mathematical modelling and numerical analysis will be set by the publisher mod elisation math...

33
ESAIM: M2AN 54 (2020) 1917โ€“1949 ESAIM: Mathematical Modelling and Numerical Analysis https://doi.org/10.1051/m2an/2020025 www.esaim-m2an.org SOME MULTIPLE FLOW DIRECTION ALGORITHMS FOR OVERLAND FLOW ON GENERAL MESHES Julien Coatlยด even หš Abstract. After recalling the most classical multiple ๏ฌ‚ow direction algorithms (MFD), we establish their equivalence with a well chosen discretization of Manningโ€“Strickler models for water ๏ฌ‚ow. From this analogy, we derive a new MFD algorithm that remains valid on general, possibly non conforming meshes. We also derive a convergence theory for MFD algorithms based on the Manningโ€“Strickler models. Numerical experiments illustrate the good behavior of the method even on distorted meshes. Mathematics Subject Classi๏ฌcation. 65N08, 65N12, 65N15. Received September 17, 2019. Accepted April 9, 2020. 1. Introduction Overland water ๏ฌ‚ow plays a major role in hydrogeology at many time scales, from million of years for stratigraphic studies of interest for the oil and gas industry to several days or weeks for predicting river ๏ฌ‚ooding and landslides. Intermediate time scales are also increasingly studied as they are of crucial interest for climatic forecasts, from glacier withdrawal to desert expansion. Of course, a huge literature exists in the corresponding ๏ฌelds, describing the physical phenomenons involved with an equally huge model diversity (Navierโ€“Stokes, Stokes, shallow water, etc...). Due to the complexity underlying ๏ฌ‚ow models, approximate, phenomenologically based models have been developed to increase computational speed. Among those models, a common approach that has given satisfactory results is the one based on the so-called multiple ๏ฌ‚ow directions algorithms (MFD). The idea underlying all MFD algorithms is that water routing at large space scales will be mainly governed by the topographic slope. Using digital elevation models that provide a meshed representation of the topography, those algorithms compute water ๏ฌ‚ow by distributing water from the topographically higher discrete cells to the topographically lower ones, each distribution formula corresponding to a speci๏ฌc MFD algorithm. In most cases, the MFD algorithms are developed assuming that the mesh is a uniform cartesian grid, with the same space step in each direction. Historically, the ๏ฌrst MFD algorithms were in fact single ๏ฌ‚ow direction algorithms, where the distribution formula selected only one neighbour, generally the one with the steepest slope. The de๏ฌciencies of such simple algorithms are the origin of the development of MFD algorithms (see [26]). The most classical MFD algorithm [16, 22] uses directly the slope to distribute the ๏ฌ‚ow, while models using powers of the slope were developed to concentrate the ๏ฌ‚ow and limit di๏ฌ€usion e๏ฌ€ects due to the use of coarse meshes Keywords and phrases. Multiple ๏ฌ‚ow direction algorithm, overland ๏ฌ‚ow, virtual element method, hybrid ๏ฌnite volume, general meshes. IFP ยด Energies nouvelles, 1 et 4 avenue de Bois-Prยด eau, Rueil-Malmaison 92852, France. หš Corresponding author: [email protected] Article published by EDP Sciences c โ—‹ EDP Sciences, SMAI 2020

Upload: others

Post on 06-Oct-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Mathematical Modelling and Numerical Analysis Will be set by the publisher Mod elisation Math ematique et Analyse Num erique SOME MULTIPLE FLOW DIRECTION ALGORITHMS

ESAIM: M2AN 54 (2020) 1917โ€“1949 ESAIM: Mathematical Modelling and Numerical Analysishttps://doi.org/10.1051/m2an/2020025 www.esaim-m2an.org

SOME MULTIPLE FLOW DIRECTION ALGORITHMS FOR OVERLAND FLOWON GENERAL MESHES

Julien Coatlevenหš

Abstract. After recalling the most classical multiple flow direction algorithms (MFD), we establishtheir equivalence with a well chosen discretization of Manningโ€“Strickler models for water flow. Fromthis analogy, we derive a new MFD algorithm that remains valid on general, possibly non conformingmeshes. We also derive a convergence theory for MFD algorithms based on the Manningโ€“Stricklermodels. Numerical experiments illustrate the good behavior of the method even on distorted meshes.

Mathematics Subject Classification. 65N08, 65N12, 65N15.

Received September 17, 2019. Accepted April 9, 2020.

1. Introduction

Overland water flow plays a major role in hydrogeology at many time scales, from million of years forstratigraphic studies of interest for the oil and gas industry to several days or weeks for predicting river floodingand landslides. Intermediate time scales are also increasingly studied as they are of crucial interest for climaticforecasts, from glacier withdrawal to desert expansion. Of course, a huge literature exists in the correspondingfields, describing the physical phenomenons involved with an equally huge model diversity (Navierโ€“Stokes,Stokes, shallow water, etc...). Due to the complexity underlying flow models, approximate, phenomenologicallybased models have been developed to increase computational speed. Among those models, a common approachthat has given satisfactory results is the one based on the so-called multiple flow directions algorithms (MFD).

The idea underlying all MFD algorithms is that water routing at large space scales will be mainly governed bythe topographic slope. Using digital elevation models that provide a meshed representation of the topography,those algorithms compute water flow by distributing water from the topographically higher discrete cells tothe topographically lower ones, each distribution formula corresponding to a specific MFD algorithm. In mostcases, the MFD algorithms are developed assuming that the mesh is a uniform cartesian grid, with the samespace step in each direction. Historically, the first MFD algorithms were in fact single flow direction algorithms,where the distribution formula selected only one neighbour, generally the one with the steepest slope. Thedeficiencies of such simple algorithms are the origin of the development of MFD algorithms (see [26]). The mostclassical MFD algorithm [16, 22] uses directly the slope to distribute the flow, while models using powers ofthe slope were developed to concentrate the flow and limit diffusion effects due to the use of coarse meshes

Keywords and phrases. Multiple flow direction algorithm, overland flow, virtual element method, hybrid finite volume, generalmeshes.

IFP Energies nouvelles, 1 et 4 avenue de Bois-Preau, Rueil-Malmaison 92852, France.หšCorresponding author: [email protected]

Article published by EDP Sciences c EDP Sciences, SMAI 2020

Page 2: Mathematical Modelling and Numerical Analysis Will be set by the publisher Mod elisation Math ematique et Analyse Num erique SOME MULTIPLE FLOW DIRECTION ALGORITHMS

1918 J. COATLEVEN

(see [18, 21, 25]). Some attempts have been made to apply MFD algorithms on more general meshes, with anemphasis on triangular ones (see [24,27]). We refer the reader to [9] for a comparison of some of those methods,and to the references in the aforementioned papers for a more complete overview of the tremendous literatureon MFD algorithms, on which we will not try to be exhaustive.

All those algorithms proceed sequentially from the higher cells to the lower ones, however as was alreadynoticed in [23], using an MFD algorithm is in fact equivalent to solving a linear system using a specific cellordering. The key idea underlying the present paper comes from a deeper study of the linear system associatedwith one of the earliest MFD algorithm. Indeed, we will explain that this linear system is completely equivalent toa two point flux finite volume scheme (see [10]) applied to a stationary Manningโ€“Strickler model for water flow.It was then clear that replacing the TPFA scheme that requires a strong orthogonality hypothesis on meshes toremain valid by more advanced flux approximation schemes would allow us to derive MFD algorithms adaptedto general meshes. Moreover, this equivalence will also allow us to derive a theoretical framework within whichwe will be able to study the convergence properties of MFD algorithms. In our numerical experiments, we haveconsidered two flux reconstructions inspired by two finite volume schemes: the hybrid finite volume (see [11,12])and the virtual volume method (or conservative first order virtual element method, see [5]). Of course, otherchoices could have been made (for instance VAG finite volumes [13,14] or discontinuous Galerkin methods [7]),however those two schemes will be sufficient to illustrate our approach.

The paper will be organized as follows: after describing the data and meshes, we recall the most classical mul-tiple flow direction algorithms, and reformulate them in a more algebraic fashion. Next, using this reformulationwe explain how they are linked with the TPFA scheme for a family of Manningโ€“Strickler models. We elaborateon this basis to overcome the mesh limitations induced by the TPFA scheme, introducing a new family of MFDalgorithms that will remain valid on a huge class of meshes, including those with hanging nodes. We then studythe convergence properties of all methods and conclude by some numerical illustrations.

2. Classical multiple flow direction algorithms

2.1. Mesh and data description

Let ฮฉ be a bounded polyhedral connected domain of R2, whose boundary is denoted Bฮฉ โ€œ ฮฉzฮฉ. We recall theusual notations describing a mesh โ„ณ โ€œ p๐’ฏ ,โ„ฑq of ฮฉ. ๐’ฏ is a finite family of connected open disjoint polygonalsubsets of ฮฉ (the cells of the mesh), such that ฮฉ โ€œ Y๐พP๐’ฏ ๐พ. For any ๐พ P ๐’ฏ , we denote by |๐พ| the measure of|๐พ|, by B๐พ โ€œ ๐พz๐พ the boundary of ๐พ, by โ„Ž๐พ its diameter and by ๐‘ฅ๐พ its barycenter. โ„ฑ is a finite family ofdisjoint subsets of hyperplanes of R2 included in ฮฉ (the faces of the mesh) such that, for all ๐œŽ P โ„ฑ , its measureis denoted |๐œŽ|, its diameter โ„Ž๐œŽ and its barycenter ๐‘ฅ๐œŽ. For any ๐พ P ๐’ฏ , there exists a subset โ„ฑ๐พ of โ„ฑ such thatB๐พ โ€œ Y๐œŽPโ„ฑ๐พ

๐œŽ. Then, for any ๐œŽ P โ„ฑ , we denote by ๐’ฏ๐œŽ โ€œ t๐พ P ๐’ฏ | ๐œŽ P โ„ฑ๐พu. Next, for all ๐พ P ๐’ฏ and all ๐œŽ P โ„ฑ๐พ ,we denote by ๐‘›๐พ,๐œŽ the unit normal vector to ๐œŽ outward to ๐พ, and ๐‘‘๐พ,๐œŽ โ€œ ||๐‘ฅ๐œŽยด๐‘ฅ๐พ ||. The set of boundary facesis denoted โ„ฑext, while interior faces are denoted โ„ฑint. Finally for any ๐œŽ P โ„ฑint, we denote ๐‘‘๐พ๐ฟ โ€œ ||๐‘ฅ๐พ ยด ๐‘ฅ๐ฟ||

where ๐’ฏ๐œŽ โ€œ t๐พ, ๐ฟu. We assume that there exists a subset โ„ฑext,in of โ„ฑext such that:

Bฮฉin โ€œฤ

๐œŽPโ„ฑext,in

๐œŽ where Bฮฉin โ€œ t๐‘ฅ P Bฮฉ | โˆ‡๐‘ ยจ ๐‘› ฤ… 0u

and we denote of course โ„ฑext,out โ€œ โ„ฑextzโ„ฑext,in. As usual, โ„Ž โ€œ max๐พP๐’ฏ โ„Ž๐พ will denote the mesh size. In whatfollows, we will assume that our mesh satisfies:

(A1) There exists a real number ๐œŒ ฤ… 0 and a matching simplicial submesh ๐’ฎ๐’ฏ of โ„ณ such that for any ๐‘‡ P ๐’ฎ๐’ฏ ,๐œŒโ„Ž๐‘‡ ฤ ๐‘Ÿ๐‘‡ where ๐‘Ÿ๐‘‡ is the inradius of ๐‘‡ , and for any ๐‘‡ P ๐’ฏ and any ๐‘‡ P ๐’ฎ๐’ฏ such that ๐‘‡ ฤ‚ ๐พ, ๐œŒโ„Ž๐พ ฤ โ„Ž๐‘‡ .

From [3, 7], we know that assumption (A1) implies that for any ๐‘˜ P N, there exists ๐ถ๐‘ก๐‘Ÿ,๐‘˜ ฤ… 0 independent on โ„Žsuch that for any ๐พ P ๐’ฏ , any ๐œŽ P โ„ฑ๐พ and any ๐‘ P P๐‘˜p๐พq:

||๐‘||๐ฟ2p๐œŽq ฤ ๐ถ๐‘ก๐‘Ÿ,๐‘˜โ„Žยด12๐œŽ ||๐‘||๐ฟ2p๐พq. (2.1)

Page 3: Mathematical Modelling and Numerical Analysis Will be set by the publisher Mod elisation Math ematique et Analyse Num erique SOME MULTIPLE FLOW DIRECTION ALGORITHMS

SOME MULTIPLE FLOW DIRECTION ALGORITHMS 1919

Figure 1. Example of real topography.

There also exists ๐ถ๐‘ก๐‘Ÿ ฤ… 0 independent on โ„Ž such that for any ๐‘ฃ P ๐ป1p๐พq:

||๐‘ฃ||๐ฟ2p๐œŽq ฤ ๐ถ๐‘ก๐‘Ÿ

ยด

โ„Žยด1๐พ ||๐‘ฃ||2๐ฟ2p๐พq ` โ„Ž๐พ ||โˆ‡๐‘ฃ||2๐ฟ2p๐พq

ยฏ12

. (2.2)

Finally, assumption (A1) implies that for any integer ๐‘˜, there exists ๐ถpoly,๐‘˜ ฤ… 0 such that for any ๐พ P ๐’ฏ andany ๐‘ฃ P ๐ป๐‘ p๐พq with ๐‘  P t1, . . . , ๐‘˜ ` 1u, there exists ๐‘ P P๐‘˜p๐พq such that

|๐‘ฃ ยด ๐‘|๐ป๐‘šp๐พq ` โ„Ž12๐พ |๐‘ฃ ยด ๐‘|๐ป๐‘špB๐พq ฤ ๐ถpoly,๐‘˜โ„Ž๐‘ ยด๐‘š

๐พ |๐‘ฃ|๐ป๐‘ p๐พq for ๐‘š P t0, . . . , ๐‘ ยด 1u . (2.3)

In the estimates that will follow, the constant ๐ถ ฤ… 0 will always denote by convention a quantity independenton the mesh size โ„Ž, whose value can change from line to line. Also by convention for any ๐œŽ P โ„ฑint we willdenote ๐’ฏ๐œŽ โ€œ t๐พ, ๐ฟu. In the same way, when considering a cell ๐พ and one of its interior faces ๐œŽ P โ„ฑ๐พ Xโ„ฑint, byconvention the cell ๐ฟ will denote the other element of ๐’ฏ๐œŽ.

In order to be able to establish error estimates, we assume that the topography, often called the basement inthe geological community and thus usually denoted ๐‘, satisfies ๐‘ P ๐‘Š 2,8pฮฉq and that there exists ๐›ผ ฤ… 0 suchthat ยดโˆ†๐‘ ฤ› ๐›ผ for almost every ๐‘ฅ P ฮฉ. However, from the practical point of view ๐‘ is only known through somepointwise values, very often given as a digitized surface elevation, on which some interpolation and upscaling ordownscaling processes have been applied (see Fig. 1). Thus, its Laplacian cannot be expected to be practicallycomputable, and the above assumption should really be considered as an abstract technical requirement forestablishing convergence estimates. Thus, our data will more realistically consists in some discrete mesh-basedp๐ต๐พq๐พP๐’ฏ representation of ๐‘, where each ๐ต๐พ can represent several pointwise values of ๐‘, complemented by awater source term ๐‘“ P ๐ฟ8pฮฉq, possibly also only known through a mesh-based representation.

2.2. The classical multiple flow direction algorithm

In the geological literature, multiple flow direction algorithms are considered as purely algorithmic ways ofdistributing water from one cell to another. Thus, they are generally described in a purely algorithmic fashion.Consequently, in this section to introduce the most classical MFD algorithms we will follow the presentation

Page 4: Mathematical Modelling and Numerical Analysis Will be set by the publisher Mod elisation Math ematique et Analyse Num erique SOME MULTIPLE FLOW DIRECTION ALGORITHMS

1920 J. COATLEVEN

generally found in the geological community, that is to say a purely algorithmic point of view. One of our firsttasks will precisely consists in abstracting ourselves from this algorithmic setting. For any ๐พ P ๐’ฏ , let ๐‘๐พ be avalue for the topography associated with cell ๐พ. To fix notations, consider for the moment that

๐‘๐พ โ€œ1|๐พ|

ลผ

๐พ

๐‘ @๐พ P ๐’ฏ

but other approximations can be considered, for instance ๐‘๐พ โ€œ ๐‘ p๐‘ฅ๐พq for any ๐พ P ๐’ฏ if ๐‘ is regular enough.Multiple flow direction algorithms are based on formulae to distribute the water flow from a cell to its neighboursthat are topographically lower. The most classical distribution formula consists simply in distributing the flowproportionally to the ratio ๐‘ ๐พ๐ฟ๐‘ ๐พ of the discrete slope ๐‘ ๐พ๐ฟ between the high cell ๐พ and the low cell ๐ฟ regardingthe total positive slope ๐‘ ๐พ of the high cell ๐พ, where the discrete slope ๐‘ ๐พ๐ฟ is given by

๐‘ ๐พ๐ฟ โ€œ|๐œŽ|

๐‘‘๐พ๐ฟp๐‘๐พ ยด ๐‘๐ฟq

and the total positive slope ๐‘ ๐พ of cell ๐พ is given by

๐‘ ๐พ โ€œรฟ

๐œŽPโ„ฑ๐พXโ„ฑint,๐‘๐พฤ›๐‘๐ฟ

|๐œŽ|

๐‘‘๐พ๐ฟp๐‘๐พ ยด ๐‘๐ฟq .

Notice that in many cases of the literature, as the MFD algorithm is applied on a uniform cartesian mesh withthe same space step in every direction, the face measure |๐œŽ| is simply omitted (see for instance [16, 22]), withno impact on the ratio ๐‘ ๐พ๐ฟ๐‘ ๐พ . To give a detailed description of the most classical multiple flow directionalgorithms, we need to introduce some notations. Let ๐‘0 โ€œ max t๐‘๐พ | ๐พ P ๐’ฏ u, ๐’ฏ0 โ€œ t๐พ P ๐’ฏ | ๐‘๐พ โ€œ ๐‘0u and๐’ฏยด1 โ€œ H. The set ๐’ฏ0 thus denotes the set of cells with maximum topographic height. Then, for any ๐‘› P N wedefine the set ๐’ฏ๐‘› of elements of ๐’ฏ by setting:

๐’ฏ๐‘› โ€œฤ

0ฤ๐‘–ฤ๐‘›

๐’ฏ๐‘– where ๐’ฏ๐‘– โ€œ t๐พ P ๐’ฏ | ๐‘๐พ โ€œ ๐‘๐‘–u and ๐‘๐‘– โ€œ max!

๐‘๐พ | ๐พ P ๐’ฏ z๐’ฏ๐‘–ยด1

)

.

By construction, as ๐’ฏ is a finite set there exists ๐‘๐‘ ฤ… 0 such that ๐’ฏ๐‘๐‘ยด1 โ€ฐ H and ๐’ฏ๐‘๐‘ยด1 โ€œ ๐’ฏ . Thus, for any๐‘› ฤ› ๐‘๐‘, we have ๐’ฏ๐‘› โ€œ H and ๐’ฏ๐‘› โ€œ ๐’ฏ๐‘๐‘ยด1.

To model water sources, we define a family p๐‘“๐พq๐พP๐’ฏ by setting:

๐‘“๐พ โ€œ1|๐พ|

ลผ

๐พ

๐‘“ @๐พ P ๐’ฏ .

The classical MFD algorithm (reformulated from [16,22]) then reads as follows (see Fig. 2 for a visual illustration,where the width of the arrows is roughly following the amount of distributed water):

(i) For any ๐พ P ๐’ฏ , the water influx r๐‘ž๐พ is initialized at 0.

(ii) For any ๐พ P ๐’ฏ0, the water influx r๐‘ž๐พ is given by r๐‘ž๐พ โ€œ |๐พ|๐‘“๐พ .

(iii) Loop for ๐‘› โ€œ 1 . . . ๐‘๐‘ ยด 1.

(iii-1) For any ๐ฟ P ๐’ฏ๐‘›ยด1, we distribute the entire water influx r๐‘ž๐ฟ to the neighbours that belong to ๐’ฏ๐‘› propor-tionally to the slope between the cell ๐ฟ and its neighbour, i.e.:

r๐‘ž๐พ รร r๐‘ž๐พ `รฟ

๐œŽPโ„ฑ๐พXโ„ฑint,๐‘๐พฤƒ๐‘๐ฟ,๐ฟP๐’ฏ๐‘›ยด1

|๐œŽ|r๐‘ž๐ฟ

๐‘‘๐พ๐ฟ๐‘ ๐ฟp๐‘๐ฟ ยด ๐‘๐พq for all ๐พ P ๐’ฏ๐‘›

Page 5: Mathematical Modelling and Numerical Analysis Will be set by the publisher Mod elisation Math ematique et Analyse Num erique SOME MULTIPLE FLOW DIRECTION ALGORITHMS

SOME MULTIPLE FLOW DIRECTION ALGORITHMS 1921

Figure 2. Basic principle of MFD algorithms: water is distributed to lower neighbouring cellsproportionally to the slope.

where ๐‘ ๐ฟ is the total positive slope in cell ๐ฟ, and รร denotes the action of updating r๐‘ž๐พ .

(iii-2) For any ๐พ P ๐’ฏ๐‘›, the water influx is complemented by the local sources by setting

r๐‘ž๐พ รร r๐‘ž๐พ ` |๐พ|๐‘“๐พ .

(iv) End loop for ๐‘› โ€œ 1 . . . ๐‘๐‘ ยด 1.The MFD algorithm admits a reformulation as a linear system that will play a key role in the remaining of

the paper. To our knowledge, only [23] mentioned this reformulation, although without exhibiting an explicitformula. This link seemed to have been most of the time simply overlooked by the geological community:

Theorem 2.1. The MFD algorithm is equivalent to solving the following linear system for the unknownpr๐‘ž๐พq๐พP๐’ฏ

r๐‘ž๐พ ยดรฟ

๐œŽPโ„ฑ๐พXโ„ฑint,๐‘๐พฤƒ๐‘๐ฟ

|๐œŽ|r๐‘ž๐ฟ

๐‘‘๐พ๐ฟ๐‘ ๐ฟp๐‘๐ฟ ยด ๐‘๐พq โ€œ |๐พ|๐‘“๐พ @๐พ P ๐’ฏ (2.4)

where

๐‘ ๐พ โ€œรฟ

๐œŽPโ„ฑ๐พXโ„ฑint,๐‘๐พฤ›๐‘๐ฟ

|๐œŽ|

๐‘‘๐พ๐ฟp๐‘๐พ ยด ๐‘๐ฟq

using an ordering for the cells of ๐’ฏ based on decreasing topography ๐‘๐พ and a lower triangular solver.

Proof. First, notice that as cells ๐พ P ๐’ฏ๐‘› are updated only at step ๐‘›, their expression is complete past this stepand given by:

r๐‘ž๐พ โ€œรฟ

๐œŽPโ„ฑ๐พXโ„ฑint,๐‘๐พฤƒ๐‘๐ฟ,๐ฟP๐’ฏ๐‘›ยด1

|๐œŽ|r๐‘ž๐ฟ

๐‘‘๐พ๐ฟ๐‘ ๐ฟp๐‘๐ฟ ยด ๐‘๐พq ` |๐พ|๐‘“๐พ for all ๐พ P ๐’ฏ z๐’ฏ๐‘›.

Page 6: Mathematical Modelling and Numerical Analysis Will be set by the publisher Mod elisation Math ematique et Analyse Num erique SOME MULTIPLE FLOW DIRECTION ALGORITHMS

1922 J. COATLEVEN

However, by construction of the sets ๐’ฏ๐‘–, any ๐ฟ P ๐’ฏ such that ๐‘๐ฟ ฤ… ๐‘๐พ for ๐พ P ๐’ฏ๐‘›, will satisfy ๐ฟ P ๐’ฏ๐‘›ยด1. Thus,the above expression can be simplified in:

r๐‘ž๐พ โ€œรฟ

๐œŽPโ„ฑ๐พXโ„ฑint,๐‘๐พฤƒ๐‘๐ฟ

|๐œŽ|r๐‘ž๐ฟ

๐‘‘๐พ๐ฟ๐‘ ๐ฟp๐‘๐ฟ ยด ๐‘๐พq ` |๐พ|๐‘“๐พ for all ๐พ P ๐’ฏ z๐’ฏ๐‘›

where the set ๐’ฏ๐‘›ยด1 no longer appears. As for any ๐พ P ๐’ฏ , there exists 0 ฤ ๐‘› ฤ ๐‘๐‘ ยด 1 such that ๐พ P ๐’ฏ๐‘›,and noticing that ๐‘ ๐ฟ ฤ… 0 as soon as there exists ๐œŽ P โ„ฑ๐ฟ X โ„ฑint, ๐’ฏ๐œŽ โ€œ t๐พ, ๐ฟu such that ๐‘๐ฟ ฤ… ๐‘๐พ , (2.4) followsby induction. Finally, starting from (2.4), if one chooses an ordering for the cells of ๐’ฏ based on decreasingtopography ๐‘๐พ , it is clear that the above system becomes a lower triangular one for r๐‘ž๐พ . It should be obvi-ous at this point that the associated lower triangular solver then coincides exactly with the classical MFDalgorithm.

A great advantage of considering the above system rather than its algorithmic counterpart is that it makesclear that triangular solvers are not the only possible linear solvers, which was indeed the main point of [23].A wide range of linear solvers can be used to solve (2.4), and most importantly parallel solvers than canconsiderably speed up the solving process on meshes with a huge cell number.

Remark 2.2. Many variants of this classical MFD algorithm exist, which at least to the authors knowledgemainly consist in modifying the way the influx is distributed from an upper cell to its lower neighbours: powersof the slope instead of the slope, probabilistic repartitions, repartitions using a specified number of neighboursfor a given mesh structure, etc... With the exception of distribution formulae that use powers of the slope insteadof the slope itself, proceeding as we have done for the most classical MFD algorithm it is not difficult to showthat all those variants can be rewritten under the form:

r๐‘ž๐พ ยดรฟ

๐œŽPโ„ฑ๐พXโ„ฑint,๐‘๐พฤƒ๐‘๐ฟ

๐œ†๐œŽ|๐œŽ|r๐‘ž๐ฟ

๐‘‘๐พ๐ฟ๐‘ ๐ฟp๐‘๐ฟ ยด ๐‘๐พq โ€œ |๐พ|๐‘“๐พ @๐พ P ๐’ฏ

with this time

๐‘ ๐พ โ€œรฟ

๐œŽPโ„ฑ๐พXโ„ฑint,๐‘๐พฤ›๐‘๐ฟ

๐œ†๐œŽ|๐œŽ|

๐‘‘๐พ๐ฟp๐‘๐พ ยด ๐‘๐ฟq .

The coefficient ๐œ†๐œŽ associated with each face will take different values depending on the way one want to modifythe influx repartition. Notice that we have chosen to not consider distribution formulae based on powers of theslope as they only had some technical difficulties with no fundamental differences in the analysis.

3. On the link with Manningโ€“Strickler models

Consider the following classical transient Manningโ€“Strickler model:ห‡

ห‡

ห‡

ห‡

ห‡

ห‡

B๐‘ข

B๐‘กยด div p๐œ†๐‘ข๐‘šโˆ‡๐‘q โ€œ ๐‘“ in ฮฉ

ยด๐‘ข๐‘šโˆ‡๐‘ ยจ ๐‘› โ€œ 0 on Bฮฉin

where ๐‘ข is the water height, ๐‘š a parameter and ๐‘› denotes the outward normal to ฮฉ. The coefficient ๐œ† P ๐ฟ8pฮฉqis the inverse of the Manningโ€“Strickler coefficient expressing soil roughness, and is assumed to satisfy 0 ฤƒ ๐œ†ยด ฤ๐œ† ฤ ๐œ†` ฤƒ `8 almost everywhere in ฮฉ. Formally, the steady state associated with the above system is thefollowing stationary Manningโ€“Strickler model for overland flow:

ห‡

ห‡

ห‡

ห‡

ห‡

ยดdiv p๐œ†๐‘ข๐‘šโˆ‡๐‘q โ€œ ๐‘“ in ฮฉ

ยด๐œ†๐‘ข๐‘šโˆ‡๐‘ ยจ ๐‘› โ€œ 0 on Bฮฉin.(3.1)

Page 7: Mathematical Modelling and Numerical Analysis Will be set by the publisher Mod elisation Math ematique et Analyse Num erique SOME MULTIPLE FLOW DIRECTION ALGORITHMS

SOME MULTIPLE FLOW DIRECTION ALGORITHMS 1923

Denoting ๐‘ข๐œ†,๐‘š โ€œ ๐œ†๐‘ข๐‘š , ๐›ฝ โ€œ ยดโˆ‡๐‘ P ๐‘Š 1,8pฮฉq and ๐œ‡ โ€œ ยดโˆ†๐‘ ฤ› ๐›ผ ฤ… 0 P ๐ฟ8pฮฉq, remark that (3.1) can berewritten:

ห‡

ห‡

ห‡

ห‡

ห‡

๐›ฝ ยจโˆ‡๐‘ข๐œ†,๐‘š ` ๐œ‡๐‘ข๐œ†,๐‘š โ€œ ๐‘“ in ฮฉ

๐‘ข๐œ†,๐‘š โ€œ 0 on Bฮฉin.(3.2)

Stationary transport problems of the form (3.2) have of course received a lot of attention in the existingliterature, in particular as they correspond to a popular model for neutron transport. Their well-posedness hasbeen considered for instance in [1, 2], or more recently in [8, 15, 17]. Thus, from the results of [8, 15] and theregularity hypotheses on ๐‘, ๐‘“ , and ๐œ†, we know that there exists a unique ๐‘ข P ๐ฟ8pฮฉq solution of (3.2). As thewater height ๐‘ข only appears through its ๐‘š-th power ๐‘ข๐‘š, in the remaining of the paper we will with a slightabuse of notations directly use ๐‘ข instead of ๐‘ข๐‘š.

We are now going to explain that the classical MFD algorithm coincides with a well chosen discretizationof the stationary Manningโ€“Strickler model. Assume that the mesh is orthogonal, i.e. there exists a family ofcentroids p๐‘ฅ๐พq๐พP๐’ฏ such that:

๐‘ฅ๐พ P ๐พ @๐พ P ๐’ฏ and๐‘ฅ๐ฟ ยด ๐‘ฅ๐พ

||๐‘ฅ๐ฟ ยด ๐‘ฅ๐พ ||โ€œ ๐‘›๐พ,๐œŽ for ๐œŽ P โ„ฑint, ๐œŽ โ€œ t๐พ, ๐ฟu

and let us denote ๐‘‘๐พ,๐œŽ the distance of ๐‘ฅ๐พ to the hyperplane containing ๐œŽ for any ๐œŽ P โ„ฑ๐พ and any ๐พ P ๐’ฏ .Then, one can use a two-point finite volume scheme to discretize the steady-state Manning model. Assume that๐‘๐พ โ€œ ๐‘ p๐‘ฅ๐พq or at least a second order approximation of it. Denoting ๐‘ข๐พ for any ๐พ P ๐’ฏ the discrete waterheight unknown, if one further assumes that ๐‘๐œŽ โ€œ ๐‘๐พ for any ๐œŽ P โ„ฑext and ๐พ P ๐’ฏ๐œŽ which is generally what isdone in practical applications of the MFD algorithm, for any ๐พ P ๐’ฏ we get:

รฟ

๐œŽPโ„ฑ๐พXโ„ฑint

๐œ๐พ๐ฟr๐‘ขup๐œŽ p๐‘๐พ ยด ๐‘๐ฟq โ€œ |๐พ|๐‘“๐พ

where r๐‘ขup๐œŽ โ€œ ๐‘ข๐พ if ๐‘๐พ ฤ› ๐‘๐ฟ and r๐‘ขup

๐œŽ โ€œ ๐‘ข๐ฟ if ๐‘๐พ ฤƒ ๐‘๐ฟ and the transmissivity ๐œ๐พ๐ฟ is given for instance by theharmonic mean:

๐œ๐พ๐ฟ โ€œ|๐œŽ|๐œ†๐พ๐œ†๐ฟ

๐œ†๐พ๐‘‘๐ฟ,๐œŽ ` ๐œ†๐ฟ๐‘‘๐พ,๐œŽ

where ๐œ†๐พ โ€œ1|๐พ|

ลผ

๐พ

๐œ†.

Immediately we deduce the following equivalence result, which despite its simplicity is the cornerstone of thepresent paper:

Theorem 3.1. The TPFA scheme for Manning Stricklerโ€™s model is equivalent to the MFD algorithm.

Proof. Gathering the faces by upwinding kind, we get:รฟ

๐œŽPโ„ฑ๐พXโ„ฑint,๐‘๐พฤ›๐‘๐ฟ

๐œ๐พ๐ฟ๐‘ข๐พ p๐‘๐พ ยด ๐‘๐ฟq ยดรฟ

๐œŽPโ„ฑ๐พXโ„ฑint,๐‘๐พฤƒ๐‘๐ฟ

๐œ๐พ๐ฟ๐‘ข๐ฟ p๐‘๐ฟ ยด ๐‘๐พq โ€œ |๐พ|๐‘“๐พ . (3.3)

Setting๐‘ ๐พ โ€œ

รฟ

๐œŽPโ„ฑ๐พXโ„ฑint,๐‘๐พฤ›๐‘๐ฟ

๐œ๐พ๐ฟ p๐‘๐พ ยด ๐‘๐ฟq

and noticing that ๐‘ ๐ฟ ฤ… 0 as soon as there exists ๐œŽ P โ„ฑ๐ฟ X โ„ฑint such that ๐‘๐ฟ ฤ… ๐‘๐พ , we see that equation (3.3)can be rewritten:

๐‘ ๐พ๐‘ข๐พ ยดรฟ

๐œŽPโ„ฑ๐พXโ„ฑint,๐‘๐พฤƒ๐‘๐ฟ

๐œ๐พ๐ฟ๐‘ข๐ฟ p๐‘๐ฟ ยด ๐‘๐พq โ€œ |๐พ|๐‘“๐พ .

Defining the water influx by r๐‘ž๐พ โ€œ ๐‘ ๐พ๐‘ข๐พ , we thus obtain:

r๐‘ž๐พ ยดรฟ

๐œŽPโ„ฑ๐พXโ„ฑint,๐‘๐พฤƒ๐‘๐ฟ

๐œ๐พ๐ฟr๐‘ž๐ฟ

๐‘ ๐ฟp๐‘๐ฟ ยด ๐‘๐พq โ€œ |๐พ|๐‘“๐พ . (3.4)

If we take ๐œ† โ€œ 1, immediately we see that (3.4) is exactly the MFD equation (2.4).

Page 8: Mathematical Modelling and Numerical Analysis Will be set by the publisher Mod elisation Math ematique et Analyse Num erique SOME MULTIPLE FLOW DIRECTION ALGORITHMS

1924 J. COATLEVEN

Surprisingly, this result seems to be absent of the MFD literature. The main reason is probably that formu-lations of MFD algorithms as linear systems are equally difficult to find. From this equivalence between theclassical MFD and the two-point flux approximation (TPFA) of the classical Manningโ€“Strickler model, someuseful observations can be made. Probably the most surprising one is that the MFD unknown pr๐‘ž๐พq๐พP๐’ฏ can beused instead of ๐‘ข๐พ to solve the two-point approximation of the Manningโ€“Strickler model. Moreover, existenceand uniqueness of solutions of the MFD problem (3.4) are now an immediate consequence of its equivalencewith the MFD algorithm without requiring any hypothesis on the topography. Next, let us mention that whenmodeling overland flow, the quantity of interest is not the water height but the water discharge, i.e. the norm||๐œ†โ„Ž๐‘šโˆ‡๐‘|| of the water flux vector. This is the reason why no water height explicitly appears in MFD algorithms.However, a crucial consequence of our equivalence result is that the usual unknown r๐‘ž๐พ of the MFD algorithm,while an excellent choice from the algebraic perspective, is probably not the good quantity to represent the waterdischarge. Indeed, using r๐‘ž๐พ โ€œ ๐‘ ๐พ๐‘ข๐พ and the consistency of the two-point formula we see that it approximates:

r๐‘ž๐พ ยซรฟ

๐œŽPโ„ฑ๐พ

ลผ

๐œŽ

๐‘ข pยด๐œ†โˆ‡๐‘ ยจ ๐‘›๐พ,๐œŽq`

where ๐‘ฃ` โ€œ maxp0, ๐‘ฃq. We cannot expect such a r๐‘ž๐พ to be an approximation of the norm of ๐œ†๐‘ขโˆ‡๐‘, as itapproximates the accumulated influx in a cell which is a mesh dependent quantity. Thus, no kind of convergencelet alone approximation properties can be expected for such a quantity in general. To effectively compute adiscrete water discharge ๐‘ž๐พ for each cell ๐พ P ๐’ฏ , we reconstruct cellwise the water flux vector by setting:

๐‘„๐พ โ€œรฟ

๐œŽPโ„ฑ๐พXโ„ฑint,๐‘๐พฤ…๐‘๐ฟ

๐œ๐พ๐ฟr๐‘ž๐พ

|๐พ|๐‘ ๐พp๐‘๐พ ยด ๐‘๐ฟq p๐‘ฅ๐œŽ ยด ๐‘ฅ๐พq ยด

รฟ

๐œŽPโ„ฑ๐พXโ„ฑint,๐‘๐พฤƒ๐‘๐ฟ

๐œ๐พ๐ฟr๐‘ž๐ฟ

|๐พ|๐‘ ๐ฟp๐‘๐ฟ ยด ๐‘๐พq p๐‘ฅ๐œŽ ยด ๐‘ฅ๐พq .

The consistent water discharge is immediately given by ๐‘ž๐พ โ€œ ||๐‘„๐พ ||. We will illustrate in the numerical sectionthe convergence deficiency of r๐‘ž๐พ , and how ๐‘ž๐พ has a much better behavior. Obviously, for any ๐พ P ๐’ฏ such that๐‘ ๐พ โ€ฐ 0, we can compute an equivalent positive water height by setting ๐‘ข๐พ โ€œ r๐‘ž๐พ๐‘ ๐พ . Cells where ๐‘ ๐พ โ€œ 0 arecells where all discrete fluxes are ingoing fluxes, thus it is clear that one should either set ๐‘ข๐พ โ€œ `8 or ๐‘ข๐พ โ€œ 0depending if water effectively reaches the cell or not. From the definition of ๐‘„๐พ , we see that the value of ๐‘ข๐พ

for such cells will have no influence on the water discharge and its asymptotic convergence. It is thus clear thatone can always define ๐‘ข๐พ by setting:

๐‘ข๐พ โ€œ

ห‡

ห‡

ห‡

ห‡

ห‡

ห‡

r๐‘ž๐พ

๐‘ ๐พif ๐‘ ๐พ ฤ… 0

0 otherwise.

Remark 3.2. Notice that using the harmonic mean is not mandatory if one can use an approximation of ๐œ†directly on the faces, leading to the transmissivity ๐œ๐พ๐ฟ โ€œ |๐œŽ|๐œ†๐œŽ๐‘‘๐พ๐ฟ in which case (3.4) will correspond to oneof the many variants of the classical MFD.

4. Some conservative and consistent flux reconstructions on general meshes

From the equivalence between the MFD algorithms and the TPFA scheme for the stationary Manningโ€“Strickler model, an obvious way of generalizing MFD algorithms to general meshes consists in replacing theTPFA flux reconstruction formula by more advanced flux reconstruction techniques that are still valid ongeneral meshes. We follow the idea of [4]: we consider a gradient reconstruction in each cell that will consist ina consistent part plus a stabilization part. However, contrary to [4] where the stabilization was used to obtaincoercivity, here we will use this stabilization to enforce conservativity.

Page 9: Mathematical Modelling and Numerical Analysis Will be set by the publisher Mod elisation Math ematique et Analyse Num erique SOME MULTIPLE FLOW DIRECTION ALGORITHMS

SOME MULTIPLE FLOW DIRECTION ALGORITHMS 1925

4.1. A conservative flux reconstruction formula

For any cell ๐พ P ๐’ฏ , let us denote ๐ต๐พ โ€œ ๐’Ÿ๐พp๐‘q the local values associated with the topography ๐‘, and๐‘‹๐พ โ€œ R๐’ฉ๐พ the set of local values, with ๐’ฉ๐พ the number of local values. The operator ๐’Ÿ๐พ : ๐ป1p๐พq รžรร‘ ๐‘‹๐พ

will of course depend on the considered reconstruction formula, however to simplify notations we consider thatthe value ๐‘๐พ at ๐‘ฅ๐พ always belongs to the set of local values. Those local values represent all the knowledge wehave in practice of the field ๐‘, and once again its Laplacian cannot be expected to be computable. For typicalapplications such as stratigraphic modelling it consists in cell values complemented by vertex or face values, thusconditioning the schemes we can effectively use. We assume that we are given a gradient reconstruction operatorโˆ‡๐พ : ๐‘‹๐พ รžรร‘ R2, and we define a reconstruction formula in each cell through the operator ฮ ๐พ : ๐‘‹๐พ รžรร‘ P1p๐พq,where P1p๐พq is the set of first order polynomials on ๐พ and:

ฮ ๐พ p๐ต๐พq p๐‘ฅq โ€œ ๐‘๐พ `โˆ‡๐พ p๐ต๐พq ยจ p๐‘ฅยด ๐‘ฅ๐พq

and thus โˆ‡ฮ ๐พ p๐ต๐พq โ€œ โˆ‡๐พ p๐ต๐พq. Such gradient reconstructions are the usual basis of modern finite volumemethods (see [4, 5, 12]), and many formulae can be found in the literature. Using those reconstructions, it istempting to define the flux operator ๐น๐พ,๐œŽ p๐ต๐พq by setting:

๐น๐พ,๐œŽ p๐ต๐พq โ€œ ยด|๐œŽ|๐œ†๐พโˆ‡๐พ p๐ต๐พq ยจ ๐‘›๐พ,๐œŽ.

As consistency of the flux will of course rely on the consistency of the gradient reconstruction operators, theabove definition will indeed lead to consistent fluxes, however to construct our generalized MFD algorithmsconservativity will play a crucial role. This means that we will require the conservativity of the flux:

รฟ

๐พP๐’ฏ๐œŽ

๐น๐พ,๐œŽ p๐ต๐พq โ€œ 0

which cannot be satisfied in general (except by the two-point fluxes) with such a simple formula. This is thereason why, following the ideas of [4], we introduce a stabilized gradient operator โˆ‡๐พ,๐œŽ : ๐‘‹๐พ ห† R รžรร‘ R bysetting:

โˆ‡๐พ,๐œŽ p๐ต๐พ , ๐œŒ๐œŽq โ€œ โˆ‡๐พ p๐ต๐พq `๐œ‚

๐‘‘๐พ,๐œŽpp๐œŒ๐œŽ ยด ๐‘๐พq ยดโˆ‡๐พ p๐ต๐พq ยจ p๐‘ฅ๐œŽ ยด ๐‘ฅ๐พqq๐‘›๐พ,๐œŽ

where ๐œ‚ ฤ… 0 is a stabilization parameter. Then, for any ๐พ P ๐’ฏ and any ๐œŽ P โ„ฑ๐พ , we define an intermediate fluxoperator ๐น๐พ,๐œŽ : ๐‘‹๐พ ห† R รžรร‘ R by setting:

๐น๐พ,๐œŽ p๐ต๐พ , ๐œŒ๐œŽq โ€œ ยด|๐œŽ|๐œ†๐พโˆ‡๐พ,๐œŽ p๐ต๐พ , ๐œŒ๐œŽq ยจ ๐‘›๐พ,๐œŽ.

Obviously, for any ๐œŽ P โ„ฑint, we would like to define ๐œŽ as the solution ofรฟ

๐พP๐’ฏ๐œŽ

๐น๐พ,๐œŽ

ยด

๐ต๐พ , ๐œŽ

ยฏ

โ€œ 0. (4.1)

Fortunately, as ๐œ† is positive almost everywhere we immediately deduce that such a ๐œŽ is always defined and isgiven by:

๐œŽ โ€œ1

หœ

รฟ

๐‘€P๐’ฏ๐œŽ

๐œ‚๐œ†๐‘€

๐‘‘๐‘€,๐œŽ

ยธ

หœ

รฟ

๐พP๐’ฏ๐œŽ

๐œ‚๐œ†๐พ

๐‘‘๐พ,๐œŽ๐‘๐พ `

รฟ

๐พP๐’ฏ๐œŽ

โˆ‡๐พ p๐ต๐พq ยจ

ห†

๐œ‚๐œ†๐พ

๐‘‘๐พ,๐œŽp๐‘ฅ๐œŽ ยด ๐‘ฅ๐พq ยด ๐œ†๐พ๐‘›๐พ,๐œŽ

ห™

ยธ

. (4.2)

Thus, for any ๐œŽ P โ„ฑint, it is legitimate to define the conservative flux operator ๐น๐พ,๐œŽ :ลš

๐ฟP๐’ฏ๐œŽ๐‘‹๐ฟ รžรร‘ R by

setting:๐น๐พ,๐œŽ p๐ต๐œŽq โ€œ ๐น๐พ,๐œŽ

ยด

๐ต๐พ , ๐œŽ

ยฏ

(4.3)

Page 10: Mathematical Modelling and Numerical Analysis Will be set by the publisher Mod elisation Math ematique et Analyse Num erique SOME MULTIPLE FLOW DIRECTION ALGORITHMS

1926 J. COATLEVEN

where ๐œŽ is the unique solution of (4.1), while for any ๐œŽ P โ„ฑext, we simply set:

๐น๐พ,๐œŽ p๐ต๐œŽq โ€œ ยด|๐œŽ|๐œ†๐พโˆ‡๐พ p๐ต๐พq ยจ ๐‘›๐พ,๐œŽ. (4.4)

Remark 4.1. It is tempting to recover conservativity using the following simpler formula for ๐น๐พ,๐œŽ p๐ต๐œŽq:

๐น๐พ,๐œŽ p๐ต๐œŽq โ€œ12p๐น๐พ,๐œŽ p๐ต๐พq ยด ๐น๐ฟ,๐œŽ p๐ต๐ฟqq .

The main drawback of this alternative formula can be understood in cases where ๐œ† is discontinuous, where thiswould obviously lead to a very coarse approximation of the flux along the lines of discontinuity of ๐œ†. Providedthose discontinuities are resolved by the mesh, our formula for ๐น๐พ,๐œŽ p๐ต๐œŽq will instead behave as the usualharmonic mean. It is thus a more robust and versatile choice.

4.2. Consistency properties of the flux

Denoting ๐ตp๐‘ฅ, ๐œ‰q the ball centered at ๐‘ฅ of radius ๐œ‰ and ๐ตฮฉp๐‘ฅ, ๐œ‰q โ€œ ๐ตp๐‘ฅ, ๐œ‰qXฮฉ, we recall the usual definitionof strong consistency for gradient reconstruction operators:

Definition 4.2 (Strong consistency). The gradient reconstruction operator โˆ‡๐พ is strongly consistent if andonly if there exists ๐ถ ฤ… 0 independent on โ„Ž such that for any ๐œ™ P ๐ถ2

ยด

๐ตฮฉ p๐‘ฅ๐พ , ๐œ‰qยฏ

, every 0 ฤƒ ๐œ‰ ฤ 2โ„Ž๐พ andevery ๐‘ฅ P ๐ตฮฉ p๐‘ฅ๐พ , ๐œ‰q:

|โˆ‡๐œ™p๐‘ฅq ยดโˆ‡๐พ p๐’Ÿ๐พp๐œ™qq| ฤ ๐ถ๐œ‰||๐œ™||๐‘Š 2,8p๐ตฮฉp๐‘ฅ๐พ ,๐œ‰qXฮฉq.

As an immediate consequence of the above definition, we have, using Taylorโ€™s expansion and the density of๐ถ8

ยด

๐ตฮฉ p๐‘ฅ๐พ , ๐œ‰qยฏ

in ๐‘Š 2,8 p๐ตฮฉp๐‘ฅ, ๐œ‰qq that for any ๐œ™ P ๐‘Š 2,8pฮฉq there exists ๐ถ ฤ… 0 depending on ๐œ™ but not onโ„Ž such that for every โ„Ž๐พ ฤ ๐œ‰ ฤ 2โ„Ž๐พ , any ๐พ P ๐’ฏ and almost every ๐‘ฅ P ๐ตฮฉ p๐‘ฅ๐พ , ๐œ‰q:

|โˆ‡๐œ™p๐‘ฅq ยดโˆ‡๐พ p๐’Ÿ๐พp๐œ™qq| ฤ ๐ถ๐œ‰||๐œ™||๐‘Š 2,8p๐ตฮฉp๐‘ฅ๐พ ,๐œ‰qq

and|๐œ™p๐‘ฅq ยดฮ ๐พ p๐’Ÿ๐พp๐œ™qq p๐‘ฅq| ฤ ๐ถ๐œ‰2||๐œ™||๐‘Š 2,8p๐ตฮฉp๐‘ฅ๐พ ,๐œ‰qq.

Another immediate consequence is the consistency of our discrete fluxes:

Proposition 4.3. Assume that assumption (A1) is satisfied and that the gradient reconstruction operator isstrongly consistent. Then, there exists ๐ถ ฤ… 0 independent on โ„Ž such that for any ๐พ P ๐’ฏ , any ๐œŽ P โ„ฑ๐พ , any๐‘ P ๐‘Š 2,8pฮฉq and any ๐œ† P ๐‘Š 1,8pฮฉq, we have:

ห‡

ห‡

ห‡

ห‡

ห‡

ห‡

ห‡

ห‡

1|๐œŽ|

๐น๐พ,๐œŽ p๐ต๐œŽq ` ๐œ†โˆ‡๐‘ ยจ ๐‘›๐พ,๐œŽ

ห‡

ห‡

ห‡

ห‡

ห‡

ห‡

ห‡

ห‡

๐ฟ8p๐ตฮฉp๐‘ฅ๐พ ,2โ„Ž๐พqq

ฤ ๐ถโ„Ž๐พ ||๐œ†||๐‘Š 1,8pฮฉq||๐‘||๐‘Š 2,8pฮฉq. (4.5)

Proof. By density of ๐ถ8`

ฮฉห˜

in ๐‘Š 1,8pฮฉq and ๐‘Š 2,8pฮฉq, it is clear that it suffices to establish the result for๐œ† P ๐ถ8

`

ฮฉห˜

and ๐‘ P ๐ถ8`

ฮฉห˜

. Assuming such regularity, we start by establishing that there exists ๐ถ ฤ… 0independent on โ„Ž such that for any ๐œŽ P โ„ฑint:

|๐œŽ ยด ๐‘ p๐‘ฅ๐œŽq | ฤ ๐ถโ„Ž2๐พ ||๐‘||๐‘Š 2,8pฮฉq and |๐œŽ ยดฮ ๐พ p๐ต๐พq p๐‘ฅ๐œŽq | ฤ ๐ถโ„Ž2

๐พ ||๐‘||๐‘Š 2,8pฮฉq @๐พ P ๐’ฏ๐œŽ. (4.6)

As by construction, we have ฮ ๐พ p๐ต๐พq p๐‘ฅ๐œŽq โ€œ ๐‘๐พ `โˆ‡๐พ p๐ต๐พq ยจ p๐‘ฅ๐œŽ ยด ๐‘ฅ๐พq, slightly rewriting (4.2) we get:

๐œŽ ยด ๐‘ p๐‘ฅ๐œŽq โ€œ1

หœ

รฟ

๐‘€P๐’ฏ๐œŽ

๐œ‚๐œ†๐‘€

๐‘‘๐‘€,๐œŽ

ยธ

หœ

รฟ

๐ฟP๐’ฏ๐œŽ

๐œ‚๐œ†๐ฟ

๐‘‘๐ฟ,๐œŽpฮ ๐ฟ p๐ต๐ฟq p๐‘ฅ๐œŽq ยด ๐‘ p๐‘ฅ๐œŽqq ยด

รฟ

๐ฟP๐’ฏ๐œŽ

๐œ†๐ฟโˆ‡๐ฟ p๐ต๐ฟq ยจ ๐‘›๐ฟ,๐œŽ

ยธ

.

Page 11: Mathematical Modelling and Numerical Analysis Will be set by the publisher Mod elisation Math ematique et Analyse Num erique SOME MULTIPLE FLOW DIRECTION ALGORITHMS

SOME MULTIPLE FLOW DIRECTION ALGORITHMS 1927

Immediately, using the strong consistency of the gradient operator we get that for all ๐พ P ๐’ฏ๐œŽ:

|ฮ ๐พ p๐ต๐พq p๐‘ฅ๐œŽq ยด ๐‘ p๐‘ฅ๐œŽq | ฤ ๐ถโ„Ž2๐พ ||๐‘||๐‘Š 2,8p๐ตฮฉp๐‘ฅ๐พ ,โ„Ž๐พqq

and thus for all ๐พ P ๐’ฏ๐œŽ:

1หœ

รฟ

๐‘€P๐’ฏ๐œŽ

๐œ‚๐œ†๐‘€

๐‘‘๐‘€,๐œŽ

ยธ

รฟ

๐ฟP๐’ฏ๐œŽ

๐œ‚๐œ†๐ฟ

๐‘‘๐ฟ,๐œŽ|ฮ ๐ฟ p๐ต๐ฟq p๐‘ฅ๐œŽq ยด ๐‘ p๐‘ฅ๐œŽq | ฤ ๐ถ

รฟ

๐ฟP๐’ฏ๐œŽ

๐œ‚๐œ†๐ฟ

๐‘‘๐ฟ,๐œŽโ„Ž2

๐ฟ

หœ

รฟ

๐‘€P๐’ฏ๐œŽ

๐œ‚๐œ†๐‘€

๐‘‘๐‘€,๐œŽ

ยธ ||๐‘||๐‘Š 2,8p๐ตฮฉp๐‘ฅ๐พ ,โ„Ž๐พqq ฤ ๐ถโ„Ž2๐พ ||๐‘||๐‘Š 2,8pฮฉq

as under assumption (A1), we know (see [3,7]) that there exists ๐ถ ฤ… 0 such that for any p๐พ, ๐‘€q P ๐’ฏ 2 such thatโ„ฑ๐พ Xโ„ฑ๐‘€ โ€ฐ H, we have โ„Ž๐‘€โ„Ž๐พ ฤ ๐ถ. Moreover, as the gradient operator is strongly consistent, we know that:

|๐œ†๐พโˆ‡๐พ p๐ต๐พq ยด ๐œ† p๐‘ฅ๐œŽqโˆ‡๐‘ p๐‘ฅ๐œŽq | ฤ ๐ถโ„Ž`

||๐œ†||๐‘Š 1,8pฮฉq||๐‘||๐‘Š 1,8pฮฉq ` ||๐œ†||๐ฟ8pฮฉq||๐‘||๐‘Š 2,8pฮฉq

ห˜

.

Using:รฟ

๐พP๐’ฏ๐œŽ

๐œ† p๐‘ฅ๐œŽqโˆ‡๐‘ p๐‘ฅ๐œŽq ยจ ๐‘›๐พ,๐œŽ โ€œ 0

we get:ห‡

ห‡

ห‡

ห‡

ห‡

รฟ

๐พP๐’ฏ๐œŽ

๐œ†๐พโˆ‡๐พ p๐ต๐พq ยจ ๐‘›๐พ,๐œŽ

ห‡

ห‡

ห‡

ห‡

ห‡

ฤ ๐ถโ„Ž`

||๐œ†||๐‘Š 1,8pฮฉq||๐‘||๐‘Š 1,8pฮฉq ` ||๐œ†||๐ฟ8pฮฉq||๐‘||๐‘Š 2,8pฮฉq

ห˜

.

Meanwhile, we clearly get using again assumption (A1):

1หœ

รฟ

๐‘€P๐’ฏ๐œŽ

๐œ‚๐œ†๐‘€

๐‘‘๐‘€,๐œŽ

ยธ ฤ1

๐œ‚๐œ†ยด

1หœ

รฟ

๐‘€P๐’ฏ๐œŽ

1๐‘‘๐‘€,๐œŽ

ยธ ฤ1

๐œ‚๐œ†ยดcard p๐’ฏ๐œŽqmax๐‘€P๐’ฏ๐œŽ

๐‘‘๐‘€,๐œŽ ฤ1

๐œ‚๐œ†ยดmax๐‘€P๐’ฏ๐œŽ

โ„Ž๐‘€ ฤ๐ถโ„Ž๐พ

๐œ‚๐œ†ยด

which finally establishes that:|๐œŽ ยด ๐‘ p๐‘ฅ๐œŽq | ฤ ๐ถโ„Ž2

๐พ ||๐‘||๐‘Š 2,8pฮฉq

and (4.6) immediately follows using the triangular inequality and the strong consistency of the gradient operator.Then, for any ๐‘ฅ P ๐ตฮฉ p๐‘ฅ๐พ , 2โ„Ž๐พq and any ๐œŽ P โ„ฑint:

1|๐œŽ|

๐น๐พ,๐œŽ p๐ต๐œŽq ` ๐œ†p๐‘ฅqโˆ‡๐‘p๐‘ฅq ยจ ๐‘›๐พ,๐œŽ โ€œ ๐œ†๐พpโˆ‡๐‘p๐‘ฅq ยดโˆ‡๐พ p๐ต๐พqq ยจ ๐‘›๐พ,๐œŽ ` p๐œ†p๐‘ฅq ยด ๐œ†๐พqโˆ‡๐‘p๐‘ฅq ยจ ๐‘›๐พ,๐œŽ

ยด๐œ‚๐œ†๐พ

๐‘‘๐พ,๐œŽ

ยด

๐œŽ ยดฮ ๐พ p๐ต๐พq p๐‘ฅ๐œŽq

ยฏ

.

Immediately, as the gradient reconstruction operator is strongly consistent we get:

|๐œ†๐พ pโˆ‡๐‘p๐‘ฅq ยดโˆ‡๐พ p๐ต๐พqq ยจ ๐‘›๐พ,๐œŽ| ฤ ๐ถ๐œ†`โ„Ž๐พ ||๐‘||๐‘Š 2,8pฮฉq

while Taylorโ€™s expansion immediately gives:

|p๐œ†p๐‘ฅq ยด ๐œ†๐พqโˆ‡๐‘p๐‘ฅq ยจ ๐‘›๐พ,๐œŽ| ฤ ๐ถโ„Ž๐พ ||๐œ†||๐‘Š 1,8pฮฉq||๐‘||๐‘Š 1,8 .

Under assumption (A1), we have โ„Ž๐พ๐‘‘๐พ,๐œŽ ฤ โ„Ž๐พ๐œŒ๐พ ฤ 1๐œŒ which combined with (4.6) gives the desired resultfor ๐œŽ P โ„ฑint. For ๐œŽ P โ„ฑext, we directly get:

1|๐œŽ|

๐น๐พ,๐œŽ p๐ต๐œŽq ` ๐œ†p๐‘ฅqโˆ‡๐‘p๐‘ฅq ยจ ๐‘›๐พ,๐œŽ โ€œ ๐œ†๐พ pโˆ‡๐‘p๐‘ฅq ยดโˆ‡๐พ p๐ต๐พqq ยจ ๐‘›๐พ,๐œŽ ` p๐œ†p๐‘ฅq ยด ๐œ†๐พqโˆ‡๐‘p๐‘ฅq ยจ ๐‘›๐พ,๐œŽ

and thus applying the same estimates than in the case of interior faces concludes the proof of (4.5).

Page 12: Mathematical Modelling and Numerical Analysis Will be set by the publisher Mod elisation Math ematique et Analyse Num erique SOME MULTIPLE FLOW DIRECTION ALGORITHMS

1928 J. COATLEVEN

5. A multiple flow direction algorithm on general meshes

5.1. The generalized MFD algorithm

Given an approximation p๐ต๐พq๐พP๐’ฏ of the topography and p๐‘“๐พq๐พP๐’ฏ of the source term as data, and usingboth upwinding for the water height and our discrete fluxes, the most natural discrete formulation of theManningโ€“Strickler model consists in finding

ยด

p๐‘ข๐พq๐พP๐’ฏ , p๐‘ข๐œŽq๐œŽPโ„ฑ๐’Ÿext,in

ยฏ

such that:

ห‡

ห‡

ห‡

ห‡

ห‡

ห‡

ห‡

รฟ

๐œŽPโ„ฑ๐พ

๐‘ขup๐œŽ ๐น๐พ,๐œŽ p๐ต๐œŽq โ€œ |๐พ|๐‘“๐พ @๐พ P ๐’ฏ

๐‘ข๐œŽ โ€œ 0 @๐œŽ P โ„ฑ๐’Ÿext,in

(5.1)

where the upwinding formula ๐‘ฃup๐œŽ for any set of cell values p๐‘ฃ๐พq๐พP๐’ฏ is defined by:

๐‘ฃup๐œŽ โ€œ

ห‡

ห‡

ห‡

ห‡

ห‡

๐‘ฃ๐พ if ๐น๐พ,๐œŽ p๐ต๐œŽq ฤ› 0

๐‘ฃ๐ฟ if ๐น๐พ,๐œŽ p๐ต๐œŽq ฤƒ 0@๐œŽ P โ„ฑint, ๐’ฏ๐œŽ โ€œ t๐พ, ๐ฟu

and

๐‘ฃup๐œŽ โ€œ

ห‡

ห‡

ห‡

ห‡

ห‡

๐‘ฃ๐พ if ๐น๐พ,๐œŽ p๐ต๐œŽq ฤ› 0

0 if ๐น๐พ,๐œŽ p๐ต๐œŽq ฤƒ 0@๐œŽ P โ„ฑext, ๐’ฏ๐œŽ โ€œ t๐พu

and where we have defined the influx boundary associated with the discrete fluxes by setting

โ„ฑ๐’Ÿext,in โ€œ t๐œŽ P โ„ฑext | ๐น๐พ,๐œŽ p๐ต๐œŽq ฤƒ 0, ๐’ฏ๐œŽ โ€œ t๐พu u .

By construction of the fluxes, for any ๐œŽ P โ„ฑint we have that ๐น๐ฟ,๐œŽ p๐ต๐œŽq โ€œ ยด๐น๐พ,๐œŽ p๐ต๐œŽq. Mimicking what we havedone for the TPFA scheme, we gather faces by upwinding kind and use the fact that ๐‘ขup

๐œŽ โ€œ 0 for all ๐œŽ P โ„ฑ๐’Ÿext,in,leading to:

ยจ

ห

รฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤ›0

๐น๐พ,๐œŽ p๐ต๐œŽq

ห›

โ€š๐‘ข๐พ ยดรฟ

๐œŽPโ„ฑ๐พXโ„ฑint,๐น๐ฟ,๐œŽp๐ต๐œŽqฤ…0

๐‘ข๐ฟ๐น๐ฟ,๐œŽ p๐ต๐œŽq โ€œ |๐พ|๐‘“๐พ .

Defining:๐‘ ๐พ โ€œ

รฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤ›0

๐น๐พ,๐œŽ p๐ต๐œŽq and r๐‘ž๐พ โ€œ ๐‘ ๐พ๐‘ข๐พ

and noticing that ๐‘ ๐ฟ ฤ… 0 as soon as there exists ๐œŽ P โ„ฑ๐ฟ such that ๐น๐ฟ,๐œŽ p๐ต๐œŽq ฤ… 0, we see that the above equationcan be rewritten:

r๐‘ž๐พ ยดรฟ

๐œŽPโ„ฑ๐พXโ„ฑint,๐น๐ฟ,๐œŽp๐ต๐œŽqฤ…0

r๐‘ž๐ฟ

๐‘ ๐ฟ๐น๐ฟ,๐œŽ p๐ต๐œŽq โ€œ |๐พ|๐‘“๐พ .

For any ๐œŽ P โ„ฑ๐’Ÿext,in, we set:

๐‘ ๐œŽ โ€œ ยดรฟ

๐พP๐’ฏ๐œŽ,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

๐น๐พ,๐œŽ p๐ต๐œŽq and r๐‘ž๐œŽ โ€œ ๐‘ ๐œŽ๐‘ข๐œŽ.

Gathering all those results, we obtain:ห‡

ห‡

ห‡

ห‡

ห‡

ห‡

ห‡

ห‡

r๐‘ž๐พ ยดรฟ

๐œŽPโ„ฑ๐พXโ„ฑint,๐น๐ฟ,๐œŽp๐ต๐œŽqฤ…0

r๐‘ž๐ฟ

๐‘ ๐ฟ๐น๐ฟ,๐œŽ p๐ต๐œŽq โ€œ |๐พ|๐‘“๐พ @๐พ P ๐’ฏ

r๐‘ž๐œŽ โ€œ 0 @๐œŽ P โ„ฑ๐’Ÿext,in.

(5.2)

Page 13: Mathematical Modelling and Numerical Analysis Will be set by the publisher Mod elisation Math ematique et Analyse Num erique SOME MULTIPLE FLOW DIRECTION ALGORITHMS

SOME MULTIPLE FLOW DIRECTION ALGORITHMS 1929

Notice that the above system is set for the unknownsยด

pr๐‘ž๐พq๐พP๐’ฏ , pr๐‘ž๐œŽq๐œŽPโ„ฑ๐’Ÿext,in

ยฏ

, thus it has the same number ofunknowns than the original system (5.1). We still reconstruct a water flux vector cellwise by setting:

๐‘„๐พ โ€œรฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤ…0

r๐‘ž๐พ

|๐พ|๐‘ ๐พ๐น๐พ,๐œŽ p๐ต๐œŽq p๐‘ฅ๐œŽ ยด ๐‘ฅ๐พq `

รฟ

๐œŽPโ„ฑ๐พXโ„ฑint,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

r๐‘ž๐ฟ

|๐พ|๐‘ ๐ฟ๐น๐พ,๐œŽ p๐ต๐œŽq p๐‘ฅ๐œŽ ยด ๐‘ฅ๐พq (5.3)

the consistent water discharge being given by ๐‘ž๐พ โ€œ ||๐‘„๐พ ||. Finally, for any cell ๐พ P ๐’ฏ , we set ๐‘ข๐พ as we havedone for the TPFA case:

๐‘ข๐พ โ€œ

ห‡

ห‡

ห‡

ห‡

ห‡

ห‡

r๐‘ž๐พ

๐‘ ๐พif ๐‘ ๐พ โ€ฐ 0

0 otherwise(5.4)

while for any ๐œŽ P โ„ฑ๐’Ÿext,in, ๐‘ข๐œŽ โ€œ 0. Notice that this new system allows to correctly define the numerical method,while the system (5.1) does not uniquely define the water height on cells where ๐‘ ๐พ โ€œ 0. Contrary to system (3.4),system (5.2) admits no obvious renumbering of mesh elements that makes the system triangular. However, asit is anyway necessary to enable parallelism, we say that the generalized MFD algorithm will consists in solvingthe linear system (5.2) using any linear solver of the literature. Notice that as we are using the unknown r๐‘ž ratherthan ๐‘ข, the discrete system (5.2) takes the form of a perturbation of the identity matrix. Thus, we expect itscondition number to be relatively good (depending of course of the coefficient ๐œ†) and in any case much betterthan if had tried to solve (5.2) directly.

5.2. On existence and uniqueness for the generalized MFD algorithm

Existence and uniqueness of a solution to the above system are much less obvious than in the case of theTPFA scheme. To explain this fact, let us denote

๐’ฏ หš โ€œ t๐พ P ๐’ฏ | ๐‘ ๐พ ฤ… 0u .

Using the definition of ๐’ฏ หš, summing (5.2) over ๐พ P ๐’ฏ , after a straightforward manipulation of the last sum weget:

รฟ

๐พP๐’ฏ z๐’ฏ หšr๐‘ž๐พ `

รฟ

๐พP๐’ฏ หš

รฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤ…0

r๐‘ž๐พ

๐‘ ๐พ๐น๐พ,๐œŽ p๐ต๐œŽq ยด

รฟ

๐ฟP๐’ฏ หš

รฟ

๐œŽPโ„ฑ๐ฟXโ„ฑint,๐น๐ฟ,๐œŽp๐ต๐œŽqฤ…0

r๐‘ž๐ฟ

๐‘ ๐ฟ๐น๐ฟ,๐œŽ p๐ต๐œŽq โ€œ

รฟ

๐พP๐’ฏ|๐พ|๐‘“๐พ

and consequently:

รฟ

๐พP๐’ฏ z๐’ฏ หšr๐‘ž๐พ `

รฟ

๐พP๐’ฏ หš

รฟ

๐œŽPโ„ฑ๐พXโ„ฑext,๐น๐พ,๐œŽp๐ต๐œŽqฤ…0

r๐‘ž๐พ

๐‘ ๐พ๐น๐พ,๐œŽ p๐ต๐œŽq โ€œ

รฟ

๐พP๐’ฏ|๐พ|๐‘“๐พ . (5.5)

Thus, the existence of a solution for any second member p๐‘“๐พq๐พP๐’ฏ requires that:

๐’œ โ€œ p๐’ฏ z๐’ฏ หšq Y ๐’ฏ หšหš โ€ฐ H where ๐’ฏ หšหš โ€œ t๐พ P ๐’ฏ หš | t๐œŽ P โ„ฑ๐พ X โ„ฑext | ๐น๐พ,๐œŽ p๐ต๐œŽq ฤ… 0u โ€ฐ Hu . (5.6)

In the case of the TPFA scheme, condition (5.6) is necessarily satisfied. If condition (5.6) is not satisfied,then (5.2) can have a solution only if

รฟ

๐พP๐’ฏ|๐พ|๐‘“๐พ โ€œ 0.

From this observation, it seems clear that establishing an exhaustive existence and uniqueness theory for system(5.2) is a more complex task than what one could expect. For the continuous problem, well-posedness is directlylinked to the properties of the topography ๐‘ and in particular to its Laplacian. Unsurprisingly, well-posednessof (5.2) will be directly linked to the properties of the quantity that plays the role of the topography ๐‘ at the

Page 14: Mathematical Modelling and Numerical Analysis Will be set by the publisher Mod elisation Math ematique et Analyse Num erique SOME MULTIPLE FLOW DIRECTION ALGORITHMS

1930 J. COATLEVEN

discrete level, that is to say the flux family p๐น๐พ,๐œŽ p๐ต๐œŽqq๐พP๐’ฏ ,๐œŽPโ„ฑ๐พ. Without any further assumption on the mesh,

far from the asymptotic regime consistency alone cannot be expected to ensure well-posedness for coarse meshes.This means that well-posedness will in general be controlled by the structure of the discrete flux family ratherthan by the properties of ๐‘. As in practice the Laplacian of ๐‘ cannot be computed in general, it is anyway betterto have an existence result that uses only computable quantities. In fact, not only the necessary condition (5.6)must be satisfied, but it also requires that there does not exist what we will call a flux cycle. For any subset ๐’žof ๐’ฏ , we denote:

โ„ฑ๐’žint โ€œ t๐œŽ P โ„ฑint | ๐’ฏ๐œŽ ฤ‚ ๐’žu .

We say that a set of cells ๐’ž ฤ‚ ๐’ฏ form a flux cycle if and only if for any ๐พ P ๐’ž

๐น๐พ,๐œŽ p๐ต๐œŽq ฤ 0 @๐œŽ P โ„ฑ๐พz`

โ„ฑ๐พ X โ„ฑ๐’žint

ห˜

andรฟ

๐œŽPโ„ฑ๐พXโ„ฑ๐’žint,๐น๐พ,๐œŽp๐ต๐œŽqฤ…0

๐น๐พ,๐œŽ p๐ต๐œŽq ฤ… 0 andรฟ

๐œŽPโ„ฑ๐พXโ„ฑ๐’žint,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

๐น๐พ,๐œŽ p๐ต๐œŽq ฤƒ 0.

The first condition implies that water can enter the cycle but not leave it, while the second condition implies thatwater will run through the cycle without stopping anywhere. Whether such configurations can exist on coarsemeshes for consistent flux families is a difficult question. However, from the physical point of view flux cyclesare completely unrealistic as they represent regions where water will at some point go from a topographicallylow region to a topographically higher one. Moreover, under the positivity hypothesis on the Laplacian of thetopography, we know that for the exact fluxes we have:

รฟ

๐œŽPโ„ฑ๐พ

ลผ

๐œŽ

ยด๐œ†โˆ‡๐‘ ยจ ๐‘›๐พ,๐œŽ ฤ… 0

and thus no flux cycle can exist. Thus, the presence of flux cycles should be considered as anomalous and asign that a too coarse mesh has been used. A natural sufficient condition of existence and uniqueness for (5.2)should then be one that is satisfied by the continuous fluxes and immediately implies that no flux cycle exist.

Proposition 5.1. We say that there exists a flowing path from ๐พ P ๐’ฏ z๐’œ to ๐’œ if there exists r๐พ P ๐’œ such that

D ๐‘›๐พ P N, ๐‘›๐พ ฤ… 0 and p๐œŽ๐‘–q0ฤ๐‘–ฤ๐‘›๐พยด1 such that ๐œŽ๐‘– P โ„ฑint @0 ฤ ๐‘– ฤ ๐‘›๐พ ยด 1

and ๐’ฏ๐œŽ๐‘– โ€œ t๐พ๐‘–, ๐พ๐‘–`1u @0 ฤ ๐‘– ฤ ๐‘›๐พ ยด 1 where ๐พ โ€œ ๐พ0r๐พ โ€œ ๐พ๐‘›๐พ

and ๐น๐พ๐‘–,๐œŽ๐‘–p๐ต๐œŽ๐‘–

q ฤ… 0.

If ๐’œ โ€ฐ H and for any cell ๐พ P ๐’ฏ z๐’œ there exists a flowing path to ๐’œ, then (5.2) is well-posed.

Proof. As system (5.2) is linear, it suffices to establish uniqueness to ensure the existence of solutions. Thus,assume that r๐‘ž โ€œ

ยด

pr๐‘ž๐พq๐พP๐’ฏ , pr๐‘ž๐œŽq๐œŽPโ„ฑ๐’Ÿext,in

ยฏ

is solution of (5.2) with zero right-hand side. Then, taking themodulus of (5.2) and summing over ๐พ P ๐’ฏ we get:

รฟ

๐พP๐’ฏ|r๐‘ž๐พ | ฤ

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พXโ„ฑint,๐น๐ฟ,๐œŽp๐ต๐œŽqฤ…0

|r๐‘ž๐ฟ|

๐‘ ๐ฟ๐น๐ฟ,๐œŽ p๐ต๐œŽq . (5.7)

Again, we have:

รฟ

๐พP๐’ฏ|r๐‘ž๐พ | โ€œ

รฟ

๐พP๐’ฏ z๐’ฏ หš|r๐‘ž๐พ |`

รฟ

๐พP๐’ฏ หš

รฟ

๐œŽPโ„ฑ๐พXโ„ฑext,๐น๐พ,๐œŽp๐ต๐œŽqฤ…0

|r๐‘ž๐พ |

๐‘ ๐พ๐น๐พ,๐œŽ p๐ต๐œŽq`

รฟ

๐พP๐’ฏ หš

รฟ

๐œŽPโ„ฑ๐พXโ„ฑint,๐น๐พ,๐œŽp๐ต๐œŽqฤ…0

|r๐‘ž๐พ |

๐‘ ๐พ๐น๐พ,๐œŽ p๐ต๐œŽq

while:รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พXโ„ฑint,๐น๐ฟ,๐œŽp๐ต๐œŽqฤ…0

|r๐‘ž๐ฟ|

๐‘ ๐ฟ๐น๐ฟ,๐œŽ p๐ต๐œŽq โ€œ

รฟ

๐ฟP๐’ฏ หš

รฟ

๐œŽPโ„ฑ๐ฟXโ„ฑint,๐น๐ฟ,๐œŽp๐ต๐œŽqฤ…0

|r๐‘ž๐ฟ|

๐‘ ๐ฟ๐น๐ฟ,๐œŽ p๐ต๐œŽq .

Page 15: Mathematical Modelling and Numerical Analysis Will be set by the publisher Mod elisation Math ematique et Analyse Num erique SOME MULTIPLE FLOW DIRECTION ALGORITHMS

SOME MULTIPLE FLOW DIRECTION ALGORITHMS 1931

Injecting this into (5.7), we obtain:

รฟ

๐พP๐’ฏ z๐’ฏ หš|r๐‘ž๐พ | `

รฟ

๐พP๐’ฏ หš

รฟ

๐œŽPโ„ฑ๐พXโ„ฑext,๐น๐พ,๐œŽp๐ต๐œŽqฤ…0

|r๐‘ž๐พ |

๐‘ ๐พ๐น๐พ,๐œŽ p๐ต๐œŽq ฤ 0

which immediately implies that r๐‘ž๐พ โ€œ 0 for any ๐พ P ๐’œ. Next, let us denote ๐’ฏ0 โ€œ ๐’ฏ and ๐’œ0 โ€œ ๐’œ, and define ๐’ฏ๐‘–

for any ๐‘– ฤ› 1 by setting:๐’ฏ๐‘– โ€œ ๐’ฏ z

ฤ

0ฤ๐‘˜ฤ๐‘–ยด1

๐’œ๐‘˜ where ๐’œ๐‘– โ€œ p๐’ฏ๐‘–z๐’ฏ หš๐‘– q Y ๐’ฏ หšหš๐‘–

with๐’ฏ หš๐‘– โ€œ t๐พ P ๐’ฏ๐‘– | ๐‘ ๐พ ฤ… 0u and ๐’ฏ หšหš๐‘– โ€œ

๐พ P ๐’ฏ หš๐‘– |

๐œŽ P โ„ฑ๐พ X โ„ฑ ๐‘–ext | ๐น๐พ,๐œŽ p๐ต๐œŽq ฤ… 0

(

โ€ฐ H(

and for any ๐‘– ฤ› 1:

โ„ฑ๐‘– โ€œ t๐œŽ P โ„ฑ | ๐’ฏ๐œŽ X ๐’ฏ๐‘– โ€ฐ Hu and โ„ฑ ๐‘–int โ€œ t๐œŽ P โ„ฑ๐‘– X โ„ฑint | ๐’ฏ๐œŽ ฤ‚ ๐’ฏ๐‘–u and โ„ฑ ๐‘–

ext โ€œ โ„ฑ๐‘–zโ„ฑ ๐‘–int.

Clearly, as ๐’œ โ€ฐ H we have ๐’ฏ1 ฤน ๐’ฏ0 or ๐’ฏ1 โ€œ H. We now proceed by induction. Assume that for ๐‘› ฤ› 1, we haveestablished that

r๐‘ž๐พ โ€œ 0 for all ๐พ Pฤ

0ฤ๐‘˜ฤ๐‘›ยด1

๐’œ๐‘˜ and ๐’ฏ๐‘– ฤน ๐’ฏ๐‘–ยด1 or ๐’ฏ๐‘– โ€œ H @1 ฤ ๐‘– ฤ ๐‘›ยด 1.

If ๐’ฏ๐‘› โ€œ H, then there is nothing to prove. Otherwise, as for any ๐พ P ๐’ฏ๐‘›, there exists a flow path to ๐’œ, then๐’ฏ หšหš๐‘› โ€ฐ H. Thus, summing over ๐’ฏ๐‘› and proceeding as above we obtain that:

รฟ

๐พP๐’ฏ๐‘›z๐’ฏ หš๐‘›

|r๐‘ž๐พ | `รฟ

๐พP๐’ฏ หš๐‘›

รฟ

๐œŽPโ„ฑ๐พXโ„ฑ๐‘›ext,๐น๐พ,๐œŽp๐ต๐œŽqฤ…0

|r๐‘ž๐พ |

๐‘ ๐พ๐น๐พ,๐œŽ p๐ต๐œŽq ฤ 0.

Thus, we obtain that r๐‘ž๐พ โ€œ 0 for any ๐พ P ๐’œ๐‘› and ๐’œ๐‘› โ€ฐ H which implies ๐’ฏ๐‘›`1 ฤน ๐’ฏ๐‘›. Then, it is clear that thesequence p๐’ฏ๐‘–q๐‘–ฤ›0 is strictly decreasing in the sense that it satisfies ๐’ฏ๐‘– ฤน ๐’ฏ๐‘–ยด1 or ๐’ฏ๐‘– โ€œ H because of the flow pathassumption. Thus, there exists ๐‘›๐’ฏ ฤ… 0 such that ๐’ฏ๐‘›๐’ฏ โ€œ H and thus r๐‘ž โ€œ 0, which concludes the proof.

6. Convergence analysis

The main idea underlying our convergence analysis is that for all consistent fluxes, if the topography ๐‘ isregular enough numerical fluxes will converge to the continuous ones. The major originality of the presentanalysis regarding for instance finite volumes or discontinuous Galerkin methods for steady-advection diffusionproblems of the form (3.2) is that here the coefficients ๐›ฝ and ๐œ‡ are approximated through discrete differentialoperators applied to the topography ๐‘. Thus, this additional approximation has to be handled carefully torecover the correct convergence estimates.

To establish precise error estimates we first need to choose a discrete norm. To this end, we define

๐œ”๐พ,๐œŽ โ€œ12`

|๐น๐พ,๐œŽ p๐ต๐œŽq | ` |๐œŽ| ||๐œ†โˆ‡๐‘ ยจ ๐‘›๐พ,๐œŽ||๐ฟ8p๐ตp๐‘ฅ๐พ ,2โ„Ž๐พqq

ห˜

and set for ๐‘ฃ โ€œ p๐‘ฃ๐พq๐พP๐’ฏ :

||๐‘ฃ||2โ„Ž โ€œ๐›ผ๐œ†ยด

2

รฟ

๐พP๐’ฏ|๐พ|๐‘ฃ2

๐พ `12

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พXโ„ฑext,๐น๐พ,๐œŽp๐ต๐œŽqฤ…0

๐œ”๐พ,๐œŽ|๐‘ฃ๐พ |2 `

12

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

๐œ”๐พ,๐œŽp๐‘ฃ๐พ ยด ๐‘ฃup๐œŽ q

2.

In the above expression, one would more naturally expect to find ๐น๐พ,๐œŽ p๐ต๐œŽq instead of ๐œ”๐พ,๐œŽ. However, theirbehavior is difficult to control and in particular, it is complex to estimate the way this fluxes stay away from zero

Page 16: Mathematical Modelling and Numerical Analysis Will be set by the publisher Mod elisation Math ematique et Analyse Num erique SOME MULTIPLE FLOW DIRECTION ALGORITHMS

1932 J. COATLEVEN

when the continuous fluxesลŸ

๐œŽ๐œ†โˆ‡๐‘ ยจ๐‘›๐พ,๐œŽ cancel creating technical difficulties, which ๐œ”๐พ,๐œŽ avoids. Immediately,

we get that:

|๐œ”๐พ,๐œŽ ยด |๐น๐พ,๐œŽ p๐ต๐œŽq | | โ€œ12

ห‡

ห‡ |๐น๐พ,๐œŽ p๐ต๐œŽq ยด |๐œŽ| ||๐œ†โˆ‡๐‘ ยจ ๐‘›๐พ,๐œŽ||๐ฟ8p๐ตp๐‘ฅ๐พ ,2โ„Ž๐พqq

ห‡

ห‡

and thus:|๐œ”๐พ,๐œŽ ยด |๐น๐พ,๐œŽ p๐ต๐œŽq | | ฤ

12๐‘…๐พ,๐œŽ (6.1)

where for any ๐พ P ๐’ฏ and any ๐œŽ P โ„ฑ๐พ we have denoted:

๐‘…๐พ,๐œŽ โ€œ maxห†ห‡

ห‡

ห‡

ห‡

๐น๐พ,๐œŽ p๐ต๐œŽq `

ลผ

๐œŽ

๐œ†โˆ‡๐‘ ยจ ๐‘›๐พ,๐œŽ

ห‡

ห‡

ห‡

ห‡

,ห‡

ห‡|๐น๐พ,๐œŽ p๐ต๐œŽq | ยด |๐œŽ| ||๐œ†โˆ‡๐‘ ยจ ๐‘›๐พ,๐œŽ||๐ฟ8p๐ตp๐‘ฅ๐พ ,2โ„Ž๐พqq

ห‡

ห‡

ห™

. (6.2)

Notice that from (4.5), we get that there exists ๐ถ ฤ… 0 such that for any ๐พ P ๐’ฏ and any ๐œŽ P โ„ฑ๐พ , we have:

๐‘…๐พ,๐œŽ ฤ ๐ถ|๐œŽ|โ„Ž๐พ ||๐œ†||๐‘Š 1,8pฮฉq||๐‘||๐‘Š 2,8pฮฉq. (6.3)

The main objective of this section is to establish the following explicit ๐ฟ2 error estimate:

Theorem 6.1. Assume that the gradient operator underlying the fluxes is consistent. Further assume that themesh satisfies assumption (A1), that ๐œ† P ๐‘Š 1,8pฮฉq and that the solution ๐‘ข of (3.1) belongs to ๐ป1pฮฉq. Let

๐›พpโ„Žq โ€œ max

หœ

sup๐พP๐’ฏ ,๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

๐‘…๐พ,๐œŽ

๐œ”๐พ,๐œŽ, sup๐พP๐’ฏ ,๐œŽPโ„ฑ๐พXโ„ฑext,๐น๐พ,๐œŽp๐ต๐œŽqโ€ฐ0

๐‘…๐พ,๐œŽ

๐œ”๐พ,๐œŽ

ยธ

with ๐‘…๐พ,๐œŽ defined by (6.2). Then, there exists โ„โ„Žp๐‘ขq P ๐ฟ2pฮฉq such that for any ๐พ P ๐’ฏ , โ„โ„Žp๐‘ขq|๐พ โ€œ โ„๐พp๐‘ขq isconstant on ๐พ and:

|๐‘ขยด โ„๐พp๐‘ขq|2๐ฟ2p๐พq ` โ„Ž

12๐พ |๐‘ขยด โ„๐พp๐‘ขq|

2๐ฟ2pB๐พq ฤ ๐ถpolyโ„Ž๐พ |๐‘ข|๐ป1p๐พq.

Moreover if ๐›พpโ„Žq ร‘ 0 when โ„Ž ร‘ 0, then there exists โ„Ž0 ฤ… 0 and ๐ถ ฤ… 0 depending on ๐‘ข, ๐œ†, ๐‘ and the meshparameters such that for any โ„Ž ฤ โ„Ž0:

||๐‘ขยด โ„โ„Žp๐‘ขq||โ„Ž ฤ ๐ถ maxpโ„Ž, ๐›พpโ„Žqq12||๐‘ข||๐ป1pฮฉq (6.4)

where ๐‘ข is reconstructed by (5.4) from the solution of (5.2).

Notice that the existence of โ„โ„Žp๐‘ขq in the above result is an immediate consequence of assumption (A1) and(2.3). As a corollary, we will then be able to establish an explicit error estimate for the water discharge:

Corollary 6.2. Under the assumptions of Proposition 6.1, there exists โ„Ž0 ฤ… 0 and ๐ถ ฤ… 0 depending on ๐‘ข, ๐œ†,๐‘ and the mesh parameters such that for any โ„Ž ฤ โ„Ž0:

หœ

รฟ

๐พP๐’ฏ|| ยด ๐œ†๐‘ขโˆ‡๐‘ยด๐‘„๐พ ||

2๐ฟ2p๐พq2

ยธ12

ฤ ๐ถ maxpโ„Ž, ๐›พpโ„Žqq12p1`maxpโ„Ž, ๐›พpโ„Žqq12q||๐‘ข||๐ป1pฮฉq. (6.5)

The error estimates use the surprising factor ๐›พpโ„Žq instead of โ„Ž as one could legitimately expect. This comesfrom the fact that we use approximate fluxes, which is equivalent in some sense to using a quadrature formulafor the coefficients of (3.2). As the natural norm for the discrete problem uses those approximate fluxes, itseems unfortunately unavoidable that this impacts the error estimate. In the case where for any ๐พ P ๐’ฏ and any๐œŽ P โ„ฑ๐พ that is indeed present in the norm || ยจ ||โ„Ž, the ๐œ”๐พ,๐œŽโ€™s are bounded by below by a constant independent onโ„Ž, which will happen most of the time in practice, then ๐›พpโ„Žq will behave as โ„Ž and we retrieve a convergence atrate โ„Ž12. Controlling the lower bound for ๐œ”๐พ,๐œŽ is the reason why we have used a supremum on a set containing

Page 17: Mathematical Modelling and Numerical Analysis Will be set by the publisher Mod elisation Math ematique et Analyse Num erique SOME MULTIPLE FLOW DIRECTION ALGORITHMS

SOME MULTIPLE FLOW DIRECTION ALGORITHMS 1933

more than ๐พ in the definition of ๐œ”๐พ,๐œŽ. If this supremum is zero, most gradient reconstruction operators andin particular those described in our numerical experiments will provide a discrete gradient that aligns with thecontinuous one and the discrete flux will be zero too, avoiding most of the problematic cases for the asymptoticbehavior of ๐œ”๐พ,๐œŽ. In the case of exact fluxes it is known that for the water height ๐‘ข the optimal convergencerate to ๐‘ข is โ„Ž12, even if superconvergence at rate โ„Ž is very often observed in practice, as revealed by [6,19] (seealso [7]). Thus, as additional flux consistency terms could only decrease the convergence rate, it seems clearthat our estimate for the water height cannot be expected to be improved in terms of order of convergence.

The proof of Theorem 6.1 being rather lengthy, we will try to decompose it as much as possible. Let us noticethat in the special case where โˆ‡๐‘ is constant, the discrete flux are exact. Then our problem corresponds toa piecewise constant version of the discontinuous Galerkin method described in [20], and we can in principlefollow the steps of their proof. Denoting ||๐‘ฃ||2โ„Ž โ€œ

ล™

๐พP๐’ฏ ||๐‘ฃ||2๐พ,โ„Ž with obvious notations, the first step of their

proof is to establish a local error identity for ||๐‘ข๐พ ยด ๐‘ฃ๐พ ||๐พ,โ„Ž for any ๐‘ฃ๐พ in R, using the exactness of the flux.Then, taking ๐‘ฃ๐พ โ€œ โ„๐พp๐‘ขq and summing over ๐พ P ๐’ฏ , they obtain a global error estimate where the residualterms only involve ๐‘ขยด โ„p๐‘ขq, which can be straightforwardly estimated using polynomial approximation results.

The general guideline of our proof is the same, however we have to endure some additional technicalities dueto the non exactness of the flux. We first start by establishing the equivalent of the local error identity of [20],but keeping our approximate flux in the result. Thus, an additional residual term standing for the consistencyerror of the flux will appear on the right hand side of our identity. Then, to match the definition of the || ยจ ||โ„Žnorm, each time our estimates will involve the sum of the flux over the full set โ„ฑ๐พ , we will replace it by theLaplacian of ๐‘, and put the difference in a residual term. For an isolated flux term, we will do the same usingthis time either ๐œ”๐พ,๐œŽ if the term is involved in the || ยจ ||โ„Ž norm or by the continuous flux if it is directly a residualterm. Thus, when summing the local error identities over ๐พ P ๐’ฏ to obtain the global error estimate, residualterms involving the discrete counterpart of the Laplacian will be handled through a technical result describedin the following subsection, while other residual terms will be estimated directly using the strong consistency ofthe flux. The reason for doing so is to obtain an error estimate involving only the || ยจ ||โ„Ž norm on the left-handside and residual terms involving either ๐‘ขยด โ„p๐‘ขq or flux consistency error terms on the right-hand side. Finally,each residual term will be estimated using polynomial approximation results and the consistency of the flux.

6.1. Local error identity and approximation results for the Laplacian

Let us now establish an abstract local error identity, following the lines of [20].

Lemma 6.3. For any ๐พ P ๐’ฏ , any ๐‘ฃ๐พ P R and any ๐œ‚ โ€œ p๐œ‚๐œŽq๐œŽPโ„ฑ๐พP ๐ฟ2pB๐พq constant on each ๐œŽ P โ„ฑ๐พ , we have:

12

รฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤ…0

๐น๐พ,๐œŽ p๐ต๐œŽq p๐‘ข๐พ ยด ๐‘ฃ๐พq2`

12

รฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

๐น๐พ,๐œŽ p๐ต๐œŽq p๐‘ขup๐œŽ ยด ๐œ‚๐œŽq

2

ยด12

รฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

๐น๐พ,๐œŽ p๐ต๐œŽq pp๐‘ข๐พ ยด ๐‘ฃ๐พq ยด p๐‘ขup๐œŽ ยด ๐œ‚๐œŽqq

2`

12

รฟ

๐œŽPโ„ฑ๐พ

๐น๐พ,๐œŽ p๐ต๐œŽq p๐‘ข๐พ ยด ๐‘ฃ๐พq2

โ€œรฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤ…0

1|๐œŽ|

ลผ

๐œŽ

๐น๐พ,๐œŽ p๐ต๐œŽq p๐‘ขยด ๐‘ฃ๐พq p๐‘ข๐พ ยด ๐‘ฃ๐พq

`รฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

1|๐œŽ|

ลผ

๐œŽ

๐น๐พ,๐œŽ p๐ต๐œŽq p๐‘ขยด ๐œ‚๐œŽq p๐‘ข๐พ ยด ๐‘ฃ๐พq

ยดรฟ

๐œŽPโ„ฑ๐พ

ลผ

๐œŽ

ห†

1|๐œŽ|

๐น๐พ,๐œŽ p๐ต๐œŽq ` ๐œ†โˆ‡๐‘ ยจ ๐‘›๐พ,๐œŽ

ห™

๐‘ข p๐‘ข๐พ ยด ๐‘ฃ๐พq (6.6)

where ๐‘ข is the solution of the continuous problem (3.1).

Page 18: Mathematical Modelling and Numerical Analysis Will be set by the publisher Mod elisation Math ematique et Analyse Num erique SOME MULTIPLE FLOW DIRECTION ALGORITHMS

1934 J. COATLEVEN

Proof. This proof is a direct adaptation of its counterpart in [20]. For any ๐‘ค๐พ P R and any ๐œ‰ โ€œ p๐œ‰๐œŽq๐œŽPโ„ฑ๐พP

๐ฟ2pB๐พq constant on each ๐œŽ P โ„ฑ๐พ , consider:

โ„๐พ โ€œ ยดรฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

๐น๐พ,๐œŽ p๐ต๐œŽq p๐‘ค๐พ ยด ๐œ‰๐œŽq๐‘ค๐พ `รฟ

๐œŽPโ„ฑ๐พ

๐น๐พ,๐œŽ p๐ต๐œŽq๐‘ค2๐พ .

Using the identity ๐‘Žp๐‘Žยด ๐‘q โ€œ 12

`

๐‘Ž2 ยด ๐‘2 ` p๐‘Žยด ๐‘q2ห˜

, we obtain:

โ„๐พ โ€œรฟ

๐œŽPโ„ฑ๐พ

๐น๐พ,๐œŽ p๐ต๐œŽq๐‘ค2๐พ ยด

12

รฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

๐น๐พ,๐œŽ p๐ต๐œŽq๐‘ค2๐พ `

12

รฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

๐น๐พ,๐œŽ p๐ต๐œŽq ๐œ‰2๐œŽ

ยด12

รฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

๐น๐พ,๐œŽ p๐ต๐œŽq p๐‘ค๐พ ยด ๐œ‰๐œŽq2

and thus:

โ„๐พ โ€œ12

รฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤ…0

๐น๐พ,๐œŽ p๐ต๐œŽq๐‘ค2๐พ `

12

รฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

๐น๐พ,๐œŽ p๐ต๐œŽq ๐œ‰2๐œŽ

ยด12

รฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

๐น๐พ,๐œŽ p๐ต๐œŽq p๐‘ค๐พ ยด ๐œ‰๐œŽq2`

12

รฟ

๐œŽPโ„ฑ๐พ

๐น๐พ,๐œŽ p๐ต๐œŽq๐‘ค2๐พ .

On the other hand, from (5.1) multiplying by ๐‘ค๐พ and using the definition of ๐‘ขup๐œŽ we have by construction:

ยดรฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

๐น๐พ,๐œŽ p๐ต๐œŽq p๐‘ข๐พ ยด ๐‘ขup๐œŽ q๐‘ค๐พ `

รฟ

๐œŽPโ„ฑ๐พ

๐น๐พ,๐œŽ p๐ต๐œŽq๐‘ข๐พ๐‘ค๐พ โ€œ

ลผ

๐พ

๐‘“๐‘ค๐พ .

Let us now set ๐‘ค๐พ โ€œ ๐‘ข๐พ ยด ๐‘ฃ๐พ and ๐œ‰๐œŽ โ€œ ๐‘ขup๐œŽ ยด ๐œ‚๐œŽ for all ๐œŽ P โ„ฑ๐พ . We obtain:

โ„๐พ โ€œ ยดรฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

๐น๐พ,๐œŽ p๐ต๐œŽq p๐œ‚๐œŽ ยด ๐‘ฃ๐พq๐‘ค๐พ `

ลผ

๐พ

๐‘“๐‘ค๐พ ยดรฟ

๐œŽPโ„ฑ๐พ

๐น๐พ,๐œŽ p๐ต๐œŽq ๐‘ฃ๐พ๐‘ค๐พ .

Using ยดdiv p๐‘ข๐œ†โˆ‡๐‘q โ€œ ๐‘“ , this leads to:

โ„๐พ โ€œ ยดรฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

๐น๐พ,๐œŽ p๐ต๐œŽq p๐œ‚๐œŽ ยด ๐‘ฃ๐พq๐‘ค๐พ `

ลผ

๐พ

ยดdiv p๐‘ข๐œ†โˆ‡๐‘q๐‘ค๐พ ยดรฟ

๐œŽPโ„ฑ๐พ

๐น๐พ,๐œŽ p๐ต๐œŽq ๐‘ฃ๐พ๐‘ค๐พ .

Integrating by parts, we get:ลผ

๐พ

ยดdiv p๐‘ข๐œ†โˆ‡๐‘q๐‘ค๐พ โ€œ ยดรฟ

๐œŽPโ„ฑ๐พ

ลผ

๐œŽ

๐œ†โˆ‡๐‘ ยจ ๐‘›๐พ,๐œŽ๐‘ข๐‘ค๐พ

โ€œรฟ

๐œŽPโ„ฑ๐พ

1

|๐œŽ|

ลผ

๐œŽ

๐น๐พ,๐œŽ p๐ต๐œŽq๐‘ข๐‘ค๐พ ยดรฟ

๐œŽPโ„ฑ๐พ

ลผ

๐œŽ

ห†

1

|๐œŽ|๐น๐พ,๐œŽ p๐ต๐œŽq ` ๐œ†โˆ‡๐‘ ยจ ๐‘›๐พ,๐œŽ

ห™

๐‘ข๐‘ค๐พ .

Then:

โ„๐พ โ€œ ยดรฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

1

|๐œŽ|

ลผ

๐œŽ

๐น๐พ,๐œŽ p๐ต๐œŽq p๐œ‚๐œŽ ยด ๐‘ฃ๐พq๐‘ค๐พ `รฟ

๐œŽPโ„ฑ๐พ

1

|๐œŽ|

ลผ

๐œŽ

๐น๐พ,๐œŽ p๐ต๐œŽq p๐‘ขยด ๐‘ฃ๐พq๐‘ค๐พ

ยดรฟ

๐œŽPโ„ฑ๐พ

ลผ

๐œŽ

ห†

1

|๐œŽ|๐น๐พ,๐œŽ p๐ต๐œŽq ` ๐œ†โˆ‡๐‘ ยจ ๐‘›๐พ,๐œŽ

ห™

๐‘ข๐‘ค๐พ

โ€œรฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

1

|๐œŽ|

ลผ

๐œŽ

๐น๐พ,๐œŽ p๐ต๐œŽq p๐‘ขยด ๐œ‚๐œŽq๐‘ค๐พ `รฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤ…0

1

|๐œŽ|

ลผ

๐œŽ

๐น๐พ,๐œŽ p๐ต๐œŽq p๐‘ขยด ๐‘ฃ๐พq๐‘ค๐พ

ยดรฟ

๐œŽPโ„ฑ๐พ

ลผ

๐œŽ

ห†

1

|๐œŽ|๐น๐พ,๐œŽ p๐ต๐œŽq ` ๐œ†โˆ‡๐‘ ยจ ๐‘›๐พ,๐œŽ

ห™

๐‘ข๐‘ค๐พ

which finally establishes the desired identity.

Page 19: Mathematical Modelling and Numerical Analysis Will be set by the publisher Mod elisation Math ematique et Analyse Num erique SOME MULTIPLE FLOW DIRECTION ALGORITHMS

SOME MULTIPLE FLOW DIRECTION ALGORITHMS 1935

In the above local error identity, one can see that the left hand side strongly looks like the ๐พ-term of the || ยจ ||โ„Žnorm. However, to match the || ยจ ||โ„Ž norm, we need to replace the sum of the fluxes over โ„ฑ๐พ by the Laplacianof ๐‘, as well as isolated flux by ๐œ”๐พ,๐œŽ. If this last operation straightforwardly leads to a residual term because of(6.1), however the following lemma precise what kind of link we can expect between the discrete Laplacian andthe true Laplacian:

Lemma 6.4. For any p๐‘ค๐พq๐พP๐’ฏ , one has:

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พ

๐น๐พ,๐œŽ p๐ต๐œŽq๐‘ค๐พ โ€œ ยดรฟ

๐พP๐’ฏ

ลผ

๐พ

๐œ†โˆ†๐‘๐‘ค๐พ `รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

ลผ

๐œŽ

ห†

1|๐œŽ|

๐น๐พ,๐œŽ p๐ต๐œŽq ` ๐œ†โˆ‡๐‘ ยจ ๐‘›๐พ,๐œŽ

ห™

ห† p๐‘ค๐พ ยด ๐‘คup๐œŽ q `

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พXโ„ฑext,๐น๐พ,๐œŽp๐ต๐œŽqฤ…0

ลผ

๐œŽ

ห†

1|๐œŽ|

๐น๐พ,๐œŽ p๐ต๐œŽq ` ๐œ†โˆ‡๐‘ ยจ ๐‘›๐พ,๐œŽ

ห™

๐‘ค๐พ .

Proof. Let us first notice that:รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พ

๐น๐พ,๐œŽ p๐ต๐œŽq๐‘คup๐œŽ โ€œ

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พXโ„ฑext,๐น๐พ,๐œŽp๐ต๐œŽqฤ…0

๐น๐พ,๐œŽ p๐ต๐œŽq๐‘คup๐œŽ .

Indeed, using ๐น๐พ,๐œŽ p๐ต๐œŽq ` ๐น๐ฟ,๐œŽ p๐ต๐œŽq โ€œ 0 for any ๐œŽ P โ„ฑint, ๐’ฏ๐œŽ โ€œ t๐พ, ๐ฟu we haveรฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พXโ„ฑint

๐น๐พ,๐œŽ p๐ต๐œŽq๐‘คup๐œŽ โ€œ 0

while for ๐œŽ P โ„ฑext such that ๐น๐พ,๐œŽ p๐ต๐œŽq ฤ… 0, ๐’ฏ๐œŽ โ€œ t๐พu, ๐‘คup๐œŽ โ€œ 0 immediately implies that:

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พXโ„ฑext,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

๐น๐พ,๐œŽ p๐ต๐œŽq๐‘คup๐œŽ โ€œ 0.

Thus, we have:รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พ

๐น๐พ,๐œŽ p๐ต๐œŽq๐‘ค๐พ โ€œรฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

๐น๐พ,๐œŽ p๐ต๐œŽq p๐‘ค๐พ ยด ๐‘คup๐œŽ q

`รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พXโ„ฑext,๐น๐พ,๐œŽp๐ต๐œŽqฤ…0

๐น๐พ,๐œŽ p๐ต๐œŽq๐‘ค๐พ

using the definition of ๐‘คup๐œŽ . In the same way:

รฟ

๐พP๐’ฏ

ลผ

๐พ

ยด๐œ†โˆ†๐‘๐‘ค๐พ โ€œรฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พ

ลผ

๐œŽ

ยด๐œ†โˆ‡๐‘ ยจ ๐‘›๐พ,๐œŽ๐‘ค๐พ โ€œรฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

ลผ

๐œŽ

ยด๐œ†โˆ‡๐‘ ยจ ๐‘›๐พ,๐œŽ p๐‘ค๐พ ยด ๐‘คup๐œŽ q

`รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พXโ„ฑext,๐น๐พ,๐œŽp๐ต๐œŽqฤ…0

ลผ

๐œŽ

ยด๐œ†โˆ‡๐‘ ยจ ๐‘›๐พ,๐œŽ๐‘ค๐พ .

Combining those expressions gives the expected result.

6.2. Global error estimate

From the local error identity, and the link between the discrete and continuous Laplacians, we deduce a globalestimate for the discrete norm of the error:

Page 20: Mathematical Modelling and Numerical Analysis Will be set by the publisher Mod elisation Math ematique et Analyse Num erique SOME MULTIPLE FLOW DIRECTION ALGORITHMS

1936 J. COATLEVEN

Lemma 6.5. Using the hypothesis and notations of Proposition 6.1, we have:

||๐‘ขยด โ„โ„Žp๐‘ขq||2โ„Ž ฤ

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พXโ„ฑint,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

1|๐œŽ|

ลผ

๐œŽ

๐น๐พ,๐œŽ p๐ต๐œŽq p๐‘ขยด โ„up๐œŽ p๐‘ขqq pp๐‘ข

up๐œŽ ยด โ„up

๐œŽ p๐‘ขqq ยด p๐‘ข๐พ ยด โ„๐พp๐‘ขqqq

`รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พXโ„ฑext,๐น๐พ,๐œŽp๐ต๐œŽqฤ…0

1|๐œŽ|

ลผ

๐œŽ

๐น๐พ,๐œŽ p๐ต๐œŽq p๐‘ขยด โ„๐พp๐‘ขqq p๐‘ข๐พ ยด โ„๐พp๐‘ขqq

`รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พXโ„ฑext,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

1|๐œŽ|

ลผ

๐œŽ

๐น๐พ,๐œŽ p๐ต๐œŽq p๐‘ขยด โ„up๐œŽ p๐‘ขqq pp๐‘ข๐พ ยด โ„๐พp๐‘ขqq ยด p๐‘ข

up๐œŽ ยด โ„up

๐œŽ p๐‘ขqqq

ยดรฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พ

ลผ

๐œŽ

ห†

1|๐œŽ|

๐น๐พ,๐œŽ p๐ต๐œŽq ` ๐œ†โˆ‡๐‘ ยจ ๐‘›๐พ,๐œŽ

ห™

๐‘ข p๐‘ข๐พ ยด โ„๐พp๐‘ขqq

ยด12

หœ

รฟ

๐พP๐’ฏ

ลผ

๐พ

๐œ†โˆ†๐‘|๐‘ข๐พ ยด โ„๐พp๐‘ขq|2 `

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พ

๐น๐พ,๐œŽ p๐ต๐œŽq |๐‘ข๐พ ยด โ„๐พp๐‘ขq|2

ยธ

ยด12

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

p|๐น๐พ,๐œŽ p๐ต๐œŽq | ยด ๐œ”๐พ,๐œŽq pp๐‘ข๐พ ยด โ„๐พp๐‘ขqq ยด p๐‘ขup๐œŽ ยด โ„up

๐œŽ p๐‘ขqqq2

ยด12

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พXโ„ฑext,๐น๐พ,๐œŽp๐ต๐œŽqฤ…0

p|๐น๐พ,๐œŽ p๐ต๐œŽq | ยด ๐œ”๐พ,๐œŽq |๐‘ข๐พ ยด โ„๐พp๐‘ขq|2.

Proof. We start from (6.6) with ๐‘ฃ๐พ โ€œ โ„๐พp๐‘ขq and ๐œ‚๐œŽ โ€œ โ„up๐œŽ p๐‘ขq. Summing over ๐พ P ๐’ฏ the second term of the

left hand side of (6.6) leads to:

12

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

๐น๐พ,๐œŽ p๐ต๐œŽq p๐‘ขup๐œŽ ยด โ„up

๐œŽ p๐‘ขqq2

โ€œ ยด12

รฟ

๐ฟP๐’ฏ

รฟ

๐œŽPโ„ฑ๐ฟXโ„ฑint,๐น๐ฟ,๐œŽp๐ต๐œŽqฤ…0

๐น๐ฟ,๐œŽ p๐ต๐œŽq p๐‘ข๐ฟ ยด โ„๐ฟp๐‘ขqq2

`12

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พXโ„ฑext,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

๐น๐พ,๐œŽ p๐ต๐œŽq p๐‘ข๐œŽ ยด โ„๐œŽp๐‘ขqq2

โ€œ ยด12

รฟ

๐ฟP๐’ฏ

รฟ

๐œŽPโ„ฑ๐ฟXโ„ฑint,๐น๐ฟ,๐œŽp๐ต๐œŽqฤ…0

๐น๐ฟ,๐œŽ p๐ต๐œŽq p๐‘ข๐ฟ ยด โ„๐ฟp๐‘ขqq2

as both ๐‘ข๐œŽ and โ„๐œŽp๐‘ขq cancels for ๐œŽ P โ„ฑ๐’Ÿext,in. Thus, summing over ๐พ P ๐’ฏ the first two terms of the left handside of (6.6), we obtain:

12

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤ…0

๐น๐พ,๐œŽ p๐ต๐œŽq pโ„Ž๐‘š,๐พ ยด โ„๐พp๐‘ขqq2`

12

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

๐น๐พ,๐œŽ p๐ต๐œŽq p๐‘ขup๐œŽ ยด โ„up

๐œŽ p๐‘ขqq2

โ€œ12

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พXโ„ฑext,๐น๐พ,๐œŽp๐ต๐œŽqฤ…0

๐น๐พ,๐œŽ p๐ต๐œŽq pโ„Ž๐‘š,๐พ ยด โ„๐พp๐‘ขqq2.

Page 21: Mathematical Modelling and Numerical Analysis Will be set by the publisher Mod elisation Math ematique et Analyse Num erique SOME MULTIPLE FLOW DIRECTION ALGORITHMS

SOME MULTIPLE FLOW DIRECTION ALGORITHMS 1937

Consequently, summing over ๐พ P ๐’ฏ the entire left hand side of (6.6) leads to:

รฟ

๐พP๐’ฏโ„๐พ โ€œ

12

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พ

๐น๐พ,๐œŽ p๐ต๐œŽq |๐‘ข๐พ ยด โ„๐พp๐‘ขq|2

ยด12

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

๐น๐พ,๐œŽ p๐ต๐œŽq pp๐‘ข๐พ ยด โ„๐พp๐‘ขqq ยด p๐‘ขup๐œŽ ยด โ„up

๐œŽ p๐‘ขqqq2

`12

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พXโ„ฑext,๐น๐พ,๐œŽp๐ต๐œŽqฤ…0

๐น๐พ,๐œŽ p๐ต๐œŽq |๐‘ข๐พ ยด โ„๐พp๐‘ขq|2 โ€œ ๐น1 ` ๐น2 ` ๐น3.

The first term of the above expression rewrites:

๐น1 โ€œ12

รฟ

๐พP๐’ฏ

ลผ

๐พ

ยด๐œ†โˆ†๐‘|๐‘ข๐พ ยด โ„๐พp๐‘ขq|2

`12

หœ

รฟ

๐พP๐’ฏ

ลผ

๐พ

๐œ†โˆ†๐‘|๐‘ข๐พ ยด โ„๐พp๐‘ขq|2 `

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พ

๐น๐พ,๐œŽ p๐ต๐œŽq |๐‘ข๐พ ยด โ„๐พp๐‘ขq|2

ยธ

โ€œ ๐ฟ0 ` ๐ฟ1

while the second term and third term give:

๐น2 ` ๐น3 โ€œ12

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

๐œ”๐พ,๐œŽ pp๐‘ข๐พ ยด โ„๐พp๐‘ขqq ยด p๐‘ขup๐œŽ ยด โ„up

๐œŽ p๐‘ขqqq2

`12

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พXโ„ฑext,๐น๐พ,๐œŽp๐ต๐œŽqฤ…0

๐œ”๐พ,๐œŽ|๐‘ข๐พ ยด โ„๐พp๐‘ขq|2

`12

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

p|๐น๐พ,๐œŽ p๐ต๐œŽq | ยด ๐œ”๐พ,๐œŽq pp๐‘ข๐พ ยด โ„๐พp๐‘ขqq ยด p๐‘ขup๐œŽ ยด โ„up

๐œŽ p๐‘ขqqq2

`12

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พXโ„ฑext,๐น๐พ,๐œŽp๐ต๐œŽqฤ…0

p|๐น๐พ,๐œŽ p๐ต๐œŽq | ยด ๐œ”๐พ,๐œŽq |๐‘ข๐พ ยด โ„๐พp๐‘ขq|2 โ€œ ๐ฟ2 ` ๐ฟ3 ` ๐ฟ4 ` ๐ฟ5

with obvious notations. Immediately, using the hypothesis on ๐œ† and ๐‘ we have:

๐ฟ0 ฤ›๐›ผ๐œ†ยด

2

รฟ

๐พP๐’ฏ|๐พ| p๐‘ข๐พ ยด โ„๐พp๐‘ขqq

2.

Then, noticing that the second member of the sum over ๐พ P ๐’ฏ of (6.6) can be decomposed into three terms๐‘‡1 ` ๐‘‡2 ` ๐‘‡3 with obvious notations and combining the above results, we have that

ล™

๐พP๐’ฏ โ„๐พ โ€œ ๐‘‡1 ` ๐‘‡2 ` ๐‘‡3

is equivalent to ||๐‘ข ยด โ„โ„Žp๐‘ขq||2โ„Ž ฤ ๐‘‡1 ` ๐‘‡2 ` ๐‘‡3 ยด ๐ฟ1 ยด ๐ฟ4 ยด ๐ฟ5 as ๐ฟ0 ` ๐ฟ2 ` ๐ฟ3 exactly gives the square of the

|| ยจ ||โ„Ž norm. Using the fact that both ๐‘ข๐œŽ and โ„๐œŽp๐‘ขq cancels for ๐œŽ P โ„ฑ๐’Ÿext,in, we obtain:

๐‘‡1 ` ๐‘‡2 โ€œรฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พXโ„ฑint,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

1|๐œŽ|

ลผ

๐œŽ

๐น๐พ,๐œŽ p๐ต๐œŽq p๐‘ขยด โ„up๐œŽ p๐‘ขqq pp๐‘ข

up๐œŽ ยด โ„up

๐œŽ p๐‘ขqq ยด p๐‘ข๐พ ยด โ„๐พp๐‘ขqqq

`รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พXโ„ฑext,๐น๐พ,๐œŽp๐ต๐œŽqฤ…0

1|๐œŽ|

ลผ

๐œŽ

๐น๐พ,๐œŽ p๐ต๐œŽq p๐‘ขยด โ„๐พp๐‘ขqq p๐‘ข๐พ ยด โ„๐พp๐‘ขqq

`รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พXโ„ฑext,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

1|๐œŽ|

ลผ

๐œŽ

๐น๐พ,๐œŽ p๐ต๐œŽq p๐‘ขยด โ„up๐œŽ p๐‘ขqq pp๐‘ข๐พ ยด โ„๐พp๐‘ขqq ยด p๐‘ข

up๐œŽ ยด โ„up

๐œŽ p๐‘ขqqq

which concludes the proof.

Page 22: Mathematical Modelling and Numerical Analysis Will be set by the publisher Mod elisation Math ematique et Analyse Num erique SOME MULTIPLE FLOW DIRECTION ALGORITHMS

1938 J. COATLEVEN

6.3. Estimation of the residual terms

Establishing Proposition 6.1 now just consists in estimating each term appearing in the second member ofthe above global estimate. From Lemma 6.5, we see that ||๐‘ขยด โ„โ„Žp๐‘ขq||

2โ„Ž ฤ

ล™7๐‘–โ€œ1 ๐‘‡๐‘– with obvious notations. The

first three terms account for the polynomial approximation error, while the four other terms account for theconsistency error of the flux. We now estimate those two families of residual terms separately.

Proof of Proposition 6.1: terms accounting for polynomial approximation error. Using Cauchyโ€“Schwarzinequality and the fact that p๐‘ขup

๐œŽ ยด โ„up๐œŽ p๐‘ขqq ยด p๐‘ข๐พ ยด โ„๐พp๐‘ขqq is constant on ๐œŽ gives:

|๐‘‡1|2 ฤ

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พXโ„ฑint,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

ห†ลผ

๐œŽ

1|๐œŽ||๐น๐พ,๐œŽ p๐ต๐œŽq | ||๐‘ขยด โ„up

๐œŽ p๐‘ขq|2

ห™

||๐‘ขยด โ„โ„Žp๐‘ขq||2โ„Ž.

As the gradient operator underlying the fluxes is consistent, we know from Proposition 4.5 that there exists๐ถ ฤ… 0 such that:

ห‡

ห‡

ห‡

ห‡

1|๐œŽ|

๐น๐พ,๐œŽ p๐ต๐œŽq

ห‡

ห‡

ห‡

ห‡

ฤ ||1|๐œŽ|

๐น๐พ,๐œŽ p๐ต๐œŽq ยด ๐œ†โˆ‡๐‘ ยจ ๐‘›๐พ,๐œŽ||๐ฟ8p๐œŽq ` ||๐œ†โˆ‡๐‘ ยจ ๐‘›๐พ,๐œŽ||๐ฟ8p๐œŽq

ฤ ๐ถโ„Ž||๐œ†||๐‘Š 1,8pฮฉq||๐‘||๐‘Š 2,8pฮฉq ` ||๐œ†||๐ฟ8pฮฉq||๐‘||๐‘Š 2,8pฮฉq.

As soon as โ„Ž ฤ โ„Ž0 for some fixed โ„Ž0 this leads to the existence of some ๐ถ ฤ… 0 independent on โ„Ž such that

|๐‘‡1|2 ฤ ๐ถ||๐œ†||๐‘Š 1,8pฮฉq||๐‘||๐‘Š 2,8

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พXโ„ฑint,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

ห†ลผ

๐œŽ

|๐‘ขยด โ„up๐œŽ p๐‘ขq|

2

ห™

||๐‘ขยด โ„โ„Žp๐‘ขq||2โ„Ž.

Then, using the definition of โ„โ„Žp๐‘ขq, we getลผ

๐œŽ

|๐‘ขยด โ„up๐œŽ p๐‘ขq|

2 ฤ ๐ถโ„Ž๐พup๐œŽ|๐‘ข|2๐ป1p๐พup

๐œŽ q

where, if ๐œŽ P โ„ฑint, ๐พup๐œŽ โ€œ ๐พ if ๐น๐พ,๐œŽ p๐ต๐œŽq ฤ› 0 and ๐พup

๐œŽ โ€œ ๐ฟ if ๐น๐พ,๐œŽ p๐ต๐œŽq ฤƒ 0, and ๐พup๐œŽ โ€œ ๐พ

if ๐œŽ P โ„ฑext. From [7], we know that assumption (A1) implies that card pโ„ฑ๐พq is bounded by a constant๐œŒโ„ฑ depending on the mesh parameters but independent on โ„Ž, and thus there exists ๐ถ ฤ… 0 such that|๐‘‡1|

2 ฤ 2โ„Ž๐ถ||๐œ†||๐‘Š 1,8pฮฉq||๐‘||๐‘Š 2,8 |๐‘ข|2๐ป1pฮฉq||๐‘ขยดโ„โ„Žp๐‘ขq||2โ„Ž. For ๐‘‡2, obviously we have using Cauchyโ€“Schwarz inequal-

ity:

|๐‘‡2|2 ฤ

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พXโ„ฑext,๐น๐พ,๐œŽp๐ต๐œŽqฤ…0

ห†ลผ

๐œŽ

1|๐œŽ||๐น๐พ,๐œŽ p๐ต๐œŽq | ||๐‘ขยด โ„๐พp๐‘ขq|

2

ห™

||๐‘ขยด โ„โ„Žp๐‘ขq||2โ„Ž

and thus, proceeding the same way than for ๐‘‡1, we obtain |๐‘‡2|2 ฤ 2โ„Ž๐ถ||๐œ†||๐‘Š 1,8pฮฉq||๐‘||๐‘Š 2,8 |๐‘ข|2๐ป1pฮฉq||๐‘ขยดโ„โ„Žp๐‘ขq||

2โ„Ž.

The situation is more delicate for ๐‘‡3. Indeed, โ„up๐œŽ p๐‘ขq โ€œ 0 for ๐œŽ P โ„ฑ๐’Ÿext,in, while ๐‘ข โ€œ 0 on ๐œŽ P โ„ฑext,in, thus โ„up

๐œŽ p๐‘ขq

is not directly a good approximation of ๐‘ข. For any ๐œŽ P โ„ฑ๐’Ÿext,inXโ„ฑext,in, โ„up๐œŽ p๐‘ขq โ€œ ๐‘ข โ€œ 0 and thus the contribution

to ๐‘‡3 is zero. Then, it just remains to consider the case where ๐œŽ P โ„ฑ๐’Ÿext,in and ๐œŽ R โ„ฑext,in. In this case we haveยดลŸ

๐œŽ๐œ†โˆ‡๐‘ ยจ ๐‘›๐พ,๐œŽ ฤ› 0 while ๐น๐พ,๐œŽ p๐ต๐œŽq ฤƒ 0. However, by definition of the residual

ห‡

ห‡๐น๐พ,๐œŽ p๐ต๐œŽq `ลŸ

๐œŽ๐œ†โˆ‡๐‘ ยจ ๐‘›๐พ,๐œŽ

ห‡

ห‡ ฤ

๐‘…๐พ,๐œŽ which immediately implies thatห‡

ห‡

ลŸ

๐œŽ๐œ†โˆ‡๐‘ ยจ ๐‘›๐พ,๐œŽ

ห‡

ห‡ ฤ ๐‘…๐พ,๐œŽ and |๐น๐พ,๐œŽ p๐ต๐œŽq| ฤ ๐‘…๐พ,๐œŽ. Consequently, we getusing Cauchyโ€“Schwarz inequality:

|๐‘‡3| ฤ

ยจ

ห

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พXโ„ฑext,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

1|๐œŽ|

๐‘…๐พ,๐œŽ

ลผ

๐œŽ

๐‘ข2

ห›

โ€š

12

ห†

ยจ

ห

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พXโ„ฑext,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

๐‘…๐พ,๐œŽ pp๐‘ข๐พ ยด โ„๐พp๐‘ขqq ยด p๐‘ขup๐œŽ ยด โ„up

๐œŽ p๐‘ขqqq2

ห›

โ€š

12

.

Page 23: Mathematical Modelling and Numerical Analysis Will be set by the publisher Mod elisation Math ematique et Analyse Num erique SOME MULTIPLE FLOW DIRECTION ALGORITHMS

SOME MULTIPLE FLOW DIRECTION ALGORITHMS 1939

Using the definition of ๐›พpโ„Žq and the trace inequality on ฮฉ, this leads to:

๐‘‡3 ฤ ๐›พpโ„Žq12

ยจ

ห

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พXโ„ฑext,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

1|๐œŽ|

๐‘…๐พ,๐œŽ

ลผ

๐œŽ

๐‘ข2

ห›

โ€š

12

||๐‘ขยดโ„โ„Žp๐‘ขq||โ„Ž ฤ ๐ถโ„Ž12๐›พpโ„Žq12||๐‘ข||๐ป1pฮฉq||๐‘ขยดโ„โ„Žp๐‘ขq||โ„Ž.

It finally remains to estimate the terms accounting for the consistency error on the fluxes.

Proof of Proposition 6.1: terms accounting for flux consistency error. For ๐‘‡4, let us first remark that:

๐‘‡4 โ€œ ยดรฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พXโ„ฑint

ลผ

๐œŽ

ห†

1|๐œŽ|

๐น๐พ,๐œŽ p๐ต๐œŽq ` ๐œ†โˆ‡๐‘ ยจ ๐‘›๐พ,๐œŽ

ห™

๐‘ข pp๐‘ข๐พ ยด โ„๐พp๐‘ขqq ยด p๐‘ขup๐œŽ ยด โ„up

๐œŽ p๐‘ขqqq

ยดรฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พXโ„ฑext

ลผ

๐œŽ

ห†

1|๐œŽ|

๐น๐พ,๐œŽ p๐ต๐œŽq ` ๐œ†โˆ‡๐‘ ยจ ๐‘›๐พ,๐œŽ

ห™

๐‘ข p๐‘ข๐พ ยด โ„๐พp๐‘ขqq .

Using the fact that both ๐‘ข๐œŽ and โ„๐œŽp๐‘ขq cancel for ๐œŽ P โ„ฑ๐พ X โ„ฑext and ๐น๐พ,๐œŽ p๐ต๐œŽq ฤƒ 0, this rewrites:

๐‘‡4 โ€œ ยดรฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

ลผ

๐œŽ

ห†

1|๐œŽ|

๐น๐พ,๐œŽ p๐ต๐œŽq ` ๐œ†โˆ‡๐‘ ยจ ๐‘›๐พ,๐œŽ

ห™

๐‘ข pp๐‘ข๐พ ยด โ„๐พp๐‘ขqq ยด p๐‘ขup๐œŽ ยด โ„up

๐œŽ p๐‘ขqqq

ยดรฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พXโ„ฑext,๐น๐พ,๐œŽp๐ต๐œŽqฤ…0

ลผ

๐œŽ

ห†

1|๐œŽ|

๐น๐พ,๐œŽ p๐ต๐œŽq ` ๐œ†โˆ‡๐‘ ยจ ๐‘›๐พ,๐œŽ

ห™

๐‘ข p๐‘ข๐พ ยด โ„๐พp๐‘ขqq โ€œ ๐‘‡4,1 ` ๐‘‡4,2.

Cauchyโ€“Schwarz inequality then leads to:

|๐‘‡4,1| ฤ

ยจ

ห

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

1|๐œŽ|

๐‘…๐พ,๐œŽ

ลผ

๐œŽ

๐‘ข2

ห›

โ€š

12

ห†

ยจ

ห

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

๐‘…๐พ,๐œŽ

ยด

p๐‘ข๐พ ยด โ„๐พp๐‘ขqq ยด p๐‘ขup๐œŽ ยด โ„up

๐œŽ p๐‘ขqq2ยฏ

ห›

โ€š

12

.

Using (6.3), (2.2) and the definition of ๐›พpโ„Žq, we easily get:

|๐‘‡4,1| ฤ ๐ถ๐›พpโ„Žq12

ยจ

ห

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

โ„Ž๐พ

ลผ

๐œŽ

๐‘ข2

ห›

โ€š

12

||๐‘ขยด โ„โ„Žp๐‘ขq||โ„Ž ฤ ๐ถ๐›พpโ„Žq12||๐‘ข||๐ป1pฮฉq||๐‘ขยด โ„โ„Žp๐‘ขq||โ„Ž.

In the same way, Cauchyโ€“Schwarz inequality and this time the trace inequality on ฮฉ directly gives:

|๐‘‡4,2| ฤ ๐ถ๐›พpโ„Žq12

ยจ

ห

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พXโ„ฑext,๐น๐พ,๐œŽp๐ต๐œŽqฤ…0

โ„Ž๐พ

ลผ

๐œŽ

๐‘ข2

ห›

โ€š

12

||๐‘ขยด โ„โ„Žp๐‘ขq||โ„Ž ฤ ๐ถ๐›พpโ„Žq12โ„Ž12||๐‘ข||๐ป1pฮฉq||๐‘ขยด โ„โ„Žp๐‘ขq||โ„Ž.

From Lemma 6.4, we deduce that:

|๐‘‡5| ฤรฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

๐‘…๐พ,๐œŽ

ยด

p๐‘ข๐พ ยด โ„๐พp๐‘ขqq2ยด p๐‘ขup

๐œŽ ยด โ„up๐œŽ p๐‘ขqq

2ยฏ

`รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พXโ„ฑext,๐น๐พ,๐œŽp๐ต๐œŽqฤ…0

๐‘…๐พ,๐œŽ p๐‘ข๐พ ยด โ„๐พp๐‘ขqq2.

Page 24: Mathematical Modelling and Numerical Analysis Will be set by the publisher Mod elisation Math ematique et Analyse Num erique SOME MULTIPLE FLOW DIRECTION ALGORITHMS

1940 J. COATLEVEN

Using p๐‘Ž2 ยด ๐‘2q โ€œ p๐‘Žยด ๐‘qp๐‘Ž` ๐‘q and Cauchyโ€“Schwarz inequality, we obtain:

|๐‘‡5| ฤ ๐›พpโ„Žq12||๐‘ขยด โ„โ„Žp๐‘ขq||โ„Ž

ยจ

ห

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

๐‘…๐พ,๐œŽ pp๐‘ข๐พ ยด โ„๐พp๐‘ขqq ` p๐‘ขup๐œŽ ยด โ„up

๐œŽ p๐‘ขqqq2

ห›

โ€š

12

` ๐›พpโ„Žq12||๐‘ขยด โ„โ„Žp๐‘ขq||โ„Ž

ยจ

ห

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พXโ„ฑext,๐น๐พ,๐œŽp๐ต๐œŽqฤ…0

๐‘…๐พ,๐œŽ p๐‘ข๐พ ยด โ„๐พp๐‘ขqq2

ห›

โ€š

12

.

Using (6.3) and assumption (A1), we immediately obtain that:รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

๐‘…๐พ,๐œŽ p๐‘ข๐พ ยด โ„๐พp๐‘ขqq2ฤ ๐ถ๐œŒโ„ฑ

รฟ

๐พP๐’ฏ|๐พ| p๐‘ข๐พ ยด โ„๐พp๐‘ขqq

2

and in the same way, using the fact that ๐‘ขup๐œŽ โ€œ and โ„up

๐œŽ p๐‘ขq โ€œ 0 on any ๐œŽ P โ„ฑext such that ๐น๐พ,๐œŽ p๐ต๐œŽq ฤƒ 0 andthe commensurability of โ„Ž๐พ and โ„Ž๐ฟ if โ„ฑ๐พ X โ„ฑ๐พ โ€ฐ H under assumption (A1):

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

๐‘…๐พ,๐œŽ p๐‘ขup๐œŽ ยด โ„up

๐œŽ p๐‘ขqq2ฤ ๐ถ

รฟ

๐ฟP๐’ฏ

รฟ

๐œŽPโ„ฑ๐ฟ,๐น๐ฟ,๐œŽp๐ต๐œŽqฤ…0

|๐œŽ|โ„Ž๐ฟ pโ„Ž๐ฟ ยด โ„up๐ฟ p๐‘ขqq

2

ฤ ๐ถ๐œŒโ„ฑรฟ

๐พP๐’ฏ|๐พ| p๐‘ข๐พ ยด โ„๐พp๐‘ขqq

2

and also:รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พXโ„ฑext,๐น๐พ,๐œŽp๐ต๐œŽqฤ…0

๐‘…๐พ,๐œŽ p๐‘ข๐พ ยด โ„๐พp๐‘ขqq2ฤ ๐ถ

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พXโ„ฑext,๐น๐พ,๐œŽp๐ต๐œŽqฤ…0

|๐œŽ|โ„Ž๐พ p๐‘ข๐พ ยด โ„๐พp๐‘ขqq2

ฤ ๐ถ๐œŒโ„ฑรฟ

๐พP๐’ฏ|๐พ| p๐‘ข๐พ ยด โ„๐พp๐‘ขqq

2.

Gathering those intermediate results, we get that |๐‘‡5| ฤ ๐ถ๐›พpโ„Žq12||๐‘ข ยด โ„โ„Žp๐‘ขq||2โ„Ž. Finally, we have by definition

of ๐›พpโ„Žq and || ยจ ||โ„Ž that |๐‘‡6 ` ๐‘‡7| ฤ ๐ถ๐›พpโ„Žq12||๐‘ข ยด โ„โ„Žp๐‘ขq||2โ„Ž. Then, using the hypothesis that ๐›พpโ„Žq goes to zero

when โ„Ž goes to zero, for any ๐ถ ฤ… 0 independent on โ„Ž there exists โ„Ž0 ฤ… 0 such that 1ยด๐ถ max pโ„Ž, ๐›พpโ„Žqq12ฤ… 12,

and the result then immediately follows.

6.4. Error estimate for the water discharge

To establish Corollary 6.2, we will need an auxiliary discrete stability result:

Lemma 6.6. The following estimates holds:

12

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พ

๐น๐พ,๐œŽ p๐ต๐œŽq๐‘ข2๐พ `

12

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พXโ„ฑext,๐น๐พ,๐œŽp๐ต๐œŽqฤ…0

๐น๐พ,๐œŽ p๐ต๐œŽq๐‘ข2๐พ

ยด12

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

p๐‘ข๐พ ยด ๐‘ขup๐œŽ q

2๐น๐พ,๐œŽ p๐ต๐œŽq โ€œ

รฟ

๐พP๐’ฏ|๐พ|๐‘“๐พ๐‘ข๐พ . (6.7)

Proof. To establish (6.7), using the definition of ๐‘ขup๐œŽ , we obtain multiplying (5.1) by ๐‘ข๐พ and summing over

๐พ P ๐’ฏ :รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤ…0

๐น๐พ,๐œŽ p๐ต๐œŽq๐‘ข2๐พ `

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

๐น๐พ,๐œŽ p๐ต๐œŽq๐‘ขup๐œŽ ๐‘ข๐พ โ€œ

รฟ

๐พP๐’ฏ|๐พ|๐‘“๐พ๐‘ข๐พ .

Page 25: Mathematical Modelling and Numerical Analysis Will be set by the publisher Mod elisation Math ematique et Analyse Num erique SOME MULTIPLE FLOW DIRECTION ALGORITHMS

SOME MULTIPLE FLOW DIRECTION ALGORITHMS 1941

Remark that ๐‘ขup๐œŽ ๐‘ข๐พ โ€œ 1

2

ยด

๐‘ข2๐พ ` ๐‘ข๐‘ข๐‘2

๐œŽ

ยฏ

ยด 12 p๐‘ข๐พ ยด ๐‘ขup

๐œŽ q2 which immediately leads to

รฟ

๐พP๐’ฏ|๐พ|๐‘“๐พ๐‘ข๐พ โ€œ

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤ…0

๐น๐พ,๐œŽ p๐ต๐œŽq๐‘ข2๐พ `

12

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

๐น๐พ,๐œŽ p๐ต๐œŽq๐‘ข2๐พ

`12

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

๐น๐พ,๐œŽ p๐ต๐œŽq๐‘ข๐‘ข๐‘2

๐œŽ ยด12

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

๐น๐พ,๐œŽ p๐ต๐œŽq p๐‘ข๐พ ยด ๐‘ขup๐œŽ q

2.

Using the fact that:รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

๐น๐พ,๐œŽ p๐ต๐œŽq๐‘ข๐‘ข๐‘2

๐œŽ โ€œ ยดรฟ

๐ฟP๐’ฏ

รฟ

๐œŽPโ„ฑ๐ฟXโ„ฑint,๐น๐ฟ,๐œŽp๐ต๐œŽqฤ…0

๐น๐ฟ,๐œŽ p๐ต๐œŽq๐‘ข2๐ฟ

we immediately get (6.7) as:

12

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤ…0

๐น๐พ,๐œŽ p๐ต๐œŽq๐‘ข2๐พ `

12

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

๐น๐พ,๐œŽ p๐ต๐œŽq๐‘ข๐‘ข๐‘2

๐œŽ

โ€œ12

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พXโ„ฑext,๐น๐พ,๐œŽp๐ต๐œŽqฤ…0

๐น๐พ,๐œŽ p๐ต๐œŽq๐‘ข2๐พ .

Proof of Corollary 6.2. Let us denote p๐‘’๐‘–q0ฤ๐‘–ฤ1 the canonical basis of R2. Assume that โ„Ž ฤ โ„Ž0, where โ„Ž0 isdefined in Proposition 6.1 and consider:

๐พ โ€œรฟ

๐œŽPโ„ฑ๐พ

๐‘ข๐พ

|๐พ|๐น๐พ,๐œŽ p๐ต๐œŽq p๐‘ฅ๐œŽ ยด ๐‘ฅ๐พq .

We begin by establishing thatหœ

รฟ

๐พP๐’ฏ|| ยด ๐œ†๐‘ขโˆ‡๐‘ยด ๐พ ||

2๐ฟ2p๐พq2

ยธ12

ฤ ๐ถ maxpโ„Ž, ๐›พpโ„Žqq12||๐‘ข||๐ป1pฮฉq. (6.8)

Indeed, we have:ลผ

๐พ

๐œ†๐พB๐œ‰๐‘ โ€œ

ลผ

๐พ

๐œ†๐พโˆ‡๐‘โˆ‡ p๐‘ฅ๐‘– ยด ๐‘ฅ๐พ,๐‘–q โ€œ ยด

ลผ

๐พ

๐œ†๐พโˆ†๐‘ p๐‘ฅ๐‘– ยด ๐‘ฅ๐พ,๐‘–q `รฟ

๐œŽPโ„ฑ๐พ

ลผ

๐œŽ

๐œ†๐พโˆ‡๐‘ ยจ ๐‘›๐พ,๐œŽ p๐‘ฅ๐‘– ยด ๐‘ฅ๐พ,๐‘–q .

Using again the consistency estimate of Proposition 4.5 for the fluxes, we get:ห‡

ห‡

ห‡

ห‡

ห‡

รฟ

๐œŽPโ„ฑ๐พ

ลผ

๐œŽ

ห†

ยด๐œ†๐พโˆ‡๐‘ ยจ ๐‘›๐พ,๐œŽ ยด1|๐œŽ|

๐น๐พ,๐œŽ p๐ต๐œŽq

ห™

p๐‘ฅ๐‘– ยด ๐‘ฅ๐พ,๐‘–q

ห‡

ห‡

ห‡

ห‡

ห‡

ฤ ๐ถ|๐œŽ|card pโ„ฑ๐พqโ„Ž2๐พ ||๐œ†||๐‘Š 1,8pฮฉq||๐‘||๐‘Š 2,8pฮฉq.

And thus, using assumption (A1) we get that:ห‡

ห‡

ห‡

ห‡

ยด๐‘ข๐พ๐œ†๐พ1|๐พ|

ลผ

๐พ

โˆ‡๐‘ยด ๐พ

ห‡

ห‡

ห‡

ห‡

ฤ ๐ถโ„Ž๐พ ||๐œ†||๐‘Š 1,8pฮฉq||๐‘||๐‘Š 2,8pฮฉq|๐‘ข๐พ |.

Using the triangle inequality:

|| ยด ๐œ†๐‘ขโˆ‡๐‘ยด ๐พ ||2๐ฟ2p๐พq2 ฤ || p๐œ†ยด ๐œ†๐พq๐‘ขโˆ‡๐‘||2๐ฟ2p๐พq2 ` ||๐œ†๐พ p๐‘ขยด ๐‘ข๐พqโˆ‡๐‘||2๐ฟ2p๐พq2

` ||๐œ†๐พ๐‘ข๐พ

ห†

โˆ‡๐‘ยด1|๐พ|

ลผ

๐พ

โˆ‡๐‘

ห™

||2๐ฟ2p๐พq2 ` || ยด ๐œ†๐พ๐‘ข๐พ1|๐พ|

ลผ

๐พ

โˆ‡๐‘ยด ๐พ ||2๐ฟ2p๐พq2 .

Page 26: Mathematical Modelling and Numerical Analysis Will be set by the publisher Mod elisation Math ematique et Analyse Num erique SOME MULTIPLE FLOW DIRECTION ALGORITHMS

1942 J. COATLEVEN

Poincareโ€“Wirtingerโ€™s inequality applied component by component (see [7]) gives:

||โˆ‡๐‘ยด1|๐พ|

ลผ

๐พ

โˆ‡๐‘||๐ฟ2p๐พq2 ฤ ๐ถ๐‘ƒ โ„Ž๐พ ||๐‘||๐ป2p๐พq

where ๐ถ๐‘ƒ ฤ… 0 is independent on โ„Ž under assumption (A1), and (6.8) follows from Proposition 6.1 and the aboveestimate. To conclude, it suffices to remark that by definition:

|๐พ|ยด

๐พ ยด๐‘„๐พ

ยฏ

โ€œรฟ

๐œŽPโ„ฑ๐พXโ„ฑint,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

p๐‘ข๐พ ยด ๐‘ข๐ฟq p๐‘ฅ๐œŽ ยด ๐‘ฅ๐พq๐น๐พ,๐œŽ p๐ต๐œŽq

`รฟ

๐œŽPโ„ฑ๐พXโ„ฑext,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

๐‘ข๐พ p๐‘ฅ๐œŽ ยด ๐‘ฅ๐พq๐น๐พ,๐œŽ p๐ต๐œŽq .

Thus applying Cauchyโ€“Schwarz inequality, we get:

รฟ

๐พP๐’ฏ|๐พ|

ห‡

ห‡

ห‡๐พ ยด๐‘„๐พ

ห‡

ห‡

ห‡

2

ฤ 2

ยจ

ห

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พXโ„ฑint,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

||๐‘ฅ๐œŽ ยด ๐‘ฅ๐พ ||2

|๐พ||๐น๐พ,๐œŽ p๐ต๐œŽq|

`รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พXโ„ฑext,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

||๐‘ฅ๐œŽ ยด ๐‘ฅ๐พ ||2

|๐พ||๐น๐พ,๐œŽ p๐ต๐œŽq|

ห›

โ€š||๐‘ข||โ„Ž,หš

ฤ ๐ถ

ยจ

ห

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

|๐œŽ|โ„Ž2๐พ

|๐พ|

ห›

โ€šฤ ๐ถโ„Ž|ฮฉ|||๐‘ข||โ„Ž,หš

using the bound on the flux from the proof of Proposition 6.1, and where:

||๐‘ข||2โ„Ž,หš โ€œ12

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พXโ„ฑext,๐น๐พ,๐œŽp๐ต๐œŽqฤ…0

๐น๐พ,๐œŽ p๐ต๐œŽq |๐‘ข๐พ |2 ยด

12

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พ ,๐น๐พ,๐œŽp๐ต๐œŽqฤƒ0

๐น๐พ,๐œŽ p๐ต๐œŽq p๐‘ข๐พ ยด ๐‘ขup๐œŽ q

2.

From (6.7) we know that, still denoting ๐‘ข the cellwise constant function of ๐ฟ2pฮฉq taking the value ๐‘ข๐พ in cell ๐พ:

||๐‘ข||2โ„Ž,หš ฤ ||๐‘“ ||๐ฟ2pฮฉq||๐‘ข||๐ฟ2pฮฉq ยดรฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พ

๐น๐พ,๐œŽ p๐ต๐œŽq๐‘ข2๐พ .

However, one has

รฟ

๐พP๐’ฏ

รฟ

๐œŽPโ„ฑ๐พ

๐น๐พ,๐œŽ p๐ต๐œŽq๐‘ข2๐พ โ€œ

รฟ

๐พP๐’ฏ

หœ

ลผ

๐พ

โˆ†๐‘`รฟ

๐œŽPโ„ฑ๐พ

๐น๐พ,๐œŽ p๐ต๐œŽq

ยธ

๐‘ข2๐พ ยด

รฟ

๐พP๐’ฏ

ลผ

๐พ

โˆ†๐‘๐‘ข2๐พ .

Using Stokesโ€™ formula, the consistency of the flux (4.5) and assumption (A1), we get:ห‡

ห‡

ห‡

ห‡

ห‡

ลผ

๐พ

โˆ†๐‘`รฟ

๐œŽPโ„ฑ๐พ

๐น๐พ,๐œŽ p๐ต๐œŽq

ห‡

ห‡

ห‡

ห‡

ห‡

โ€œ

ห‡

ห‡

ห‡

ห‡

ห‡

รฟ

๐œŽPโ„ฑ๐พ

๐น๐พ,๐œŽ p๐ต๐œŽq `

ลผ

๐œŽ

๐œ†โˆ‡๐‘ ยจ ๐‘›๐พ,๐œŽ

ห‡

ห‡

ห‡

ห‡

ห‡

ฤ ๐ถรฟ

๐œŽPโ„ฑ๐พ

|๐œŽ|โ„Ž๐พ ฤ ๐ถ|๐พ|.

Thus, we have ||๐‘ข||2โ„Ž,หš ฤ ||๐‘“ ||๐ฟ2pฮฉq||๐‘ข||๐ฟ2pฮฉq ` ๐ถ||๐‘ข||2๐ฟ2pฮฉq, and using the triangle inequality ||๐‘ข||๐ฟ2pฮฉq ฤ ||๐‘ข ยด

๐‘ข||๐ฟ2pฮฉq ` ||๐‘ข||๐ฟ2pฮฉq, we get that:

||๐‘ข||2โ„Ž,หš ฤ ๐ถยด

1`maxpโ„Ž, ๐›พpโ„Žqq12ยฏยด

||๐‘“ ||๐ฟ2pฮฉq `

ยด

1`maxpโ„Ž, ๐›พpโ„Žqq12ยฏ

||๐‘ข||๐ป1pฮฉq

ยฏ

||๐‘ข||๐ป1pฮฉq

which concludes the proof.

Page 27: Mathematical Modelling and Numerical Analysis Will be set by the publisher Mod elisation Math ematique et Analyse Num erique SOME MULTIPLE FLOW DIRECTION ALGORITHMS

SOME MULTIPLE FLOW DIRECTION ALGORITHMS 1943

Figure 3. Example of meshes for the 2dDelaunay and 2dDualDelaunay mesh sequences.

7. Numerical exploration

To assess the asymptotic behavior of the method, we use a very simple analytical solution on which the positiv-ity of the Laplacian is guaranteed (contrary to typical geological applications). Let us consider the square domainฮฉ โ€œs0, ๐ฟrห†s0, ๐ฟr associated with the topography ๐‘p๐‘ฅ, ๐‘ฆq โ€œ ๐‘0 ยด ๐›ฟ

ยด

p๐‘ฅยด ๐‘ฅ0q2` p๐‘ฆ ยด ๐‘ฆ0q

2ยฏ

where ๐‘ฅ0 โ€œ ๐‘ฆ0 โ€œ ๐ฟ2,

for which ยดโˆ†๐‘ โ€œ 4๐›ฟ. Consider the water height ๐‘ข defined by ๐‘ขp๐‘ฅ, ๐‘ฆq โ€œ ๐‘ข0 expยด

ยด๐›ผยด

p๐‘ฅยด ๐‘ฅ0q2` p๐‘ฆ ยด ๐‘ฆ0q

2ยฏยฏ

.

Defining ๐œ†p๐‘ฅ, ๐‘ฆq โ€œ 1, we obtain ยดdivp๐œ†๐‘ขโˆ‡๐‘q โ€œ ๐‘“ with ๐‘“p๐‘ฅ, ๐‘ฆq โ€œ 4๐›ฟ๐‘ขp๐‘ฅ, ๐‘ฆqยด

1ยด ๐›ผยด

p๐‘ฅยด ๐‘ฅ0q2` p๐‘ฆ ยด ๐‘ฆ0q

2ยฏยฏ

. Thecorresponding water discharge ๐‘ž โ€œ ||๐œ†๐‘ขโˆ‡๐‘|| is given by

๐‘ž โ€œ 2๐›ฟ๐‘ขp๐‘ฅ, ๐‘ฆqยด

p๐‘ฅยด ๐‘ฅ0q2` p๐‘ฆ ยด ๐‘ฆ0q

2ยฏ12

.

In practice we take ๐‘ข0 โ€œ 1, ๐›ผ โ€œ 2, ๐›ฟ โ€œ 12, ๐‘0 โ€œ 2 and ๐ฟ โ€œ 1. We consider seven types of mesh sequences. Thefirst sequence consists in classical Delaunay meshes (2dDelaunay). The second one (2dDualDelaunay) is obtainedby considering the dual meshes of a sequence of Delaunay meshes (Fig. 3). The third sequence (2dVoronoi) ismade of Voronoi meshes, possessing the mesh orthogonality property. The fourth sequence (2dKershawBox ) isa sequence of Kershaw meshes, while the fifth one (2dCheckerBoardBox ) is a sequence of checkerboard meshes.These two sequences have only quadrangular cells which are distorted for the sequence 2dKershawBox, whilethe sequence 2dCheckerBoardBox allows to test the behavior of the method in presence of non conformities.The sixth sequence, named 2dSquareCart, is simply a uniform cartesian mesh with square cells, while theseventh one named 2dRectCart is a uniform cartesian mesh with rectangular cells. These two last sequences aremainly intended to serve as reference. For the generalized MFD algorithm, we consider two consistent gradientreconstructions coming from finite volumes: the first one is the hybrid finite volume gradient operator of [12],that uses faces values for the topography ๐‘, while the second one is the vertex based finite volume gradientoperator (VVM) of [5].

As it is the quantity of practical interest, we will express our convergence results directly in terms of the waterdischarge ๐‘ž instead of using the water height. Let us begin by some results for sequences 2dSquareCart, 2dRect-Cart and 2dVoronoi. Being the only ones that satisfy the mesh orthogonality requirement (see Figs. 4 and 5),we expect that the TPFA scheme will also converge on those sequences. The corresponding results are displayedon Figures 6 and 7, while the associated approximate convergence orders for each scheme are given in Table 1.

Page 28: Mathematical Modelling and Numerical Analysis Will be set by the publisher Mod elisation Math ematique et Analyse Num erique SOME MULTIPLE FLOW DIRECTION ALGORITHMS

1944 J. COATLEVEN

Figure 4. Example of meshes for the 2dVoronoi and 2dKershawBox mesh sequences.

Figure 5. Example of meshes for the 2dCheckerBoardBox and 2dRectCart mesh sequences.

Clearly, on the basic cartesian cases 2dSquareCart and 2dRectCart, all the schemes give identical results. Acloser look at our generalized flux formula immediately reveals that this is perfectly normal as the flux ๐น๐พ,๐œŽ

degenerate into the two-point flux formula on those cartesian meshes where the barycenter of each internal faceis exactly the intersection point between the face and the segment joining the cell centers on each side of theface (see [12]). Moreover, Table 1 reveals that all the methods are superconvergent on the three orthogonal meshsequences. In [20] it is indeed established in the case of exact fluxes that the approximation of the water heightsuperconverges at least on rectangular meshes, which explains that this observed superconvergence is probablynot anomalous. Next, we turn to the other mesh sequences, for which we cannot expect convergence for theTPFA scheme. The corresponding results are displayed on Figures 8 and 9, while the associated approximateconvergence orders for each scheme are given in Table 2.

As expected, the TPFA scheme does not converge anymore, however the generalized MFD algorithm isconverging for both the hybrid and virtual volume (VVM) gradients. The results for those two variants are infact relatively close to each other. In particular, the behavior of the method on sequence 2dCheckerBoardBoxconfirms its ability to deal with non conformities and thus local mesh refinement. Remark that superconvergence

Page 29: Mathematical Modelling and Numerical Analysis Will be set by the publisher Mod elisation Math ematique et Analyse Num erique SOME MULTIPLE FLOW DIRECTION ALGORITHMS

SOME MULTIPLE FLOW DIRECTION ALGORITHMS 1945

Figure 6. Convergence curves for sequences 2dSquareCart and 2dRectCart.

Table 1. Approximate orders of convergence for the three schemes on orthogonal meshes.

2dSquareCart 2dRectCart 2dVoronoi

TPFA 0.943 0.942 1.147Hybrid 0.943 0.942 1.061VVM 0.943 0.942 1.061

Figure 7. Convergence curves for sequence 2dVoronoi.

Page 30: Mathematical Modelling and Numerical Analysis Will be set by the publisher Mod elisation Math ematique et Analyse Num erique SOME MULTIPLE FLOW DIRECTION ALGORITHMS

1946 J. COATLEVEN

Figure 8. Convergence curves for sequences 2dDelaunay and 2dDualDelaunay.

Figure 9. Convergence curves for sequences 2dKershawBox and 2dCheckerBoardBox.

Table 2. Approximate orders of convergence for the three schemes on general meshes.

2dDelaunay 2dDualDelaunay 2dKershawBox 2dCheckerBoardBox

Hybrid 0.991 1.081 0.941 1.032VVM 0.971 1.084 1.213 1.032

Page 31: Mathematical Modelling and Numerical Analysis Will be set by the publisher Mod elisation Math ematique et Analyse Num erique SOME MULTIPLE FLOW DIRECTION ALGORITHMS

SOME MULTIPLE FLOW DIRECTION ALGORITHMS 1947

Figure 10. Comparison between influx and water discharge for the TPFA scheme on orthog-onal meshes (exact water discharge is bottom right).

is also achieved again on those test cases. To conclude, on Figure 10, we represent on the bottom-right the correctwater discharge, while the top-left figure is the water influx r๐‘ž๐พ for sequence 2dSquareCart, the top-right figure isthe water influx for sequence 2dRectCart and the bottom-left figure is the water influx for sequence 2dVoronoi.These very basic examples illustrate our point on the water influx r๐‘ž๐พ : it is clearly a mesh dependent quantity,that cannot be expected to reproduce the behavior of the discharge correctly, even on those very simple cases. Ifone does not consider the Manningโ€“Strickler framework, one of the tricky features of r๐‘ž๐พ is that on very commoncartesian mesh sequences such as 2dSquareCart and 2dRectCart it has a relatively nice qualitative behavior.It even seems to converge, although to a mesh sequence dependent quantity. This explains why it has beenused inadvertently in the hydrogeology community, despite of its mesh dependent nature: on the widely usedcartesian meshes, it has an acceptable behavior that cannot be easily discarded without a reference continuousmodel, in particular for complex topographies. However, on more general meshes, the situation is very different,even for the TPFA scheme as the case of sequence 2dVoronoi reveals. We display on Figure 11 the water influxr๐‘ž๐พ for the four other mesh sequences, in the case of the hybrid gradient. It is completely obvious on thosesequences that r๐‘ž๐พ should not be considered as a physically relevant quantity.

8. Conclusion

We have established the equivalence between a classical family of multiple flow direction algorithms and theTPFA scheme applied to a family of stationary Manningโ€“Strickler models. From this equivalence we have pro-posed an improvement of the derivation of the discrete water discharge based on a consistent flux reconstruction

Page 32: Mathematical Modelling and Numerical Analysis Will be set by the publisher Mod elisation Math ematique et Analyse Num erique SOME MULTIPLE FLOW DIRECTION ALGORITHMS

1948 J. COATLEVEN

Figure 11. Water influx for hybrid gradient on meshes 2dDelaunay, 2dDualDelaunay, 2dKer-shawBox and 2dCheckerBoardBox.

rather than directly using the water influx intermediate unknown that is not only non convergent in general, butdoes not approximate the water discharge in any case. Then, using more advanced flux reconstruction schemes,we have proposed a multiple flow direction algorithm adapted to general meshes. A convergence theory thatcovers both cases was developed, and numerical experiments illustrate the good behavior of the method. Remarkthat the extension to the case of Manningโ€“Strickler tensors rather than coefficients is straightforward, as wouldbe the extension of the present analysis to multiple flow direction models that use powers of the topographicslope.

Acknowledgements. The author would like to thank G. Enchery and L. Agelas for our numerous discussions on thecontents of this article.

References

[1] C. Bardos, Problemes aux limites pour les equations aux derivees partielles du premier ordre a coefficients reels; theoremesdโ€™approximation; application a lโ€™equation de transport. Ann. Sci. Ec. Norm. Sup. Ser. 4 3 (1970) 185โ€“233.

[2] H. Beirao Da Veiga, Existence results in Sobolev spaces for a stationary transport equation. Ricerche Mat. Suppl. XXXVI(1987) 173โ€“184.

[3] S. Brenner and R. Scott, The Mathematical Theory of Finite Element Methods, 3rd ed. Springer (2008).[4] J. Coatleven, Semi hybrid method for heterogeneous and anisotropic diffusion problems on general meshes. ESAIM: M2AN

49 (2015) 1063โ€“1084.[5] J. Coatleven, A virtual volume method for heterogeneous and anisotropic diffusion-reaction problems on general meshes.

ESAIM: M2AN 51 (2017) 797โ€“824.[6] B. Cockburn, B. Dong and J. Guzman, Optimal convergence of the original DG method for the transport-reaction equation

on special meshes. SIAM J. Numer. Anal. 46 (2008) 1250โ€“1265.

Page 33: Mathematical Modelling and Numerical Analysis Will be set by the publisher Mod elisation Math ematique et Analyse Num erique SOME MULTIPLE FLOW DIRECTION ALGORITHMS

SOME MULTIPLE FLOW DIRECTION ALGORITHMS 1949

[7] D.A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods. Springer (2012).

[8] R.J. DiPerna and P.L. Lions, Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98 (1989)511โ€“547.

[9] R.H. Erskine, T.R. Green, J.A. Ramirez and L.H. MacDonald, Comparison of grid-based algorithms for computing upslopecontributing area. Water Resour. Res. 42 (2006) W09416.

[10] R. Eymard, T. Gallouet and R. Herbin, Finite volume methods, edited by P.G. Ciarlet and J.-L. Lions. In: Handbook ofNumerical Analysis: Techniques of Scientific Computing, Part III. North-Holland, Amsterdam (2000) 713โ€“1020.

[11] R. Eymard, T. Gallouet and R. Herbin, A new finite volume scheme for anisotropic diffusion problems on general grids:convergence analysis. C. R. Math. Acad. Sci. Paris 344 (2007) 403โ€“406.

[12] R. Eymard, T. Gallouet and R. Herbin, Discretisation of heterogeneous and anisotropic diffusion problems on general noncon-forming meshes SUSHI: a scheme using stabilisation and hybrid interfaces. IMA J. Numer. Anal. 30 (2010) 1009โ€“1043.

[13] R. Eymard, C. Guichard and R. Herbin, Benchmark 3D: the vag scheme. In: Vol. 2 of Springer Proceedings in Mathematics,FVCA6, Prague (2011) 213โ€“222.

[14] R. Eymard, C. Guichard and R. Herbin, Small-stencil 3D schemes for diffusive flows in porous media. ESAIM: M2AN 46(2011) 265โ€“290.

[15] E. Fernandez-Cara, F. Guillen and R.R. Ortega, Mathematical modeling and analysis of visco-elastic fluids of the oldroyd kind,edited by P.G. Ciarlet and J.L. Lions. In: Vol. VIII of Handbook of Numerical Analysis: Numerical Methods for Fluids, Part2. North-Holland, Amsterdam (2002) 543โ€“661.

[16] T.G. Freeman, Calculating catchment area with divergent flow based on a regular grid. Comput. Geosci. 17 (1991) 413โ€“422.

[17] V. Girault and L. Tartar, ๐‘™๐‘ and ๐‘ค1,๐‘ regularity of the solution of a steady transport equation. C. R. Acad. Sci. Paris, Ser. I348 (2010) 885โ€“890.

[18] P. Holmgren, Multiple flow direction algorithms for runoff modelling in grid based elevation models: an empirical evaluation.Hydrol. Process. 8 (1994) 327โ€“334.

[19] C. Johnson and J. Pitkaranta, An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math.Comput. 46 (1986) 1โ€“26.

[20] P. Lesaint and P.A. Raviart, On a finite element method for solving the neutron transport equation. Publ. Math. Inf. RennesS4 (1974) 1โ€“40.

[21] C. Qin, A.-X. Zhu, T. Pei, B. Li, C. Zhou and L. Yang, An adaptive approach to selecting a flow-partition exponent for amultiple-flow-direction algorithm. Int. J. Geog. Inf. Sci. 21 (2007) 443โ€“458.

[22] P. Quinn, K. Beven, P. Chevallier and O. Planchon, The prediction of hillslope flow paths for distributed hydrological modellingusing digital terrain models. Hydrol. Process. 5 (1991) 59โ€“79.

[23] A. Richardson, C.N. Hill and J.T. Perron, IDA: an implicit, parallelizable method for calculating drainage area. Water Resour.Res. 50 (2013) 4110โ€“4130.

[24] J. Seibert and B.L. McGlynn, A new triangular multiple flow direction algorithm for computing upslope areas from griddeddigital elevation models. Water Resour. Res. 43 (2007) W04501.

[25] D.G. Tarboton, A new method for the determination of flow directions and upslope areas in grid digital elevation models.Water Resour. Res. 33 (1997) 309โ€“319.

[26] D.M. Wolock and G.J. McCabe Jr., Comparison of single and multiple flow direction algorithms for computing topographicparameters in topmodel. Water Resour. Res. 31 (1995) 1315โ€“1324.

[27] Q. Zhou, P. Pilesjo and Y. Chen, Estimating surface flow paths on a digital elevation model using a triangular facet network.Water Resour. Res. 47 (2011) W07522.