mathematical models for synthetic...

86
Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM Naples / I, [email protected] Jörg Stelling, ETH Zurich / CH, [email protected] Synthetic Biology 3.0, Zurich, June 2007

Upload: others

Post on 10-Jun-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

Mathematical Models for Synthetic Biology

Diego di Bernardo, TIGEM Naples / I, [email protected]

Jörg Stelling, ETH Zurich / CH, [email protected]

Synthetic Biology 3.0, Zurich, June 2007

Page 2: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

Synthetic Biology Vision

Rational forward-

engineering design of ...

... robust / reliable

biology-based parts and

modules with

standardized interfaces

allowing plug-and-play ...

... and their combination

into complex systems.

Page 3: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

Engineering Design & Synthetic Biology

Novel design methods / tools because of 'sloppyness', sto-

chasticity, and limited insulation of components in biology.

NAND Gate

Page 4: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

Circuits: Model-based Design Process

Possible design alternatives → Qualitative behavior

Design for quantitative performance specification

Design for reliable function → Robustness

Formalization of the design problem & goals

Page 5: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

Steps in Model Development

Page 6: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

Steps in Model Development

Level of detail for the mathematical descriptions ?

Modeling approach (qualitative / mechanistic / ...) ?

Experimental data for identification & validation ?

Most important aspects of the system ?

Complete knowledge on components / interactions ?

Exact mechanisms of interactions ?

Page 7: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

Modeling Approaches

Interaction-based

Constraint-based

Mechanism-based

A + B C

stoichiometry

A + B Ck

-1

k1

biochemistry

A BC

topology Graph theory

Structural analysis

Dynamic analysis

Page 8: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

Modeling Approaches: Comparison

Usefulness for design

Interaction-based

Constraint-based

Mechanism-based

Level of detail / accuracy

Net

wor

k co

mpl

exity

Page 9: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

Dynamic Systems Analysis: Approach

Analyze engineered circuits as dynamic (bio)chemical reaction networks → Description of reaction kinetics.

Based on first principles: Conservation of mass (and energy and possibly other constraints).

Theoretical background: Chemical kinetic theory.

(Ordinary) differential equations / Stochastic processes.

Page 10: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

Reaction Kinetics: Law of Mass Action

Law of mass action → Concentrations of reacting molecules in thermodynamic equilibrium.

Product of concentrations taken to the power of the stoichiometric factors (reaction order) equals a constant (dependent on temperature, pressure, ...).

Example: 1 C1 A + 2 B

[ A ]⋅[ B ]2

[C ]= k T , p

Page 11: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

Reaction Kinetics: Dynamic Systems

Reaction network → System of elementary reactions:

Law of mass action → System of differential equations:

Equivalence to: d c t dt

= N⋅r t

1, j⋅X 1n , j⋅X n

k j

1, j⋅X 1n , j⋅X n

dci t dt

= ∑j=1

q

k j⋅i , j−i , j⋅∏l

c l t l , j

Page 12: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

Reaction Kinetics: Dynamic Models

Reactand concentrations c(t) → To be determined.

Stoichiometric matrix N → Systems invariant.

Reaction rates r → Time- and state-dependent:

Kinetic rate law r(∙) → From reaction structure.

Parameters (kinetic constants) p → Identification.

Inputs u(t) → Additional (time-varying) influences.

d c t dt

= N⋅r c t ,u t , p , t

Page 13: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

ODE Models: General Form

System of ordinary, first-order, linear or nonlinear differential equations (ODEs) characterized by:

Right hand sides f(x(t),u(t),p) = function in .

System states x(t) = nx x 1 state vector.

Parameters p = np x 1 parameter set.

Inputs u(t) = nu x 1 input vector.

ℝnx

d x t dt

= f x t ,u t , p , t

Page 14: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

ODE Models: Solution

Existence and uniqueness of solution to the initial value

problem (IVP) of finding x(t) with given x0 guaranteed.

Three possible ''solution'' methods:

Analytical → Only applicable for simple systems.

Numerical → Always possible for well-posed IVPs.

Graphical → Qualitative analysis methods.

d x t dt

= f x t , p , t , x t0=x0

Page 15: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

Example: Two-step Repressor Cascade

Zas P2

R2

M. Kaern & R. Weiss, in Szallasi / Periwal / Stelling (eds.) Systems modelling in cell biology, MIT Press (2006).

Signal-response characteristics → Promoter selection.

Low-pass filter: High I levels – low Z synthesis rate.

Page 16: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

Example: Two-step Repressor Cascade

d [R2 ]dt

= a1⋅k1k1⋅[ I 1 ] /K 1

n1

1[ I 1 ]/K 1n1−d 1⋅[R2 ]

d [Z ]dt = a2⋅k 2

k2

1[R2] /K 2n2−d 2⋅[ Z ]

d [R2 ]dt

= a1⋅k1k1⋅[ I 1 ] /K1

n1

1[ I 1 ]/K 1n1−d 1⋅[R2 ]

d [Z ]dt = a2⋅k 2

k2

1[R2] /K 2n2−d 2⋅[ Z ]

Design Cycle

Page 17: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

Example: Two-step Repressor Cascade

M. K

aern

& R

. Wei

ss, i

n S

zalla

si /

Per

iwal

/ S

tellin

g (e

ds.)

Sys

tem

s m

odel

ling

in c

ell

biol

ogy,

MIT

Pre

ss (2

006)

.

d [R2 ]dt

= a1⋅k1k1⋅[ I 1 ]/K 1

n1

1[ I 1 ]/K1n1−d 1⋅[ R2 ]

d [Z ]dt

= a2⋅k 2k 2

1[ R2 ]/K 2n2−d 2⋅[Z ]

Page 18: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

Example: Two-step Repressor Cascade

Low constitutive activity of P1 and P

2.

M. K

aern

& R

. Wei

ss, i

n S

zalla

si /

Per

iwal

/ S

tellin

g (e

ds.)

Sys

tem

s m

odel

ling

in c

ell

biol

ogy,

MIT

Pre

ss (2

006)

.

d [R2 ]dt

= a1⋅k 1k 1⋅[ I 1 ]/K 1

n1

1[ I 1 ]/K 1n1−d 1⋅[R2 ]

d [Z ]dt = a2⋅k 2

k 2

1[R2 ]/K 2n2−d 2⋅[Z ]

Page 19: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

Example: Two-step Repressor Cascade

Constitutive degradation of all proteins.

M. K

aern

& R

. Wei

ss, i

n S

zalla

si /

Per

iwal

/ S

tellin

g (e

ds.)

Sys

tem

s m

odel

ling

in c

ell

biol

ogy,

MIT

Pre

ss (2

006)

.

d [R2 ]dt

= a1⋅k 1k 1⋅[ I 1 ]/K 1

n1

1[ I 1 ]/K 1n1−d 1⋅[R2 ]

d [Z ]dt = a2⋅k 2

k 2

1[R2 ]/K 2n2−d 2⋅[Z ]

Page 20: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

Example: Two-step Repressor Cascade

Binding of R1 and I

1 → Cooperative transcriptional activation.

M. K

aern

& R

. Wei

ss, i

n S

zalla

si /

Per

iwal

/ S

tellin

g (e

ds.)

Sys

tem

s m

odel

ling

in c

ell

biol

ogy,

MIT

Pre

ss (2

006)

.

d [R2 ]dt

= a1⋅k 1k 1⋅[ I 1 ]/K 1

n1

1[ I 1 ]/K 1n1−d 1⋅[R2 ]

d [Z ]dt = a2⋅k 2

k 2

1[R2 ]/K 2n2−d 2⋅[Z ]

Page 21: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

Example: Two-step Repressor Cascade

Cooperative transcriptional repression of P2 by R

2.

M. K

aern

& R

. Wei

ss, i

n S

zalla

si /

Per

iwal

/ S

tellin

g (e

ds.)

Sys

tem

s m

odel

ling

in c

ell

biol

ogy,

MIT

Pre

ss (2

006)

.

d [R2 ]dt

= a1⋅k 1k 1⋅[ I 1 ]/K 1

n1

1[ I 1 ]/K 1n1−d 1⋅[R2 ]

d [Z ]dt = a2⋅k 2

k 2

1[R2 ]/K 2n2−d 2⋅[Z ]

Page 22: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

Circuit Models: Generalizations

Derivation of rate laws or equilibrium binding concen-trations for structurally similar reaction networks yields similar basic functional terms.

Example: Gene G bound by transcription factor T:

Without repression:

Competitive repressor R:

Cooperative binding:

[G⋅T ] =[G ]T [T ]

[T ]K 1[T ]/K I

[G⋅T ] =[G ]T [T ][T ]K

[G⋅T ] = [G ]T [T ]n

[T ]nK n

Page 23: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

Circuit Models: Generalizations

General model structure for (simple) genetic circuits:

■Activation of expression of Xi by X

j → μ = 1.

■Repression of expression of Xi by X

j → μ = 0.

■Always: Basal expression / constitutive degradation.

d [ X i ]dt

= ai⋅k i k i⋅[ X j ]

n/K i

n

1[ X j ]n/K i

n− d i⋅[ X i ]

Page 24: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

Possible design alternatives → Qualitative behavior

Design for quantitative performance specification

Design for reliable function → Robustness

Formalization of the design problem & goals

Page 25: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

Feedback Systems

Feedback of module's output signal on the input signal.

Main categories: Positive feedback / negative feedback.

Essential for: Controllers, switches, oscillators, ...

OutputBranch 1Signal

+/-

Page 26: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

Feedback Systems: Simple Types

Patterns of interactions between two components:

Positive or negative (net) effect of interactions:

X Y

+

+

X Y

_

----

_

X Y

_

+

--X Y

_

+

--

Positive

Feedback

Mutual

Antagonism

Negative

Feedback

d x t dt

= f x t ,ut , p , t ⇒∂ f i x t ,ut , p , t

∂ x j≠0

Page 27: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

Example Switch: System

Component X: Inactivates component Y → YP.

Component Y: Degrades component X.

Input signal u: Control of production rate for X.

X Y

_

----

_

Abstraction

YP Y

E

u

X

Page 28: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

Example Switch: ODE Model

E

u

X

Assuming constant total concentration of Y → YT:

d [ X ]dt

= k 1⋅u−k 2 'k 2⋅[Y ] [ X ]

d [Y ]dt

=k 3⋅[ E ] [Y ]T−[Y ]K M3[Y ]T−[Y ]

−k 4 [ X ] [Y ]K M4[Y ]

R4

R3

R2

R1

YP Y

Page 29: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

Example Switch: Numerical Solution

Assume: Different initial concentrations of X / Y.

Convergence to qualitatively different solutions.

Page 30: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

Example Switch: Graphical 'Solution'

Derivatives dx(t)/dt define vector field in state space.

Qualitative analysis for two-dimensional systems:

Nullclines: Zero velocity in one dimension.

Steady states: Zero velocity in both dimensions.

x t0=x 0

d x t dt

= f x t , p , t x2

x1

xx0

x(t)

Page 31: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

Example Switch: Nullclines

States with zero velocity in one of the directions (nullclines):

d [ X ]dt

= 0 ⇒ [Y ] =k 1⋅u−k 2 '⋅[ X ]

k 2⋅[ X ]

d [Y ]dt

= 0 ⇒k 3⋅[E ] [Y ]T−[Y ]K M3[Y ]T−[Y ]

=k 4 [ X ] [Y ]K M4[Y ]

E

u

Xd [ X ]

dt= k 1⋅u−k 2 'k 2⋅[Y ] [ X ]

d [Y ]dt

=k 3⋅[ E ] [Y ]T−[Y ]K M3[Y ]T−[Y ]

−k 4 [ X ] [Y ]K M4[Y ]R

4

R3

R2

R1

YP Y

Page 32: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

Example Switch: Y-Nullcline

Y-nullcline in original variables:

Introduction of new variables:

Rescaled equation for Y-nullcline:

v11− yJ 2 y = v2⋅y J 11− y

k 3⋅[E ] [Y ]T−[Y ]K M3[Y ]T−[Y ]

=k 4 [ X ] [Y ]K M4[Y ]

y =[Y ][Y ]T

, v1 = k 3⋅[E ] , v2 = k 4⋅[ X ]

J 1 =K M3

[Y ]T, J 2 =

K M4

[Y ]TE

u

X

R4

R3

R2

R1

YP Y

Page 33: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

Example Switch: Y-Nullcline

Rescaled equation for Y-nullcline:

Solution in new variables → Goldbeter-Koshland function:

B = v2−v1v2 J 1v1 J 2

y = [Y ][Y ]T

, v1 = k3⋅[ E ] , v2 = k4⋅[ X ]

J 1 =K M3

[Y ]T, J 2 =

K M4

[Y ]T

v11− yJ 2 y = v2⋅y J 11− y

y = G v1 , v2 , J 1 , J 2 =2 v1 J 2

BB2−4 v2−v1v1 J 2

E

u

X

R4

R3

R2

R1

YP Y

Page 34: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

Example Switch: Y-Nullcline

Sigmoidal function of input X → Switch-like for 0 < J1,J

2 << 1.

y =[Y ][Y ]T

, v1 = k3⋅[ E ] , v2 = k4⋅[ X ] , J 1 =K M3

[Y ]T, J 2 =

K M4

[Y ]T

y = G v1 , v2 , J 1 , J 2 =2 v1 J 2

BB2−4v2−v1v1 J 2

, B = v2−v1v2 J 1v1 J 2

J1,J

2 large

J1,J

2 small

[Y]/[

Y]T

[X]

Page 35: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

Example Switch: Y-Nullcline

General: Switch-like functions using reversible reactions.

Necessary: High affinities and / or excess of total regulator.

y =[Y ][Y ]T

, v1 = k3⋅[ E ] , v2 = k4⋅[ X ] , J 1 =K M3

[Y ]T, J 2 =

K M4

[Y ]T

J1,J

2 large

J1,J

2 small

YP Y

v2

v1

R4

R3

[Y]/[

Y]T

[X]

Page 36: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

Example Switch: Qualitative Behavior

Exampletrajectory

X-Nullcline

Y-Nullcline

Stablesteadystate

Unstablesteadystate

Stablesteadystate

Page 37: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

Classification of steady states (nodes) according to directions of the vector field:

unstable node stable node saddle point (unstable)

Stability: Global versus local (w.r.t. 'small' perturbations).

Example Switch: Stability

Page 38: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

Example Switch: Response to Input

X-Nullcline:

Bifurcation: Change of the number of attractors in a (nonlinear) dynamic system upon parameter changes.

[X

] ss

ucrit1

ucrit2u

YP Y

E

u

Xstable

unstable

stable

d [ X ]dt

= 0 ⇒ [Y ] =k 1⋅u−k 2 '⋅[ X ]

k 2⋅[ X ]

Page 39: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

Example Switch: Response to Input

[X

] ss

ucrit1

ucrit2u

YP Y

E

u

Xstable

unstable

stable

For u < ucrit1

and u > ucrit2

: Globally monostable system.

For ucrit1

≤ u ≤ ucrit2

: Bistable system → Switch possible.

Page 40: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

History dependence of the system's state (here with respect to changes in the input): Hysteresis.

Functional implication for circuit behavior: Memory.

Example Switch: Response to Input

[X

] ss

ucrit1

ucrit2u

YP Y

E

u

X

Page 41: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

Switches: Generalization

Analysis of alternative designs for biological switches.

Phase plane analysis, multiplicity of steady states.

Mechanisms: Cooperativity (at least in one branch).

J. C

herr

y &

F. A

dler

, J. t

heor

. Bio

l. 20

3:11

7 (2

000)

.

X Y

_

----

_[Y ]

[ X ]

Page 42: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

Feedback Systems

Main categories: Positive feedback / negative feedback.

Essential for: Controllers, switches, oscillators, ...

And beyond switches relying on mutual repression ... ?

OutputBranch 1Signal

+/-

Page 43: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

Positive Feedback: Functions

Simple positive feedback systems:

Multiple (stable / unstable) steady states possible.

Phenomenon in nonlinear systems: Hysteresis.

Functions in biological networks:

Discrete decisions from continuous signals.

Irreversibility of decisions, e.g. in development.

Page 44: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

Positive Feedback: Realizations

Feedback: γ

M. Kaern & R. Weiss, in Szallasi / Periwal / Stelling (eds.) Systems modelling in cell biology, MIT Press (2006).

Page 45: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

Negative Feedback: Functions

Simple negative feedback systems:

Approaching steady state (transient dynamics).

Existence of a unique steady state.

Functions in biological networks:

Set point regulation → Homeostasis.

Rejection of external or internal perturbations.

Page 46: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

Negative Feedback: Realization

From: Becskei & Serrano (2000) Nature 405: 591-593.

Page 47: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

Feedforward Systems

Common input and output, propagation via separate paths.

Behavior depends on signs and timing for the branches.

Branch 2

Output

Branch 1

Signal

+/-

+/-

Page 48: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

Feedforward Systems: Functions

Positive branch OR delayed negative branch: Pulse generator. Negative low-pass NOR negative high-pass: Bandpass filter. Positive branch AND positive branch: Low-pass frequency filter. Many others: Speed-up of signaling, signal filtering, ...

Output

Branch 2Branch 1

Signal

From: Shen-Orr et al. (2002) Nat. Genetics 31: 64-68.

Page 49: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

Complex Circuits: Basic Approaches

Alternative #1: Augmentations at the module level:

Additional feedback / feedforward loops.

Aim: More complicated systems dynamics.

Alternative #2: Combination of modules:

Modules with defined input / output behavior.

More complicated circuits through linking basic elements (cascades, switches, oscillators, ...).

Page 50: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

Example: Pattern Generator

Combination of simple standard building blocks: Genetic filters.

Design: Modularization and specific interconnections.

Signal processing device

High-pass filter

Low-pass filterOutput device

Input device

Page 51: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

Example: Repressilator

Proof-of-principle for oscillator design, yet:

Stable oscillations not achieved.

High sensitivity to molecular noise.

M. Elowitz & S. Leibler, Nature 403:335 (2000).

Page 52: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

Challenges: Models & Reality

Possible design alternatives → Qualitative behavior

Design for quantitative performance specification

Design for reliable function → Robustness

Formalization of the design problem & goals

How to analyze performance?

How to obtain parameters?

How to deal with noise?

Page 53: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

Further Reading

M. Kaern & R. Weiss. Synthetic gene regulatory systems. In:

Szallasi / Periwal / Stelling (eds.) System modeling in cell biology.

(MIT Press, Cambridge / MA) (2006).

J.J. Tyson, K.C. Chen & B. Novak. Sniffers, buzzers, toggles and

blinkers: dynamics of regulatory and signaling pathways in the cell.

Curr Opin Cell Biol. 15, 221 – 231 (2003).

J.L. Cherry & F.R. Adler. How to make a biological switch. J. theor.

Biol. 203: 117 – 133 (2000).

E. Andrianantoandro, S. Basu, D. K. Karig & R. Weiss. Synthetic

biology: new engineering rules for an emerging discipline.

Molecular Systems Biology 2: 0028 (2006).

Page 54: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

dibernardo.tigem.it1

Synthetic Biology 3.0

Reverse-engineering gene networks

Diego di BernardoTIGEM

Telethon Institute of GEnetics and Medicine

www.tigem.it

Page 55: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

dibernardo.tigem.it2

Overview:

• Networks in Biology

• Reverse-engineering gene networks of unknown topology(de novo)

• Parametrisation of network with known topology

Page 56: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

dibernardo.tigem.it3

Gene Networks

cell membrane

metabolites

proteins

RNA

genes

transcriptnetworks

proteinnetworks

metabolicnetworks

Our focus: methods to decode transcription regulation networks

Page 57: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

dibernardo.tigem.it4

How can we describe gene interactions: Network theory

• The cell is the result of many sub-components working together• Graph (network) theory is useful to describe such systems• Definitions:

– graph G={V,E} where V is a set of verteces ornodes, and E is a set of edges

– degree k: number of edges connected to a node– digraph: the edges have a direction– P(k) degree distributin: probability that a node has

degree k: P(k)=N(k)/N– C(k) clustering: if node A is connected to node B, and

B to C, are A and C connected?

Barabasi et al, Nature Review Genetics, 2004, 5:101: http://www.nd.edu/~networks/PDF/Wuchty03_NatureGenetics.pdf

Page 58: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

dibernardo.tigem.it5

Types of network

• Random networks:– Node have similar degrees

• Scale-free networks:– P(k)=k-g few nodes have

a lot of edges (hubs)– Internet, gene networks,

social networks• Hierarchical networks

– Modules– Scale-free

Barabasi et al, Nature Review Genetics, 2004, 5:101: http://www.nd.edu/~networks/PDF/Wuchty03_NatureGenetics.pdf

Page 59: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

dibernardo.tigem.it6

Biological networks

• Biological processes can be represented as networks:– Transcriptional networks (protein-DNA)=digraph

• Nodes: genes and proteins• Edges: a TF activaes/inhibits a gene

– Protein-protein networks = graph• Nodes: proteins• Edges: the two proteins interact

– Metabolic networks:• Nodes: metabolites• Edges: there is an enzyme transforming the two

products

Page 60: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

dibernardo.tigem.it7

Why “de novo”? example of transcriptional network (E. coli):

• From the structure of the network we canlearn its function.

• For synthetic biology: what are the genes thatwe “replace” in the cell doing?

Page 61: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

dibernardo.tigem.it8

What info can we gain? protein-protein interaction network (yeast S. cerevisiae)

Page 62: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

dibernardo.tigem.it9

Reverse engineering (or inference) gene networks:

?Unknown network Inferred network

Page 63: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

dibernardo.tigem.it10

“System Identification” or “reverse engineering”

INPUT(S) OUTPUT(S)

Input: perturbations to the system (i.e. gene overexpression)

Output: measure response to perturbations (40’000 genes)

?

Page 64: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

dibernardo.tigem.it11

INPUT(S) OUTPUT(S)

To infer a network means to find what is inside the “black box”

Page 65: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

dibernardo.tigem.it12

Measuring cell activity: experimental methods

• We need to measure input and output of the cell to tackle theidentification process:– There are at least 40’000 genes, i.e. 40’000 species of

mRNA and 40’000 species of proteins…and counting– A “revolution” has been the creation of microarrays to

measure mRNAs levels simultaneously for all the genes– This is not yet possible for proteins or metabolites…but

we are almost there…

Page 66: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

dibernardo.tigem.it13

Reverse engineering gene networks

Goal: Learn structure and function from expression data

Page 67: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

dibernardo.tigem.it14

Reverse-engineering networks can help in understanding thedisease:

?

Unknown network Inferred “healthy” network Inferred “disease” network

Page 68: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

dibernardo.tigem.it15

Methods to reverse-engineer gene networks:

• Given the experimental data, how can we reverse-engineerthe network?

Page 69: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

dibernardo.tigem.it16

Reverse-engineering strategy:

• Choose a model• Choose a fit criterion (cost function) to measure the fit of the model to the data• Define a strategy to find the parameters that best fit the data (i.e. that minimise

cost function)• Perform appropriate experiments to collect the experimental data:

Page 70: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

dibernardo.tigem.it17

Reverse-engineering strategy:

Page 71: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

dibernardo.tigem.it18

Reverse-engineering strategy: Information-theoretic approach

• Assume that the joint probability can be computed as acombination of 2nd order probabilities, i.e. look only at pairof genes.

• Compute Mutual Information I(x,y) for a pair of gene:

• The MI can be computed directly as:

• In practice:

Page 72: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

dibernardo.tigem.it19

Reverse-engineering strategy: Bayesian Networks

• Using the Markov rule

• Choose a network topology G• Compute joint probability function P(D/G)• Score each network (i.e. BDe)

• Iterate the above steps and choose among thenetworks the one with highest score

Page 73: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

dibernardo.tigem.it20

Reverse-engineering strategy: ODEs

dX1/dt = 0 = a2 X2 + a6 X6 + a9 X9 + a12 X12

promoters

RNAs

Directed graph

+ u

u

Page 74: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

dibernardo.tigem.it21

Reverse-engineering strategy: ODEs

dX1/dt = 0 = a2 X2 + a6 X6 + a9 X9 + a12 X12

promoters

RNAs

Directed graph

+ u

u

Page 75: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

dibernardo.tigem.it22

x’11(t) = a11x11+a12x21+...+a1nxn1 + u1

........................................

x’n1(t) = an1x11+an2x21+...+annxn1 + 0

xij i:gene number j: experiment number

Or in matrix format:

x’=Ax+u

Overexpression of gene 1

Model structure:

Page 76: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

dibernardo.tigem.it23

x’11(t) = a11x1n+a12x2n+...+a1nxnn + 0

........................................

x’n1(t) = an1x1n+an2x2n+...+annxnn + un

xij i:gene number j: experiment number

Or in matrix format:

x’=Ax+u

Overexpression of gene n

Model structure:

Page 77: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

dibernardo.tigem.it24

Fit criterion and search solution strategy:

• Perturb one gene xi at at time and measure the response of the othergenes at steady-state:

• Repeat the experiment overexpressing all of the N genes:

x’(t) = 0 = A x+u

A x = -u

A X=-U => A=-UX-1 not robust to noise

A (N x N), X (N x N), U (NxN)

? known known

Page 78: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

dibernardo.tigem.it25

Pilot study: E. coli DNA-damage repair pathway (SOS pathway)

DNA-damage repairpotentially involves 100s ofgenes

Applied NIR to 9 transcriptsubnetwork

Page 79: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

dibernardo.tigem.it26

Example perturbation: lexA

7-9 training perturbationsused to recover 9 gene SOS

subnetworkR

elat

ive

Expr

essi

on C

hang

e

recA lexA ssb recF dinI umuDC rpoD rpoH rpoS-0.4

-0.2

0

0.2

0.4

0.6

Pert

urb

ati

on

Gene

Insignificant changes set tozero during data

preprocessing

Data design and collection:

Page 80: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

dibernardo.tigem.it27

SOS subnetwork model identified by NIR

lexA

recA

recF

rpoD

rpoS

rpoH dinI

ssb

umuDC

-2.920.67-1.680.22

-0.030.010.10

-0.51-0.17

0.01-0.040.16-1.09

-0.01

0000

00000

0000

0000

0000

000000000

0000

0000

0000

0.08

0.52

0.020.03-0.02

-0.150.20-0.02-0.400.11

0.28

0.030.05-0.28-1.190.04

-0.070.09-0.01-0.670.39

0.10-0.01-0.180.40

Connection strengths

recA

lexA

ssb

recF

dinI

umuDC

rpoD

rpoH

rpoS

rpoSrpoHrpoDumuDdinIrecFssblexArecA

Graphical model Quantitative regulatory model

Majority of previously observed influences discovered despite high noise (68% N/S)

Page 81: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

dibernardo.tigem.it28

Methods to find parameters of known networks:

• Given the experimental data, how can we find physical parameters of a knownnetwork?

• Known network means that:– We known the topology– We know the kind of interaction (protein-dna; protein-protein; rna-rna; etc.)

Page 82: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

dibernardo.tigem.it29

Parameter fitting strategy: ODEs

• Build network model (known topology)

• Measure mRNA (or protein) levels

• Find parameters of your model:

• For N genes, we have 2N unknownwith M equations, if we chooseM>=2N we can solve the problemwith linear algebra.

• More complex cases (non-linear inthe parameters) require optimisationtechniques like Simulated Annealing

knowns

unknowns

Page 83: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

dibernardo.tigem.it30

Parameter fitting strategy: ODEs

• CASE 1 A(t) activity of protein LexA isknown:– For N genes, we have 2N

unknown with M equations, ifwe choose M>=2N we cansolve the problem with linearalgebra.

– More complex cases (non-linearin the parameters) requireoptimisation techniques likeSimulated Annealing

Page 84: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

dibernardo.tigem.it31

Parameter fitting strategy: ODEs

• CASE 2 A(t) activity of protein LexA isnot known:– For N genes, we have 2N+M

unknown with M equations– We have an infinity of solutions

of dimension 2N– We choose one using Singular

Value Decomposition

Page 85: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

dibernardo.tigem.it32

Parameter fitting strategy: ODEs

-2.920.67-1.680.22

-0.030.010.10

-0.51-0.17

0.01-0.040.16-1.09

-0.01

0000

00000

0000

0000

0000

000000000

0000

0000

0000

0.08

0.52

0.020.03-0.02

-0.150.20-0.02-0.400.11

0.28

0.030.05-0.28-1.190.04

-0.070.09-0.01-0.670.39

0.10-0.01-0.180.40

Connection strengths

recA

lexA

ssb

recF

dinI

umuDC

rpoD

rpoH

rpoS

rpoSrpoHrpoDumuDdinIrecFssblexArecA

Page 86: Mathematical Models for Synthetic Biologywebarchiv.ethz.ch/syntheticbiology3/proceedings/files/Tutorial-2... · Mathematical Models for Synthetic Biology Diego di Bernardo, TIGEM

dibernardo.tigem.it33

Our lab: TIGEM, Naples, Italy

Diego di Bernardohttp://dibernardo.tigem.it

Mukesh Bansal (physics) Giusy Della Gatta (biology)

Giulia Cuccato, Ph.D. (biology)Francesco Iorio (computer science)

Velia Siciliano (biology)Vincenzo Belcastro (computer science)

Lucia Marucci (mathematics)Mario Lauria, Ph.D. (computer science)