mass transport phenomena in microfluidic devices

94
7/23/2019 Mass transport phenomena in microfluidic devices http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 1/94 (Mass) transport phenomena in microfluidic devices (some selected examples...) Jean-Baptiste Salmon LOF, Pessac, France www.lof.cnrs.fr 

Upload: richard-hongyi-li

Post on 18-Feb-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 1/94

(Mass) transport phenomena in

microfluidic devices(some selected examples...)

Jean-Baptiste SalmonLOF, Pessac, France

www.lof.cnrs.fr 

Page 2: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 2/94

Basicsmicrofluidics, solute, transport equation,...

Coflowslow mixing, gradient, role of gravity,...

Hydrodynamic dispersionscoflow, Taylor Aris dispersion, sensors

Mixingsmall size, chaotic mixers, droplets,...

Membranesfiltration, pervaporation,...

Page 3: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 3/94

Back to basics

w

h

≈ cm

microfluidic scale   h≈1—100µm

from simple geometry.... to complex "lab on chip"

Protron MicroTeknik Liu et al. 2003

Page 4: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 4/94

∇ pflows come from a competition betweenviscous and pressure forces only

wh ∇

 p = η∆v

flows are incompressible∇.v  = 0

Physics of microfluidics (see P. Tabeling's lecture)

analogy with an "electric" circuit

⇒ (ex. for )k ≈ h2/12   h w

≈ "hydrodynamic resistance"

∇ p

wh

∇ p

R

η/kv̄  = − kη∇ p

v̄ v̄

Page 5: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 5/94

Microfluidic devices are rarely

used with pure solvents only...

ex. crystallization of proteins

H  a n  s  e n  e  t    a l   . ,P N A  S 2   0   0  2  

ex. chemistry in droplets

I    s m a  g i   l    o v  e  t    a l   .

L   e n 

 g  e  t    a l   .

ex. "soft matter"

transport of solutes ?

Page 6: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 6/94

Different kind of solutes...

ions and small molecules (1Å - 1 nm)

micelles, small proteins, nanoparticles (1-10 nm)

colloids, virus,proteins,....(10 nm - 1 µm)

cells, bacteria, ... (1-10 µm)

colloidal limit

brownian motion

Page 7: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 7/94

Brownian motion:

(small) solutes move

random motion dueto thermal agitation

Brown (1827)

diffusion coefficient Perrin (1909)

L

∼(Dt)1/2

20 nm fluorescent beads

in water 

Page 8: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 8/94

Stokes-Einstein law:

η 

R

A simple estimate for D

D

≈  kBT 6πηR

"motor" of transport

friction forces

Some values for D

D ≈ 103 µm2/s D ≈ 40 µm2/s

< 1 nm 5 nm 10 µm

D ≈ 0.02 µm2/sD ≈ 0.2 µm2/s

1 µm

D ≈ 2 µm2/s

100 nm

colloidal limit

Page 9: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 9/94

Microfluidics: solutes also flow...

LLLL ∼∼∼∼ ((((DDDDtttt))))1111////2222

diffusion

LLLL ∼∼∼∼ V VV V tttt

convection

Péclet number 

Pe = diffusion time / convective timeL/vL2/D

Pe = vL/D

Page 10: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 10/94

From "dots" to concentration fields and fluxes

c(x)

concentration =quantity / volume

Browian motion ⇒ Fick's law+d x -d x 

+d x -d x 

flux =quantity / time & surface

Flow ⇒ convection flux

flux =quantity / time & surfacev(x)

 j(x) = −D∂ xc

 j(x) = cv

Page 11: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 11/94

Conservation equation

concentration

diffusion/convectionflux

c(x,y,z)

dxdy

dz

 j(x)   j(x + dx)

dN dt   = − [ j(x + dx)− j(x)]  dy dz + . . .

∂ tc +

∇.j  = 0

⇒   ∂ tc + v.

∇c = D∆c

 j  = −D∇c + cv

convection diffusion

∂ tc + v.

∇c = D∆c + R

reaction

Page 12: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 12/94

(i) Some "classical" cases:

spreading through diffusion

LLLL ∼∼∼∼ ((((DDDDtttt))))

1111////2222

∂ tC  = D∆C 

C (x, t) =   C 0√ 4πDt

 exp−   x2

4Dt

w ∼√ 

2Dt   c   o   n   c   e   n    t   r   a    t    i   o   n

 x   x 

remember some values 1 s ? 1 mm ?- small molecules in water 50 µm 10 min- 200 nm colloids in water 1 µm 5 days

C (x, t = 0) = C 0δ (x)

Page 13: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 13/94

...and with a uniform flow

C (x, t = 0) = C 0δ (x)

C (x, t) =  1√ 4πDt exp(−

(x−vt)2

4Dt   )

∂ tC  + v.∇C  = D∆C 

v

   c   o   n   c   e   n    t   r   a    t    i   o   n

 x 

⇒ no complex coupling with(uniform) flows

NBalong x : diffusion & convection

but only diffusion along y 

x

y

Page 14: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 14/94

(ii) Some "classical" cases:connecting two reservoirs

C (x, t = 0) = C 0H (x)

∂ tC  = D∆C 

   c   o

   n   c   e   n    t   r   a    t    i   o   n

 x 

w ∼

√ 2Dt

C (x, t) ∼ 1 + erf 

  x2√ Dt

 x 

Page 15: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 15/94

Parenthesis: an analogy

 jc

An analogy with the Navier Stokes equation ?

convection diffusion

Pe = convection/diffusion=

∂ tc + v.∇c = D∆c

η/ρ

ρ(∂ t + v.∇)v  = −∇ p + η∆v

vLD

⇒ is the « diffusion » coefficient of the velocity⇒ hydrodynamics = transport of "velocity"

⇒ Re ~ Pe. microfluidics: "diffusion" of velocity is immediate

Re = inertial/viscous effects =  ρLvη

Page 16: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 16/94

Example: start-up of a flow

x

yLU 

δ 

Navier-Stokes   ρ∂ tv  = η∂ 2yv   ⇔ diffusion equation with   D = η/ρ

⇒ « diffusion of the velocity »   δ 2 ∼  ηρ t

developed profile for 

Note: microfluidics ?water, L = 10 µm, τ = 0.1 ms

multimedia fluid mechanics

τ  ∼ ρL2/η

Page 17: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 17/94

The same is true for energy...

∂ tc + v.∇c = D∆c mass transportρ(∂ t + v.∇)v = −∇ p + η∆v hydrodynamics

ρC  p(∂ t + v.∇

)T   = λ∆T  + S  thermal transfers

Some (very complete) books:

(...)

Page 18: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 18/94

Basics

microfluidics, solute, transport equation,...

Coflowslow mixing, gradient, role of gravity,...

Hydrodynamic dispersionscoflow, Taylor Aris dispersion, sensors

Mixingsmall size, chaotic mixers, droplets,...

Membranesfiltration, pervaporation,...

Page 19: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 19/94

Back to microfluidics: mixing in a coflow(a simple view)

flow

flow

w

v

convection   L ≈ vt

diffusion

Complete mixing for t

≈w2/D (through diffusion)

Convection during   t ≈ w2/D   ⇒  L ≈ vw2/D  = Pe w

large Péclet ⇒ long channels for efficient mixing

≈ √ Dt

Page 20: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 20/94

Numerical applications

Colored dyes with D  ≈ 103 µm2/s, w  ≈ 100 µm, v ≈ 1 cm/s

⇒ Pe = 1000

⇒ efficient mixing after 10 cm

NB:for colloidal species, D ≈ 1 µm2/s⇒ efficient mixing after 100 m...

⇒ need for mixing strategies...

Page 21: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 21/94

Mixing in a coflow: concentration fields

flow

flow

wdiffusion

 j  = −D∂ yc

convection diffusionv∂ xc = D∂ 

2

yc

 x 

convection   j  = cv

⇔   ∂ tc = D∂ 2yc with change of variable   x = vt

⇒ co-flow is a good tool to investigate steady kinetics

Page 22: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 22/94

flow

flow

wdiffusion j  = −D∂ yc

⇒   v∂ xc = D∂ 2yc

 x 

convection   j  = cv

position y 

   c   o   n   c   e   n    t   r   a

    t    i   o   n

      c        (      x ,      y

        )

δ  =  Dx/v

Page 23: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 23/94

Some applications:

data acquisiton

Y  a  g  e r   e  t    a l   . ,2  

 0   0  1  

measurements of D

steady kinetics

kinetics of chemical reactions

v ≈ 10 µm/s - 1 cm/sw = 100 µmτ = v/w = 10 s - 10 ms

Salmon et al., 2005

kinetics of protein folding 

P  o l   l    a  c k   e  t    a l   . ,

2   0   0  2  

x = vt

Page 24: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 24/94

Fast and long kinetics

on a same chip?

v ≈ 1 cm/s, w = 50 µm, D = 10-9 m2/sLm = v w 2  /D ≈ 2 cm, w 2  /D ≈ 2 s

up to 1 min ? ⇒ 60 cm ?≈ 2 s

R

R/2

R R 

R/2 R

R/2

exponential increase of the residence times:q

q/2  q/4 q/8  q/16 

(...)

Cristobal et al. 2005

R

R/2

R/2 R/2

R/2

R

R/2

R

R/2

(...)

Mi i i l

Page 25: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 25/94

Mixing is slow:some opportunitiesdiffusive mixing

small width of diffusion at high velocitiesex: D = 10-10 m2/s, v = 10 cm/s, δ < µm

δ  = 

Dx/v

⇒ possibility to control complex patterns

"Fil " i h b

Page 26: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 26/94

"Filters" without membranes

Ex.:small molecules (D = 10-9 m2/s)

dusts (> 100 nm, (Dd < 10-12 m2/s)

v = 1 mm/s and L = 1 cm ⇒ τ = 10 s

w = (D τ )1/2 = 100 µm and w d = (Dd τ)1/2 < 3 µm

L

Dd D

solvent

soluteand "dusts"

only solute

soluteand "dusts"

Yager et al., 2001

Mi i i l

Page 27: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 27/94

Mixing is slow:generating gradients

long serpentines for efficient mixing

(...)

∇ pnegligible hydrodynamic resistance

3q/4

3q/4

3q/4

3q/4

L > Pew

c/2

q

q

qc

0

q/2 

q/2 

q/4

3q/4

3q/4

q/4

0

c/3

c

2c/3

Dertinger et al., 2001

C l d i l di t

Page 28: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 28/94

Complex design = complex gradients

Campbell et al., 2007 Dertinger  et al ., 2001

w

v

Note: gradients still disappear for L > vw2/D = Pew

Mi ing is slo

Page 29: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 29/94

Mixing is slow:generating microstructures

Kenis et al ., 1999

B k t ll id

Page 30: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 30/94

Back to colloids

for colloidal species, D ≈ 1 µm2/sw  ≈ 100 µm, v ≈ 1 cm/s

⇒ efficient mixing after 100 m...

but complex phenomena may happen

Boosting migration of colloids:

D ∇l

Page 31: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 31/94

Boosting migration of colloids:diffusiophoresis

Abécassis et al., 2008high Péclet

v = −Ddp∇logc

Wh t b t it ?

Page 32: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 32/94

What about gravity ?

thermal or solutal gradients⇒ density gradients ⇒ flows⇒ mixing

and at small scale ? 

Buoyancy-induced flow

Page 33: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 33/94

∇ρ∇φ   ∇ p

g   ρ(φ)

x

z

h L

⇒ gradient of hydrostatic pressure

e.g. water to 5% of glycerol, L=1 mm, h=100 µm ⇒ U ∼1 µm/snote : for h = 10 µm, U ~ 1 nm/s

⇒ lubrication flowU 

 ∼(h2/η)∂ x p

∂ x p ∼ (δφ/L)∂ φρgh

U   ∼ (δφ/L)∂ φρgh3/ηbuoyancy-induced flow ⇒

⇒ ⇒⇒ ⇒ small scale = small effects

Buoyancy-induced flow

in microfluidics ?

Competition with diffusion

Page 34: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 34/94

g

Ra = Uh/D

U   ∼ (δφ/L)∂ φρgh3/η

h L

⇔ diffusion time over h / convection over h

diffusive mixing Ra << 1

buyoancy-driven flows Ra >> 1vs.g

⇒ diffusive mixing for Ra < 1⇒ buoyancy-driven convection for Ra >1

Quake & Squires, 2005

Competition with diffusion

⇒⇒⇒⇒ important note: these flows always exist !Selva et al., 2012

for confined gradients:

Back to colloids

Page 35: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 35/94

w

=  5   0   0   µm

h=110 µm

water & colloidsQ=25 µL/hr 

Q=125 µL/hr 

Q=125 µL/hr 

⇒ no mixing of the colloids (high Péclet number)

Back to colloids

Buoyancy (can) enhances the mixing of the colloids

Page 36: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 36/94

water & colloids& glycerol (3%)

water & glycerol

water  water 

h   h

g

Buoyancy (can) enhances the mixing of the colloids

water/glycerol ⇒ negligible influence of buoyancy (Ra<1)

but strong effects on colloids Selva et al., 2012

h=110 µm

Page 37: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 37/94

Basics

microfluidics, solute, transport equation,...

Coflow

slow mixing, gradient, role of gravity,...

Hydrodynamic dispersions

coflow, Taylor Aris dispersion, sensors

Mixing

small size, chaotic mixers, droplets,...

Membranes

filtration, pervaporation,...

Life is more complex:top view

Page 38: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 38/94

Life is more complex:hydrodynamic dispersion

top viewv

diffusion/reaction   w

perspective view

"no slip" condition

Poiseuille profile

what about the results presented ?

Larger "width"

Page 39: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 39/94

Larger widthclose to the walls

Ismagilov et al., 2000

⇒ a problem to obtainvery thin electrodes

Kenis et al ., 1999

From 3d to 2d

Page 40: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 40/94

From 3d to 2d

for i.e.⇒ homogeneous concentration gradients (no 3d effects)t > h2

/D   x > vh2

/D

v

w

ex: h = 10 µm, v = 1 cm/s, D = 10-9

m2

/s vh

2

/D = 1 mmh2/D = 100 ms3d effects

⇒ need to take care of 3d effects for rapid kinetics

3d problem:

Page 41: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 41/94

ptransverse hydrodynamic dispersion

v h

y

far from to the wall  δ  = 

Dx/v

close to the wall   δ ∼ (x/v)1/3"Leveque" dispersion(diffusion in a shear flow)

Ismagilov et al., 2000Salmon et al., 2007

A problem for chemistry?A Bz

Page 42: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 42/94

A problem for chemistry?

eg: 2nd order chemical reaction A+B  ⇔ C

A

B

C

 x 

A B

C

but averaged profiles are not so different from the 2d case...

v

Salmon et al., 2005

y

A problem for chemistry?A B

Page 43: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 43/94

p yyes for more complex reactions

A B

C

v

growth

aggregation

1 nm10 nm

30 nm

100 nm

sols

nucleation

dimer 

nucleus

particule

Iler, 79

gels

long residence times: bigger & bigger particles

(due to a smaller & smaller diffusivity...)

⇒ clogging & leakages !

⇒ need for 3d microfluidics (no walls) or droplets

Another hydrodynamic dispersion:

Page 44: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 44/94

y y pdispersion of residence times

h

tracer stripe at t = 0

h t =0

v

v

h t > 0v ?

⇒ ⇒⇒ ⇒ Taylor-Aris dispersion (convection & diffusion)

Taylor-Aris dispersion: a simple view

Page 45: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 45/94

y p p

in the frame of the flowt = 0

t h2/D

t ∼ h2/D

t ∼ N h2/D

v

   r   a   n    d   o   m    s

    t   e   p

W   = vt

W   = N 1/2W d   ⇒ ⇒⇒ ⇒ effective diffusion

Squires et al. 2005

h

W d  = vh2/D

Taylor-Aris dispersion: a simple view

Page 46: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 46/94

hv

t

h2/D

« effective » diffusion coefficient

large solutes: efficient dispersion !

⇒ take care of prefactors circular channels:shallow channels:

De = v2h2/(48D)

De = v2h2/(210D)

De  = v2h2/D

y p p

W  ∼ [(v2

h2

/D)t]1/2

Sensors:

Page 47: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 47/94

Sensors:

"making it stick" 

Squires et al. 2008

⇒ a priori a very complex problem(c 0 , U, k, D, H, W c , L, W s, bm ...)

⇒ scaling arguments for extreme regimes

(i) No flow and fast reaction:

Page 48: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 48/94

( )depletion layer 

t H 2/D

t ∼ H 2/D

t H 2/D

L

⇒ no steady state⇒ diffusive flux j d = -Dc 0  /δ 

⇒ collection rate J d= j 

dx Area

δ 

δ δ ∼ √ Dt

(i) unitless "diagram"

Page 49: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 49/94

δ 

J d ~ Dc 0  /δ LW s

J d ~ Dc 0  /δ HW sδ 

√ Dt

δ 

( ) g

δ ∼√ 

Dt

(ii) "slow" flow (and still fast reaction)

Page 50: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 50/94

J d

~ Dc 0 

 /δ s

HW c 

J c

~ Q c 0 

steady depletion layer  J c ~ J d ⇒   δ s = DHW c/Q

only valid for , i.e.δ s H 

δ s

PeH  = U H/D = Q/(DW c)

⇒ full collection rate in this regime

PeH   1

(iii) "fast" flow (and still fast reaction)J c ~ Q c 0 

Page 51: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 51/94

U  = γ̇ztransit along the sensor

diffusion time to the sensor   z2

/Dδ s

δ s

L ⇒ depletion layer 

L/(γ̇z)

δ s  = (DL/γ̇ )1/3

unitless: δ s/L = (1/Pe1/3s   ) &

⇒ collection rate⇒ unitless collection rate

J d ~ Dc 0  /δ s LW s

F ~ (Pes )1/3

λ = L/H Pes  = 6λ2PeH 

z

(iii) validity range

Page 52: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 52/94

δ s

δ s/L = (1/Pe1/3s   )

Pes compares δs to the width of the sensor PeH compares δs to the width of the channel

validity range:  PeH   1 butPes

1

⇒ picture not valid for very small sensors   λ 1

(see Squires et al. for the case of small sensors)

λ = L/H 

L

Pes  = 6λ2PeH 

⇒ unitless "diagram"

Page 53: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 53/94

(fast reaction)

small sensorsλ

< 1

λ > 1

(iv) reaction vs. transport

Page 54: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 54/94

dbdt

  = koncs(bm − b)− koff b

concentration ofbounded receptors

total concentration of receptors

for non-saturated sensors

reactive flux J r ~ k on c s bm (LW s )

solute concentrationclose to the sensor 

b bm

(iv) ex: "fast" flow & reactionc0

Page 55: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 55/94

δ s

L

c0

cs reactive flux J r ~ k on c s bm (LW s )diffusive flux J d ~ D(c 0 -c s )/δ s (LW s )

steady regime: Jr ~ Jd ⇒ cs  =   c01+Da

Da = konbmδ/D

Da (Damkohler) compares reaction rates to transport rate

Da<1 : reaction limited cs ~ c0⇒ Da>1 : mass transport limited cs ~ 0

(see Squires et al. for a full discussion for the other regimes)

Basics

Page 56: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 56/94

Basics

microfluidics, solute, transport equation,...

Coflow

slow mixing, gradient, role of gravity,...

Hydrodynamic dispersions

coflow, Taylor Aris dispersion, sensors

Mixing

small size, chaotic mixers, droplets,...

Membranes

filtration, pervaporation,...

Back to microfluidics:i i i l

Page 57: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 57/94

mixing is slow...diffusive mixing

δ  = 

Dx/v

L ≈ vw2/D  = Pe wlength for efficient mixing

⇒ some innovative strategies for efficient mixing ??

(1) Diminishing the size(at a finite velocity )Qs (water)

ex. hydrodynamic focusing

Page 58: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 58/94

(at a finite velocity...)Qs ( )

wf   ≈ 100 nm - 1 µm

τ  = w2f /D   ≈ 10 µs - 1 msKnight et al., 1998

application fo kinetics of folding of bio-molecules(first data point at 5 ms !)

Russel et al., 2002

This is always a( l ) 3d bl

Page 59: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 59/94

(complex) 3d problem...Knight et al., 1998

An easy way for hydrodynamic focusing without walls ?

Kinetics of quenching reaction⇒ no walls⇒

no dispersion

Pabit et al . 2002

(2) Multilaminating the flow

Page 60: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 60/94

L ≈ vw2/D = Pe  w

?L ≈ v(w/N )2/D = Pe w/N 2

Manz et al. 1999

(2) Multilaminating along the flow

Page 61: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 61/94

⇒ need for complex 3d structures

Chen et al. 2004

(3) "Grooving" flows: chaotic mixing

Page 62: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 62/94

Stroock et al. 2002

in a confined channel:helical stream lines !

grooves

J = fluid flux that that tends to

align along the « easy axis »

(3) "Grooving" flows: chaotic mixing

Page 63: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 63/94

length for efficient mixing

⇒ "chaotic mixing" (note: Re ≈ 0)

L ∼ wlog Pe

Stroock et al. 2002

Chaotic mixers helpto make compact devices

Page 64: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 64/94

to make compact devices

Whitesides et al. 2002

(4) Active mixing:the "rotary" mixer

fluidic channels

Page 65: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 65/94

the rotary mixer 

Unger et al. 2000    a    c      t    u

    a      t      i    o

    n     c

      h    a    n    n    e      l

PDMS is soft⇒

valves & pumps for a massiveintegration

(see P. Joseph's lecture)

Quake et al. 2000

Ex: a complete platform for protein crystallization(see N. Candoni's lecture?)

Page 66: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 66/94

Lau et al. 2007

i) creating mixtures with 64 ≠ reactants

ii) mixing in a nanoliter volume

iii) store interesting

mixtures in nL plugs

iv) osmotic control

( )

(4) Active mixing:the "rotary" mixerR

height hτ h2/D

Page 67: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 67/94

the rotary mixer R

v

Several regimes of mixing

diffusion limited

Taylor Aris regime

convective stirring regime

Pe 1

τ D  = h2/D

τ 2  = (2πR)2/Deff ∼ τ 1/Pe2

2πR/v > τ D

τ 3 ∼ Pe−2/3(h/R)4/3τ 1

Squires et al. 2005

⇒ efficient mixing

τ 1  = (2πR)2/D

(5) The case of droplets:perfect microreactors ?

Page 68: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 68/94

perfect microreactors ?

Song et al. 2003

Page 69: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 69/94

mixing is difficultLm ~ Pe w and Pe >> 1 hydrodynamic dispersion

dispersion of the residence times

Song et al. 2003

   c   o    f    l   o   w

    d   r   o   p    l   e    t   s

fast mixing no hydrodynamic dispersion

mixing ≈ 5 ms

Droplets are very well-suited forfast chemical reactions

Page 70: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 70/94

   7   5  m  s

Shestopalov et al. 2004

⇒ multistep synthesis of CdSnanoparticles

Chan et al. 2005

the same at high temperature:

Mixing within droplets ?Streamlines in windings

Page 71: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 71/94

Song et al. 2003

L

∼wlog Pechaotic mixing

again Re=0

Evidence for a fast mixing

Page 72: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 72/94

for a 10X10 µm2 channel

Song et al. 2003

Always true ?silicone oil

≈ 20 ms

Page 73: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 73/94

60 µm

Sarrazin et al. 2008

silicone oil

water 

dye

≈ 20 ms

1 mm

⇒ take care of scale, flow rates, geometry, etc.

≈ 1 min

General note onmixing & mass transport in microfluidics

Page 74: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 74/94

⇒ studies often concern water & (very) diluted dyes

Real life is again more complex...

Page 75: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 75/94

(?)

solvants & concentrated solutionscomplex fluids

⇒ rheology ? dissolved gas ? wetting properties ? etc...there is always plenty of space for fundamental studies

Some examples...viscosity contrasts

Page 76: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 76/94

Cubaut et al. 2006

wetting, degasing...water 

ethanol

t = 0

t ~ 1 min

lof, unpublished

viscoelasticity

Lindner et al.

The case of concentrated system

Page 77: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 77/94

t = 0

t > 0

t 0

diffusive process ⇒ convection of mass

concentrated systems:convection/diffusion inter-related

Basicsmicrofluidics, solute, transport equation,...

Page 78: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 78/94

microfluidics, solute, transport equation,...

Coflowslow mixing, gradient, role of gravity,...

Hydrodynamic dispersionscoflow, Taylor Aris dispersion, sensors

Mixing

small size, chaotic mixers, droplets,...

Membranes

filtration, pervaporation,...

Controlling transport using "membranes"

Page 79: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 79/94

(1) dialysis & microfiltration(pore size 1 - 100 nm)

solutes below the pore sizecross the membrane

(2) pervaporation

solubility and evaporation of the solventex: PDMS for water

(1) Microfiltration forconcentration gradients "without flow"

Page 80: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 80/94

⇒ two levels system incorporating microfiltration membranes

Morel et al., 2012 (see V. Studer's lecture ?)

top level

Concentration landscapes "without flow"

Page 81: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 81/94

top e e

v

v

no flow

diffusion

⇒ possibility to applyconcentration gradients to

cells without shear flow

Morel et al., 2012

And complex (spatio-temporal)lanscapes !

Page 82: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 82/94

Morel et al., 2012

Another recent & similar studymicrofluidic chip made of "agarose gel"

Page 83: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 83/94

Palacci et al., 2010

p g gdiffusion of solute, no flow

(2) Control by pervaporation

PDMS membrane: permeability to water (and to other solvents too)

Page 84: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 84/94

ve  ≈ 20 nm/s for e ≈ 10 µm

⇒ low pumping flow rates: 1 nL/hr for 100x100 µm2

but not negligible !

50 µme

≈ 1 cm

an efficient pump ?

µL/hr 

Wheeler et al., 2008

Manipulating solutes using pervaporation

Page 85: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 85/94

Shim et al. 2007 i) create drops ii) store drops iii) concentrate solutes

The same with a formulation stage(see N. Candoni's lecture for the applications)

Page 86: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 86/94

Lau et al. 2007

i) creating mixtures with 64 ≠ reactants

ii) mixing in a nanoliter volume

iii) store interesting

mixtures in nL plugs

iv) osmotic control

Continuous pervaporation:microevaporators

Page 87: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 87/94

reservoir 

0

pdms

dry air 

L0

vev0

eh

conservation of flow rate:

ve  ≈ 20 nm/s for e ≈ 10 µmv0   ≈ 1 to 100 µm/s , tunable thanks to geometry

Leng et al. 2006

v0  =   L0

h   ve

v(x) = v0x/L0 linear profile in the microevaporator 

v(x)

solutes Microevaporators fora controlled concentration

Page 88: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 88/94

reservoir 

L0

v0

convectiondominates

diffusion

dominates

transition at Pe~1 ⇒

Pe = v(x)x/D

x2 ∼ Dτ e

v(x) = v0x/L0  = x/τ e

µm-mm

Tunable concentration rate

Page 89: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 89/94

reservoir 

L0

v0

conservation of solute

 p = √ Dτ e

v0φ0

≈ p dφ

dt

φ0

⇒ continuous and controlled concentration processof solutes in a nanoliter box⇒ useful tool to investigate "soft matter"

(1) microfluidic-assisted growthof colloidal crystals

Page 90: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 90/94

cm

50 µm

Merlin et al. 2012

(2) engineeringcomplex materials

plasmonic nanoparticles

Page 91: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 91/94

Iazzolino & Angly

2012

(3) phase diagram screening

Page 92: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 92/94

Page 93: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 93/94

Leng et al. 2007

more informations:www.lof.cnrs.fr 

j b ti t l t i @ h di

Page 94: Mass transport phenomena in microfluidic devices

7/23/2019 Mass transport phenomena in microfluidic devices

http://slidepdf.com/reader/full/mass-transport-phenomena-in-microfluidic-devices 94/94

 [email protected]