marine component of icmicm.landcareresearch.co.nz/knowledgebase/publications/...ap1 ap2 ap3 ap4 ap5...

35
Introduction Paul Gillespie Cawthron Goal of the marine component: To develop a “river plume ecosystem” (RPE) basis for evaluating and managing catchmentsea linkages In order to: Facilitate coastal stakeholder input to catchment management as a step towards Integrated Coastal Management

Upload: others

Post on 18-Feb-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • IntroductionPaul Gillespie ‐ Cawthron

    Goal of the marine component:

    To develop a “river plume ecosystem” (RPE) basis for evaluating and managing catchment‐sea linkages

    In order to:Facilitate coastal stakeholder input to catchment management as a 

    step towards Integrated Coastal Management

  • Are river plumes important?

  • Major areas of investigation

    • Nelson Bays Hydrodynamic Model ‐ plume dynamics

    • Synoptic surveys of temperature, salinity, nutrients, chl a, suspended sediments, contaminants.

    • Mass transport of nutrients (N, P, Si) from the catchment into Tasman Bay.

    • Mapping of intertidal and subtidal habitats created and nourished by the river outflow.

    • Spatial patterns of seabed characteristics generated by the river plume .

    • Suspended sediments in near‐bottom waters.

  • Water column: variable in size & shape and moves around

    1500 km2

    Chl a

    How big is the plume?

    173.0 173.1 173.2

    41.1

    41.0

    40.9

    40.9

    40.8AP1 AP2 AP3 AP4 AP5 AP6 AP7

    CP1CP2 CP3 CP4 CP5 CP6 CP7

    EP2EP3 EP4 EP5 EP6 EP7

    GP2GP3 GP4 GP5 GP6 GP7

    IP2 IP3 IP4 IP5 IP6 IP7

    JP2

    KP2 KP3 KP4 KP5 KP6 KP7

    LP1 LP2 LP3

    MP1MP2 MP3 MP4 MP5 MP6 MP7

    NP1NP2 NP3

    OP2 OP3 OP4 OP5 OP6 OP7

    PP2 PP3

    QP2 QP3 QP4 QP5 QP6 QP7

    SP2SP3 SP4 SP5 SP6 SP7

    Seawater samplingBuoy-mounted sensors

    Model predictions

    Satellite images

    ~300-400 km2 after a moderate rainfall event

  • The Nutrient StoryPaul Gillespie, Lincoln MacKenzie, Richard Nottage, Kim Clark, Reid Forrest - Cawthron

    02468

    1 01 21 41 61 82 0

    1 5 2 0 2 5 3 0 3 5

    S a l in i ty (p su )

    NO3-

    -N (m

    mol

    m-3

    )

    A

    0 . 0

    0 . 2

    0 . 4

    0 . 6

    0 . 8

    1 . 0

    1 . 2

    1 . 4

    1 5 2 0 2 5 3 0 3 5

    S a l in i ty (p su )

    DRP

    (mm

    ol m

    -3)

    B

    02 04 06 08 0

    1 0 01 2 01 4 01 6 01 8 0

    1 5 2 0 2 5 3 0 3 5

    S a l in i ty (p su )

    DR

    Si m

    mol

    m-3

    C

    Highest dissolved nutrient concentrations associatedwith low salinities

  • 173 173.1 173.2

    9-10 May 2001

    41.15

    41.05

    40.95

    40.85

    40.75

    173 173.1 173.2

    9-10 May 2001

    41.15

    41.05

    40.95

    40.85

    40.75DRSi Chl a

    Plume-affected phytoplankton production

    Periodic development of east to west gradients of nutrients and chl a dictated by river flow and water column density stratification.

    173.00 173.10 173.20

    9-10 May 2001

    41.15

    41.05

    40.95

    40.85 Surface Salinity

  • Woodstock

    Woodmans BendTasman Bay

    Water Quality Monitoring Sites

    Flow : concentration relationships used to estimate nutrient loadings to Tasman Bay.

  • Nutrient Loading to Tasman Bay (tonnes/yr)

    2005 2006 2007 2008 2009

    0

    100

    200

    300

    400

    Tonn

    es p

    er y

    ear

    0

    10

    20

    30

    40

    Tonn

    es p

    er y

    ear

    8000

    9000

    10000

    11000

    12000

    13000

    Tonn

    es p

    er y

    ear

    DRSi

    DRPTP

    TNNitrateAmmonium

  • Nitrogen loading (tonnes/month)TNNO3NH4

    0

    40

    80

    1202009

    Jan

    Feb

    Mar

    Apr

    May Jun

    Jul

    Aug

    Sep Oct

    Nov

    Dec

    0

    40

    80

    120

    2008

    Jan

    Feb

    Mar

    Apr

    May Jun

    Jul

    Aug

    Sep

    Oct

    Nov

    Dec

    0

    40

    80

    120

    2007

    Jan

    Feb

    Mar

    Apr

    May Jun

    Jul

    Aug

    Sep Oct

    Nov

    Dec

    Jan

    Feb

    Mar

    Apr

    May Jun

    Jul

    Aug

    Sep Oct

    Nov

    Dec

    0

    40

    80

    120

    2005

    0

    40

    80

    120

    2006

    Jan

    Feb

    Mar

    Apr

    May Jun

    Jul

    Aug

    Sep Oct

    Nov

    Dec

    J F M A M J J A S O N D

    J F M A M J J A S O N D

  • Good or bad for Tasman Bay?

    • Motueka TN discharge (average 2005-2009) = ~283 t

    • Total freshwater TN discharge (including point source discharges) = ~900 t/ year

    • N loss via denitrification = ~1800 t/year

    • N Inputs ~50% of assimilation capacity

    • Problems associated with eutrophication unlikely

    • Nutrients probably having beneficial effects on productivity

    • But there still could be some effect on HAB incidence???

  • Delineation of the depositional footprint of the river plume

    Deanna Clement, Reid Forrest, Chris Cornelisen, Barrie Forrest, 

    Paul Gillespie – CawthronBarrie Peake – University of Otago

  • Multiple indicators reveal river plume influence in a New Zealand coastal embayment

    Barrie Forrest, Paul Gillespie, Chris Cornelisen-Cawthron, Karyne Rogers-GNS

    Pilot study

  • Various indicators (chemical, geological, biological) were used to delineatethe spatial extent of river plume influence

  • Copper

    Chromium

    Nickel

    Natural catchment source of elevated sediment trace metals

    Unexpected result: Contaminated levels of Ni & Cr in plume sediments

  • Benthic characteristics considered for delineation of catchment influences

    • Trace metal concentrations (Al, Ba, Cr, Cu, Ni, Pb, Sr, V, Cd)

    • Organic content (ash free dry weight)

    • Grain size - % gravel, sand, silt/clay

    • Infauna abundance & diversity

  • KEY SEDIMENT INDICATORS OF RIVER PLUME INFLUENCE

    !

    !

    !

    !

    !

    !!

    !

    !!

    !! !

    !

    !

    !

    !

    !

    !

    !

    ±

    0 5 102.5Kilometres

    Depth Contours10.0020.0030.00

    Trace Metal Concentrations x 21

    2

    345

    678

    910

    !

    !

    !

    !

    !

    !!

    !

    !!

    !! !

    !

    !

    !

    !

    !

    !

    !

    ±

    0 5 102.5Kilometres

    Depth Contours10.0020.00

    30.00Organic matter and Lead

    12

    3

    45678

    910

    !

    !

    !

    !

    !

    !!

    !

    !!

    !! !

    !

    !

    !

    !

    !

    !

    !

    ±

    0 5 102.5Kilometres

    Depth Contours10.0020.0030.00

    Species Diversity1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    Trace metals Organic matter & lead

    Infauna diversity (SW)

    Shell debris (considered non plume-related)

    Shell debris (considered non plume-related)

  • 180 km2 river plume depositional 

    area 

    based on

    composites of multiple benthic 

    indicators

    ±

    0 5 102.5Kilometres

    Depth Contours10.0020.0030.00AMAsSediment Plume Extent

    Aquaculture management areas

    Tasman Bay

  • Suspended sediment effects on shellfish

    Paul Gillespie - Cawthron

  • Fish & shellfish resources/activities potentially influenced by the river plume

    • Enhanced scallop fishery 

    • Dredge oyster fishery

    • Trawl fishery  (flounder and sole)

    • Recreational fisheries

    • Mussel farming

  • 70,000-800,000 tonnes (mean~370,000)

    Annual Suspended Sediment Contributions to Tasman Bay

    Loading data provided by Les Basher - Landcare

  • Motueka R. SS Plume - the day after a moderate flood event

    SS mobilisation and export from nearby estuaries - strong winds during spring high tides, no rain

    Frequent SS plumes occur in Tasman Bay under a variety of weather conditions.

  • Sediment Mobilisation

    Cumulative impacts?

  • SS Effects on Benthic Suspension Feeders

    • SS inhibition of scallop feeding

    o Near‐bottom (50 mm above the seabed) SS concentrations of 11‐25 g/m3 (89‐96% inorganic)were seen to interrupt the feeding activity of scallops on the seabed

    o Scallops in baskets 0.5 or 1.0 m above the seabed continued feeding normally

  • Potential effects on shellfish resources in Tasman Bay

    •Chronic condition of high near-bottom turbidity

    Physical disturbance due to dredging & trawling

    Deposition/ Resuspension

    • Scallop catches (tonnes)• No harvests 2005/06 ‐

    present

    Interference of scallop feeding

    0

    100

    200

    300

    400

    500

    600

    89/90 91/92 93/94 95/96 97/98 99/00 01/02 03/04

    ?

  • Tracking faecal contaminants in the Motueka River plume

    Chris Cornelisen

  • 173.00 173.10 173.20

    41.15

    41.05

    40.95

    40.85

    •Sedimentation•Contaminants (faecal, nutrients,metals, hydrocarbons, etc)

  • Turbidity

    Bacteria

    River flows

    0100

    200300

    400

    500

    Flow

    (cum

    ecs)

    0

    100

    200

    300

    NTU

    0

    2000

    4000

    6000

    8000

    28-Apr 29-Apr 30-Apr 01-May

    MPN

    /100

    ml

  • Bad weather

    0

    10

    20

    22-Apr 23-Apr 24-Apr 25-Apr 26-Apr 27-Apr 28-Apr 29-Apr 30-Apr 01-May 02-May 03-May 04-May 05-May 06-May 07-May

    Win

    d sp

    eed

    (m s

    -1)

    0

    10

    20

    30

    40

    Rai

    nfal

    l (m

    m)

    Wind speedRainfall

    High riverDischarge

    River flow (Woodmans bend)

    0

    200

    400

    600

    22-Apr 23-Apr 24-Apr 25-Apr 26-Apr 27-Apr 28-Apr 29-Apr 30-Apr 01-May 02-May 03-May 04-May 05-May 06-May 07-May

    m3 s

    -1

    Increase in turbidity coincidingwith winds

    05

    1015202530

    22-Apr 23-Apr 24-Apr 25-Apr 26-Apr 27-Apr 28-Apr 29-Apr 30-Apr 01-May 02-May 03-May 04-May 05-May 06-May 07-May

    Turb

    idity

    (NTU

    )

    -5-3-11357

    Am

    plitu

    de (m

    )

    Turbidity (3 km)Turbidity (6 km)Tide

    Mixing andpersistence of shallow low salinity plume

    30

    32

    34

    36

    22-Apr 23-Apr 24-Apr 25-Apr 26-Apr 27-Apr 28-Apr 29-Apr 30-Apr 01-May 02-May 03-May 04-May 05-May 06-May 07-May

    Salin

    ity (p

    su)

    12

    14

    16

    18

    Tem

    p (C

    )

    Salinity (3 km) Salinity (6 km)Temperature (3 km) Temperature (6 km)

    Shading by thin surface layer of fine sediment

    0300600900

    12001500

    22-Apr 23-Apr 24-Apr 25-Apr 26-Apr 27-Apr 28-Apr 29-Apr 30-Apr 01-May 02-May 03-May 04-May 05-May 06-May 07-May

    PAR

    um

    ol m

    -2 s

    -1

    Incoming3 m depth

  • Sal

    inity

    at

    Dep

    th, m

    29-Apr-2009 23:36:21

    0

    5

    1025

    30

    35

    Tem

    pera

    ture

    at

    Dep

    th, m

    0

    5

    1015

    16

    17

    Ligh

    t at

    Dep

    th, m

    0

    5

    101

    10

    100

    1000

    ty a

    t m

    0

    54

    Tem

    pera

    ture

    at

    Dep

    th, m

    0

    5

    1015

    16

    17

    Ligh

    t at

    Dep

    th, m

    0

    5

    101

    10

    100

    1000

    Turb

    idity

    at

    Dep

    th, m

    0

    5

    100

    2

    4

    Distance from river mouth, km

    Chl

    orop

    hyll

    atD

    epth

    , m

    1 2 3 4 5 6

    0

    5

    100

    2

    4

    CTD and water quality survey – 30 Apr 2009

    Mussel results here

    0

    50

    100

    150

    1 2 3 4 5 6Distance from river mouth (km)

    MPN

    /100

    ml E. coli

    Enterococci

  • Mussel results hereE.coli

    0

    500

    1000

    1500

    1.5 km 2 km 6 km (AMA)

    MPN

    /100

    g 30-Apr07-May

    Enterococci

    0

    500

    1000

    1500

    2000

    2500

    1.5 km 2 km 6 km (AMA)

    MPN

    /100

    g

    Ruminant Bacteroides (Bac128)1 to 2 km 6 km

    (AMA) +     ‐

    Human Bacteroides (Bac183)HumanMethanobrevibacterHuman Polyomavirus (HPyV)

    3 human markers not detected

    Humans0.2%

    Poultry1.3%

    Horse0.5%

    Deer(farm)0.7% Possum

    0.6%

    Cattle80.9%

    Sheep15.4%

    Pig0.4%

    NZ’s PPP: Potential poo production (not including “wildlife”)

    Where’s it coming from?Microbial Source Tracking

  • Continuing efforts

    Real-time monitoring

    •Telemetry-data accessibility•Real-time Environmental Sample Processing (ESP)

    Molecular tools

    •MST tools for water quality monitoring•MST tools for ensuring shellfish quality•Quantitative PCR•DNA probe arrays

  • Acknowledgements

    NIWA: Rob Davies-Colley, Rob Merrilees, Murray Hicks

    Cawthron: Paul Gillespie, Marek Kirs, Roger Young, Reid Forrest, Paul Barter, Aaron Quarterman, Eric Goodwin, Ben Knight, Ron Fyfe, Mark Englefield

    Valerie (Jodie) Harwood, University of South Florida