouver, Canada

Upload: others

Post on 15-Feb-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • Crossing fitness-valleys without Mendel

    Matthew M. Osmond & Sarah P. Otto

    Biodiversity Research Centre & Department of ZoologyUniversity of British Columbia, Vancouver, Canada

  • Mendel’s law of segregation

    Aa

    A a

    Parent

    Gametes

    1/2 1/2 Probability

  • Mendel’s law of segregation

    Aa

    A a

    Parent

    Gametes

    1/2 1/2 Probability

  • Mendel’s law of segregation

    Aa

    A a

    Parent

    Gametes

    1/2 1/2 Probability

  • Mendel’s law of segregation

    Aa

    A a

    Parent

    Gametes

    1/2 1/2 Probability

  • Non-mendelian transmission

    //drive// significant portion of any eukaryote genome is com-posed of selfish elements that gain a transmission advantage(Hurst & Werren 2001)

    //uniparental inheritance// mitochondria and chloroplastgenes often inherited from parent of one particular sex(Birky Jr. 2001)

    //non-genetic inheritance// increasing awareness of epige-netics, parental effects, and ecological and cultural inheritance(Danchin et al. 2011)

  • Non-mendelian transmission

    //drive// significant portion of any eukaryote genome is com-posed of selfish elements that gain a transmission advantage(Hurst & Werren 2001)

    //uniparental inheritance// mitochondria and chloroplastgenes often inherited from parent of one particular sex(Birky Jr. 2001)

    //non-genetic inheritance// increasing awareness of epige-netics, parental effects, and ecological and cultural inheritance(Danchin et al. 2011)

  • Drive e.g.: spore killers in fungi

    Raju 1980, Saupe 2012

  • Non-mendelian transmission

    //drive// significant portion of any eukaryote genome is com-posed of selfish elements that gain a transmission advantage(Hurst & Werren 2001)

    //uniparental inheritance// mitochondria and chloroplastgenes often inherited from parent of one particular sex(Birky Jr. 2001)

    //non-genetic inheritance// increasing awareness of epige-netics, parental effects, and ecological and cultural inheritance(Danchin et al. 2011)

  • Uniparental inheritance e.g.: human mitochondria

    Mitochondria is alwaysinherited from the mother

    http://evolution.berkeley.edu

  • Non-mendelian transmission

    //drive// significant portion of any eukaryote genome is com-posed of selfish elements that gain a transmission advantage(Hurst & Werren 2001)

    //uniparental inheritance// mitochondria and chloroplastgenes often inherited from parent of one particular sex(Birky Jr. 2001)

    //non-genetic inheritance// increasing awareness of epige-netics, parental effects, and ecological and cultural inheritance(Danchin et al. 2011)

  • Non-genetic inheritance e.g.: culture

    Cavalli-Sforza & Feldman 1981

  • Non-genetic inheritance e.g.: culture

    Cavalli-Sforza & Feldman 1981

  • Non-mendelian transmission is everywhere

    //drive// significant portion of any eukaryote genome is com-posed of selfish elements that gain a transmission advantage(Hurst & Werren 2001)

    //uniparental inheritance// mitochondria and chloroplastgenes often inherited from parent of one particular sex(Birky Jr. 2001)

    //non-genetic inheritance// increasing awareness of epige-netics, parental effects, and ecological and cultural inheritance(Danchin et al. 2011)

  • Epistasis is also everywhere

    Non-linear interactionsbetween traits

    Phillips 2008Phillips 2008

  • Epistasis is also everywhere

    Non-linear interactionsbetween traits

    Phillips 2008Phillips 2008

  • Epistasis is also everywhere

    Non-linear interactionsbetween traits

    Phillips 2008

    Phillips 2008

  • Epistasis is also everywhere

    Non-linear interactionsbetween traits

    Phillips 2008

    Phillips 2008

  • Epistasis causes peaks and valleys in fitness

    Wright 1932

  • Crossing valleys: the shifting balance theory

    Wright 1932

  • The problem

    1. Non-Mendelian inheritance is everywhere

    2. Epistasis is pervasive, causes fitness valleys

    3. Current valley-crossing theory limited to Mendelian traits

    Q. How does non-Mendelian inheritance affectfitness-valley crossing?

  • The problem

    1. Non-Mendelian inheritance is everywhere

    2. Epistasis is pervasive, causes fitness valleys

    3. Current valley-crossing theory limited to Mendelian traits

    Q. How does non-Mendelian inheritance affectfitness-valley crossing?

  • The problem

    1. Non-Mendelian inheritance is everywhere

    2. Epistasis is pervasive, causes fitness valleys

    3. Current valley-crossing theory limited to Mendelian traits

    Q. How does non-Mendelian inheritance affectfitness-valley crossing?

  • The problem

    1. Non-Mendelian inheritance is everywhere

    2. Epistasis is pervasive, causes fitness valleys

    3. Current valley-crossing theory limited to Mendelian traits

    Q. How does non-Mendelian inheritance affectfitness-valley crossing?

  • The problem

    1. Non-Mendelian inheritance is everywhere

    2. Epistasis is pervasive, causes fitness valleys

    3. Current valley-crossing theory limited to Mendelian traits

    Q. How does non-Mendelian inheritance affectfitness-valley crossing?

  • Our simple fitness valley

    A1B1

    A2B1 A1B2 A2B2

    W21

    W12

    W11

    W22

    Genotype

    Fit

    ness

  • Our simple fitness valley

    A1B1 A2B1 A1B2

    A2B2

    W21

    W12

    W11

    W22

    Genotype

    Fit

    ness

  • Our simple fitness valley

    A1B1 A2B1 A1B2 A2B2

    W21

    W12

    W11

    W22

    Genotype

    Fit

    ness

  • Generalized inheritance

    A1B1 X A2B2

    A1B1 A2B1 A1B2 A2B2

    FatherMother

    Offspring

    12(1 − r − µ) 1

    2(r + µ) 1

    2(r + µ) 1

    2(1 − r − µ)1

    2(1 − r − µ) 1

    2(r + µ) 1

    2(r + µ) 1

    2(1 − r − µ)

    b2211(11) b2211(21) b

    2211(12) b

    2211(22)

  • Generalized inheritance

    A1B1 X A2B2

    A1B1 A2B1 A1B2 A2B2

    FatherMother

    Offspring

    12(1 − r − µ) 1

    2(r + µ) 1

    2(r + µ) 1

    2(1 − r − µ)1

    2(1 − r − µ) 1

    2(r + µ) 1

    2(r + µ) 1

    2(1 − r − µ)

    b2211(11) b2211(21) b

    2211(12) b

    2211(22)

  • Generalized inheritance

    A1B1 X A2B2

    A1B1 A2B1 A1B2 A2B2

    FatherMother

    Offspring

    12(1 − r − µ) 1

    2(r + µ) 1

    2(r + µ) 1

    2(1 − r − µ)

    12(1 − r − µ) 1

    2(r + µ) 1

    2(r + µ) 1

    2(1 − r − µ)

    b2211(11) b2211(21) b

    2211(12) b

    2211(22)

  • Generalized inheritance

    A1B1 X A2B2

    A1B1 A2B1 A1B2 A2B2

    FatherMother

    Offspring

    12(1 − r − µ) 1

    2(r + µ) 1

    2(r + µ) 1

    2(1 − r − µ)

    12(1 − r − µ) 1

    2(r + µ) 1

    2(r + µ) 1

    2(1 − r − µ)

    b2211(11) b2211(21) b

    2211(12) b

    2211(22)

  • Methods

    Markov Diffusion Results

  • Drive

    Drive favours residents

    No drive

    Drive favours mutants

    10-6

    10-5

    10-4

    0.001 0.01 0.1r0

    10 000

    20 000

    30 000

    40 000

    T

    Drive favours residents

    No drive

    Drive favours mutants

    10-6

    10-5

    10-4

    0.001 0.01 0.1r0

    10 000

    20 000

    30 000

    40 000

    T

    Drive favours residents

    No drive

    Drive favours mutants

    10-6

    10-5

    10-4

    0.001 0.01 0.1r0

    10 000

    20 000

    30 000

    40 000

    T

    Drive favours residents

    No drive

    Drive favours mutants

    10-6

    10-5

    10-4

    0.001 0.01 0.1r0

    10 000

    20 000

    30 000

    40 000

    T

    Val

    ley-

    cros

    sing

    tim

    e

    Probability of recombination

    Drive has large

    st effect

    when crossing s

    low

    A1B1 A2B1 A1B2 A2B2

    W21

    W12

    W11

    W22

    Genotype

    Fit

    ness

    Our simple fitness valley

    A1B1 A2B1 A1B2 A2B2

    W21

    W12

    W11

    W22

    Genotype

    Fitne

    ss

  • Drive

    Drive favours residents

    No drive

    Drive favours mutants

    10-6

    10-5

    10-4

    0.001 0.01 0.1r0

    10 000

    20 000

    30 000

    40 000

    T

    Drive favours residents

    No drive

    Drive favours mutants

    10-6

    10-5

    10-4

    0.001 0.01 0.1r0

    10 000

    20 000

    30 000

    40 000

    T

    Drive favours residents

    No drive

    Drive favours mutants

    10-6

    10-5

    10-4

    0.001 0.01 0.1r0

    10 000

    20 000

    30 000

    40 000

    T

    Drive favours residents

    No drive

    Drive favours mutants

    10-6

    10-5

    10-4

    0.001 0.01 0.1r0

    10 000

    20 000

    30 000

    40 000

    T

    Val

    ley-

    cros

    sing

    tim

    e

    Probability of recombination

    Drive has large

    st effect

    when crossing s

    low

    A1B1 A2B1 A1B2 A2B2

    W21

    W12

    W11

    W22

    Genotype

    Fit

    ness

    Our simple fitness valley

    A1B1 A2B1 A1B2 A2B2

    W21

    W12

    W11

    W22

    Genotype

    Fitne

    ss

  • Drive

    Drive favours residents

    No drive

    Drive favours mutants

    10-6

    10-5

    10-4

    0.001 0.01 0.1r0

    10 000

    20 000

    30 000

    40 000

    T

    Drive favours residents

    No drive

    Drive favours mutants

    10-6

    10-5

    10-4

    0.001 0.01 0.1r0

    10 000

    20 000

    30 000

    40 000

    T

    Drive favours residents

    No drive

    Drive favours mutants

    10-6

    10-5

    10-4

    0.001 0.01 0.1r0

    10 000

    20 000

    30 000

    40 000

    T

    Drive favours residents

    No drive

    Drive favours mutants

    10-6

    10-5

    10-4

    0.001 0.01 0.1r0

    10 000

    20 000

    30 000

    40 000

    T

    Val

    ley-

    cros

    sing

    tim

    e

    Probability of recombination

    Drive has large

    st effect

    when crossing s

    low

    A1B1 A2B1 A1B2 A2B2

    W21

    W12

    W11

    W22

    Genotype

    Fit

    ness

    Our simple fitness valley

    A1B1 A2B1 A1B2 A2B2

    W21

    W12

    W11

    W22

    Genotype

    Fitne

    ss

  • Drive

    Drive favours residents

    No drive

    Drive favours mutants

    10-6

    10-5

    10-4

    0.001 0.01 0.1r0

    10 000

    20 000

    30 000

    40 000

    T

    Drive favours residents

    No drive

    Drive favours mutants

    10-6

    10-5

    10-4

    0.001 0.01 0.1r0

    10 000

    20 000

    30 000

    40 000

    T

    Drive favours residents

    No drive

    Drive favours mutants

    10-6

    10-5

    10-4

    0.001 0.01 0.1r0

    10 000

    20 000

    30 000

    40 000

    T

    Drive favours residents

    No drive

    Drive favours mutants

    10-6

    10-5

    10-4

    0.001 0.01 0.1r0

    10 000

    20 000

    30 000

    40 000

    T

    Val

    ley-

    cros

    sing

    tim

    e

    Probability of recombination

    Drive has large

    st effect

    when crossing s

    low

    A1B1 A2B1 A1B2 A2B2

    W21

    W12

    W11

    W22

    Genotype

    Fit

    ness

    Our simple fitness valley

    A1B1 A2B1 A1B2 A2B2

    W21

    W12

    W11

    W22

    Genotype

    Fitne

    ss

  • Drive

    Drive favours residents

    No drive

    Drive favours mutants

    10-6

    10-5

    10-4

    0.001 0.01 0.1r0

    10 000

    20 000

    30 000

    40 000

    T

    Drive favours residents

    No drive

    Drive favours mutants

    10-6

    10-5

    10-4

    0.001 0.01 0.1r0

    10 000

    20 000

    30 000

    40 000

    T

    Drive favours residents

    No drive

    Drive favours mutants

    10-6

    10-5

    10-4

    0.001 0.01 0.1r0

    10 000

    20 000

    30 000

    40 000

    T

    Drive favours residents

    No drive

    Drive favours mutants

    10-6

    10-5

    10-4

    0.001 0.01 0.1r0

    10 000

    20 000

    30 000

    40 000

    T

    Val

    ley-

    cros

    sing

    tim

    e

    Probability of recombination

    Drive has large

    st effect

    when crossing s

    low

    A1B1 A2B1 A1B2 A2B2

    W21

    W12

    W11

    W22

    Genotype

    Fit

    ness

    Our simple fitness valley

    A1B1 A2B1 A1B2 A2B2

    W21

    W12

    W11

    W22

    Genotype

    Fitne

    ss

  • Uniparental inheritance

    0.01 0.1 1 10 100cΜ

    1000

    104

    105

    106

    T

    0.01 0.1 1 10 100cΜ

    1000

    104

    105

    106

    T

    Increasing mut

    ation

    speedscrossing

    0.01 0.1 1 10 100cΜ

    1000

    104

    105

    106

    T

    Mutational asym

    metry

    hinderscrossing

    Val

    ley-

    cros

    sing

    tim

    e

    Ratio of mutation probability (µB/µA)

    Our simple fitness valley

    A1B1 A2B1 A1B2 A2B2

    W21

    W12

    W11

    W22

    Genotype

    Fitne

    ss

  • Uniparental inheritance

    0.01 0.1 1 10 100cΜ

    1000

    104

    105

    106

    T

    0.01 0.1 1 10 100cΜ

    1000

    104

    105

    106

    T

    Increasing mut

    ation

    speedscrossing

    0.01 0.1 1 10 100cΜ

    1000

    104

    105

    106

    T

    Mutational asym

    metry

    hinderscrossing

    Val

    ley-

    cros

    sing

    tim

    e

    Ratio of mutation probability (µB/µA)

    Our simple fitness valley

    A1B1 A2B1 A1B2 A2B2

    W21

    W12

    W11

    W22

    Genotype

    Fitne

    ss

  • Uniparental inheritance

    0.01 0.1 1 10 100cΜ

    1000

    104

    105

    106

    T

    0.01 0.1 1 10 100cΜ

    1000

    104

    105

    106

    T

    Increasing mut

    ation

    speedscrossing

    0.01 0.1 1 10 100cΜ

    1000

    104

    105

    106

    T

    Mutational asym

    metry

    hinderscrossing

    Val

    ley-

    cros

    sing

    tim

    e

    Ratio of mutation probability (µB/µA)

    Our simple fitness valley

    A1B1 A2B1 A1B2 A2B2

    W21

    W12

    W11

    W22

    Genotype

    Fitne

    ss

  • Uniparental inheritance

    0.01 0.1 1 10 100cΜ

    1000

    104

    105

    106

    T

    0.01 0.1 1 10 100cΜ

    1000

    104

    105

    106

    T

    Increasing mut

    ation

    speedscrossing

    0.01 0.1 1 10 100cΜ

    1000

    104

    105

    106

    T

    Mutational asym

    metry

    hinderscrossing

    Val

    ley-

    cros

    sing

    tim

    e

    Ratio of mutation probability (µB/µA)

    Our simple fitness valley

    A1B1 A2B1 A1B2 A2B2

    W21

    W12

    W11

    W22

    Genotype

    Fitne

    ss

  • Uniparental inheritance

    0.01 0.1 1 10 100cΜ

    1000

    104

    105

    106

    T

    0.01 0.1 1 10 100cΜ

    1000

    104

    105

    106

    T

    Increasing mut

    ation

    speedscrossing

    0.01 0.1 1 10 100cΜ

    1000

    104

    105

    106

    T

    Mutational asym

    metry

    hinderscrossing

    Val

    ley-

    cros

    sing

    tim

    e

    Ratio of mutation probability (µB/µA)

    Our simple fitness valley

    A1B1 A2B1 A1B2 A2B2

    W21

    W12

    W11

    W22

    Genotype

    Fitne

    ss

  • Non-genetic inheritance

    Small double mutant advantage Hk22=1100L

    Large double mutant advantage Hk22=110L

    0.0 0.1 0.2 0.3 0.4 0.5 0.6q1

    10

    100

    1000

    104

    105T

    Small double mutant advantage Hk22=1100L

    Large double mutant advantage Hk22=110L

    0.0 0.1 0.2 0.3 0.4 0.5 0.6q1

    10

    100

    1000

    104

    105T

    Val

    ley-

    cros

    sing

    tim

    e

    Transmission probability of single mutants

    Transmission a

    dvantage

    of newcombin

    ation has

    large relative e

    ffect

    Our simple fitness valley

    A1B1 A2B1 A1B2 A2B2

    W21

    W12

    W11

    W22

    Genotype

    Fitne

    ss

  • Non-genetic inheritance

    Small double mutant advantage Hk22=1100L

    Large double mutant advantage Hk22=110L

    0.0 0.1 0.2 0.3 0.4 0.5 0.6q1

    10

    100

    1000

    104

    105T

    Small double mutant advantage Hk22=1100L

    Large double mutant advantage Hk22=110L

    0.0 0.1 0.2 0.3 0.4 0.5 0.6q1

    10

    100

    1000

    104

    105T

    Val

    ley-

    cros

    sing

    tim

    e

    Transmission probability of single mutants

    Transmission a

    dvantage

    of newcombin

    ation has

    large relative e

    ffect

    Our simple fitness valley

    A1B1 A2B1 A1B2 A2B2

    W21

    W12

    W11

    W22

    Genotype

    Fitne

    ss

  • Non-genetic inheritance

    Small double mutant advantage Hk22=1100L

    Large double mutant advantage Hk22=110L

    0.0 0.1 0.2 0.3 0.4 0.5 0.6q1

    10

    100

    1000

    104

    105T

    Small double mutant advantage Hk22=1100L

    Large double mutant advantage Hk22=110L

    0.0 0.1 0.2 0.3 0.4 0.5 0.6q1

    10

    100

    1000

    104

    105T

    Val

    ley-

    cros

    sing

    tim

    e

    Transmission probability of single mutants

    Transmission a

    dvantage

    of newcombin

    ation has

    large relative e

    ffect

    Our simple fitness valley

    A1B1 A2B1 A1B2 A2B2

    W21

    W12

    W11

    W22

    Genotype

    Fitne

    ss

  • Conclusions

    1. DriveI helps or hindersI largest effect when valley crossing otherwise slow

    2. Uniparental inhertianceI implies mutational asymmetry with biparental traitI increased mutation helps valley crossingI mutational asymmetries hinder valley crossing

    3. Non-genetic inheritanceI transmission advantage of new combination has large

    relative effect on valley crossing times

    Q. How does non-Mendelian inheritance affectfitness-valley crossing?

  • Conclusions

    1. DriveI helps or hindersI largest effect when valley crossing otherwise slow

    2. Uniparental inhertianceI implies mutational asymmetry with biparental traitI increased mutation helps valley crossingI mutational asymmetries hinder valley crossing

    3. Non-genetic inheritanceI transmission advantage of new combination has large

    relative effect on valley crossing times

    Q. How does non-Mendelian inheritance affectfitness-valley crossing?

  • Conclusions

    1. DriveI helps or hindersI largest effect when valley crossing otherwise slow

    2. Uniparental inhertianceI implies mutational asymmetry with biparental traitI increased mutation helps valley crossingI mutational asymmetries hinder valley crossing

    3. Non-genetic inheritanceI transmission advantage of new combination has large

    relative effect on valley crossing times

    Q. How does non-Mendelian inheritance affectfitness-valley crossing?

  • Conclusions

    1. DriveI helps or hindersI largest effect when valley crossing otherwise slow

    2. Uniparental inhertianceI implies mutational asymmetry with biparental traitI increased mutation helps valley crossingI mutational asymmetries hinder valley crossing

    3. Non-genetic inheritanceI transmission advantage of new combination has large

    relative effect on valley crossing times

    Q. How does non-Mendelian inheritance affectfitness-valley crossing?

  • Thank-you!

    I The Otto & Whitlock labs

    I The Doebeli & Hauert labs

    I The Kisdi & Geritz labs

    I Mark Kirkpatrick

    BackgroundProblemModelResultsConclusionsAcknowledgements