matrix integrals and knot theory - sorbonne-universitezuber/trieste.pdf · 2005-11-16 · matrix...

37
Matrix Integrals and Knot Theory 1 Matrix Integrals and Knot Theory Paul Zinn-Justin and Jean-Bernard Zuber math-ph/9904019 (Discr. Math. 2001) math-ph/0002020 (J.Kn.Th.Ramif. 2000) P. Z.-J. (math-ph/9910010, math-ph/0106005) J. L. Jacobsen & P. Z.-J. (math-ph/0102015, math-ph/0104009). . . math-ph/0303049 (J.Kn.Th.Ramif. 2004) G. Schaeffer et P. Z.-J., math-ph/0304034 Trieste, 13 May 2005

Upload: others

Post on 12-Aug-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Matrix Integrals and Knot Theory - sorbonne-universitezuber/trieste.pdf · 2005-11-16 · Matrix Integrals and Knot Theory 3 Basics of Knot Theory a knot , links and tangles Equivalence

Matrix Integrals and Knot Theory 1

Matrix Integrals andKnot Theory

Paul Zinn-Justin and Jean-Bernard Zuber

math-ph/9904019 (Discr. Math. 2001)math-ph/0002020 (J.Kn.Th.Ramif. 2000)P. Z.-J. (math-ph/9910010, math-ph/0106005)J. L. Jacobsen & P. Z.-J. (math-ph/0102015, math-ph/0104009). . .math-ph/0303049 (J.Kn.Th.Ramif. 2004)G. Schaeffer et P. Z.-J., math-ph/0304034

Trieste, 13 May 2005

Page 2: Matrix Integrals and Knot Theory - sorbonne-universitezuber/trieste.pdf · 2005-11-16 · Matrix Integrals and Knot Theory 3 Basics of Knot Theory a knot , links and tangles Equivalence

Matrix Integrals and Knot Theory 2

Main idea:Use combinatorial tools of Quantum Field Theory in Knot Theory

Plan

I Knot Theory: a few definitions

II Matrix integrals and Link diagramsR

dM eNtr(− 12 M2 +gM4) N ×N matrices, N → ∞

Removals of redundancies⇒ reproduces recent results of Sundberg & Thistlethwaite (1998)based on Tutte (1963)

III New ! Virtual knots and links : counting and invariants

Page 3: Matrix Integrals and Knot Theory - sorbonne-universitezuber/trieste.pdf · 2005-11-16 · Matrix Integrals and Knot Theory 3 Basics of Knot Theory a knot , links and tangles Equivalence

Matrix Integrals and Knot Theory 3

Basics of Knot Theory

a knot , links and tangles

Equivalence up to isotopy

Problem: Count topologically inequivalent knots, links and tangles

Represent knots etc by their planar projection with minimal number ofover/under-crossings

Theorem Two projections represent the same knot/link iff they may betransformed into one another by a sequence of Reidemeister moves :

; ;

Page 4: Matrix Integrals and Knot Theory - sorbonne-universitezuber/trieste.pdf · 2005-11-16 · Matrix Integrals and Knot Theory 3 Basics of Knot Theory a knot , links and tangles Equivalence

Matrix Integrals and Knot Theory 4

Avoid redundancies by keeping onlyprime links (i.e. which cannot be factored)

� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �� � �

� � � �� � � �� � � �� � � �� � � �

� � �� � �� � �� � �� � �

Classification of the prime knots (see atlas), counting of links and tangles#cr #knots #links2 0 13 1 14 1 25 2 36 3 9 (8)7 7 16 (14)8 21 (18) 50 (39)9 49 (41) 132 (96)...

......

16 1,388,705 (379,799) ? (1,016,975)

Page 5: Matrix Integrals and Knot Theory - sorbonne-universitezuber/trieste.pdf · 2005-11-16 · Matrix Integrals and Knot Theory 3 Basics of Knot Theory a knot , links and tangles Equivalence

Matrix Integrals and Knot Theory 5

Page 6: Matrix Integrals and Knot Theory - sorbonne-universitezuber/trieste.pdf · 2005-11-16 · Matrix Integrals and Knot Theory 3 Basics of Knot Theory a knot , links and tangles Equivalence

Matrix Integrals and Knot Theory 6

Consider the subclass of alternating knots, links and tangles, in which onemeets alternatingly over- and under-crossings.

Page 7: Matrix Integrals and Knot Theory - sorbonne-universitezuber/trieste.pdf · 2005-11-16 · Matrix Integrals and Knot Theory 3 Basics of Knot Theory a knot , links and tangles Equivalence

Matrix Integrals and Knot Theory 7

Courtesy of Prof. P. Dorey

Page 8: Matrix Integrals and Knot Theory - sorbonne-universitezuber/trieste.pdf · 2005-11-16 · Matrix Integrals and Knot Theory 3 Basics of Knot Theory a knot , links and tangles Equivalence

Matrix Integrals and Knot Theory 8

For n ≥ 8 (resp. 6) crossings, there are knots (links) which cannot be drawnin an alternating form. Asymptotically, the alternating are subdominant.

Major result (Tait (1898), Menasco & Thistlethwaite, (1991))Two alternating reduced knots orlinks represent the same object iffthey are related by a sequence of“flypes” on tangles

Problem Count alternating prime links and tangles

Page 9: Matrix Integrals and Knot Theory - sorbonne-universitezuber/trieste.pdf · 2005-11-16 · Matrix Integrals and Knot Theory 3 Basics of Knot Theory a knot , links and tangles Equivalence

Matrix Integrals and Knot Theory 9

A 8-crossing non-alternating knot

Page 10: Matrix Integrals and Knot Theory - sorbonne-universitezuber/trieste.pdf · 2005-11-16 · Matrix Integrals and Knot Theory 3 Basics of Knot Theory a knot , links and tangles Equivalence

Matrix Integrals and Knot Theory 10

Matrix Integrals: Feynman Rules

N ×N Hermitean matrices M, dM = ∏i dMii ∏i< j dℜeMi j dℑmMi j

Z =R

dMeN[− 12 trM2 + g

4 trM4]

Feynman rules: propagator ij

lk=

1N δi`δ jk

4-valent vertex :ji kl

mnpq

= gNδ jkδ`mδnpδqi

For each connected diagram contributing to logZ: fill each closed indexloop with a disk ⇒ discretized closed 2-surface Σ

Page 11: Matrix Integrals and Knot Theory - sorbonne-universitezuber/trieste.pdf · 2005-11-16 · Matrix Integrals and Knot Theory 3 Basics of Knot Theory a knot , links and tangles Equivalence

Matrix Integrals and Knot Theory 11

Count powers of N in a connected dia-gram• each vertex → N;• each double line → N−1;• each loop → N.Thus N#vert.−#lines+#loops= NχEuler(Σ)

[’t Hooft (1974)]

logZ = ∑conn. surf.Σ

N2−2genus(Σ) g#vert.(Σ)

symm. factor

Page 12: Matrix Integrals and Knot Theory - sorbonne-universitezuber/trieste.pdf · 2005-11-16 · Matrix Integrals and Knot Theory 3 Basics of Knot Theory a knot , links and tangles Equivalence

Matrix Integrals and Knot Theory 12

Matrix Feynman diagrams and link diagrams

Consider integral over complex (non Hermitean) matrices

ij

lkM M+

R

dM eN[−t trMM† + g2 tr(MM†)2]

ji kl

mnpq

⇒ oriented (double) lines in propagators and vertices.

When N → ∞, leading contribution from genus zero (“planar”) diagrams:

limN→∞1

N2 logZ = ∑ planar diagramswith n vertices

gn

symm.factor

gN 0gN 2

Page 13: Matrix Integrals and Knot Theory - sorbonne-universitezuber/trieste.pdf · 2005-11-16 · Matrix Integrals and Knot Theory 3 Basics of Knot Theory a knot , links and tangles Equivalence

Matrix Integrals and Knot Theory 13

Moreover: Conservation of arrows ⇒ alternating diagram!

But going from complex matrices to hermitian matrices doesn’t affect theplanar limit . . . up to a global factor 2.

Moral: After removing redundancies (incl. flypes), counting of Feynmandiagrams of M4 integral, (over hermitian matrices)

Z =Z

dM eN[− t2 trM2 + g

4 trM4]

for N → ∞, yields the counting of alternating links and tangles.

Page 14: Matrix Integrals and Knot Theory - sorbonne-universitezuber/trieste.pdf · 2005-11-16 · Matrix Integrals and Knot Theory 3 Basics of Knot Theory a knot , links and tangles Equivalence

Matrix Integrals and Knot Theory 14

Non perturbative results on M4 integral, N → ∞

Write integral Z =R

dM eN[− t2 trM2 + g

4 trM4] in terms of eigenvalues λi

Z(t,g) =Z N

∏i=1

dλi exp{2 ∑i< j

log |λi −λ j|−N ∑i

(t λ2

i2−gλ4

i4)}

In the N → ∞ limit, continuous distribution of λ with density u(λ) ofsupport [−2a,2a] (deformed semi-circle law)

u(λ) =1

2π(1−2 g

t2 a2 − gt2 λ2)

√4a2 −λ2

3 gt2 a4 −a2 +1 = 0

Page 15: Matrix Integrals and Knot Theory - sorbonne-universitezuber/trieste.pdf · 2005-11-16 · Matrix Integrals and Knot Theory 3 Basics of Knot Theory a knot , links and tangles Equivalence

Matrix Integrals and Knot Theory 15

Thus “planar” limit of trM4 integral

limN→∞

1N2 log Z(t,g)

Z(t,0)= F(t,g) =

12 loga2 − 1

24 (a2 −1)(9−a2)

= ∑p=1

(3gt2 )p (2p−1)!

p!(p+2)! As p → ∞ Fp ∼ const(12)p p−7/2

...

Also 2-point function G2 = 13t a2(4−a2) = ������������������������������������������������������������������������

������������������������������������������������������������������������

and (connected and “truncated”) 4-point function

à = ������������������������������������������������������������������������

������������������������

=(5−2a2)(a2 −1)

(4−a2)2

Page 16: Matrix Integrals and Knot Theory - sorbonne-universitezuber/trieste.pdf · 2005-11-16 · Matrix Integrals and Knot Theory 3 Basics of Knot Theory a knot , links and tangles Equivalence

Matrix Integrals and Knot Theory 16

Counting Links and Tangles

For the knot interpretation of previous counting, many irrelevant diagramshave to be discarded.

�����������������������������������

� � � � � � � � � � �������������������������

������������������������������������������������������������

��������������������������������������������������

“Nugatory” and “non-prime” are removed by adjusting t = t(g) so that

������������������������������������������������������������������������

������������������������������������������������������������������������= 1 (wave function renormalisation).

Page 17: Matrix Integrals and Knot Theory - sorbonne-universitezuber/trieste.pdf · 2005-11-16 · Matrix Integrals and Knot Theory 3 Basics of Knot Theory a knot , links and tangles Equivalence

Matrix Integrals and Knot Theory 17

In that way, correct counting of links . . .up to 6 crossings!

~~(c)

31 5251412 51

221

2 41

14

14

...

(a)

13

12

15

1 1

(b)

...

Asymptotic behaviour Fp ∼ const(27/4)p p−7/2

Page 18: Matrix Integrals and Knot Theory - sorbonne-universitezuber/trieste.pdf · 2005-11-16 · Matrix Integrals and Knot Theory 3 Basics of Knot Theory a knot , links and tangles Equivalence

Matrix Integrals and Knot Theory 18

What happens for n ≥ 6 crossings? Flypes!

~

Must quotient by the flype equivalence! Original combinatorial treatment(Sundberg & Thistlethwaite, Z-J&Z) rephrased and simplified by P. Z.-J.: it

amounts to a coupling constant renormalisation g → g0! In other words,start from Ntr

( 12 tM2 − g0

4 M4), fix t = t(g0) as before. Then compute Γ(g0)

and determine g0(g) as the solution of

g0 = g(−1+

2(1−g)(1+Γ(g0))

),

then the desired generating function is Γ̃(g) = Γ(g0).

Page 19: Matrix Integrals and Knot Theory - sorbonne-universitezuber/trieste.pdf · 2005-11-16 · Matrix Integrals and Knot Theory 3 Basics of Knot Theory a knot , links and tangles Equivalence

Matrix Integrals and Knot Theory 19

Indeed let H(g) be the generatingfunction of “horizontally-two-particle-irreducible” diagrams(cannot separate the left part fromthe right by cutting two lines)

+ ...������������������������������

H = = + +

and then write Γ=H/(1−H)

������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������

������������������������������

� � � � � !�!!�!!�!!�!!�!

"�""�""�""�""�"#�##�##�##�##�#

$�$$�$$�$$�$$�$%�%%�%%�%%�%%�%

&�&�&&�&�&&�&�&&�&�&&�&�&&�&�&'�''�''�''�''�''�' ...

Page 20: Matrix Integrals and Knot Theory - sorbonne-universitezuber/trieste.pdf · 2005-11-16 · Matrix Integrals and Knot Theory 3 Basics of Knot Theory a knot , links and tangles Equivalence

Matrix Integrals and Knot Theory 20

But ~()(()(()(()(()(()(*)**)**)**)**)**)*

+)+)++)+)++)+)++)+)++)+)++)+)++)+)+,),,),,),,),,),,),,),

-)-)--)-)--)-)--)-)--)-)--)-)-.)..)..)..)..)..).

/)/)//)/)//)/)//)/)//)/)//)/)/0)0)00)0)00)0)00)0)00)0)00)0)0

thus, with Γ̃ , H̃ denoting generating functionsof flype equivalence classes of prime tangles, resp 2PI tangles and if

H̃ = g+ H̃ ′, Γ̃ = g+gΓ̃+ H̃ ′1−H̃ ′

12121211212121121212112121211212121121212112121211212121

32323233232323323232332323233232323323232332323233232323

42424244242424424242442424244242424424242442424244242424

52525255252525525252552525255252525525252552525255252525 62626626266262662626

727727727727828828828929929929

:2:2::2:2::2:2::2:2:;2;;2;;2;;2;

<2<2<<2<2<<2<2<<2<2<=2==2==2==2=

>2>>2>>2>>2>?2??2??2??2?

@2@2@@2@2@@2@2@A2AA2AA2A

B2BB2BB2BB2BC2CC2CC2CC2CD2D2DD2D2DD2D2DD2D2DD2D2D

E2EE2EE2EE2EE2E

...

Page 21: Matrix Integrals and Knot Theory - sorbonne-universitezuber/trieste.pdf · 2005-11-16 · Matrix Integrals and Knot Theory 3 Basics of Knot Theory a knot , links and tangles Equivalence

Matrix Integrals and Knot Theory 21

Return to Γ(g0)

Γ( ) ...FGFGFFGFGFHGHGHHGHGH

IGIGIIGIGIIGIGIIGIGIJGJGJJGJGJJGJGJJGJGJ

KGKKGKKGKKGKLGLLGLLGLLGL

MGMGMMGMGMNGNGNNGNGN0g

suggests to determine g0 = g0(g) by demanding that g0 = g−2gH̃ ′

OPOPOPOOPOPOPOQPQPQPQQPQPQPQ

RPRRPRRPRSPSSPSSPSg0

Three relations between g0, H̃ ′, g and Γ̃(g)

Eliminating H̃ ′ and then

Page 22: Matrix Integrals and Knot Theory - sorbonne-universitezuber/trieste.pdf · 2005-11-16 · Matrix Integrals and Knot Theory 3 Basics of Knot Theory a knot , links and tangles Equivalence

Matrix Integrals and Knot Theory 22

Eliminating g0 gives Γ̃(g) = Γ(g0(g)), the generating function of(flype-equivalence classes of) tangles.

FindΓ̃ = g+2g2 +4g3 +10g4 +29g5 +98g6 +372g7 +1538g8 +6755g9 + · · ·

Asymptotic behaviour Γ̃p ∼ const(

101+√

2100140

)pp−5/2

Note that 12 > 274 = 6.75 > 101+

√21001

40 ≈ 6.15 as it should.

All this reproduces the results of Sundberg & Thistlethwaite.

Can we go further? Control the number of connected components?

Page 23: Matrix Integrals and Knot Theory - sorbonne-universitezuber/trieste.pdf · 2005-11-16 · Matrix Integrals and Knot Theory 3 Basics of Knot Theory a knot , links and tangles Equivalence

Matrix Integrals and Knot Theory 23

New Direction : Virtual Links

Higher genus contributions to matrix integralWhat do they count?Suggested that knots/links on other manifolds Σg × I

Virtual knots and links [Kauffman]: equivalence classes of 4-valentdiagrams with ordinary under- or over-crossings

plus a new type of virtual crossing,

Page 24: Matrix Integrals and Knot Theory - sorbonne-universitezuber/trieste.pdf · 2005-11-16 · Matrix Integrals and Knot Theory 3 Basics of Knot Theory a knot , links and tangles Equivalence

Matrix Integrals and Knot Theory 24

Equivalence w.r.t. generalized Reidemeister moves

Page 25: Matrix Integrals and Knot Theory - sorbonne-universitezuber/trieste.pdf · 2005-11-16 · Matrix Integrals and Knot Theory 3 Basics of Knot Theory a knot , links and tangles Equivalence

Matrix Integrals and Knot Theory 25

From a different standpoint : Virtual knots (or links) seen as drawn in a“thickened” Riemann surface ΣΣ := Σ× [0,1], modulo isotopy in ΣΣ, andmodulo orientation-preserving homeomorphisms of Σ, and addition orsubtraction of empty handles.

But this is precisely what Feynman diagrams of the matrix integral do forus!

Thus return to the integral over complex matrices

Z(g,N) =Z

dM eN[−t trMM† + g2 tr(MM†)2]

and compute F(g, t,N) = logZ beyond the leading large N limit . . .

Page 26: Matrix Integrals and Knot Theory - sorbonne-universitezuber/trieste.pdf · 2005-11-16 · Matrix Integrals and Knot Theory 3 Basics of Knot Theory a knot , links and tangles Equivalence

Matrix Integrals and Knot Theory 26

F(g, t,N) =∞

∑h=0

N2−2hF (h)(g, t)

F (h)(g) : Feynman diagrams of genus hF(1) computed by Morris (1991)F(2) and F (3) by Akermann and by Adamietz (ca. 1997)

As before, determine t = t(g,N) so as to remove the non prime diagrams.Find the generating function of tangle diagrams Γ(g) = 2∂F/∂g−2

Γ(0)(g) =g+2g2+6g3+22g4+91g5+408g6+1938g7+9614g8+49335g9+260130g10+O(g11)

Γ(1)(g) =g+8g2+59g3+420g4+2940g5+20384g6+140479g7+964184g8+6598481g9+45059872g10+O(g11)

Γ(2)(g) =17g3+456g4+7728g5+104762g6+1240518g7+13406796g8+135637190g9+1305368592g10+O(g11)

Γ(3)(g) =1259g5+62072g6+1740158g7+36316872g8+627368680g9+9484251920g10+O(g11)

Γ(4)(g) =200589 g7+14910216 g8+600547192 g9+17347802824g10+O(g11)

Γ(5)(g) =54766516 g9+5554165536g10+O(g11)

Page 27: Matrix Integrals and Knot Theory - sorbonne-universitezuber/trieste.pdf · 2005-11-16 · Matrix Integrals and Knot Theory 3 Basics of Knot Theory a knot , links and tangles Equivalence

Matrix Integrals and Knot Theory 27

1 1

The genus 0 and 1 2-crossing alternating virtual link diagrams in the tworepresentations, the Feynman diagrams on the left, the virtual diagrams onthe right: for each, the inverse of the weight in F is indicated

Page 28: Matrix Integrals and Knot Theory - sorbonne-universitezuber/trieste.pdf · 2005-11-16 · Matrix Integrals and Knot Theory 3 Basics of Knot Theory a knot , links and tangles Equivalence

Matrix Integrals and Knot Theory 28

2 2

6 6

66

order 3, genus 0 and 1

Page 29: Matrix Integrals and Knot Theory - sorbonne-universitezuber/trieste.pdf · 2005-11-16 · Matrix Integrals and Knot Theory 3 Basics of Knot Theory a knot , links and tangles Equivalence

Matrix Integrals and Knot Theory 29

8 8

2

order 4, genus 0

Page 30: Matrix Integrals and Knot Theory - sorbonne-universitezuber/trieste.pdf · 2005-11-16 · Matrix Integrals and Knot Theory 3 Basics of Knot Theory a knot , links and tangles Equivalence

Matrix Integrals and Knot Theory 30

44

22

2

1 1

1

2

2

2 2

8

4

order 4, genus 1

Page 31: Matrix Integrals and Knot Theory - sorbonne-universitezuber/trieste.pdf · 2005-11-16 · Matrix Integrals and Knot Theory 3 Basics of Knot Theory a knot , links and tangles Equivalence

Matrix Integrals and Knot Theory 31

8

1

1

order 4, genus 2

Page 32: Matrix Integrals and Knot Theory - sorbonne-universitezuber/trieste.pdf · 2005-11-16 · Matrix Integrals and Knot Theory 3 Basics of Knot Theory a knot , links and tangles Equivalence

Matrix Integrals and Knot Theory 32

Removing the flype redundancies.

~ ~

First occurences of flype equivalence in tangles with 3 crossings

Page 33: Matrix Integrals and Knot Theory - sorbonne-universitezuber/trieste.pdf · 2005-11-16 · Matrix Integrals and Knot Theory 3 Basics of Knot Theory a knot , links and tangles Equivalence

Matrix Integrals and Knot Theory 33

It is suggested that it is (necessary and) sufficient to quotient by the planarflypes, thus to perform the same renormalization g → g0(g) as for genus 0.

Generalized flype conjecture: For a given (minimal) genus h,Γ̃(h)(g) = Γ(h)(g0) is the generating function of flype-equivalence classes ofvirtual alternating tangles. Then asymptotic behavior

# inequivalent tangles of order p = Γ̃(h)p ∼

(101+

√21001

40

)p

p52 (h−1) .

Test this generalized flype conjecture by computing invariants of virtuallinks

1 linking numbers2 polynomials : Jones, cabled Jones, Kauffman,. . .3 Alexander-Conway polynomials and their multi-variable extensions . . .4 fundamental group π

Page 34: Matrix Integrals and Knot Theory - sorbonne-universitezuber/trieste.pdf · 2005-11-16 · Matrix Integrals and Knot Theory 3 Basics of Knot Theory a knot , links and tangles Equivalence

Matrix Integrals and Knot Theory 34

Up to order 4 (4 real crossings), this suffices to distinguish allflype-equivalence classes: Conjecture

Higher orders: sometimes difficult to distinguish images under discretesymmetries (mirror, “global flip”=mirror × under-cr↔ over-cr.)? . . .Examples:

A genus-1 order-5 virtual diagram which is distinguished from its mirrorimage through the 2-cabled Jones polynomial

Page 35: Matrix Integrals and Knot Theory - sorbonne-universitezuber/trieste.pdf · 2005-11-16 · Matrix Integrals and Knot Theory 3 Basics of Knot Theory a knot , links and tangles Equivalence

Matrix Integrals and Knot Theory 35

At order 5, a pair of virtual flipped knots of genus 1, distinguished by theirAlexander-Conway polynomial.

Page 36: Matrix Integrals and Knot Theory - sorbonne-universitezuber/trieste.pdf · 2005-11-16 · Matrix Integrals and Knot Theory 3 Basics of Knot Theory a knot , links and tangles Equivalence

Matrix Integrals and Knot Theory 36

A pair of virtual flipped knots of genus 1, conjectured to be non equivalent.

A pair of virtual flipped knots of genus 2, conjectured to be non equivalent.

Page 37: Matrix Integrals and Knot Theory - sorbonne-universitezuber/trieste.pdf · 2005-11-16 · Matrix Integrals and Knot Theory 3 Basics of Knot Theory a knot , links and tangles Equivalence

Matrix Integrals and Knot Theory 37

Conclusions

Field theoretic methods : Feynman diagrams and matrix integrals, but alsotransfer matrix methods, offer new and powerful ways of handling thecounting of links/tangles. Some progress, but still many open issues.

• Count knots (rather than links)? Kp = # knots with p crossings.Consider a k-colouring of links, then term linear in k . . .?

• Asymptotic behaviour of Kp as p → ∞ ?

Kp ∼Cτp pγ−3, γ = − 1+√

136 [G. Schaeffer and P. Z.-J.]

• Non alternating Links and Knots ?????????????