mathcamp2013 fa slides

Upload: jwdali

Post on 03-Jun-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 Mathcamp2013 Fa Slides

    1/53

    OutlineVector Spaces

    Hilbert SpacesFunctionals and Operators (Matrices)

    Linear Operators

    Functional Analysis Review

    Lorenzo Rosascoslides courtesy of Andre Wibisono

    9.520: Statistical Learning Theory and Applications

    September 9, 2013

    L. Rosasco Functional Analysis Review

    http://find/http://goback/
  • 8/12/2019 Mathcamp2013 Fa Slides

    2/53

    OutlineVector Spaces

    Hilbert SpacesFunctionals and Operators (Matrices)

    Linear Operators

    1 Vector Spaces

    2

    Hilbert Spaces

    3 Functionals and Operators (Matrices)

    4 Linear Operators

    L. Rosasco Functional Analysis Review

    http://find/
  • 8/12/2019 Mathcamp2013 Fa Slides

    3/53

    OutlineVector Spaces

    Hilbert SpacesFunctionals and Operators (Matrices)

    Linear Operators

    Vector Space

    A vector space is a set Vwith binary operations

    + : V VV and : R VV

    such that for all a, b R and v,w, xV:1 v +w= w +v2 (v +w) + x= v + (w + x)3 There exists 0 Vsuch that v +0=v for all v V4 For every v Vthere exists v Vsuch that v + (v) =0

    5 a(bv) = (ab)v6 1v=v7 (a + b)v= av + bv8 a(v +w) =av + aw

    L. Rosasco Functional Analysis Review

    http://find/
  • 8/12/2019 Mathcamp2013 Fa Slides

    4/53

    OutlineVector Spaces

    Hilbert SpacesFunctionals and Operators (Matrices)

    Linear Operators

    Vector Space

    A vector space is a set Vwith binary operations

    + : V VV and : R VV

    such that for all a, b R and v,w, xV:1 v +w= w +v2 (v +w) + x= v + (w + x)3 There exists 0 Vsuch that v +0=v for all v V4 For every v Vthere exists v Vsuch that v + (v) =0

    5 a(bv) = (ab)v6 1v=v7 (a + b)v= av + bv8 a(v +w) =av + aw

    Example: Rn, space of polynomials, space of functions.

    L. Rosasco Functional Analysis Review

    O li

    http://find/http://goback/
  • 8/12/2019 Mathcamp2013 Fa Slides

    5/53

    OutlineVector Spaces

    Hilbert SpacesFunctionals and Operators (Matrices)

    Linear Operators

    Inner Product

    An inner product is a function , : V V R suchthat for all a, b R and v,w, xV:

    L. Rosasco Functional Analysis Review

    O tli

    http://find/
  • 8/12/2019 Mathcamp2013 Fa Slides

    6/53

    OutlineVector Spaces

    Hilbert SpacesFunctionals and Operators (Matrices)

    Linear Operators

    Inner Product

    An inner product is a function , : V V R suchthat for all a, b R and v,w, xV:

    1 v,w=w,v

    2 av + bw, x=av, x + bw, x

    3 v,v 0 and v,v=0 if and only ifv=0.

    L. Rosasco Functional Analysis Review

    Outline

    http://find/
  • 8/12/2019 Mathcamp2013 Fa Slides

    7/53

    OutlineVector Spaces

    Hilbert SpacesFunctionals and Operators (Matrices)

    Linear Operators

    Inner Product

    An inner product is a function , : V V R suchthat for all a, b R and v,w, xV:

    1 v,w=w,v

    2 av + bw, x=av, x + bw, x

    3 v,v 0 and v,v=0 if and only ifv=0.

    v,w Vare orthogonal ifv,w=0.

    L. Rosasco Functional Analysis Review

    Outline

    http://find/
  • 8/12/2019 Mathcamp2013 Fa Slides

    8/53

    OutlineVector Spaces

    Hilbert SpacesFunctionals and Operators (Matrices)

    Linear Operators

    Inner Product

    An inner product is a function , : V V R suchthat for all a, b R and v,w, xV:

    1 v,w=w,v

    2 av + bw, x=av, x + bw, x

    3 v,v 0 and v,v=0 if and only ifv=0.

    v,w Vare orthogonal ifv,w=0.

    Given WV, we have V=W W, whereW ={vV |v,w=0 for all w W}.

    L. Rosasco Functional Analysis Review

    Outline

    http://find/
  • 8/12/2019 Mathcamp2013 Fa Slides

    9/53

    OutlineVector Spaces

    Hilbert SpacesFunctionals and Operators (Matrices)

    Linear Operators

    Inner Product

    An inner product is a function , : V V R suchthat for all a, b R and v,w, xV:

    1 v,w=w,v

    2 av + bw, x=av, x + bw, x

    3 v,v 0 and v,v=0 if and only ifv=0.

    v,w Vare orthogonal ifv,w=0.

    Given WV, we have V=W W, whereW ={vV |v,w=0 for all w W}.

    Cauchy-Schwarz inequality: v,w v,v1/2w,w1/2.

    L. Rosasco Functional Analysis Review

    Outline

    http://find/
  • 8/12/2019 Mathcamp2013 Fa Slides

    10/53

    OutlineVector Spaces

    Hilbert SpacesFunctionals and Operators (Matrices)

    Linear Operators

    Norm

    Can define norm from inner product: v=v,v1/2.

    L. Rosasco Functional Analysis Review

    Outline

    http://find/
  • 8/12/2019 Mathcamp2013 Fa Slides

    11/53

    Vector SpacesHilbert Spaces

    Functionals and Operators (Matrices)Linear Operators

    Norm

    A norm is a function : V R such that for all a Rand v,w V:

    1 v 0, and v=0 if and only ifv=0

    2 av= |a| v

    3 v +w v + w

    Can define norm from inner product: v=v,v1/2.

    L. Rosasco Functional Analysis Review

    Outline

    http://find/
  • 8/12/2019 Mathcamp2013 Fa Slides

    12/53

    Vector SpacesHilbert Spaces

    Functionals and Operators (Matrices)Linear Operators

    Metric

    Can define metric from norm: d(v,w) =v w.

    L. Rosasco Functional Analysis Review

    Outline

    http://find/
  • 8/12/2019 Mathcamp2013 Fa Slides

    13/53

    Vector SpacesHilbert Spaces

    Functionals and Operators (Matrices)Linear Operators

    Metric

    A metric is a function d : V V R such that for allv,w, x V:

    1 d(v,w) 0, and d(v,w) =0 if and only ifv=w

    2 d(v,w) =d(w,v)

    3 d(v,w) d(v, x) + d(x,w)

    Can define metric from norm: d(v,w) =v w.

    L. Rosasco Functional Analysis Review

    OutlineV S

    http://find/
  • 8/12/2019 Mathcamp2013 Fa Slides

    14/53

    Vector SpacesHilbert Spaces

    Functionals and Operators (Matrices)Linear Operators

    Basis

    B={v1, . . . ,vn} is a basis ofV if every v Vcan beuniquely decomposed as

    v=a1v1+ + anvn

    for some a1, . . . , an R.

    L. Rosasco Functional Analysis Review

    OutlineV t S

    http://find/
  • 8/12/2019 Mathcamp2013 Fa Slides

    15/53

    Vector SpacesHilbert Spaces

    Functionals and Operators (Matrices)Linear Operators

    Basis

    B={v1, . . . ,vn} is a basis ofV if every v Vcan beuniquely decomposed as

    v=a1v1+ + anvn

    for some a1, . . . , an R.

    An orthonormal basis is a basis that is orthogonal

    (vi,vj=0 for i=j) and normalized (vi=1).

    L. Rosasco Functional Analysis Review

    OutlineVector Spaces

    http://find/
  • 8/12/2019 Mathcamp2013 Fa Slides

    16/53

    Vector SpacesHilbert Spaces

    Functionals and Operators (Matrices)Linear Operators

    1 Vector Spaces

    2 Hilbert Spaces

    3 Functionals and Operators (Matrices)

    4 Linear Operators

    L. Rosasco Functional Analysis Review

    OutlineVector Spaces

    http://find/
  • 8/12/2019 Mathcamp2013 Fa Slides

    17/53

    Vector SpacesHilbert Spaces

    Functionals and Operators (Matrices)Linear Operators

    Hilbert Space, overview

    Goal: to understand Hilbert spaces (complete innerproduct spaces) and to make sense of the expression

    f=

    i=1

    f, ii, f H

    Need to talk about:

    1 Cauchy sequence

    2 Completeness

    3 Density

    4 Separability

    L. Rosasco Functional Analysis Review

    OutlineVector Spaces

    http://find/
  • 8/12/2019 Mathcamp2013 Fa Slides

    18/53

    Vector SpacesHilbert Spaces

    Functionals and Operators (Matrices)Linear Operators

    Cauchy Sequence

    Recall: limn

    xn =x if for every >0 there exists

    N N such that x xn< whenever n N.

    L. Rosasco Functional Analysis Review

    OutlineVector Spaces

    http://find/
  • 8/12/2019 Mathcamp2013 Fa Slides

    19/53

    Vector SpacesHilbert Spaces

    Functionals and Operators (Matrices)Linear Operators

    Cauchy Sequence

    Recall: limn

    xn =x if for every >0 there exists

    N N such that x xn< whenever n N.

    (xn)nN is a Cauchy sequence if for every >0 thereexists N Nsuch that xm xn< whenever m, n N.

    L. Rosasco Functional Analysis Review

    OutlineVector Spaces

    http://find/
  • 8/12/2019 Mathcamp2013 Fa Slides

    20/53

    pHilbert Spaces

    Functionals and Operators (Matrices)Linear Operators

    Cauchy Sequence

    Recall: limn

    xn =x if for every >0 there exists

    N N such that x xn< whenever n N.

    (xn)nN is a Cauchy sequence if for every >0 thereexists N Nsuch that xm xn< whenever m, n N.

    Every convergent sequence is a Cauchy sequence (why?)

    L. Rosasco Functional Analysis Review

    OutlineVector Spaces

    http://find/
  • 8/12/2019 Mathcamp2013 Fa Slides

    21/53

    pHilbert Spaces

    Functionals and Operators (Matrices)Linear Operators

    Completeness

    A normed vector space V is complete if every Cauchysequence converges.

    L. Rosasco Functional Analysis Review

    OutlineVector Spaces

    http://find/
  • 8/12/2019 Mathcamp2013 Fa Slides

    22/53

    Hilbert SpacesFunctionals and Operators (Matrices)

    Linear Operators

    Completeness

    A normed vector space V is complete if every Cauchysequence converges.

    Examples:1 Q is not complete.

    2 R is complete (axiom).

    3 Rn is complete.

    4 Every finite dimensional normed vector space (over R) iscomplete.

    L. Rosasco Functional Analysis Review

    OutlineVector Spaces

    Hilb S

    http://find/
  • 8/12/2019 Mathcamp2013 Fa Slides

    23/53

    Hilbert SpacesFunctionals and Operators (Matrices)

    Linear Operators

    Hilbert Space

    A Hilbert space is a complete inner product space.

    L. Rosasco Functional Analysis Review

    OutlineVector Spaces

    Hilb t S

    http://find/
  • 8/12/2019 Mathcamp2013 Fa Slides

    24/53

    Hilbert SpacesFunctionals and Operators (Matrices)

    Linear Operators

    Hilbert Space

    A Hilbert space is a complete inner product space.

    Examples:

    1 Rn

    2 Every finite dimensional inner product space.

    3 2 ={(an)n=1 |an R,

    n=1 a

    2n

  • 8/12/2019 Mathcamp2013 Fa Slides

    25/53

    OutlineVector Spaces

    Hilbert Spaces

  • 8/12/2019 Mathcamp2013 Fa Slides

    26/53

    Hilbert SpacesFunctionals and Operators (Matrices)

    Linear Operators

    Density

    Y is dense in X ifY=X.

    Examples:

    1 Q is dense in R.

    2 Qn is dense in Rn.

    3 Weierstrass approximation theorem: polynomials are densein continuous functions (with the supremum norm, on

    compact domains).

    L. Rosasco Functional Analysis Review

    OutlineVector Spaces

    Hilbert Spaces

    http://find/
  • 8/12/2019 Mathcamp2013 Fa Slides

    27/53

    Hilbert SpacesFunctionals and Operators (Matrices)

    Linear Operators

    Separability

    X is separable if it has a countable dense subset.

    L. Rosasco Functional Analysis Review

    OutlineVector Spaces

    Hilbert Spaces

    http://find/
  • 8/12/2019 Mathcamp2013 Fa Slides

    28/53

    Hilbert SpacesFunctionals and Operators (Matrices)

    Linear Operators

    Separability

    X is separable if it has a countable dense subset.

    Examples:1 R is separable.

    2 Rn is separable.

    3 2, L2([0, 1]) are separable.

    L. Rosasco Functional Analysis Review

    OutlineVector Spaces

    Hilbert Spaces

    http://find/
  • 8/12/2019 Mathcamp2013 Fa Slides

    29/53

    pFunctionals and Operators (Matrices)

    Linear Operators

    Orthonormal Basis

    A Hilbert space has a countable orthonormal basis if andonly if it is separable.

    Can write:

    f=

    i=1

    f, ii for all fH.

    L. Rosasco Functional Analysis Review

    OutlineVector Spaces

    Hilbert Spaces

    http://find/
  • 8/12/2019 Mathcamp2013 Fa Slides

    30/53

    pFunctionals and Operators (Matrices)

    Linear Operators

    Orthonormal Basis

    A Hilbert space has a countable orthonormal basis if andonly if it is separable.

    Can write:

    f=

    i=1

    f, ii for all fH.

    Examples:1 Basis of2 is (1 , 0 , . . . , ), (0 , 1 , 0 , . . . ), (0 , 0 , 1 , 0 , . . . ), . . .

    2 Basis ofL2([0, 1]) is 1, 2 sin 2nx,2cos2nx for n N

    L. Rosasco Functional Analysis Review

    OutlineVector SpacesHilbert Spaces

    http://find/
  • 8/12/2019 Mathcamp2013 Fa Slides

    31/53

    Functionals and Operators (Matrices)Linear Operators

    1 Vector Spaces

    2 Hilbert Spaces

    3 Functionals and Operators (Matrices)

    4 Linear Operators

    L. Rosasco Functional Analysis Review

    OutlineVector SpacesHilbert Spaces

    F i l d O (M i )

    http://find/
  • 8/12/2019 Mathcamp2013 Fa Slides

    32/53

    Functionals and Operators (Matrices)Linear Operators

    Maps

    Next we are going to review basic properties of maps on a

    Hilbert space.functionals: :H R

    linear operators A:HH, such thatA(af + bg) =aAf + bAg, with a, b R and f, gH.

    L. Rosasco Functional Analysis Review

    OutlineVector SpacesHilbert Spaces

    F ti l d O t (M t i )

    http://find/
  • 8/12/2019 Mathcamp2013 Fa Slides

    33/53

    Functionals and Operators (Matrices)Linear Operators

    Representation of Continuous Functionals

    Let H be a Hilbert space and gH, then

    g(f) =f, g , fH

    is a continuous linear functional.Riesz representation theorem

    The theorem states that every continuous linear functional can be written uniquely in the form,

    (f) =f, g

    for some appropriate element g H.

    L. Rosasco Functional Analysis Review

    http://find/
  • 8/12/2019 Mathcamp2013 Fa Slides

    34/53

    OutlineVector SpacesHilbert Spaces

    Functionals and Operators (Matrices)

  • 8/12/2019 Mathcamp2013 Fa Slides

    35/53

    Functionals and Operators (Matrices)Linear Operators

    Matrix

    Every linear operator L : Rm Rn can be represented byan m n matrix A.

    IfA Rmn, the transpose ofAis A Rnm satisfying

    Ax,yRm = (Ax)y=xAy=x, AyRn

    for every x Rn and y Rm.

    L. Rosasco Functional Analysis Review

    OutlineVector SpacesHilbert Spaces

    Functionals and Operators (Matrices)

    http://find/
  • 8/12/2019 Mathcamp2013 Fa Slides

    36/53

    Functionals and Operators (Matrices)Linear Operators

    Matrix

    Every linear operator L : Rm Rn can be represented byan m n matrix A.

    IfA Rmn, the transpose ofAis A Rnm satisfying

    Ax,yRm = (Ax)y=xAy=x, AyRn

    for every x Rn and y Rm.

    A is symmetric ifA =A.

    L. Rosasco Functional Analysis Review

    OutlineVector SpacesHilbert Spaces

    Functionals and Operators (Matrices)

    http://find/
  • 8/12/2019 Mathcamp2013 Fa Slides

    37/53

    Functionals and Operators (Matrices)Linear Operators

    Eigenvalues and Eigenvectors

    Let A Rnn. A nonzero vector v Rn is an eigenvectorofA with corresponding eigenvalue R ifAv=v.

    L. Rosasco Functional Analysis Review

    http://find/http://goback/
  • 8/12/2019 Mathcamp2013 Fa Slides

    38/53

  • 8/12/2019 Mathcamp2013 Fa Slides

    39/53

  • 8/12/2019 Mathcamp2013 Fa Slides

    40/53

    OutlineVector SpacesHilbert Spaces

    Functionals and Operators (Matrices)Li O

  • 8/12/2019 Mathcamp2013 Fa Slides

    41/53

    Linear Operators

    Singular Value Decomposition

    Every A Rmn can be written as

    A=UV,

    where U Rmm is orthogonal, Rmn is diagonal,and V Rnn is orthogonal.

    L. Rosasco Functional Analysis Review

    OutlineVector SpacesHilbert Spaces

    Functionals and Operators (Matrices)Li O t

    http://find/
  • 8/12/2019 Mathcamp2013 Fa Slides

    42/53

    Linear Operators

    Singular Value Decomposition

    Every A Rmn can be written as

    A=UV,

    where U Rmm is orthogonal, Rm

    n is diagonal,

    and V Rnn is orthogonal.

    Singular system:

    Avi =iui AAui =

    2

    i

    ui

    Aui =ivi AAvi =

    2ivi

    L. Rosasco Functional Analysis Review

    OutlineVector SpacesHilbert Spaces

    Functionals and Operators (Matrices)Linea O e ato s

    http://find/
  • 8/12/2019 Mathcamp2013 Fa Slides

    43/53

    Linear Operators

    Matrix Norm

    The spectral norm ofA Rmn is

    Aspec =max(A) =

    max(AA) =

    max(AA).

    L. Rosasco Functional Analysis Review

    OutlineVector SpacesHilbert Spaces

    Functionals and Operators (Matrices)Linear Operators

    http://find/
  • 8/12/2019 Mathcamp2013 Fa Slides

    44/53

    Linear Operators

    Matrix Norm

    The spectral norm ofA Rmn is

    Aspec =max(A) =

    max(AA) =

    max(AA).

    The Frobenius norm ofA Rmn is

    AF =

    m

    i=1

    n

    j=1

    a2ij =min{m,n}

    i=1

    2i .

    L. Rosasco Functional Analysis Review

    OutlineVector SpacesHilbert Spaces

    Functionals and Operators (Matrices)Linear Operators

    http://find/
  • 8/12/2019 Mathcamp2013 Fa Slides

    45/53

    Linear Operators

    Positive Definite Matrix

    A real symmetric matrix A Rmm is positive definite if

    xtAx >0, x Rm.

    A positive definite matrix has positive eigenvalues.

    Note: for positive semi-definite matrices > is replaced by .

    L. Rosasco Functional Analysis Review

    OutlineVector SpacesHilbert Spaces

    Functionals and Operators (Matrices)Linear Operators

    http://find/
  • 8/12/2019 Mathcamp2013 Fa Slides

    46/53

    Linear Operators

    1 Vector Spaces

    2 Hilbert Spaces

    3 Functionals and Operators (Matrices)

    4 Linear Operators

    L. Rosasco Functional Analysis Review

    OutlineVector SpacesHilbert Spaces

    Functionals and Operators (Matrices)Linear Operators

    http://find/
  • 8/12/2019 Mathcamp2013 Fa Slides

    47/53

    Op

    Linear Operator

    An operator L : H1H2 is linear if it preserves the linearstructure.

    L. Rosasco Functional Analysis Review

    OutlineVector Spaces

    Hilbert SpacesFunctionals and Operators (Matrices)

    Linear Operators

    http://find/
  • 8/12/2019 Mathcamp2013 Fa Slides

    48/53

    p

    Linear Operator

    An operator L : H1H2 is linear if it preserves the linearstructure.

    A linear operator L : H1H2 is bounded if there existsC >0 such that

    LfH2 CfH1 for all fH1.

    L. Rosasco Functional Analysis Review

    OutlineVector Spaces

    Hilbert SpacesFunctionals and Operators (Matrices)

    Linear Operators

    http://goforward/http://find/http://goback/
  • 8/12/2019 Mathcamp2013 Fa Slides

    49/53

    Linear Operator

    An operator L : H1H2 is linear if it preserves the linearstructure.

    A linear operator L : H1H2 is bounded if there existsC >0 such that

    LfH2 CfH1 for all fH1.

    A linear operator is continuous if and only if it is bounded.

    L. Rosasco Functional Analysis Review

    OutlineVector Spaces

    Hilbert SpacesFunctionals and Operators (Matrices)

    Linear Operators

    http://find/
  • 8/12/2019 Mathcamp2013 Fa Slides

    50/53

    Adjoint and Compactness

    The adjoint of a bounded linear operator L : H1H2 is abounded linear operator L : H2H1 satisfying

    Lf, gH2 =f, LgH1 for all fH1, gH2.

    L is self-adjoint ifL =L. Self-adjoint operators have realeigenvalues.

    L. Rosasco Functional Analysis Review

    OutlineVector Spaces

    Hilbert SpacesFunctionals and Operators (Matrices)

    Linear Operators

    http://find/
  • 8/12/2019 Mathcamp2013 Fa Slides

    51/53

    Adjoint and Compactness

    The adjoint of a bounded linear operator L : H1H2 is abounded linear operator L : H2H1 satisfying

    Lf, gH2 =f, LgH1 for all fH1, gH2.

    L is self-adjoint ifL =L. Self-adjoint operators have realeigenvalues.

    A bounded linear operator L : H1H2 is compact if the

    image of the unit ball in H1 has compact closure in H2.

    L. Rosasco Functional Analysis Review

    OutlineVector Spaces

    Hilbert SpacesFunctionals and Operators (Matrices)

    Linear Operators

    http://find/
  • 8/12/2019 Mathcamp2013 Fa Slides

    52/53

    Spectral Theorem for Compact Self-Adjoint Operator

    Let L : HH be a compact self-adjoint operator. Thenthere exists an orthonormal basis ofH consisting of theeigenfunctions ofL,

    Li =ii

    and the only possible limit point ofi as i is 0.

    L. Rosasco Functional Analysis Review

    OutlineVector Spaces

    Hilbert SpacesFunctionals and Operators (Matrices)

    Linear Operators

    http://find/
  • 8/12/2019 Mathcamp2013 Fa Slides

    53/53

    Spectral Theorem for Compact Self-Adjoint Operator

    Let L : HH be a compact self-adjoint operator. Thenthere exists an orthonormal basis ofH consisting of theeigenfunctions ofL,

    Li =ii

    and the only possible limit point ofi as i is 0.Eigendecomposition:

    L=i=1

    ii, i.

    L. Rosasco Functional Analysis Review

    http://find/