mass spectrometry of synthetic polymers · polymers (polyhedral oligomeric silsesquioxanes, poss)...

35
7/29/2014 1 Mass Spectrometry of Synthetic Polymers Árpád Somogyi CCIC MSP OSU Summer Workshop Problems with polymer analysis Sample preparation Several polymers are not well soluble in conventional solvents Solventless technique Cationizing with Na + , K + , and Ag + by spiking Synthesis of tailor (home) made matrices Degradation during ionization (especially with MALDI) Photodissociation in MALDI (MALDI/ESI comparison desirable) End group analysis reliable but better to have high resolution/accurate mass (FT-ICR)

Upload: others

Post on 20-Jul-2020

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Mass Spectrometry of Synthetic Polymers · Polymers (Polyhedral Oligomeric Silsesquioxanes, POSS) Anderson, Somogyi, et al.; International Journal of Mass Spectrometry , 2010 , 292

7/29/2014

1

Mass Spectrometry of Synthetic Polymers

Árpád Somogyi

CCIC MSP

OSU Summer Workshop

Problems with polymer analysis• Sample preparation

– Several polymers are not well soluble in conventional solvents

– Solventless technique– Cationizing with Na+, K+, and Ag+ by spiking– Synthesis of tailor (home) made matrices

• Degradation during ionization (especially with MALDI)– Photodissociation in MALDI (MALDI/ESI comparison

desirable)

• End group analysis reliable but better to have high resolution/accurate mass (FT-ICR)

Page 2: Mass Spectrometry of Synthetic Polymers · Polymers (Polyhedral Oligomeric Silsesquioxanes, POSS) Anderson, Somogyi, et al.; International Journal of Mass Spectrometry , 2010 , 292

7/29/2014

2

Molecular weight distribution defines polydispersity of polymers

Polydispersity (PD) = Mw/Mn

Polystyrenewith Ag+

Zhu, H.; Yalcin, T.; Li, L. JASMS, 1998, 9, 275-281.

829.987

991.986

1143.205

1313.231

1433.246

1553.257

1723.288

1123.212

2013.333

2303.4052593.467

2933.604

* NB_89_M4\0_M16\1\1SRef, "Baseline subt."

0.0

0.5

1.0

1.5

2.0

5x10

Inte

ns.

[a.u

.]

1000 1500 2000 2500 3000 3500 4000 4500m/z

Trancated Vectra Polymer (Somogyi et. al.,)

PD > 1.05

PD≈1.01

Zhu, H.; Yalcin, T.; Li, L. JASMS, 1998, 9, 275-281.

MS is an absolute method for MW determination(but remember possible degradation!)

Page 3: Mass Spectrometry of Synthetic Polymers · Polymers (Polyhedral Oligomeric Silsesquioxanes, POSS) Anderson, Somogyi, et al.; International Journal of Mass Spectrometry , 2010 , 292

7/29/2014

3

http://www.polymerprocessing.com/polymers/alpha.html

Poly(ethylene terephtalate) (PET)C10H8O4 (192.042259)

Polystyrene (PS)C8H8(192.042259)

Poly(methyl methacrylate) (PET)C5H8O2 (100.052430)

Poly(vinyl alcohol) (PVA)

C2H4O (44.026215)

- CH2-CH2-O-Poly(ethylene glycol) (PEG)

Repeating unit masses of polymers

0

1000

2000

3000

4000

Inte

ns.

[a.u

.]

500 1000 1500 2000 2500 3000 3500m/z

0

500

1000

1500

2000

Inte

ns.

[a.u

.]

1675 1700 1725 1750 1775 1800 1825 1850 1875m/z

Synthetic Polymer Analysis by MS (MALDI-TOF)

1684.205

1728.2311772.260

1816.2921660.310

4444

4444

Page 4: Mass Spectrometry of Synthetic Polymers · Polymers (Polyhedral Oligomeric Silsesquioxanes, POSS) Anderson, Somogyi, et al.; International Journal of Mass Spectrometry , 2010 , 292

7/29/2014

4

CH3OH exact mass: 32.0262 u

3 7 4 3 7 6 3 7 8 3 8 0 3 8 20

2 0

4 0

6 0

8 0

1 0 0

Re

lati

ve

In

ten

sit

y

m / z

3 5 7 0 3 5 7 2 3 5 7 4 3 5 7 6 3 5 7 80

2 0

4 0

6 0

8 0

1 0 0

Re

lati

ve

In

ten

sit

y

m / z

a

b

374.4183 (average mass)

374.2040 (exact mass)

3570.8741 (exact mass)

3572.9742 (average mass)

0 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0

0

1

2

3

4

5

6

7

8

De

via

nc

efr

om

no

min

al

ma

ss

(d

alt

on

)

m / z

c

[Ala5+H]+

[Ala50+H]+

exact mass

average mass

C15H28O6N5

C150H253O51N50

Page 5: Mass Spectrometry of Synthetic Polymers · Polymers (Polyhedral Oligomeric Silsesquioxanes, POSS) Anderson, Somogyi, et al.; International Journal of Mass Spectrometry , 2010 , 292

7/29/2014

5

854.2870

856.2832

857.2855

858.2872

859.2904 860.2930

861.2377

862.2416

3_OEB_000001.d: +MS

861.2365

862.2399

863.2428

864.2455

3_OEB_000001.d: C 45 H 42 Na 1 O 16 ,861.24

856.2811

857.2845

858.2873

859.2900

3_OEB_000001.d: C 45 H 46 N 1 O 16 ,856.28

0

1

2

3

7x10Intens.

0.00

0.25

0.50

0.75

1.00

1.25

7x10

0

1

2

3

4

7x10

854 856 858 860 862 864 m/z

FT-ICR - Accurate Mass Measurements(ESI Ionization, MeOH:ACN 1:1)

C45H42O16Na+

C45H42O16NH4+

FT-ICR - Accurate Mass Measurements

Page 6: Mass Spectrometry of Synthetic Polymers · Polymers (Polyhedral Oligomeric Silsesquioxanes, POSS) Anderson, Somogyi, et al.; International Journal of Mass Spectrometry , 2010 , 292

7/29/2014

6

MS/MS spectra of polymers depend on

• The cationizing agent (sample preparation)

• Instrument type, ion activation method

– Low energy (eV) collisions (Q-TOF, FT-ICR (SORI, IRMPD)

– High energy (keV) collisions (TOF-TOF)

MS/MS studies of synthetic polymers date back to early 90s (Jackson, A. T.; Yates, H. T.; Bowers, M. T.; Lattimer, R. P.; Wesdemiotis, C., etc.)

Renaissance, due to sophisticated instrumentation

Main goal is to determine polymer structure but basic studies such as comparison of different activation methods are emerging

Survival yield curveM/(M+F)

SY50: characteristic;easy spectra evaluation

low energy spectrum, little fragmentation

correct MW distribution

high energy spectrum, lot of fragments

good “fingerprint”

Page 7: Mass Spectrometry of Synthetic Polymers · Polymers (Polyhedral Oligomeric Silsesquioxanes, POSS) Anderson, Somogyi, et al.; International Journal of Mass Spectrometry , 2010 , 292

7/29/2014

7

Results for PEGsMemboeuf, IMMS 2009 (Retz)

Anal. Chem. 82 2294 (2010)

very good linear relationship

Page 8: Mass Spectrometry of Synthetic Polymers · Polymers (Polyhedral Oligomeric Silsesquioxanes, POSS) Anderson, Somogyi, et al.; International Journal of Mass Spectrometry , 2010 , 292

7/29/2014

8

96.8853

165.0539

237.5432

329.1004

381.2949

493.1461

537.4941613.1692

657.1901

777.2073

3_OEB_812_QCID_12eV_000002.d: +MS2(812.0)

0

2

4

6

6x10Intens.

100 200 300 400 500 600 700 800 900 m/z

111.9153.6

280.7 329.1

457.1

489.1 612.4

817.2

3_OEB_817_QCID_12eV_000001.d: +MS2(817.0)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

7x10

100 200 300 400 500 600 700 800 900 m/z

96.9

165.1

263.4

329.1

357.2

457.1

493.1

657.2

817.2

3_OEB_817_QCID_30eV_000001.d: +MS2(817.0)

0

2

4

6

6x10

100 200 300 400 500 600 700 800 900 m/z

81212 eV

81712 eV

81730 eV

Na+

Na+

NH4+

O

O CH2 CH2 *m

nO

3-OEB polymerESI, MeOH:ACN 1:1

Q‐CID MS/MS spectra of ammoniated (NH4+) and sodiated (Na+) ions of 3‐OEB polymers in 

a FT‐ICR instrument (ApexQh)

Somogyi et al., unpublished

Page 9: Mass Spectrometry of Synthetic Polymers · Polymers (Polyhedral Oligomeric Silsesquioxanes, POSS) Anderson, Somogyi, et al.; International Journal of Mass Spectrometry , 2010 , 292

7/29/2014

9

817.308

328.705492.776186.682 657.011

120.738 284.652 354.682 544.397443.72066.510 240.848

0

1

2

3

4

5

4x10

Inte

ns.

[a.u

.]

100 200 300 400 500 600 700 800 900m/z

100 200 300 400 500 600 700 800 900 m/z100 200 300 400 500 600 700 800 900 m/z

96.9

165.1

263.4

329.1

357.2

457.1

493.1

657.2

817.2

0

2

4

6

100 200 300 400 500 600 700 800 900 m/z

QCID30 eV

MALDITOF-TOF(keV)

328.705

492.776

186.682

657.011

120.738514.780

284.652146.719

672.727

679.028

310.689 456.55290.823 354.682 544.397208.735 400.629248.685

0

0

0

0

0

100 200 300 400 500 600 700m/z

Some Examples for Tailor-Made Matrices

NN

FF

F F

HOCOOH

M-1

NN

FF

F F

FF

FF

F FM-3

FF

F F

HOCOOCH3

M-2

NN

FF

F F

HOOH

FF

F FM-4

FF

F F

HOOH

FF

F F

M-5

FF

F F

FF

FF

F F

M-6

FF

F F

FCOOCH3

M-7

NN

FF

F F

H3COOCH3

FF

F FM-9

NN

FF

F F

HOCOOCH3

M-8

Somogyi, et al., Macromolecules, 2007, 40, 5311-5321.

Page 10: Mass Spectrometry of Synthetic Polymers · Polymers (Polyhedral Oligomeric Silsesquioxanes, POSS) Anderson, Somogyi, et al.; International Journal of Mass Spectrometry , 2010 , 292

7/29/2014

10

Figure 2.  Ethyl isobutyrate POSS PMA oligomers synthesized using ATRP techniques.

O

O CH3

CH3

CH3

CH3

R' =

X = Br

Si

O

Si

Si

SiO

O

OSi

O

Si

Si

SiO

O

O

OO

OO

R R

R

R

R

R

R

OO

(CH2)3

C

CH3

CH2

XR'

n

CH3 S

O

O

CH3

R = C6H5, i-C4H9

O

O CH3

CH3

CH3

CH3

R' =

X = Br

Si

O

Si

Si

SiO

O

OSi

O

Si

Si

SiO

O

O

OO

OO

R R

R

R

R

R

R

OO

(CH2)3

C

CH3

CH2

XR'

n

CH3 S

O

O

CH3

R = C6H5, i-C4H9

m/z2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500

%

0

100 2042

2058

20593002

2126

2156

2705

2175 2676 2916

3945

3929

3020

3100

3887

3416 3847

4891

39644873

4044

4350 4831

5833

49085818

49565359

5417

67765851

6759

63045902 6721

67947737

73117162 7411 7835

m/z

m/z2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500

%

0

100 2042

2058

20593002

2126

2156

2705

2175 2676 2916

3945

3929

3020

3100

3887

3416 3847

4891

39644873

4044

4350 4831

5833

49085818

49565359

5417

67765851

6759

63045902 6721

67947737

73117162 7411 7835

m/zFigure 3. ESI mass spectrum of [(i‐butyl)7T7propylmethacrylate]n .  Most intense peaks are assigned to sodiated and potassiated parent species, the terminal Br being replaced with OH.

Synthesis and MALDI-TOF analysis of non-conventionalPolymers (Polyhedral Oligomeric Silsesquioxanes, POSS)

Anderson, Somogyi, et al.; International Journal of Mass Spectrometry, 2010, 292 (1), 38-47

Practical importances of phenanthroline-functionalized PEGs

stabilization of magnetic nanoparticles(e.g. Fe3O4)

hydrofilic networks by complex formation

Kéki, S.; Kuki, Á. Kuki; Nagy, M.; Nagy, L.; Zsuga, M.JASMS, 2010, 21, 1561-1564.

Page 11: Mass Spectrometry of Synthetic Polymers · Polymers (Polyhedral Oligomeric Silsesquioxanes, POSS) Anderson, Somogyi, et al.; International Journal of Mass Spectrometry , 2010 , 292

7/29/2014

11

Change of the absorbance at 515 nm versus molar ratio of the added

Fe(II)-ions and phenanthroline functions of PEGs

0

0.2

0.4

0.6

0.8

1

1.2

350 450 550 650

(nm)

Ab

so

rba

nc

e

CT transition

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 0.2 0.4 0.6 0.8 1

[Fe2+]/[phen]

Ab

sorb

an

ce

(515

nm

)

▲≈10300 M-1cm-1≈11090 M-1cm-1

Fe2+ : PEG_phen = 1: 3

Fe2+ : phen_PEG_phen = 2: 3

Synthesis of phenanthroline-functionalized PEGs

N N

HO

N N N N

HOO

cc. H2SO4, reflux, 1 h

50% NaOH, pH=7

reflux, 72 h

SOCl2, abs. tolueneCH3 O CH2 CH2 OH

n

Cl

n

CH3 O CH2 CH2

N

N

OCH3 O CH2 CH2

nn

CH3 O CH2 CH2 Cl NaH, abs. DMF

reflux, 48 h+

N N

HO

NaH, abs. DMF

reflux, 48 h+

n-1

CH2 O CH2 CH2 ClCH2Cl

nN

N N

NCH2 CH2 OO

2

(PEG_phen)

(phen_PEG_phen)

(Mn = 1100 g/mol)

(Mn = 1500 g/mol)

Page 12: Mass Spectrometry of Synthetic Polymers · Polymers (Polyhedral Oligomeric Silsesquioxanes, POSS) Anderson, Somogyi, et al.; International Journal of Mass Spectrometry , 2010 , 292

7/29/2014

12

ESI-MS spectrum of Fe(PEG_phen)32+

0.0

0.5

1.0

1.5

2.0

2.5

4x10Intensity

600 800 1000 1200 1400 1600 1800 2000 2200 2400 m/z

FeL32+

[FeL3+NH4]3+

[FeL3+2NH4]4+

[FeL3+2NH4+Na]5+

[FeL3+3NH4+Na]6+

L = PEG_phen

ESI-MS intensity distribution of PEG_phen and Fe(PEG_phen)32+

+Fe(II)

Fe2+ + Li + Lj + Lk FeLi+j+k2+ (n=i+j+k)

Theoretical model:

0

0.02

0.04

0.06

0.08

0.1

0.12

15 20 25 30 35 40

number of EO units

Pro

ba

bil

ity

0.0

0.2

0.4

0.6

0.8

1.0

60 80 100 120

number of EO units

No

rma

lize

d i

nte

ns

ity measured

simulated

kjkji

in PPPP

1,,

Page 13: Mass Spectrometry of Synthetic Polymers · Polymers (Polyhedral Oligomeric Silsesquioxanes, POSS) Anderson, Somogyi, et al.; International Journal of Mass Spectrometry , 2010 , 292

7/29/2014

13

ESI-MS/MS of Fe(PEG_phen)32+

727.

35

1493

.31

2193

.30

0

100

200

300

Intensity

200 400 600 800 1000 1200 1400 1600 1800 2000 m/z

Fe(PEG_phen)32+ Fe(PEG_phen)2

2+ + PEG_phen

Fe(PEG_phen)22+ Fe(PEG_phen)2+ + PEG_phen

0

0.2

0.4

0.6

0.8

1

10 30 50 70

number of EO units

no

rma

lze

d in

ten

sit

y80 V

90 V

simulated

Page 14: Mass Spectrometry of Synthetic Polymers · Polymers (Polyhedral Oligomeric Silsesquioxanes, POSS) Anderson, Somogyi, et al.; International Journal of Mass Spectrometry , 2010 , 292

7/29/2014

14

Page 15: Mass Spectrometry of Synthetic Polymers · Polymers (Polyhedral Oligomeric Silsesquioxanes, POSS) Anderson, Somogyi, et al.; International Journal of Mass Spectrometry , 2010 , 292

7/29/2014

15

Page 16: Mass Spectrometry of Synthetic Polymers · Polymers (Polyhedral Oligomeric Silsesquioxanes, POSS) Anderson, Somogyi, et al.; International Journal of Mass Spectrometry , 2010 , 292

7/29/2014

16

A few recent polymer MS and MS/MS articles in JASMS (April, 2011)

Szyszka, R.; Hanton, S. D.; Henning, D.; Owends, K.G. “Development of a CombinedStandard Additions/Internal Standards Method to Quantify Residual PEG in Ethoxylated

Surfactants by MALDI TOFMS” JASMS, 2011, 22, 633-640.

Song, J.; Siskova, A.; Simons, M. G.; Kowalski, W. J.; Kowalczuk, M. M.; van den BrinkO. F. “LC-Multistage Mass Spectrometry for the Characterization of Poly(Butylene

Adipate-co-Butylene Terephtalate) Copolyester” JASMS, 2011, 22, 641-648.

Fouquet, T.; Humbel, S.; Charles, L. “Tandem Mass Spectrometry of Trimethylsilyl-TerminatedPoly(Dimethylsiloxane) Ammonium Adducts Generated by Electrospray Ionization”

JASMS, 2011, 22, 649-658.

Page 17: Mass Spectrometry of Synthetic Polymers · Polymers (Polyhedral Oligomeric Silsesquioxanes, POSS) Anderson, Somogyi, et al.; International Journal of Mass Spectrometry , 2010 , 292

7/29/2014

17

Astrobiology

Anybody else is out there in the Galaxy??

Motivation and Aims“Titan is an Organic Paradise”

Why?

Origin of Color – Origin of Life????Pre-biotic Earth: pre-biotic chemistry?

The Role of Tholin?

Page 18: Mass Spectrometry of Synthetic Polymers · Polymers (Polyhedral Oligomeric Silsesquioxanes, POSS) Anderson, Somogyi, et al.; International Journal of Mass Spectrometry , 2010 , 292

7/29/2014

18

Why to use Mass Spectrometry in Space Science?

Lots of charged particles out there in space (not only H+ and e-)

Small neutrals also there (in the gas phase), easy to ionize

Need to shoot mass specs into space

“Visitors” (meteorites) from space come to us

Experimentally modeling (atmospheric) ion-molecule reactionsand checking chemical potential of atmospheric products onthe planet surface

No need to shoot and we can use “fancy” mass specs, e.g., with ultrahigh resolution

Page 19: Mass Spectrometry of Synthetic Polymers · Polymers (Polyhedral Oligomeric Silsesquioxanes, POSS) Anderson, Somogyi, et al.; International Journal of Mass Spectrometry , 2010 , 292

7/29/2014

19

General Conclusions on the Role of MS in Atmospheric (Space) Science and

Astrobiology• MS in space

– Provides data from “real” environment

– Kg/$$$$ expensive– Long travel time

(advance design desirable)

– Resolution limited, ambiguous assignments

– m/z limit

• MS on Earth– Does not provide data on

“real” environment– Nevertheless, model

reactions can be easily varied and/or modified and these studies are useful for mission design

(Intelligent? Design!)– Ultrahigh resolution,

accurate mass, repetitive measurements

– Expensive but much cheaper than in space

One of the great successful missions: INMS Data from Titan atmosphere

INMS data from Titan

Ambiguous assignments due to low resolution; “isobaric” ions are not resolved

Page 20: Mass Spectrometry of Synthetic Polymers · Polymers (Polyhedral Oligomeric Silsesquioxanes, POSS) Anderson, Somogyi, et al.; International Journal of Mass Spectrometry , 2010 , 292

7/29/2014

20

Questions and Answers

• Why Titan?

• What (and where) is Organic Paradise?

• Why Ultrahigh Resolution MS and MS/MS?

• Why laboratory (model) experiments?

• Why do we care about “simple” organic (?) reactions in the gas-phase (or the origin of life)?

• Atmosphere (N2/CH4) and NH3/ice on surface

• Wide variety of chemical reactions (mass specs!)

• Individual (and not bulk) properties/information

• Titan is too far (far away)

• Just because we are curious human beings

PAHs ?Dinelli et al.Geophys ResLett. 2013

Aerosol growthLavvas et al.PNAS, 2013

Page 21: Mass Spectrometry of Synthetic Polymers · Polymers (Polyhedral Oligomeric Silsesquioxanes, POSS) Anderson, Somogyi, et al.; International Journal of Mass Spectrometry , 2010 , 292

7/29/2014

21

Ionization and dissociation of N2 – not so simple….Lavancier, J. et al., “Multiphoton ionization and dissociation of N2 at high laserJ. Phys. B. At. Mol. Opt. Phys. 1990, 23, 1839-1851

Chemical Ionization

• Ion-molecule reaction(s) between a reagent gas and the sample at a relatively high pressure

• Most common reagent gases– methane, isobutane, ammonia

• Mechanisms– CH4 + e- → CH4

+., CH3+, CH2

+., …– CH4

+ + CH4 → CH5+ + CH3

– CH3+ + CH4 → C2H5

+ + H2

– CH5+ + M → [M+H]+ + CH4

– C2H5+ + M → [M-H]+ + C2H6

– C2H5+ + M → [M+ C2H5]+

Page 22: Mass Spectrometry of Synthetic Polymers · Polymers (Polyhedral Oligomeric Silsesquioxanes, POSS) Anderson, Somogyi, et al.; International Journal of Mass Spectrometry , 2010 , 292

7/29/2014

22

The 11th Commandment…

The Second Law of Thermodynamics

For spontaneous processes:

ΔG=ΔH-TΔS < 0

For isolated systems:

ΔS > 0

Of course, we also need a “good” Big Bang,“heavy” atoms (C, N, O…) from first generations stars,

at least second generation stars and compressed dust (planets, rocks), and a lot of time and luck….

UHV Discharge reactorMark Smith’s lab (Tucson/Houston)Low temperature tholins

Tholins : Analog material producedin plasma reactors

Pampre cold plasma reactorNathalie Carrasco’s lab (LATMOS - Versailles)Tholins in levitation

95% N2:5% CH4

with adjustableflow rate

Glass tube to collect tholinsat 195 K

VAC

Page 23: Mass Spectrometry of Synthetic Polymers · Polymers (Polyhedral Oligomeric Silsesquioxanes, POSS) Anderson, Somogyi, et al.; International Journal of Mass Spectrometry , 2010 , 292

7/29/2014

23

95% N2:5% CH4

with adjustableflow rate

Vacuum pump

Glass tube to collect tholinsat 195 K

VAC

Ultrahigh vacuum (UHV) plasma generator tosynthesize “tholins” (CxHyNz) in oxygen free environment(Mark Smith’s lab)

The Necessity of Ultrahigh Resolution and MS/MS:

Organic Environment on Saturn’s Moon, Titan

• Somogyi, Á.; Oh, C-H.; Smith, M. A.; Lunine, J. I., J. Am. Soc. Mass Spectrom. 2005, 16, 850-859.

• Sarker, N.; Somogyi, Á.; Lunine, J. I.; Smith, M. A. Astrobiology, 2003, 3, 719-726.

• Neish, C. D.; Somogyi, Á.; Imanaka, H.; Lunine, J. L.; Smith, M. A. Astrobiology, 2008, 8, 273-287.

• Neish, C. D.; Somogyi, Á.; Lunine, J. L.; Smith M. A. "Low temperature hydrolysis of laboratory tholins in ammonia-water solutions: Implications for prebiotic chemistry on Titan" Icarus 2009, 201, 412-421.

• Neish, D.; Somogyi, Á.; Smith, M. A. "Titan's Primordial Soup: Formation of Amino Acids via Low Temperature Hydrolysis of Tholins" Astrobiology2010, 10, 337-347.

• Somogyi, Á.; Vuitton, V.; Thissen, R.; Komáromi, I. “Chemical ionization in the atmosphere? A Model Study on Negatively Charged “Exotic” Ions Generated from Titan’s Tholins by Ultrahigh Resolution MS and MS/MS?” Int. J. Mass Spectrom., 2012, 316-318, 157-163.

The Cassini-Huygens mission is a great success!

Page 24: Mass Spectrometry of Synthetic Polymers · Polymers (Polyhedral Oligomeric Silsesquioxanes, POSS) Anderson, Somogyi, et al.; International Journal of Mass Spectrometry , 2010 , 292

7/29/2014

24

ESI

(MA)LDIQCID (eV) MS/MS IRMPD and SORI

MS/M in ICR cell

ESI/APCI

Bruker 9.4 T Apex Qh FT-ICR with a dual source (Tucson,

Thermo LTQ-Orbitrap (Grenoble, France)

HRMS is mandatory for Tholinsanalysis

Early works: Somogyi et al., JASMS 2005

Tholinomics data reduction tools:Pernot et al., Anal. Chem. 2010

Page 25: Mass Spectrometry of Synthetic Polymers · Polymers (Polyhedral Oligomeric Silsesquioxanes, POSS) Anderson, Somogyi, et al.; International Journal of Mass Spectrometry , 2010 , 292

7/29/2014

25

FT-ICR of Complex Organic Aggregates (UHVT_001)

99.06649

114.07742

126.07743

141.08831

156.09921

168.09922

181.09448

195.11009

207.11004

222.12071

235.11570

249.15641

259.11514 277.13673

288.14130 301.13655312.14132 341.30364

UHVT_001_ESI_pos_000001.d: +MS

96.88399

114.07766

127.09793

141.08834

155.10399

169.09449

183.11014

195.11020

207.11015

222.12083

234.12064

248.13624

260.13632273.13169

287.14753

300.14296

327.15441 341.17031

UHVT_001_LDI_pos_0_H24_000002.d: +MS0.0

0.5

1.0

1.5

2.0

2.5

8x10Intens.

0.0

0.5

1.0

1.5

2.0

8x10

100 150 200 250 300 350 m/z

Positive Ions: ESI

Positive Ions: LDI

108.03146

119.03627

141.02065

160.03772

185.05814

198.05341

209.03302

224.06911

239.08001 251.08001

265.14795

283.26429

293.17921

306.09696

321.21053 347.12280

UHVT_001_ESI_neg_000001.d: -MS

141.02059

165.02070

192.03152

209.03285

224.06904

233.03311 251.05489

264.07533275.05486 306.09696 318.09726328.10639

345.10840

UHVT_001_LDI_neg_0_I24_000003.d: -MS0.00

0.25

0.50

0.75

1.00

1.25

1.50

9x10Intens.

0

1

2

3

4

9x10

100 150 200 250 300 350 m/z

Negative Ions: ESI

Negative Ions: LDI

Not the same protonated/deprotonated neutral species in +/- modes

Page 26: Mass Spectrometry of Synthetic Polymers · Polymers (Polyhedral Oligomeric Silsesquioxanes, POSS) Anderson, Somogyi, et al.; International Journal of Mass Spectrometry , 2010 , 292

7/29/2014

26

Modified van Krevelen diagram for LDI ions

QCID MS/MS spectra of C7HN4

Page 27: Mass Spectrometry of Synthetic Polymers · Polymers (Polyhedral Oligomeric Silsesquioxanes, POSS) Anderson, Somogyi, et al.; International Journal of Mass Spectrometry , 2010 , 292

7/29/2014

27

MS/MS fragmentation matrix

C7HN4‐ (141.02067) C6N3

‐ (114.00977)

C2H3N4‐ (83.03632) C3HN4

‐ (93.02067)C3H2N5‐ (108.03157)

C4H2N3‐ (92.02542)

C2N3‐ (66.00978)

‐HCN

Page 28: Mass Spectrometry of Synthetic Polymers · Polymers (Polyhedral Oligomeric Silsesquioxanes, POSS) Anderson, Somogyi, et al.; International Journal of Mass Spectrometry , 2010 , 292

7/29/2014

28

CLIO, variable wavelength IRMPD in a FTICR cell (7T Bruker)

• Action spectroscopy of ions in the cell,

« only ions which absorb photons will fragment »Lemaire et al., Phys. Rev. Lett., 2002

Maitre et al., Nucl. Inst. & Meth., 2003

13 June 2013 ASMS ThOE Session - R Thissen 55

CLIO Free Electron Laser

1000 1200 1400 1600 1800 2000 2200

Inte

nsi

ty (

a.u

.)

wavenumber (cm-1)

C:\Tholin_Stuff\from_CLIO\2011-06-22-thissen\PolyCN_Grenoble_ESI_neg_smallmass_newtune_IRMPD_107_000001.d

45.42593

54.00400 71.97536

80.01356

94.40734

107.02566

-MS2(), 73.2-77.1min #(282-297)

0

1

2

3

5x10Intens.

50 60 70 80 90 100 110 m/z

C4H3N4

C3H2N3

Vw IRMPD (FT-ICR) measurements at CLIO (Orsay, France)

Page 29: Mass Spectrometry of Synthetic Polymers · Polymers (Polyhedral Oligomeric Silsesquioxanes, POSS) Anderson, Somogyi, et al.; International Journal of Mass Spectrometry , 2010 , 292

7/29/2014

29

Gupta, V.P.; Tandon, P. “Conformational and vibrational studies of isomericHydrogen cyanide tetramers by quantum chemical methods”, Spectrochim. Acta A2012, 89, 55-66

1000 1200 1400 1600 1800 2000 2200

Inte

nsi

ty (

a.u

.)

wavenumber (cm-1)

Good agreement with ourCLIO gas-phase spectrumof the deprotonated HCNtetramer

Page 30: Mass Spectrometry of Synthetic Polymers · Polymers (Polyhedral Oligomeric Silsesquioxanes, POSS) Anderson, Somogyi, et al.; International Journal of Mass Spectrometry , 2010 , 292

7/29/2014

30

13 June 2013 ASMS ThOE Session - R Thissen 59

C3H2N5‐ (108.03157) C2N3

‐ (66.00978)

C2N3- (15N)

C2N3- (13C)

Blue-shift due to isotope effect !

(66.00978)

(67.00699)

(67.01324)

C2N3-

1400 1500 1600 1700 1800

Inte

nsi

ty (

a.u

.)

wavenumber (cm-1)

114.077_UA001_ESI_pos_IRMPD_114_000001 72.0554_UA001_ESI_pos_IRMPD_114_000001 85.0508_UA001_ESI_pos_IRMPD_114_000001

1400 1600 1800

Inte

nsity

(a.

u.)

Wavenumber (cm-1)

57.0444_UA001_ESI_pos_IRMPD_114_000001 86.0712_UA001_ESI_pos_IRMPD_114_000001

Page 31: Mass Spectrometry of Synthetic Polymers · Polymers (Polyhedral Oligomeric Silsesquioxanes, POSS) Anderson, Somogyi, et al.; International Journal of Mass Spectrometry , 2010 , 292

7/29/2014

31

C3H8N5+ C4H9N4

+

Two positively charged ionsTwo different spectroscopy

Congested spectra, very rich info113,0821114,0773

Page 32: Mass Spectrometry of Synthetic Polymers · Polymers (Polyhedral Oligomeric Silsesquioxanes, POSS) Anderson, Somogyi, et al.; International Journal of Mass Spectrometry , 2010 , 292

7/29/2014

32

72.05544

86.07115

114.07730

+MS2(), 39.6-42.1min #(157-167)

0

2

4

6

5x10Intens.

60 70 80 90 100 110 m/z

72.0554485.05076

113.08206

+MS2(), 35.5-38.0min #(141-151)

0

2

4

6

5x10Intens.

60 70 80 90 100 110 m/z

λ ≈ 1550 cm-1

λ ≈ 1610 cm-1

C4H9N4+

- CH2=NH- H2N-CN

- HCN

113,0821

114,0773

C3H8N5+

HN N

HNHN CH3

H

H

Red arrows indicate possible

protonation sites

C3H7N5C4H8N4

Large scale Quantum chemical calculations are needed

Page 33: Mass Spectrometry of Synthetic Polymers · Polymers (Polyhedral Oligomeric Silsesquioxanes, POSS) Anderson, Somogyi, et al.; International Journal of Mass Spectrometry , 2010 , 292

7/29/2014

33

Neish, C.D., Somogyi, A., Lunine, J.I., and Smith, M.A. (2009) Low temperature hydrolysis of laboratory tholins in ammonia‐water solutions:  Implications for prebiotic chemistry on Titan. Icarus 201, 412‐421.

Quantitative kinetic studies to determine hydrolysis rate constants and Arrhenius activation energies in 14% NH3/water

Source of oxygen is water

Oxygen incorporation is fasterand higher in ammonia solutionthan in pure water

Tholin reacts with NH3

Kinetic “growing” curvesat four different temperatures

Arrhenius plot from hydrolysisrate constants

Page 34: Mass Spectrometry of Synthetic Polymers · Polymers (Polyhedral Oligomeric Silsesquioxanes, POSS) Anderson, Somogyi, et al.; International Journal of Mass Spectrometry , 2010 , 292

7/29/2014

34

The distribution of Arrhenius activation energies

Incorporation of oxygen atoms can occur in 3,000-10,000 yearson the surface of Titan

Titan is planet-scale chemical laboratory, with astrobiological relevance

Interpretation of Cassini-Huygens data requests for permanent feedback of information from Physical Chemistry and MS community

Tholins appear as a good analog to study the potential composition of Titan aerosols. High resolution mass spectrometry is mandatory to evaluate their composition

Positive and negative ion spectra are characteristically different indicating more saturated amino/imino compounds (positive mode) and highly unsaturated (CN containing) species with H/C < 1(negative mode)

Chemical formulae can be unambiguously determined but structural isomerism exists

MS/MS with vw IRMPD and theoretical calculations are requiredto determine fine structural details

Studies of new concepts of ion handling and analysis are required for future space exploration

Conclusion

Page 35: Mass Spectrometry of Synthetic Polymers · Polymers (Polyhedral Oligomeric Silsesquioxanes, POSS) Anderson, Somogyi, et al.; International Journal of Mass Spectrometry , 2010 , 292

7/29/2014

35

(The Funny) Conclusions

All we are just dust in the wind…

Come from gas and return to gas

Str

uct

ura

l In

form

atio

n C

on

ten

t

Telescope (the object is there)

Naked eye (cloudless) planet and “intelligent” beings

Optical Spectroscopy (“interesting” atmosphere is there, bulk properties)

Low resolution mass specs in space (blurry individuals are there)

Ultrahigh res mass spec in lab (individuals are there)

Ion spectroscopy /ion mobility in lab (structural isomerism)

Chirality

Non-covalent Aggregation

Polymer formation (covalent “aggregation”)

Self-reproduction

Life????

Intelligent Design???