markus deserno carnegie mellon university coarse-grained simulation studies of mesoscopic membrane...

96
Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with: Ira R. Cooke, Gregoria Illya, Benedict J. Reynwar, Vagelis A. Harmandaris, Kurt Kremer @ MPI-P IMA Workshop on the Development and Analysis of Multiscale Methods November 5, 2008

Upload: jesse-stevens

Post on 16-Jan-2016

223 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Markus DesernoMarkus Deserno

Carnegie Mellon University Carnegie Mellon University

Coarse-grained simulation studies of

mesoscopic membrane phenomena

Coarse-grained simulation studies of

mesoscopic membrane phenomenaDepartment of PhysicsDepartment of Physics

with: Ira R. Cooke, Gregoria Illya, Benedict J. Reynwar, Vagelis A. Harmandaris, Kurt Kremer @ MPI-P

IMA Workshop on the Development and Analysis of Multiscale MethodsIMA Workshop on the Development and Analysis of Multiscale Methods

November 5, 2008November 5, 2008

Page 2: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Quick motivationMembranes

http://www.animalport.com/img/Animal-Cell.jpg

Typical illustration of an animal cell

Typical illustration of an animal cell

Page 3: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Quick motivationMembranes

Almost everything you see here are

membranes!

Almost everything you see here are

membranes!

http://www.animalport.com/img/Animal-Cell.jpg

Typical illustration of an animal cell

Typical illustration of an animal cell

Page 4: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Quick motivationMembranes

Almost everything you see here are

membranes!

Almost everything you see here are

membranes!

http://www.animalport.com/img/Animal-Cell.jpg

Notice the many changes in

morphology!

Notice the many changes in

morphology!

Page 5: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Membranes need to be constantly reshaped in order to do their task.

The available energy is (bio)chemical;typically coming from ATP hydrolysis.

Eavailable ~ 20 kBT (physiol. cond.)

Quick motivation

Page 6: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Membranes need to be constantly reshaped in order to do their task.

The available energy is (bio)chemical;typically coming from ATP hydrolysis.

The elasticity of membranes needs to match the available deformation energies!

Eavailable ~ 20 kBT (physiol. cond.)

Quick motivation

Page 7: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

3121

B20 hYTk Membrane

bending modulus

Page 8: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

3121

B20 hYTk Membrane

bending modulus

Page 9: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

3121

B20 hYTk

Young’s modulusYoung’s modulus

thicknessthickness

Membrane bending modulus

Page 10: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

3121

B20 hYTk

Young’s modulusYoung’s modulus

thicknessthicknessEnergy matchEnergy match

Page 11: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

3121

B20 hYTk

nm5h

Young’s modulusYoung’s modulus

thicknessthicknessEnergy matchEnergy match

Page 12: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

3121

B20 hYTk

nm5h

Young’s modulusYoung’s modulus

Pa107Y

thicknessthicknessEnergy matchEnergy match

Page 13: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

3121

B20 hYTk

nm5h

Young’s modulusYoung’s modulus

Pa107Y

thicknessthicknessEnergy matchEnergy match

Page 14: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

3121

B20 hYTk

nm5h

Young’s modulusYoung’s modulus

Pa107Y

thicknessthicknessEnergy matchEnergy match

Let’s hypothesize…

Page 15: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

3121

B20 hYTk

nm5h

Young’s modulusYoung’s modulus

Pa107Y

…and insist on metal!…and insist on metal!

thicknessthicknessEnergy matchEnergy match

Page 16: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

3121

B20 hYTk

nm5h

Young’s modulusYoung’s modulus

Pa1011Y

thicknessthicknessEnergy matchEnergy match

…and insist on metal!…and insist on metal!

Page 17: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

3121

B20 hYTk

Young’s modulusYoung’s modulus

Pa1011Y

thicknessthickness

2h Å

Energy matchEnergy match

…and insist on metal!…and insist on metal!

Page 18: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

3121

B20 hYTk

Young’s modulusYoung’s modulus

Pa1011Y

thicknessthickness

2h Å

Energy matchEnergy match

Fail!Fail!

…and insist on metal!…and insist on metal!

Page 19: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Membranes must be made from soft materials!

Moral:

We will invariably encounter long time scales!

Page 20: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Quick motivation (II)Long time scales – How bad is it?

Page 21: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Long time scales – How bad is it?Lindahl, E. & Edholm, O. Mesoscopic undulations and thickness fluctuations in lipid bilayersfrom molecular dynamics simulations.Biophys. J. 79, 426-433 (2000).

All-atom lipid bilayer20nm20nm, 1024 lipids, 10ns

Quick motivation (II)

Page 22: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Long time scales – How bad is it?Lindahl, E. & Edholm, O. Mesoscopic undulations and thickness fluctuations in lipid bilayersfrom molecular dynamics simulations.Biophys. J. 79, 426-433 (2000).

All-atom lipid bilayer20nm20nm, 1024 lipids, 10ns

What if we want a boxlength of L=200nm?

How does computing effort scale with L?

Quick motivation (II)

Page 23: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Long time scales – How bad is it?Lindahl, E. & Edholm, O. Mesoscopic undulations and thickness fluctuations in lipid bilayersfrom molecular dynamics simulations.Biophys. J. 79, 426-433 (2000).

All-atom lipid bilayer20nm20nm, 1024 lipids, 10ns

What if we want a boxlength of L=200nm?

How does computing effort scale with L?

effort ~ L2

Amount of material

Quick motivation (II)

Page 24: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Long time scales – How bad is it?Lindahl, E. & Edholm, O. Mesoscopic undulations and thickness fluctuations in lipid bilayersfrom molecular dynamics simulations.Biophys. J. 79, 426-433 (2000).

All-atom lipid bilayer20nm20nm, 1024 lipids, 10ns

What if we want a boxlength of L=200nm?

How does computing effort scale with L?

effort ~ L2 L4

Equilibration timeAmount of material

Quick motivation (II)

Page 25: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Long time scales – How bad is it?Lindahl, E. & Edholm, O. Mesoscopic undulations and thickness fluctuations in lipid bilayersfrom molecular dynamics simulations.Biophys. J. 79, 426-433 (2000).

All-atom lipid bilayer20nm20nm, 1024 lipids, 10ns

What if we want a boxlength of L=200nm?

How does computing effort scale with L?

effort ~ L2 L4 ~ L6

Equilibration timeAmount of material

Quick motivation (II)

Page 26: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Long time scales – How bad is it?Quick motivation (II)

20nm20nm 200nm200nmMillion times more

computationally expensive!

Million times more computationally

expensive!

Page 27: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Long time scales – How bad is it?Quick motivation (II)

20nm20nm 200nm200nmMillion times more

computationally expensive!

Million times more computationally

expensive!

206 210

Page 28: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Long time scales – How bad is it?Quick motivation (II)

20nm20nm 200nm200nmMillion times more

computationally expensive!

Million times more computationally

expensive!

206 210 20 doublings of computer power!

Page 29: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Long time scales – How bad is it?Quick motivation (II)

20nm20nm 200nm200nmMillion times more

computationally expensive!

Million times more computationally

expensive!

206 210 20 doublings of computer power!

20 x 2 years (Moore’s law)

Page 30: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Long time scales – How bad is it?Quick motivation (II)

20nm20nm 200nm200nmMillion times more

computationally expensive!

Million times more computationally

expensive!

206 210 20 doublings of computer power!

20 x 2 years

40 years

(Moore’s law)

Page 31: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Long time scales – How bad is it?Quick motivation (II)

20nm20nm 200nm200nmMillion times more

computationally expensive!

Million times more computationally

expensive!

206 210 20 doublings of computer power!

20 x 2 years

40 years

I’ll be retired by then!

(Moore’s law)

(best case scenario)

Page 32: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

This is why

we all love

coarse graining

Page 33: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Today:

I’ll illustrate a way to

efficiently treat the

~100nm regime.

• Generic top-down bead-spring• solvent free• only pair forces• robust & physically meaningful

I.R. Cooke, K. Kremer, M. Deserno, Phys. Rev. E 72, 011506 (2005);I.R. Cooke and M. Deserno, J. Chem. Phys. 123, 224710 (2005).

Page 34: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

attraction range

tem

per

atu

re

unstableunstable

fluid phasefluid phase

gel-phase(s)gel-phase(s)

Today:

I.R. Cooke, K. Kremer, M. Deserno, Phys. Rev. E 72, 011506 (2005);I.R. Cooke and M. Deserno, J. Chem. Phys. 123, 224710 (2005).

Page 35: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

attraction range

tem

per

atu

re

unstableunstable

fluid phasefluid phase

gel-phase(s)gel-phase(s)

Today:

I.R. Cooke, K. Kremer, M. Deserno, Phys. Rev. E 72, 011506 (2005);I.R. Cooke and M. Deserno, J. Chem. Phys. 123, 224710 (2005).

Long-ranged attractions “save” the system some entropy!

Page 36: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

attraction range

tem

per

atu

re

unstableunstable

fluid phasefluid phase

gel-phase(s)gel-phase(s)

Today:

I.R. Cooke, K. Kremer, M. Deserno, Phys. Rev. E 72, 011506 (2005);I.R. Cooke and M. Deserno, J. Chem. Phys. 123, 224710 (2005).

Long-ranged attractions “save” the system some entropy!

A.P. Gast, C.K. Hall, and W.B. Russel,J. Coll. Interface Sci. 96, 251 (1983);

M.H.J. Hagen, D. Frenkel,J. Chem. Phys. 101, 4093 (1994);A.A. Louis, Phil. Trans. R. Soc.

Lond. A 359, 939 (2001).

A.P. Gast, C.K. Hall, and W.B. Russel,J. Coll. Interface Sci. 96, 251 (1983);

M.H.J. Hagen, D. Frenkel,J. Chem. Phys. 101, 4093 (1994);A.A. Louis, Phil. Trans. R. Soc.

Lond. A 359, 939 (2001).

Page 37: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

attraction range

tem

per

atu

re

unstableunstable

fluid phasefluid phase

gel-phase(s)gel-phase(s)

Today:

I.R. Cooke, K. Kremer, M. Deserno, Phys. Rev. E 72, 011506 (2005);I.R. Cooke and M. Deserno, J. Chem. Phys. 123, 224710 (2005).

Long-ranged attractions “save” the system some entropy!

Shape of CG potential is qualitatively important!

A.P. Gast, C.K. Hall, and W.B. Russel,J. Coll. Interface Sci. 96, 251 (1983);

M.H.J. Hagen, D. Frenkel,J. Chem. Phys. 101, 4093 (1994);A.A. Louis, Phil. Trans. R. Soc.

Lond. A 359, 939 (2001).

A.P. Gast, C.K. Hall, and W.B. Russel,J. Coll. Interface Sci. 96, 251 (1983);

M.H.J. Hagen, D. Frenkel,J. Chem. Phys. 101, 4093 (1994);A.A. Louis, Phil. Trans. R. Soc.

Lond. A 359, 939 (2001).

Page 38: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Illustrations:

• Material properties

• Adsorption to a substrate

• Lipid curvature effects

• Peptide-induced pore formation

• Lipid mixtures

• Protein-induced budding

Page 39: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Illustrations:

• Material properties

• Adsorption to a substrate

• Lipid curvature effects

• Peptide-induced pore formation

• Lipid mixtures

• Protein-induced budding

Page 40: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Material properties

Page 41: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Material propertiesProbably most important: bending modulus

Page 42: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Material properties

Can be determined in two very different ways

From fluctuations From deformations

Probably most important: bending modulus

Page 43: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Material properties

From fluctuations From deformations

Probably most important: bending modulus

Page 44: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Material properties

From fluctuations From deformations

energy of cylinder

force tohold it

Probably most important: bending modulus

V. Harmandaris and M. Deserno, J. Chem. Phys. 125, 204905 (2006)

Page 45: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Material properties

From fluctuations From deformations

energy of cylinder

force tohold it

Probably most important: bending modulus

V. Harmandaris and M. Deserno, J. Chem. Phys. 125, 204905 (2006)

Both ways give the same answer

Shows that Helfrich theory worksup to extremely large curvature

Page 46: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Material properties

From fluctuations From deformations

energy of cylinder

force tohold it

Probably most important: bending modulus

V. Harmandaris and M. Deserno, J. Chem. Phys. 125, 204905 (2006)

Both ways give the same answer

Shows that Helfrich theory worksup to extremely large curvature

~ 3…30 kBT ~ 3…30 kBT

Page 47: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Other Material properties

I.R. Cooke and M. Deserno, J. Chem. Phys. 123, 224710 (2005).

Expansion modulus

Line tension

~ 100 dyn/cm

~ 10 pN

Page 48: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Other Material propertiesExpansion modulus

Line tension

thermal expansivity

~ 100 dyn/cm

~ 10 pN

~ 2×10-3 K-1

I.R. Cooke and M. Deserno, J. Chem. Phys. 123, 224710 (2005).

Page 49: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Illustrations:

• Material properties

• Adsorption to a substrate

• Lipid curvature effects

• Peptide-induced pore formation

• Lipid mixtures

• Protein-induced budding

Page 50: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Adsorption to a substrate

bilayersubstrate

M.I. Hoopes, M. Deserno, M.L. Longo, and R. Faller, J. Chem. Phys. (in press)

picture:M.I. Hoopes

Page 51: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Adsorption to a substrate

proximal leaflet

distal leaflet

z

bilayersubstrate

M.I. Hoopes, M. Deserno, M.L. Longo, and R. Faller, J. Chem. Phys. (in press)

picture:M.I. Hoopes

Page 52: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Adsorption to a substrate

bilayer

proximal leaflet

distal leaflet

zp i(z

) free

z

p i(z) supported

z

substrate

M.I. Hoopes, M. Deserno, M.L. Longo, and R. Faller, J. Chem. Phys. (in press)

picture:M.I. Hoopes

Page 53: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Adsorption to a substratep i(z

) free

z

p i(z) supported

z

Major suppression of perpendicular lipid fluctuations in the proximal leaflet.

Entropy loss, since

Reduction of free energy of binding (here: ~25%)

)(log)(dB zpzpzkS ii

M.I. Hoopes, M. Deserno, M.L. Longo, and R. Faller, J. Chem. Phys. (in press)

Page 54: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

area/lipid

bila

yer

pres

sure

freesupported

substrate interactions excluded

substrate interactions included

Adsorption to a substrate• “Zero tension case” needs to be precisely defined• Compressibility increases, since fluctuations are damped

M.I. Hoopes, M. Deserno, M.L. Longo, and R. Faller, J. Chem. Phys. (in press)

Page 55: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Illustrations:

• Material properties

• Adsorption to a substrate

• Lipid curvature effects

• Peptide-induced pore formation

• Lipid mixtures

• Protein-induced budding

Page 56: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Lipid curvature effects

The model of Israelachvili, Mitchell and NinhamJ. Chem. Soc., Faraday Trans. 272 1525 (1976)

LA

VP

packing parameter

V = lipid volumeL = lipid lengthA = lipid head area

Page 57: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Lipid curvature effects

The model of Israelachvili, Mitchell and NinhamJ. Chem. Soc., Faraday Trans. 272 1525 (1976)

0 1/3 1/2 1

P

LA

VP

packing parameter

V = lipid volumeL = lipid lengthA = lipid head area

Page 58: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Lipid curvature effects

The model of Israelachvili, Mitchell and NinhamJ. Chem. Soc., Faraday Trans. 272 1525 (1976)

0 1/3 1/2 1

P

LA

VP

packing parameter

V = lipid volumeL = lipid lengthA = lipid head area

Page 59: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Lipid curvature effects

50:50mixture

I.R. Cooke and M. Deserno, Biophys. J. 91, 487 (2006)

Page 60: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Lipid curvature effects

50:50mixture

I.R. Cooke and M. Deserno, Biophys. J. 91, 487 (2006)

R

Page 61: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Lipid curvature effects

50:50mixture

Simple model gives:

Density of big headed lipids in the outer monolayer

Density of big headed lipids in the inner monolayer

Linear in bilayer

curvature!

R

I.R. Cooke and M. Deserno, Biophys. J. 91, 487 (2006)

Page 62: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

in

outln

K

Lipid curvature effects

50:50mixture

Simple model gives:

Density of big headed lipids in the outer monolayer

Density of big headed lipids in the inner monolayer

Linear in bilayer

curvature!

R

I.R. Cooke and M. Deserno, Biophys. J. 91, 487 (2006)

Page 63: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

in

outln

K

Lipid curvature effects

50:50mixture

R

I.R. Cooke and M. Deserno, Biophys. J. 91, 487 (2006)

nm50R

0.03

That’s small !

…for realistic membranecurvatures the effect is

not enough to drive sorting!

Page 64: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

in

outln

K

Lipid curvature effects

50:50mixture

R

I.R. Cooke and M. Deserno, Biophys. J. 91, 487 (2006)

nm50R

0.03

That’s small !

…for realistic membranecurvatures the effect is

not enough to drive sorting!

Tian & Baumgart, preprint

Page 65: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Illustrations:

• Material properties

• Adsorption to a substrate

• Lipid curvature effects

• Peptide-induced pore formation

• Lipid mixtures

• Protein-induced budding

Page 66: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Peptide-induced pore formation

G. Illya & M. Deserno, Biophys. J. 95, 4163 (2008)

AntimicrobialPeptide

“magainin”

Page 67: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Peptide-induced pore formation

Example above:

Peptides:

n

bead

s

m beadsm

nP – peptide

28P

G. Illya & M. Deserno, Biophys. J. 95, 4163 (2008)

Page 68: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Peptide-induced pore formation

Example above:

Peptides:

n

bead

s

m beadsm

nP – peptide

28P

G. Illya & M. Deserno, Biophys. J. 95, 4163 (2008)

Page 69: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Peptide-induced pore formation

Surface adsorbed

Monolayer contact

Sliding in

G. Illya & M. Deserno, Biophys. J. 95, 4163 (2008)

Page 70: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Peptide-induced pore formation

breakthrough

Surface adsorbed

Monolayer contact

Sliding in

G. Illya & M. Deserno, Biophys. J. 95, 4163 (2008)

Page 71: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Peptide-induced pore formation

Binding strength kBT=1.7 kBT=1.9

1.5 stray stray1.6 bound bound/inserted1.7 inserted inserted1.8 inserted inserted

1.4 stray stray1.5 bound inserted1.6 inserted inserted1.7 inserted inserted1.8 inserted inserted

26P

28P

G. Illya & M. Deserno, Biophys. J. 95, 4163 (2008)

Page 72: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Peptide-induced pore formation

Binding strength kBT=1.7 kBT=1.9

1.5 stray stray1.6 bound bound/inserted1.7 inserted inserted1.8 inserted inserted

1.4 stray stray1.5 bound inserted1.6 inserted inserted1.7 inserted inserted1.8 inserted inserted

26P

28P

G. Illya & M. Deserno, Biophys. J. 95, 4163 (2008)

Let us now look at this system consisting of

many of these peptides

Let us now look at this system consisting of

many of these peptides

Page 73: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Peptide-induced pore formation

• Stronger joint perturbation• Sliding in very efficient

…of a peptide which alone does not insert within 25000

c) g) 3000G. Illya & M. Deserno, Biophys. J. 95, 4163 (2008)

Page 74: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Peptide-induced pore formation

08P 1

8P 28P 3

8P

5.1c w

G. Illya & M. Deserno, Biophys. J. 95, 4163 (2008)

Page 75: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Peptide-induced pore formation

08P 1

8P 28P 3

8P

5.1c w

6.1c w2

6P

No peptide attraction

Some peptide attraction

G. Illya & M. Deserno, Biophys. J. 95, 4163 (2008)

Page 76: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Peptide-induced pore formation

08P 1

8P 28P 3

8P

5.1c w

6.1c w2

6P

No peptide attraction

Some peptide attraction

toroidal

barrel-stave

G. Illya & M. Deserno, Biophys. J. 95, 4163 (2008)

Page 77: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Illustrations:

• Material properties

• Adsorption to a substrate

• Lipid curvature effects

• Peptide-induced pore formation

• Lipid mixtures

• Protein-induced budding

Page 78: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

attraction range

tem

per

atu

re

Lipid A-B–mixtures

B.J. Reynwar & M. Deserno, Biointerphases (accepted)

Page 79: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

attraction range

tem

per

atu

re

heterotypic homotypic

Lipid A-B–mixtures

BBAAAB www B.J. Reynwar & M. Deserno, Biointerphases (accepted)

Page 80: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

BBAAAB www

Lipid A-B–mixtures

B.J. Reynwar & M. Deserno, Biointerphases (accepted)

Page 81: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

ideal lipid mixture non-ideal lipid mixture

Composition-induced protein aggregation

Lipid A-B–mixtures+proteinsProteins only adsorb on blue lipids

B.J. Reynwar & M. Deserno, Biointerphases (accepted)

Page 82: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Pair potentials can be fittedby simple ground state theory.

Lipid A-B–mixtures+proteins

B.J. Reynwar & M. Deserno, Biointerphases (accepted)

Page 83: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Illustrations:

• Material properties

• Adsorption to a substrate

• Lipid curvature effects

• Peptide-induced pore formation

• Lipid mixtures

• Protein-induced budding

Page 84: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Protein-induced buddingB. Antonny, Curr. Opin. Cell Biol. 18, 386 (2006)

Page 85: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Protein-induced buddingB. Antonny, Curr. Opin. Cell Biol. 18, 386 (2006)

Membrane-curving proteins can attract and drive

membrane vesiculation

Membrane-curving proteins can attract and drive

membrane vesiculation

Page 86: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Protein-induced buddingB. Antonny, Curr. Opin. Cell Biol. 18, 386 (2006)

Membrane-curving proteins can attract and drive

membrane vesiculation

Membrane-curving proteins can attract and drive

membrane vesiculation

Intuitive, but no physical justification!

Page 87: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Protein-induced budding

36 curved caps, ~50000 lipids,160nm side-length, total time ~1msno lateral tensionno explicit interaction between caps

36 curved caps, ~50000 lipids,160nm side-length, total time ~1msno lateral tensionno explicit interaction between caps

many caps

B.J. Reynwar et al., Nature 447, 461 (2007)

(“contact lens”)

Page 88: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Protein-induced budding

B.J. Reynwar et al., Nature 447, 461 (2007)

Page 89: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Protein-induced budding

B.J. Reynwar et al., Nature 447, 461 (2007)

Some observations:

• Caps attract collectively• Attractive pair-forces exist• No crystalline structure• Cooperative vesiculation• No “scaffolding”• 50-100nm length scales• several milliseconds

Some observations:

• Caps attract collectively• Attractive pair-forces exist• No crystalline structure• Cooperative vesiculation• No “scaffolding”• 50-100nm length scales• several milliseconds

Page 90: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Protein-induced budding

Blood and Voth, PNAS 103, 15068 (2006)

Page 91: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Protein-induced budding

Blood and Voth, PNAS 103, 15068 (2006)

G.S. Ayton, P.D. Blood, and G.A. Voth, Biophys. J. 92, 3595 (2007)

Page 92: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Protein-induced budding

Blood and Voth, PNAS 103, 15068 (2006)

G.S. Ayton, P.D. Blood, and G.A. Voth, Biophys. J. 92, 3595 (2007)

A. Arkhipov,Y. Yin,K. Schulten. Biophys. J. 95, 2806 (2008)

Page 93: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Summary

CG membrane model can efficiently treat many mesoscopic membrane processes.

Physical properties turn out reasonable

Link to finer scale ought to be possible!

Link to continuum elastic level works

(under way)

Page 94: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

GregoriaGregoria

VagelisVagelis

(me)(me)DavoodDavood

MartinMartinIraIra

BenBen

Acknowledgements

MPI-PMPI-P

Kurt Kremer, Eva Sinner,Jemal Guven

Matt Hoopes, Roland FallerTristan Bereau, Zunjing Wang

…and many more

Kurt Kremer, Eva Sinner,Jemal Guven

Matt Hoopes, Roland FallerTristan Bereau, Zunjing Wang

…and many more

Page 95: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria
Page 96: Markus Deserno Carnegie Mellon University Coarse-grained simulation studies of mesoscopic membrane phenomena Department of Physics with:Ira R. Cooke, Gregoria

Material properties

From fluctuations From deformations

Probably most important: bending modulus

V. Harmandaris and M. Deserno, J. Chem. Phys. 125, 204905 (2006)

/ kBT 11.70.2 / kBT 12.51