mathematical physics unit 2 - uou.ac.in

31
MATHEMATICAL PHYSICS UNIT – 2 BESSEL’S EQUATION DR. RAJESH MATHPAL ACADEMIC CONSULTANT SCHOOL OF SCIENCES UTTARAKHAND OPEN UNIVERSITY TEENPANI, HALDWANI UTTRAKHAND MOB:9758417736,7983713112 Email: [email protected]

Upload: others

Post on 29-Oct-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

MATHEMATICAL PHYSICS

UNIT – 2

BESSEL’S EQUATION

DR. RAJESH MATHPAL

ACADEMIC CONSULTANT

SCHOOL OF SCIENCES

UTTARAKHAND OPEN UNIVERSITY

TEENPANI, HALDWANI

UTTRAKHAND

MOB:9758417736,7983713112

Email: [email protected]

Page 2: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

STRUCTURE OF UNIT

β€’ 2.1 INTRODUCTION

β€’ 2.2 BESSEL’S EQUATION

β€’ 2.4 BESSEL’S FUNCTIONS, Jn (x)

β€’ 2.5 Bessel’s function of the second kind of order n

β€’ 2.6 RECURRENCE FORMULAE

β€’ 2.7 ORTHOGONALITY OF BESSEL FUNCTION

β€’ 2.8 A GENERATING FUNCTION FOR Jn (x)

β€’ 2.9 SOME EXAMPLES

Page 3: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

2.1 INTRODUCTION

We find the Bessel’s equation while solving Laplace equation in polar coordinates by the needed of separation of variables. This equation has a number of applications in engineering.

Bessel’s function are involved in

β€’ The Oscillatory motion of a hanging chain

β€’ Euler’s theory of a circular membrane

β€’ The studies of planetary motion

β€’ The propagation of waves

β€’ The Elasticity

β€’ The fluid motion

β€’ The potential theory

β€’ Cylindrical and spherical waves

β€’ Theory of plane waves

β€’ Bessel’s function are also known as cylindrical and spherical function.

Page 4: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

2.2 BESSEL’S EQUATION

The differential equation

π‘₯2 𝑑2𝑦

𝑑π‘₯2 + π‘₯𝑑𝑦

𝑑π‘₯+ π‘₯2 βˆ’ π‘₯𝑛 𝑦 = 0

is called the Bessel’s differential equation, and particular solutions of this equation are

called Bessel’s fraction of order n.

Page 5: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

2.3 SOLUTION OF BESSEL’S EQUATION

π‘₯2 𝑑2𝑦′

𝑑π‘₯2 + π‘₯𝑑𝑦

𝑑π‘₯+ π‘₯2 βˆ’ π‘₯𝑛 𝑦 = 0. …(1)

Let Οƒπ‘Ÿ=0∞ π‘Žπ‘Ÿπ‘₯

π‘š+π‘Ÿ π‘œπ‘Ÿ 𝑦 = π‘Ž0π‘₯π‘š + π‘Ž1π‘₯

π‘š+1 + π‘Ž2π‘₯π‘š+2 + β‹― …(2)

So that𝑑𝑦

𝑑π‘₯= Οƒπ‘Ÿ=0

∞ π‘Žπ‘Ÿ π‘š + π‘Ÿ π‘₯π‘š+π‘Ÿβˆ’1

and 𝑑2𝑦

𝑑π‘₯2 = Οƒπ‘Ÿ=0∞ π‘Žπ‘Ÿ π‘š + π‘Ÿ (π‘š + π‘Ÿ βˆ’1)π‘₯π‘š+π‘Ÿβˆ’2

Substituting these values in (1), we get

π‘₯2

π‘Ÿ=0

∞

π‘Žπ‘Ÿ π‘š+π‘Ÿ (π‘š+π‘Ÿ βˆ’1)π‘₯π‘š+π‘Ÿβˆ’2 +π‘₯

π‘Ÿ=0

∞

π‘Žπ‘Ÿ π‘š + π‘Ÿ π‘₯π‘š+π‘Ÿβˆ’1 + (

)

π‘₯2

βˆ’ 𝑛2

π‘Ÿ=0

∞

π‘Žπ‘Ÿπ‘₯π‘š+π‘Ÿ = 0

Page 6: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

2 2

0 0 0 0

2 2

0 0

2 2 2

0 0

( )( 1) ( ) 0

[( )( 1) ( ) ] 0

[( ) ] 0.

m r m r m r m r

r r r r

r r r r

m r m r

r r

r r

m r m r

r r

r r

a m r m r x a m r x a x n a x

a m r m r m r n x a x

a m r n x a x

+ + + + +

= = = =

+ + +

= =

+ + +

= =

+ + βˆ’ + + + βˆ’ =

+ + βˆ’ + + βˆ’ + =

+ βˆ’ + =

Equating the coefficient of lowest degree term of xm in the identity (3) to zero,

by putting r = 0 in the first summation we get the indicial equation.

a0[m+0)2 – n2] = 0. (r = 0)

β‡’ m2 = n2 i.e. m = n, m = - n a0 β‰  0

Page 7: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

Equating the coefficient of the next lowest degree term xm+1 in the identity (3), we put r = 1 in the first summation

a1 [m + 1)2 – n2] = 0 i.e. a1 = 0, since m + 1)2 – n2 β‰  0

Equating the coefficient of xm + r + 2 in (3) to zero, to find relation in successive coefficients, we get

ar +2[(m+r+2)2 – n2] +ar = 0

β‡’ π‘Žπ‘Ÿ+2 = βˆ’1

π‘š+π‘Ÿ+2 2βˆ’π‘›2 . ar

Therefore, a3 = a5 = a1 = …. = 0, since a1 = 0

If r = 0, π‘Ž2 = βˆ’1

π‘š+2 2βˆ’π‘›2 . a0

If r = 2, π‘Ž4 = βˆ’1

π‘š+4 2βˆ’π‘›2 a2 =1

π‘š+2 2βˆ’π‘›2 [(π‘š+4)2βˆ’π‘›2 a0 and so on.

On substituting the values of the coefficients a1, a2, a3, a4 …….. in (2), we have

y = a0xm = βˆ’

π‘Ž0

π‘š+2 2βˆ’π‘›2 π‘₯π‘š+2 +π‘Ž0

π‘š+2 2βˆ’π‘›2 [ π‘š+4)2βˆ’π‘›2 π‘₯π‘š+4 + β‹―

y = a0xm = 1 βˆ’

1

π‘š+2 2βˆ’π‘›2 π‘₯2 +1

π‘š+2 2βˆ’π‘›2 [ π‘š+4)2βˆ’π‘›2 π‘₯4 βˆ’ β‹―

Page 8: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

For m = n

y = a0xn 1 βˆ’

1

4 𝑛+1π‘₯2 +

1

42.2! 𝑛+1 𝑛+2π‘₯4 βˆ’ β‹―

where a0 is an arbitrary constant.

For m = βˆ’ n

y = a0x-n 1 βˆ’

1

4 βˆ’π‘›+1π‘₯2 +

1

42.2! βˆ’π‘›+1 βˆ’π‘›+2π‘₯4 βˆ’ β‹―

Page 9: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

2.4 BESSEL’S FUNCTIONS, Jn (x)

The Bessel’s equation is π‘₯2 𝑑2𝑦

𝑑π‘₯ 2+ π‘₯

𝑑𝑦

𝑑π‘₯+ (π‘₯2 βˆ’ π‘₯𝑛)𝑦 = 0. …(1)

Solution of (1) is

y = a0x-n 1 βˆ’π‘₯2

2.2(𝑛+1)+

π‘₯4

2.4.22(𝑛+1)(𝑛+2)βˆ’ β‹― + (βˆ’1)π‘Ÿ π‘₯2π‘Ÿ

(2π‘Ÿπ‘Ÿ!).2π‘Ÿ(𝑛+1)(𝑛+2)…(𝑛+π‘Ÿ)+ β‹―

2

0 20

( 1)2 . !( 1)( 2)...( )

rn r

rr

xa x

r n n n r

=

= βˆ’+ + +

where a0 is an arbitrary constant.

If a0 = 1

2𝑛 (𝑛+1)

The above solution is called Bessel’s function denoted by Jn (x).

Page 10: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

Thus 𝐽𝑛(π‘₯) = 1

2𝑛 (𝑛+1)Οƒ(βˆ’1)π‘Ÿ π‘₯𝑛+2π‘Ÿ

22π‘Ÿ .π‘Ÿ!(𝑛+1)(𝑛+2)…(𝑛+π‘Ÿ) 𝑛 + 1 = 𝑛!

β‡’ 𝐽𝑛(π‘₯) = x

2

n

1

(𝑛+1)βˆ’

1

1! (𝑛+2)

x

2

2

+1

2! (𝑛+3)

x

2

4

βˆ’1

3! (𝑛+4)

x

2

6

+ β‹―

β‡’ 𝐽𝑛(π‘₯) =π‘₯𝑛

2𝑛 𝑛+1 1 βˆ’

π‘₯2

2.(2𝑛+2)+

π‘₯4

2.4.(2𝑛+2)(2𝑛+4)+ β‹― …(2)

2 2

0 0

( 1) ( 1) ( ) ( )

2 2! ( 1) ! ( )!

n r n rr r

n n

r r

x xJ x J x

r n r r n r

+ +

= =

βˆ’ βˆ’ = =

+ + +

If n = 0, J0 (x) = Οƒ(βˆ’1)π‘Ÿ

(π‘Ÿ!)2 π‘₯

2

2π‘Ÿ

β‡’ J0 (x) = 1 βˆ’π‘₯2

22+

π‘₯4

22 .42βˆ’

π‘₯6

22 .42 .62+ β‹―

Page 11: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

If n = 1, J1 (x) = π‘₯

2βˆ’

π‘₯3

22.4+

π‘₯5

22.42.6βˆ’ β‹―

We draw the length of these two functions. Both the functions are oscillatory with a varying period and a decreasing amplitude.

Replacing n by – n in (2), we get J-n (x) = Οƒπ‘Ÿ=0∞ βˆ’1 π‘Ÿ

π‘Ÿ! βˆ’π‘›+π‘Ÿ+1

π‘₯

2

βˆ’π‘›+2π‘Ÿ

Case I. If n is not integer or zero, then complete solution of (1) is

Case II. If n = 0, then y1 = y2 and complete solution of (1) is the Bessel’s function of order zero.

Case III. If n is positive integer, then y2 is not solution of (1). And y1 fails to give a solution for negative values of n. Let us find out the general solution when n is an integer.

Page 12: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

2.5 Bessel’s function of the second kind of

order n

π‘₯2 𝑑2𝑦

𝑑π‘₯2 + π‘₯𝑑𝑦

𝑑π‘₯+ π‘₯2 βˆ’ 𝑛2 𝑦 = 0 …(1)

Let y = u(x) Jn (x) be the second of the Bessel’s equation when n integer.

𝑑𝑦

𝑑π‘₯= u’ Jn + u J’n

𝑑2𝑦

𝑑π‘₯2 = u’’ Jn + 2u’ J’n + u J’’n

Substituting these values of y, y’, yn in (1), we get

x2 (u’’ Jn + 2u’ J’n + u J’’n) + x(u’ Jn + u.J’n) + (x2 – n2) u Jn = 0

β‡’ u [x2 Jnn + x J’n + (x2 – n2) Jn] + x2 u’’ Jn + 2x2 u’ Jn + x u’ Jn = 0 …(2)

β‡’ x2 J’’n + x J’n + (x2 – n2) Jn = 0 [Since Jn is a solution of (1)]

(2) becomes x2 u’’ Jn + 2x2 u’ J’n + xu’ Jn = 0 …(3)

Page 13: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

Dividing (3) by x2 u’ Jn, we have

𝑒𝑛

𝑒′ + 2𝐽𝑛′

𝐽𝑛+

1

π‘₯= 0

(4) Can also be written as …(4)

𝑑

𝑑π‘₯[log𝑒′ + 2

𝑑

𝑑π‘₯[log 𝐽𝑛] +

𝑑

𝑑π‘₯(log π‘₯) = 0

⇒𝑑

𝑑π‘₯[log𝑒′ + 2 log 𝐽𝑛 + log π‘₯] = 0

⇒𝑑

𝑑π‘₯log(𝑒′. 𝐽𝑛

2 π‘₯ = 0 …(5)

Integrating (5), we get

log 𝑒′. 𝐽𝑛2 . π‘₯ = log 𝐢1

β‡’ 𝑒′. 𝐽𝑛2. π‘₯ =𝐢1 β‡’ 𝑒′ =

𝐢1

𝐽𝑛2.π‘₯

…(6)

On integrating (6), we obtain

𝑒 = 𝐢1

𝐽𝑛2 .π‘₯

𝑑π‘₯ +𝐢2

Putting the value of 𝑒 in the assumed solution y = u (x). 𝐽𝑛2(π‘₯), we get

Page 14: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

2.6 RECURRENCE FORMULAE

These formulae are very useful in solving the questions. So, they are to be

committed to memory.

1. x 𝐽𝑛′ = 𝑛𝐽𝑛 βˆ’ π‘₯ 𝐽𝑛+1

2. x 𝐽𝑛′ = βˆ’π‘›π½π‘› + π‘₯ π½π‘›βˆ’1

3. 2 𝐽𝑛′ = π½π‘›βˆ’1 βˆ’ 𝐽𝑛+1

4. 2𝑛 𝐽𝑛 = π‘₯ π½π‘›βˆ’1 + 𝐽𝑛+1

5. 𝑑

𝑑π‘₯π‘₯βˆ’π‘›π½π‘› = βˆ’π‘₯βˆ’π‘› 𝐽𝑛+1

6. 𝑑

𝑑π‘₯π‘₯βˆ’π‘›π½π‘› = π‘₯𝑛 π½π‘›βˆ’1

Page 15: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

Formula I. x 𝐽𝑛′ = 𝑛𝐽𝑛 βˆ’ π‘₯𝐽𝑛+1

Proof. We know that

𝐽𝑛 = Οƒπ‘Ÿ=0∞ βˆ’1 π‘Ÿ

π‘Ÿ! 𝑛+π‘Ÿ+1

π‘₯

2

𝑛+2π‘Ÿ

Differentiating with respect to x, we get

𝐽𝑛′ = Οƒ

βˆ’1 π‘Ÿ 𝑛+2π‘Ÿ

π‘Ÿ! 𝑛+π‘Ÿ+1

π‘₯

2

𝑛+2π‘Ÿβˆ’1 1

2

β‡’ π‘₯𝐽𝑛′ = 𝑛σ

βˆ’1 π‘Ÿ

π‘Ÿ! 𝑛+π‘Ÿ+1

π‘₯

2

𝑛+2π‘Ÿ+ π‘₯ Οƒ

βˆ’1 π‘Ÿ.2π‘Ÿ

2.π‘Ÿ! 𝑛+π‘Ÿ+1

π‘₯

2

𝑛+2π‘Ÿβˆ’1

= π‘₯𝐽𝑛 + π‘₯ Οƒπ‘Ÿ=0∞ βˆ’1 π‘Ÿ

π‘Ÿβˆ’1 ! 𝑛+π‘Ÿ+1

π‘₯

2

𝑛+2π‘Ÿβˆ’1

= 𝑛𝐽𝑛 + π‘₯ σ𝑠=0∞ βˆ’1 𝑠+1

𝑠! 𝑛+𝑠+2

π‘₯

2

𝑛+2π‘ βˆ’1[Putting r – 1 = s]

= 𝑛𝐽𝑛 βˆ’ π‘₯ σ𝑠=0∞ βˆ’1 𝑠

𝑠! 𝑛+1 +𝑠+1

π‘₯

2

𝑛+1 +2𝑠

π‘₯𝐽𝑛′ = 𝑛𝐽𝑛 βˆ’ π‘₯𝐽𝑛+1 Proved.

Page 16: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

Formula II. π‘₯𝐽𝑛′ = βˆ’π‘›π½π‘› + π‘₯π½π‘›βˆ’1

Proof. We know that 𝐽𝑛 = Οƒπ‘Ÿ=0∞ βˆ’1 π‘Ÿ

π‘Ÿ! 𝑛+π‘Ÿ+2

π‘₯

2

𝑛+2π‘Ÿ

Differentiating w.r.t. β€˜x’, we get 𝐽𝑛′ = Οƒπ‘Ÿ=0

∞ βˆ’1 π‘Ÿ 𝑛+2π‘Ÿ

π‘Ÿ! 𝑛+π‘Ÿ+1

π‘₯

2

𝑛+2π‘Ÿβˆ’1 1

2

𝐽𝑛′ = Οƒπ‘Ÿ=0

∞ βˆ’1 π‘Ÿ 𝑛+2π‘Ÿ

π‘Ÿ! 𝑛+π‘Ÿ+1

π‘₯

2

𝑛+2π‘Ÿ= Οƒπ‘Ÿ=0

∞ βˆ’1 π‘Ÿ 2𝑛+2π‘Ÿ βˆ’π‘›

π‘Ÿ! 𝑛+π‘Ÿ+1

π‘₯

2

𝑛+2π‘Ÿ

= Οƒπ‘Ÿ=0∞ βˆ’1 π‘Ÿ 2𝑛+2π‘Ÿ

π‘Ÿ! 𝑛+π‘Ÿ+1

π‘₯

2

𝑛+2π‘Ÿβˆ’ 𝑛 Οƒπ‘Ÿ=0

∞ βˆ’1 π‘Ÿ

π‘Ÿ! 𝑛+π‘Ÿ+1

π‘₯

2

𝑛+2π‘Ÿ

= Οƒπ‘Ÿ=0∞ βˆ’1 π‘Ÿ2

π‘Ÿ! 𝑛+π‘Ÿ

π‘₯

2

𝑛+2π‘Ÿβˆ’ 𝑛𝐽𝑛

= π‘₯

π‘Ÿ=0

βˆžβˆ’1 π‘Ÿ

π‘Ÿ! 𝑛 βˆ’ 1 + π‘Ÿ + 1

π‘₯

2

π‘›βˆ’1+2π‘Ÿ

βˆ’ 𝑛𝐽𝑛

β‡’ 𝒙𝑱𝒏′ = π’™π‘±π’βˆ’πŸ βˆ’ 𝒏𝑱𝒏

Page 17: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

Formula III. πŸπ‘±π’β€² = π‘±π’βˆ’πŸ βˆ’ 𝑱𝒏+𝟏

Proof.

We know that

π‘₯𝐽𝑛′ = 𝐽𝑛 βˆ’ π‘₯𝐽𝑛+1 …(1) (Recurrence formula I)

π‘₯𝐽𝑛′ = βˆ’π‘›π½π‘› + π‘₯π½π‘›βˆ’1 …(2) (Recurrence formula II)

Adding (1) and (2), we get

2π‘₯𝐽𝑛′ = βˆ’π‘₯𝐽𝑛+1 + π‘₯π½π‘›βˆ’1 β‡’ 2𝐽𝑛

β€² = π½π‘›βˆ’1 βˆ’ 𝐽𝑛+1

Page 18: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

Formula IV. 2𝑛𝐽𝑛 = π‘₯ (π½π‘›βˆ’1 + 𝐽𝑛+1)

Proof.

We know that

π‘₯𝐽𝑛′ = 𝑛𝐽𝑛 βˆ’ π‘₯𝐽𝑛+1 …(1) (Recurrence formula I)

π‘₯𝐽𝑛′ = βˆ’π‘›π½π‘› + π‘₯π½π‘›βˆ’1 …(2) (Recurrence formula II)

subtracting (2) from (1), we get

0 = 2 𝑛 𝐽𝑛 βˆ’π‘₯𝐽𝑛+1 βˆ’π‘₯π½π‘›βˆ’1

β‡’ 2 𝑛 𝐽𝑛 = π‘₯ (π½π‘›βˆ’1 +𝐽𝑛+1) …(3)

Page 19: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

Formula V.𝒅

𝒅𝒙(x-n. Jn) = -x-n Jn+1

Proof. We know that π‘₯𝐽𝑛′ = 𝑛𝐽𝑛 βˆ’ π‘₯𝐽𝑛+1

(Recurrence formula I)

Multiplying by x-n-1, we obtain x-n 𝐽𝑛′ = nx-n-1 Jn – x-n Jn+1

i.e., x-n 𝐽𝑛′ = nx-n-1 Jn =– x-n Jn+1

⇒𝑑

𝑑π‘₯(x-n Jn) = - x-n Jn + 1

Page 20: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

Formula VI.𝒅

𝒅𝒙(xn Jn) = xn Jn-1

Proof.

We know that x-n 𝐽𝑛′ = -nJn + x Jn-1 (Recurrence formula II)

Multiplying by xn+1, we have

xn 𝐽𝑛′ = -nxn-1 Jn + xn Jn-1 i.e., xn 𝐽𝑛

β€² +nxn-1 Jn = xn Jn-1

⇒𝒅

𝒅𝒙(xn Jn) = xn Jn-1

Page 21: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

2.7 ORTHOGONALITY OF BESSEL

FUNCTION

Proof. We know that

π‘₯2 𝑑2𝑦

𝑑π‘₯2 + π‘₯𝑑𝑦

𝑑π‘₯+ 𝛼2π‘₯2 βˆ’ 𝑛2 𝑦 = 0 …(1)

β‡’ π‘₯2 𝑑2𝑧

𝑑π‘₯2 + π‘₯𝑑𝑧

𝑑𝑑π‘₯+ 𝛽2π‘₯2 βˆ’ 𝑛2 𝑧 = 0 …(2)

Solution of (1) and (2) are y = Jn (𝛼 π‘₯), z = Jn (𝛽 π‘₯) respectively.

Multiplying (1) by 𝑧

π‘₯and (2) by –

𝑦

π‘₯and adding, we get

π‘₯ 𝑧𝑑2𝑦

𝑑π‘₯2 βˆ’ 𝑦𝑑2𝑧

𝑑π‘₯2 + 𝑧𝑑𝑦

𝑑π‘₯βˆ’ 𝑦

𝑑𝑧

𝑑π‘₯+ 𝛼2 βˆ’π›½2 π‘₯𝑦𝑧 = 0.

⇒𝑑

𝑑π‘₯π‘₯ 𝑧

𝑑𝑦

𝑑π‘₯βˆ’ 𝑦

𝑑𝑧

𝑑π‘₯+ 𝛼2 βˆ’π›½2 π‘₯𝑦𝑧 = 0 …(3)

Page 22: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

Integrating (3) w.r.t. β€˜x’ between the limits 0 and 1, we get

𝑑

𝑑π‘₯π‘₯ 𝑧

𝑑𝑦

𝑑π‘₯βˆ’ 𝑦

𝑑𝑧

𝑑π‘₯ 0

1+ 𝛼2 βˆ’π›½2 0

1π‘₯ 𝑦 𝑧 𝑑π‘₯ = 0

β‡’ 𝛽2 βˆ’π›Ό2 01π‘₯ 𝑦 𝑧 𝑑π‘₯ = π‘₯ 𝑧

𝑑𝑦

𝑑π‘₯βˆ’ 𝑦

𝑑𝑧

𝑑π‘₯ 0

1= 𝑧

𝑑𝑦

𝑑π‘₯βˆ’ 𝑦

𝑑𝑧

𝑑π‘₯ π‘₯=1…(4)

Putting the values of y = Jn (𝛼 π‘₯), 𝑑𝑦

𝑑π‘₯= 𝛼 𝐽𝑛

β€² 𝛼π‘₯ , 𝑧 = 𝐽𝑛 𝛽π‘₯ ,𝑑𝑧

𝑑π‘₯= 𝛽, 𝐽𝑛

β€² 𝛽π‘₯ in (4), we get

𝛽2 βˆ’ 𝛼2 01π‘₯𝐽𝑛 𝛼π‘₯ . 𝐽𝑛 𝛽π‘₯ 𝑑π‘₯ = 𝛼𝐽𝑛

β€² 𝛼π‘₯ 𝐽𝑛 𝛽π‘₯ = 𝛽𝐽𝑛′ 𝛽π‘₯ 𝐽𝑛 𝛼π‘₯ π‘₯=1

= 𝛼𝐽𝑛′ 𝛼 𝐽𝑛 𝛽 βˆ’ 𝛽𝐽𝑛

β€² 𝛽 𝐽𝑛 𝛼 …(5)

Since 𝛼, 𝛽 are the roots of Jn (x) = 0, so Jn 𝛼 = Jn 𝛽 = 0

Page 23: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

Putting the values of Jn (𝛼) = Jn (𝛽) = 0 in (5), we get

(𝛼2βˆ’π›½2) π‘₯1

0 Jn (𝛼π‘₯). Jn (𝛽π‘₯) dx = 0

β‡’ π‘₯1

0 Jn (𝛼π‘₯). Jn (𝛽π‘₯) dx = 0 Proved.

We also know that Jn (𝛼) = 0. Let 𝛽 be a neighboring value of 𝛼, which tends to 𝛼.

Then

1 '

2 2

0

0 ( ). ( )lim ( ). ( ) lim n n

n n

J JxJ x J x dx

β†’ β†’

+=

βˆ’

As the limit is of the form 0

0, we apply L’ Hopital’s rule

1 ' '2

2 '

0

0 ( ). ( ) 1( ) lim ( )

2 2

n nn n

J JxJ x dx J

β†’

+ = = =

Proved.

Page 24: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

2.8 A GENERATING FUNCTION FOR

Jn (x)

Prove that Jn (x) is the coefficient of zn in the expansion of 𝑒π‘₯

2π‘§βˆ’

1

𝑧

Proof. We know that et = 1 + t + 𝑑2

2!+

𝑑3

3!+ β‹―

𝑒π‘₯𝑧

2 = 1 +π‘₯𝑧

2+

1

2!

π‘₯

2𝑧

2βˆ’

1

3!

π‘₯

2𝑧

3+ β‹― …(1)

𝑒π‘₯

2𝑧 = 1 βˆ’π‘₯

2𝑧+

1

2!

π‘₯

2𝑧

2βˆ’

1

3!

π‘₯

2𝑧

3+ β‹― …(2)

On multiplying (1) and (2), we get

𝑒π‘₯

2𝑧1

𝑧 = 1 +π‘₯𝑧

2+

1

2!

π‘₯𝑧

2

2+

1

3!

π‘₯𝑧

2

3+ β‹― Γ— 1 βˆ’

π‘₯

2𝑧+

1

2!

π‘₯

2𝑧

2βˆ’

1

3!

π‘₯

2𝑧

3+ β‹― …(3)

Page 25: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

The coefficient of zn in the product of (3), we get

=1

𝑛 ! π‘₯

2 𝑛

βˆ’1

(𝑛+1)! π‘₯

2 𝑛+2

+1

2!(𝑛+2)! π‘₯

2 𝑛+4

βˆ’ β‹― = Jn (x)

Similarly, coefficient of z-n in the product of (3) = J-n(x)

∴ 𝑒π‘₯

2 𝑧

1

𝑧 = J0 + z J1 + z2 J2 + z3 J3 + … + z-1 J-1 + z-2 J-2 + z-3 J-3 + …

1

2 ( )

xz

nz

n

n

e z J x

=βˆ’

=

For this reason 𝑒π‘₯

2 𝑧

1

𝑧 is known as the generating function of Bessel’s functions.

Proved.

Page 26: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

2.9 SOME EXAMPLES

Example 1. Show that Bessel’s Function Jn(x) is an even function when n is even and is

odd function when n is odd.

Solution. We know that

2

0

( 1)( ) ...(1)

2! 1

n rr

n

r

xJ x

r n r

+

=

βˆ’ =

+ +

Replacing x by – x in (1), we get

2

0

( 1)( ) ...(2)

2! 1

n rr

n

r

xJ x

r n r

+

=

βˆ’ βˆ’ βˆ’ =

+ +

Case I. If n is even, then n + 2r is even β‡’ βˆ’π‘₯

2 𝑛+2π‘Ÿ

= π‘₯

2 𝑛+2π‘Ÿ

Thus (2), becomes

Page 27: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

2

0

( 1)( )

2! 1

n rr

n

r

xJ x

r n r

+

=

βˆ’ βˆ’ =

+ +

= Jn (x) πΉπ‘œπ‘Ÿ 𝑒𝑣𝑒𝑛 π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘›

𝑓(βˆ’π‘₯) = 𝑓(π‘₯)

Hence, Jn (x) is even function

Case II. If n is odd, then n + 2r is odd β‡’ βˆ’π‘₯

2 𝑛+2π‘Ÿ

= βˆ’ π‘₯

2 𝑛+2π‘Ÿ

Thus (2). Becomes

2

0

( 1)( )

2! 1

n rr

n

r

xJ x

r n r

+

=

βˆ’ βˆ’ = βˆ’

+ +

= βˆ’ Jn (x) πΉπ‘œπ‘Ÿ π‘œπ‘‘π‘‘ π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘›

𝑓(βˆ’π‘₯) = βˆ’π‘“(π‘₯)

Proved.

Hence, Jn (x) os odd function.

Page 28: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

Example 2. Prove that:

x 0

( ) 1lim ;( 1).

2 1

n

n n

J xn

x nβ†’= βˆ’

+

Solution. From the equation (2) of Article 29.3 on page 798, we know that

Jn (x) = π‘₯𝑛

2𝑛 𝑛+1 1 βˆ’

π‘₯2

2.(2𝑛+2)+

π‘₯4

2.4(2𝑛+2)(2𝑛+4)βˆ’ β‹―

On taking limit on both sides when x β†’ 0, we get

2 4

x 0 x 0

( ) 1lim lim 1 ...

2.(2 2) 2.4.(2 2)(2 4)2 1

n

n n

J x x x

x n n nn→ →

= βˆ’ + βˆ’

+ + ++

= 1

2𝑛 𝑛+1

Page 29: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

Example 3. Find the value of J-1 (x) + J1 (x).

Solution. By using Recurrence relation IV for Jn (x) is

2n Jn = x (Jn – 1 + Jn + 1)

Jn – 1 (x) + Jn + 1 (x) = 2𝑛

π‘₯Jn (x)

Put n = 0

J-1(X) + J1(x) = 0

Page 30: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

Example 4.Prove that

Formula V.𝒅

𝒅𝒙(x-n. Jn) = -x-n Jn+1

Proof. We know that π‘₯𝐽𝑛′ = 𝑛𝐽𝑛 βˆ’ π‘₯𝐽𝑛+1 (Recurrence formula I)

Multiplying by x-n-1, we obtain x-n 𝐽𝑛′ = nx-n-1 Jn – x-n Jn+1

i.e., x-n 𝐽𝑛′ = nx-n-1 Jn =– x-n Jn+1

⇒𝑑

𝑑π‘₯(x-n Jn) = - x-n Jn + 1

Page 31: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

THANKS