mass analyzers - ohio state university

35
1 Mass Analyzers Árpád Somogyi OSU, Summer Workshop August 18, 2015 Want to do MS or MS/MS ? Need a Mass Spectrometer inlet all ions Ionization source Mass analyzer sorted ions Detector Data system

Upload: others

Post on 28-Oct-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Mass Analyzers - Ohio State University

1

Mass Analyzers

Árpád Somogyi

OSU, Summer Workshop

August 18, 2015

Want to do MS or MS/MS ?Need a Mass Spectrometer

inlet all ions

Ionizationsource

Massanalyzer

sortedions

Detector

Datasystem

Page 2: Mass Analyzers - Ohio State University

2

inlet all ions

Ionizationsource

Massanalyzer

sortedions

Detector

Datasystem

Ion movement

• Biased metal plates (electrodes, lenses) used to move ions between ion source and analyzers

• Electrodes and physical slits used to shape and restrict ion beam

• Good sensitivity is dependent on good ion transmittance efficiency in this area

inlet all ions

Ionizationsource

Massanalyzer

sortedions

Detector

Datasystem

Page 3: Mass Analyzers - Ohio State University

3

inlet all ions

Ionizationsource

Massanalyzer

sortedions

Detector

Datasystem

Ion detection

• Ions can be detected efficiently w/ high amplification by accelerating them into surfaces that eject electrons

• Kinetic energy of ions defined by

E = zeV = qV = ½ mv2

E = kinetic energym = massv = velocitye = electronic charge (1.60217e-19 C)z = nominal chargeV = accelerating voltage

Ion energy

Page 4: Mass Analyzers - Ohio State University

4

Learning Check

Consider two electrodes,

one at 1000 V and one at ground (0 V)

1000 V 0 V

+ ion will travel with kinetic energy of ___________

Question: Consider an ion source block and an extraction lens. How would you bias the block and lens if you want the ions to be accelerated by

a) 8000 eV (appropriate for magnetic sector)

b) 5 eV (appropriate for entering a quadrupole)

c) 20,000 eV (appropriate for entering a TOF)

Page 5: Mass Analyzers - Ohio State University

5

• Mass spectrometers separate ions with a defined resolution/resolving power

• Resolving power- the ability of a mass spectrometer to separate ions with different mass to charge (m/z) ratios.

Mass Resolution

M

∆M

R=M/∆M

Resolution defined at 10% valley

Page 6: Mass Analyzers - Ohio State University

6

Example of ultrahigh resolution in an FTICR

J. Throck Watson “Introduction to Mass Spectrometry” p. 103

• Common features– Accelerated charged species (ions) interact

with/can be controlled by• Electrostatic field (ESA, OT)

• Magnetic field (B, ICR)

• Electromagnetic (rf) fields (Q, IT, LT)

– Or ions just fly (TOF)

General about mass spectrometers

Page 7: Mass Analyzers - Ohio State University

7

For each of the following applications, choose the most appropriate mass analyzer from the following list.

orbitrap (OT) quadrupole (Q)time-of-flight (TOF) FTICR

Analyzer Purpose

______ synthetic organic chemist wants exact mass of compound

_______ biochemist wants protein molecular weight of relatively large protein (MW 300,000)

_______ EPA (Environmental Protection Agency) wants confirmation of benzene in extracts from 3000 soil samples

_______ Petroleum chemist wants to confirm the presence of 55 unique compounds at onenominal mass/charge value in a mass spectrum

Desirable mass spectrometer characteristics

Page 8: Mass Analyzers - Ohio State University

8

1) They should sort ions by m/z

2) They should have good transmission (improves sensitivity)

3) They should have appropriate resolution (helps selectivity)

4) They should have appropriate upper m/z limit

5) They should be compatible with source output (pulsed or continuous)

Desirable mass spectrometer characteristics

Type of analyzer• electric sector• magnetic sector• quadrupole, ion trap• time-of-flight• FT-ion cyclotron resonance

Physical parameter used as basis for separation• kinetic energy/z• momentum/z• m/z• flight time• m/z (resonance frequencies)

m/z values are determined by actually measuring different physical parameters

Mass spectrometers record m/zvalues

Page 9: Mass Analyzers - Ohio State University

9

• Magnetic (B) and/or Electrostatic (E) (HISTORIC/OLDEST)

• Time-of-flight (TOF)

• Quadrupole (Q)

• Quadrupole Ion Trap (IT)

• Linear Ion Trap (LT)

• Orbitrap

• Fourier Transform-Ion Cyclotron Resonance (ICR)

Performance Advantages / Disadvantages / $$$

Types of Mass Analyzers

TOF Quadrupole

Quadrupole Ion trap

FTICR

Orbitrap FTICR

Page 10: Mass Analyzers - Ohio State University

10

Notice: accelerating voltages vary with analyzer(has consequences for MS/MS)

• High voltage (keV energy range)– magnet (B)– electrostatic (E)– time-of-flight (TOF)

• Low voltage (eV energy range) – quadrupole (Q)– ion trap (IT, LT)– ion cyclotron resonance (ICR)

MS:

IonizationIonization AnalysisAnalysis

MS/MS:

Ionization

MS/MS:

Ionization AnalysisAnalysisSelectionSelection Activation

Collide withtarget to producefragments

Activation

Collide with

fragments

MS and MS/MS revisited

Page 11: Mass Analyzers - Ohio State University

11

Tandem in Space

QqQ

Q Trap

Q TOF

TOF TOF

LTQ-Orbi (& QExactive)

Tandem in Time

Ion Trap (2 or 3 D)

FT-ICR (FT)

Current popular MS/MS arrangements

Decision factors when choosing a mass spectrometer

• S p e e e e e e e e e e e e e d

• R e s o l u t i o n• Sensitivity

•Dynamic range

• Co$t

Page 12: Mass Analyzers - Ohio State University

12

TOFQuadrupole

Quadrupole Ion trap

FTICROrbitrap

KE = zeV = ½mv2 m = mass V = velocity

v = D/t D = distance of flight t = time of flight

½m(D/t)2 = zeV KE = kinetic energy e = charge

D=t21

2zeVm

/

m/z

V

D

Det

ecto

rTime of Flight

Page 13: Mass Analyzers - Ohio State University

13

Consider MALDI

Matrix

Analyte+

hTa

rget

Analyte ion may have (1) Kinetic Energy distribution or (2) Spatial distribution

How does the ion generation step in TOF influence m/z analysis?

Hasslightlygreater KE

Effect is broadpeaks

How will KE spread influence the spectrum?

c/o Cotter

Ions of samem/z

Page 14: Mass Analyzers - Ohio State University

14

Solution to peak broadening caused bykinetic energy spread:

Reflectron (ion mirror)

Series of ring electrodes, typically with linear voltage gradient

How will KE spread influence the spectrum?

• Increased resolution by compensating for KE spread from the source

http://www.jic.bbsrc.ac.uk/services/proteomics/tof.htm

Time-of-Flight Reflectron

Page 15: Mass Analyzers - Ohio State University

15

xx

KE = ½ mv2

x

x x

Ion Source(MALDI)

Detector

Mass Analyzer(TOF)

Reflectron

High resolution

Reflectron TOF

x

KE = ½ mv2

Ion Source(MALDI)

Detector

Mass Analyzer(TOF)

Reflectron

High resolution

Reflectron TOF

Page 16: Mass Analyzers - Ohio State University

16

http://www.abrf.org/ABRFNews/1997/June1997/jun97lennon.html

We talked about how to deal with kinetic energy spread.

How do we deal with ions formed at different locations in the source (spatial distribution)?

Page 17: Mass Analyzers - Ohio State University

17

Low mass (below 40 k Da)

High resolution

10 KV

+

+

10 KV

+

+

7 KV

++

++

+

+

Delayed Extraction

Continuous TOF

Resolution = 700 (FWHM)

Delayed Extraction

Resolution = 6000 (FWHM)

Continuous vs. Delayed Extraction

Page 18: Mass Analyzers - Ohio State University

18

3145.708

3177.722

* Pepmix\0_N6\1\1SRef

0

1000

2000

3000

4000

5000

6000

Inte

ns.

[a.u

.]

3140 3145 3150 3155 3160 3165 3170 3175 3180 3185m/z

Recent TOF designs: improved resolution, better sensitivity and mass accuracy (Ultraflex III MALDI TOF-TOF)

Resolution: 25,000S/N: 46

• m/z Range: unlimited u

• Resolution: ~20,000 (Reflectron)

• Mass Accuracy: ~ 3-10 ppm (300-4,000 u)

• Scan Speed: 106 u/s

• Vacuum: 10-7 Torr

• Quantification: low -medium

• Positive and Negative Ions

• Variations:

Linear, Reflectron,

• Tandem: w/ quads, TOFs and/or sectors

Typical TOF Specs

Page 19: Mass Analyzers - Ohio State University

19

TOF Quad 3D TrapLinear Trap

FT‐ICR Orbitrap

mass range

Resolution

exact m/z

sensitivity

all ion detection

ion storage

speed

dynamic range

quantification

MS/MS types

sample introduction

simplicity

cost/performance

Can an MS/MS instrument be constructed if the only analyzer

type available is TOF?

Page 20: Mass Analyzers - Ohio State University

20

http://docs.appliedbiosystems.com/pebiodocs/00106293.pdf

TOF-TOF

High-energy (keV) Collisions with Gas in a TOF-TOF

Page 21: Mass Analyzers - Ohio State University

21

Medzihradszky, KF et al. Anal Chem. 2000, 72: 552-558

16O/18O-labeled DLEEGIQTLMGR

High (keV) collisions allow for w peptide ions and immonium ions

*Resolution

MALDI TOF-TOF fragmentation spectrum of a sodiated polymer

O

O CH2 CH2 *m

nO

3-OEB, m=1-3 (164, 44)Copolymer of 2-hydroxybenzoic acid and ethylene carbonate

328.574

981.346492.623

656.765186.600

821.038

120.694

146.669

284.552941.46890.771

721.026443.572 776.938612.695

0

1

2

3

4

5

6

4x10

Inte

ns.

[a.u

.]

200 400 600 800 1000m/z

Page 22: Mass Analyzers - Ohio State University

22

Mass Spectrometer Advantages Disadvantages

TOF-TOF high resolution, high m/z fragment ions

Large size

keV CID

Not ideal for continuous

ionization source

easier de novo peptide sequencing

$$$

dn and wn to distinguish Ile/Leu

MALDI source

Advantages and Disadvantages

TOFQuadrupole

Quadrupole Ion trap

FTICR

Analyzers

Orbitrap

Page 23: Mass Analyzers - Ohio State University

23

Quadrupole (Q)

http://www.files.chem.vt.edu/chem-ed/ms/quadrupo.html

Page 24: Mass Analyzers - Ohio State University

24

• four parallel rods or poles

• fixed DC and alternating RF voltages

• only particular m/z will be focused on the detector, all the other ions will be deflected into the rods

• scan by varying the amplitude of the voltages – (AC/DC constant).

rf voltage+dc voltagerf voltage 180° out of phase-dc voltage

Quadrupole (Q)

http://www.kettering.edu/~drussell/Demos/MembraneCircle/Circle.html

Positive rod

Positive rodNegative rod

Negative rod

Quadrupole Field Animation

Page 25: Mass Analyzers - Ohio State University

25

+

+

--

negative DC offset

positive DC offset

-DC

+DC

• + DC, ions focused to center

• - DC, ions defocused

• +DC w/ rf, light ions respond to rf, eliminated (high mass filter)

• -DC w/ rf, light ions respond to rf, focused to center (low mass filter)

Ion Motion in Quadrupoles- a qualitative understanding

Page 26: Mass Analyzers - Ohio State University

26

http://www.youtube.com/watch?v=pjCun7QF19U

Quadrupole animation

Initial kinetic energy affects ion motion in quad

Page 27: Mass Analyzers - Ohio State University

27

Figure 9. The a-q stability diagram: a) The shaded area represents those areas in a-q space which correspond to stable solutions of Mathieu’s differential equation. B) The one amu bandpass mass filter: Notice that only ions of m/e m+1 fall within the stability diagram.

Miller, P., Denton, M.B., J.Chem Ed., 63:7, pg 617, 1986.

• m/z Range: 2-4000 u• Resolution: Unit• Mass Accuracy: ca +/-

0.1 u• Scan Speed: 4000 u/s• Vacuum: 10-4 – 10-5

Torr• Low Voltages: RF ~6000 –10000 VDC ~500V-840VSource near ground

• Quantification: good choice

• Positive and Negative Ions

• Variations: SingleQ, TripleQ, Hybrids

Quadrupole Typical Specs

Page 28: Mass Analyzers - Ohio State University

28

TOF Quad 3D TrapLinear Trap

FT‐ICR Orbitrap

mass range

Resolution

exact m/z

sensitivity

all ion detection

ion storage

speed

dynamic range

quantification

MS/MS types

sample introduction

simplicity

cost/performance

What MS/MS instruments can be produced from Q?

What MS/MS instruments can be produced from Q and TOF?

Page 29: Mass Analyzers - Ohio State University

29

Triple Quadrupole- since 1970’s and still going strong!

S D

Q1 Q2 Q3

Attractive Features:

• Source near ground and operates at relatively high pressure

Couples well to source and to chromatography

•Multiple scan modes easy to implement

Source

HeatedCapillary

DetectionSystem

Q3

Q2

Q1Q0

c/o Thermo Finnigan Corp.

Dynode

Q3

Q2

Q1 Q0 Q00

Turbo

Triple Quadrupole (QQQ)

c/o Agilent Corp.

Page 30: Mass Analyzers - Ohio State University

30

http://www.waters.com/WatersDivision/waters_website/products/micromass/ms_top.asp (outdated)

Quadrupole Time of Flight (Q-TOF)

Low-energy (eV) Collisions with Gas

Page 31: Mass Analyzers - Ohio State University

31

Shevchenko, A., et al., Rapid. Commum. Mass Spectrom., 1997, 11: 1015-1024

80 fmol BSA digest

Q-TOF

QQQ

TOFQuadrupole

Quadrupole Ion trap

FTICR

Analyzers

Orbitrap

Page 32: Mass Analyzers - Ohio State University

32

Linear Trap Demo

Tube Lens

Skimmer

Ion Transfer

Tube

TOF Quad 3D TrapLinear Trap

FT‐ICR Orbitrap

mass range

Resolution

exact m/z

sensitivity

all ion detection

ion storage

speed

dynamic range

quantification

MS/MS types

sample introduction

simplicity

cost/performance

Page 33: Mass Analyzers - Ohio State University

33

Suggested Reading List

GENERAL MS AND MS/MS

Kinter, M. and Sherman, N. E., Protein Sequencing and Identification Using Tandem Mass Spectrometry, Wiley and Sons, New York, NY, 2000.

De Hoffmann E., Mass Spectrometry – Principles and Applications (Second Edition), Wiley and Sons, New York, NY, 2002.

Busch, K.L., et al., Mass spectrometry/ mass spectrometry: techniques and applications of tandem mass spectrometry, VCH Publishing, New York, NY, 1988.

McLafferty, F.W. (Ed) Tandem Mass Spectrometry, Wiley and Sons, New York, NY, 1983.

McLafferty, F.W. and Turecek, F. Interpretation of Mass Spectra, University Science Books, New York, NY, 1993.

Siuzdak, G. Mass Spectrometry for Biotechnology, Academic Press, San Diego, CA, 1996.

Gygi, S.P. and Aebersold, R., Curr. Opin. Chem. Biol., 4 (5): 489, 2000.

Roepstorff, P., Curr. Opin. Biotech., 8: 6, 1997.

De Hoffmann, JMS, 31: 129, 1996.

Mann, M. et al., Annu. Rev. Biochem., 70: 437, 2001.

McLuckey, S and Wells, J.M., Chem. Rev., 101: 571, 2001.

Suggested Reading ListQ-TOF

Morris, H.R. et al., J. Protein Chem., 16: 469, 1997.

Shevchencko A., et al., Rapid Commun. Mass Spectrom., 11: 1015, 1997.

Shevchencko A., et al., Anal. Chem., 72: 2132, 2000.

Medzihradszky, K.F., et al., Anal. Chem., 72: 552, 2000.

Glish, G.L. and Goeringer, D.E., Anal. Chem., 56: 2291, 1984

Morris, H.R. et al., Rapid Commun. Mass Spectrom., 10: 889, 1996.

Wattenberg, A. et al., JASMS, 13 (7): 772, 2002.

Lododa, A.V. et al., Rapid Commun. Mass Spectrom., 14(12): 1047, 2000.

TOF

Bush, K., Spectroscopy, 12: 22, 1997.

Cotter, R.J., Time-of-Flight: Instrumentation and Applications in Biological Research, ACS, Washington, DC, 1994.

Page 34: Mass Analyzers - Ohio State University

34

Suggested Reading ListTOF-TOF

Yergey, A.L. et al., JASMS, 13 (7): 784, 2002.

Go, E.P. et al., Anal. Chem., 75: 2504, 2003.

FTICR

Buchanan, M.V. (Ed), Fourier Transform MS, ACS, Washington, DC, 1987.

Comisarow, M.B. and Marshall, A. G., Chem. Phys. Lett., 25: 282, 1974.

McIver, R.T. et al., Int. J. Mass Spectrom. Ion Processes, 64: 67, 1985.

Kofel, P. et al., Int. J. Mass Spectrom. Ion Processes, 65: 97, 1985.

Williams, E. R. Anal. Chem., 70: 179A, 1998.

McLafferty, F. W. Acc. Chem. Res., 27: 379, 1994.

Fridriksson, E. K. et al., Biochemistry, 39: 3369, 2000.

Fridriksson, E. K. et al., Biochemistry, 38: 8056, 1999.

Kelleher, N. L.et al., Protein Science, 7: 1796, 1998.

McLafferty, F. W. et al., Int. J. Mass Spectrom., 165: 457, 1997. .

Suggested Reading ListGreen, M. K. and Lebrilla, C. B. Mass Spectrom. Rev., 16: 53, 1997.

Guan, S. and Marshall, A. G. Chem. Rev., 94: 2161, 1994

QIT

Marsh, R.E. et al., Quadrupole Storage Mass Spectrometry, vol.102, Wiley and Sons, New York, NY, 1989.

Cooks, R.G. et al., Ion trap mass spectrometry. Chem. Eng. News, 69(12): 26, 1991.

Jonscher, K.R. et al., Anal Biochem, 244(1): 1, 1997.

Louris, J.N. et al., Anal. Chem., 59(13): 1677, 1987.

Louris, J.N. et al., Int. J. Mass Spectrom. Ion Processes, 96(2): 117 1990.

Cooks, R.G. et al., Int. J. Mass Spectrom. Ion Processes, 118-119: 1 1992.

McLuckey, S. A. et al., Int. J. Mass Spectrom. Ion Processes, 106: 213, 1991.

Ngoka, L. C. M. and Gross, M. L. Int. J. Mass Spectrom. 194: 247, 2000.

Page 35: Mass Analyzers - Ohio State University

35

Suggested Reading List

QQQ

Yost, R. A. and Enke, C. G. J. Am. Chem. Soc., 100: 2274, 1978. Arnott, D. in Proteome Research: Mass Spectrometry, james, P (Ed.), pp 11-31, Springer-Verlag, Germany, 2001.Steen H. et al., JMS, 36: 782, 2001Miller, P.E. and Denton, M.B., J. Chem. Educ., 7: 617, 1986.Yang, l. et al., Rapid Commun. Mass Spectrom., 16(21): 2060, 2002.Mohammed, S. et al., JMS, 36: 1260, 2001.Dongre, A.R. et al., JMS, 31: 339, 1996.

Orbitrap

Hu, Q, Noll, RJ, Li, H., Makarov, A., Hardman, M., Cooks, R.G. JMS, 430-443, 2005.Makarov A. Anal. Chem. 2000; 72(6):1156-1162.

Makarov A, Denisov E, Kholomeev A, Baischun W, Lange O, Strupat K, Anal. Chem. 2006; 78(7):2113-2120.

Makarov A, Denisov E, Lange O, Horning S. JASMS. 2006; 17(7):977-982.

Macek B, Waanders LF, Olsen JV, Mann M. Mol. Cell. Proteom. 2006; 5(5):949-958.

Perry RH, Cooks RG, Noll RJ. Mass Spectrom. Rev. 2008; 27(6):661-699.

Scigelova M, Makarov A. Orbitrap mass analyzer - Overview and applications in proteomics. Proteomics. 2006: 16-21.

Olsen JV, Macek B, Lange O, Makarov A, Horning S, Mann M. Nature Methods. 2007; 4(9):709-712.