marginal marine trace fossils from the cÁrdenas … · palma-ramírez et al. – marginal marine...

8
89 doi:10.4072/rbp.2018.2.01 Revista Brasileira de Paleontologia, 22(2):89–96, Maio/Agosto 2019 A Journal of the Brazilian Society of Paleontology MARGINAL MARINE TRACE FOSSILS FROM THE CÁRDENAS FORMATION (MAASTRICHTIAN), RAYÓN MUNICIPALITY, SAN LUIS POTOSÍ, CENTRAL MEXICO ARTURO PALMA-RAMÍREZ Léxico Estratigráfico de México, Departamento de Estratigrafía, Servicio Geológico Mexicano, Blvd. Felipe Ángeles km. 93.50-4, Col. Venta Prieta, C.P. 42083, Pachuca, Hidalgo, México. [email protected] ROBERTO CARLOS MALDONADO-SARABIA Gerencia Regional Centro, Servicio Geológico Mexicano, Av. Mariano Jiménez 465, Col. Alamitos, C.P. 78280, San Luis Potosí, San Luis Potosí, México. [email protected] MATTHEW R. STIMSON Geology/ Paleontology Section, New Brunswick Museum, 277 Douglas Ave, Saint John New Brunswick E2K 1E5, Canada. [email protected] ABSTRACT The State of San Luis Potosí, Mexico, is rich in fossils and has a long-standing tradition of paleontological research. Nevertheless, most of these studies have been focused on vertebrates and invertebrates body fossils, with the ichnological record being overlooked. Here, we report the occurrence of ichnofossils (Diplocraterion parallelum, Ophiomorpha nodosa, Skolithos linearis, and Palaeophycus tubularis) from the Upper Cretaceous (Maastrichtian) Cárdenas Formation, southeastern San Luis Potosí. Invertebrate trace fossils and associated body fossils suggest that the Cárdenas Formation was deposited in a low to high energy system, with occasional storm events, in a shallow water platform (delta plain or coastal paleoenvironment influenced by tidal action). Keywords: ichnofossils, shallow water, Maastrichtian, Cárdenas Formation, Mexico. RESUMO O Estado de San Luis de Potosí, México, é rico em fósseis e tem uma longa tradição de pesquisa paleontológica. No entanto, a maioria desses estudos tem sido focada em fósseis de vertebrados e invertebrados, com o registro icnológico sendo negligenciado. Aqui, nós reportamos a ocorrência de icnofósseis (Diplocraterion parallelum, Ophiomorpha nodosa, Skolithos linearis e Palaeophycus tubularis) do Cretáceo Superior (Maastrichtiano) Formação Cárdenas, sudeste de San Luis de Potosí. Icnofósseis de invertebrados e demais fósseis associados sugerem que a Formação Cárdenas foi depositada em um sistema de baixa a alta energia, com eventos ocasionais de tempestades, em uma plataforma de águas rasas (paleoambiente delta de planície ou costeiro, influenciado pela ação das marés). Palavras-chave: icnofósseis, águas rasas, Maastrichtiano, Formação Cárdenas, México. INTRODUCTION Several works have shown the importance of invertebrate traces in paleontology, sedimentology, and stratigraphy (Pemberton et al., 1992, 2000, 2002; MacEachern et al., 2012). Biogenic structures in subaqueous regimes are primarily controlled by substrate consistency, sediment grain size, energy conditions, water turbidity and salinity, depositional rates, oxygenation levels, and temperature (Ekdale & Mason, 1988; MacEachern et al., 2012), and are considered good indicators of sedimentary environments (MacEachern et al., 2012). The Cárdenas Formation is a very rich fossiliferous unit and its diverse faunal assemblages have been studied by several authors, most of them focused on echinoderms (Marín-Ávila, 2012; Myers, 1968; Navarro-Moctezuma, 2004), corals (Navarro-Moctezuma, 2004; Baron-Szabo et al., 2006), brachiopods (Myers, 1968; Pérez-Martínez, 2010), foraminifers (Carrillo-Bravo, 1971; Caus et al., 2002; Omaña et al., 2008, 2012), crustaceans (Vega et al., 1995), ostracods (Caus et al., 2002), rudists (Oviedo-García, 2005; Pons et al., 2013; Schafhauser et al., 2003), and ammonites (Ifrim et al., 2005). Previous works on ichnology of the Cárdenas Formation (Zimbrón-Uresti & Alvarado-Valdez, 2015; Zimbrón-Uresti, 2016) reported Thalassinoides, Skolitos,

Upload: others

Post on 08-Feb-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: MARGINAL MARINE TRACE FOSSILS FROM THE CÁRDENAS … · Palma-Ramírez et al. – Marginal marine trace fossils from the Cárdenas Formation 93 Palaeophycus Hall, 1847 Palaeophycus

89

doi:10.4072/rbp.2018.2.01

Revista Brasileira de Paleontologia, 22(2):89–96, Maio/Agosto 2019A Journal of the Brazilian Society of Paleontology

MARGINAL MARINE TRACE FOSSILS FROM THE CÁRDENAS FORMATION (MAASTRICHTIAN), RAYÓN MUNICIPALITY,

SAN LUIS POTOSÍ, CENTRAL MEXICO

ARTURO PALMA-RAMÍREZLéxico Estratigráfico de México, Departamento de Estratigrafía, Servicio Geológico Mexicano, Blvd.

Felipe Ángeles km. 93.50-4, Col. Venta Prieta, C.P. 42083, Pachuca, Hidalgo, Mé[email protected]

ROBERTO CARLOS MALDONADO-SARABIAGerencia Regional Centro, Servicio Geológico Mexicano, Av. Mariano Jiménez 465, Col. Alamitos,

C.P. 78280, San Luis Potosí, San Luis Potosí, Mé[email protected]

MATTHEW R. STIMSONGeology/ Paleontology Section, New Brunswick Museum, 277 Douglas Ave,

Saint John New Brunswick E2K 1E5, [email protected]

ABSTRACT – The State of San Luis Potosí, Mexico, is rich in fossils and has a long-standing tradition of paleontological research. Nevertheless, most of these studies have been focused on vertebrates and invertebrates body fossils, with the ichnological record being overlooked. Here, we report the occurrence of ichnofossils (Diplocraterion parallelum, Ophiomorpha nodosa, Skolithos linearis, and Palaeophycus tubularis)from the Upper Cretaceous (Maastrichtian) Cárdenas Formation, southeastern San Luis Potosí. Invertebrate trace fossils and associated body fossils suggest that the Cárdenas Formation was deposited in a low to high energy system, with occasional storm events, in a shallow water platform (delta plain or coastal paleoenvironment influenced by tidal action).

Keywords: ichnofossils, shallow water, Maastrichtian, Cárdenas Formation, Mexico.

RESUMO – O Estado de San Luis de Potosí, México, é rico em fósseis e tem uma longa tradição de pesquisa paleontológica. No entanto, a maioria desses estudos tem sido focada em fósseis de vertebrados e invertebrados, com o registro icnológico sendo negligenciado. Aqui, nós reportamos a ocorrência de icnofósseis (Diplocraterion parallelum, Ophiomorpha nodosa, Skolithos linearis e Palaeophycus tubularis) do Cretáceo Superior (Maastrichtiano) Formação Cárdenas, sudeste de San Luis de Potosí. Icnofósseis de invertebrados e demais fósseis associados sugerem que a Formação Cárdenas foi depositada em um sistema de baixa a alta energia, com eventos ocasionais de tempestades, em uma plataforma de águas rasas (paleoambiente delta de planície ou costeiro, influenciado pela ação das marés).

Palavras-chave: icnofósseis, águas rasas, Maastrichtiano, Formação Cárdenas, México.

INTRODUCTION

Several works have shown the importance of invertebrate traces in paleontology, sedimentology, and stratigraphy (Pemberton et al., 1992, 2000, 2002; MacEachern et al., 2012). Biogenic structures in subaqueous regimes are primarily controlled by substrate consistency, sediment grain size, energy conditions, water turbidity and salinity, depositional rates, oxygenation levels, and temperature (Ekdale & Mason, 1988; MacEachern et al., 2012), and are considered good indicators of sedimentary environments (MacEachern et al., 2012). The Cárdenas Formation is a very rich fossiliferous

unit and its diverse faunal assemblages have been studied by several authors, most of them focused on echinoderms (Marín-Ávila, 2012; Myers, 1968; Navarro-Moctezuma, 2004), corals (Navarro-Moctezuma, 2004; Baron-Szabo et al., 2006), brachiopods (Myers, 1968; Pérez-Martínez, 2010), foraminifers (Carrillo-Bravo, 1971; Caus et al., 2002; Omaña et al., 2008, 2012), crustaceans (Vega et al., 1995), ostracods (Caus et al., 2002), rudists (Oviedo-García, 2005; Pons et al., 2013; Schafhauser et al., 2003), and ammonites (Ifrim et al., 2005). Previous works on ichnology of the Cárdenas Formation (Zimbrón-Uresti & Alvarado-Valdez, 2015; Zimbrón-Uresti, 2016) reported Thalassinoides, Skolitos,

Page 2: MARGINAL MARINE TRACE FOSSILS FROM THE CÁRDENAS … · Palma-Ramírez et al. – Marginal marine trace fossils from the Cárdenas Formation 93 Palaeophycus Hall, 1847 Palaeophycus

90 Revista Brasileira de Paleontologia, 22(2), 2019

and Ophiomorpha from La Calzada locality, Ciudad del Maíz Municipality, San Luis Potosí State. However, the assignment to Thalassinoides and Ophiomorpha is doubtful because none of them exhibits the distinctive characteristics of these genera. The assignment to Thalassinoides is dubious because the typical branching pattern is not clear, and the bulb-shaped turnarounds between branching are not observed. The presence of Ophiomorpha is also questionable because the traces do not exhibit its characterisitic knobby walled pattern. The purpose of this study is to describe a trace fossil assemblage attributed to crustaceans and worm-like animals from the Cárdenas Formation at the Amoladeras locality, as well as its significance to the paleoenvironmental context at this site.

GEOLOGICAL SETTING

The Cárdenas Formation is a 1,050 m thick, Upper Cretaceous sedimentary sequence that is best exposed north of the city of Cárdenas, San Luis Potosí State (Barón-Szabo et al., 2006). This unit consists of shallow water fine siliciclastic sediments with some interbedded limestone beds (Myers, 1968), and represents a transgressive succession (Carrillo-

Bravo, 1971) with flysch type sediments, cropping out in an asymmetric syncline of the folded Sierra Madre Oriental (Myers, 1968; López-Ramos, 1980). Myers (1968) divided the Cárdenas Formation into three informal members (lower, middle, and upper) and proposed three biostratigraphic units based on its invertebrate body fossil assemblages (Durania ojanchalensis, Arcostrea aguilerae, and Tampsia floriformis Zones). The Cárdenas Formation overlies the El Abra (Myers, 1968; Omaña et al., 2012) and Tamasopo formations (Santamaría-Orozco et al., 1990; Omaña et al., 2012), and it is unconformably overlain by the Tabaco Formation (Myers, 1968; López-Ramos, 1980; Schafhauser et al., 2007). Our study area is located at Amoladeras, southwest of Rayón municipality, on the southeastern of San Luis Potosí (Figure 1; 14Q 424779 E – 2410072 N).

Based on 87Sr/86Sr-isotope ratios analyzed in the outer low-Mg calcite shell layer of well-preserved plagioptychid rudists (Corallio chamagboehmi Böse, 1906), Schafhauser et al. (2007), determined an early late Maastrichtian age for the Cárdenas Formation at Amoladeras. In the studied section, the Cárdenas Formation consists of medium to fine-grained sandstone and shale, with interlayed limestone (Figure 2). The

Figure 1. Geographic location of the studied area, showing the local geology at Amoladeras, Rayón municipality, San Luis Potosí (modified from Ríos-Vázquez & Maldonado-Sarabia, 2016).

Page 3: MARGINAL MARINE TRACE FOSSILS FROM THE CÁRDENAS … · Palma-Ramírez et al. – Marginal marine trace fossils from the Cárdenas Formation 93 Palaeophycus Hall, 1847 Palaeophycus

Palma-Ramírez et al. – Marginal marine trace fossils from the Cárdenas Formation 91

sandstone is gray on fresh surfaces and ochre on weathered surfaces. Sandstones are composed of quartz, calcite, and lithic fragments cemented by calcareous material. Beds of sandstone range from 0.2 m to 0.4 m in thickness. The shale is similar to the sandstones in color, with beds being 0.1 m to 0.3 m thick, interbedded with the sandstone. The clastic sequence comprises grey to brown wackestone levels 0.4 m to 1 m thick. The invertebrate trace fossils studied here are mainly preserved in the sandstones (Figure 2).

SYSTEMATIC ICHNOLOGY

Diplocraterion Torell, 1870

Diplocraterion paralellum Torell, 1870(Figure 3A)

Figure 2. Generalized stratigraphic column of the studied localilty.

Description. Vertical, U-shaped burrow with spreiten structure between limbs. The spreite is evident but poorly preserved. The tubes are smooth and unlined, the apertures distance is 2.1 cm, the depth of this trace is 4.8 cm (Figure 3A).Remarks. Diplocraterion is classified as a permanent dwelling structure (domichnion) and as an equilibrium trace in response to substrate aggradation and/or scour (Bromley, 1996; Savdra, 2009; Buatois & Mángano, 2011). Based on the general morphology, parallel burrow arms and non-distinctive accessory features or preservational aspects, it can be placed under Diplocraterion parallelum. In accordance with Naing (1990), the burrow outline in the U-plane section is a uniquely distinctive morphological feature that allows the separation at the ichnogeneric level. According to him, this difference in the shape of the U is not an acceptable ichnotaxonomic criterion for use at the ichnospecific level, but like in his study, it is retained for ichnotaxonomic differentiation.

Ophiomorpha Lundgren, 1891

Ophiomorpha nodosa Lundgren, 1891(Figure 3B)

Description. Preserved as endichnia. Vertical unbranching traces, preserved as external moulds of pelleted walls in acylindrical tubes from 8 to 12 mm in diameter. Pellets are subcircular in outline and homogeneously distributed. The pellets appear as depressions preserved as external moulds with a diameter of 2–3 mm (Figure 3B).Remarks. Ophiomorpha is mostly interpreted as feeding and dwelling structures (fodinichnia and domichnia) produced by callianassid decapods (Frey et al., 1978). Ophiomorpha is usually associated with shallow marine environments (Tiwari et al., 2011), and nowadays it can be found in a variety of nearshore environments, including lagoons and estuary floors (Pollard et al., 1993). The main diagnostic characteristics that distinguish the four valid ichnospecies of Ophiomorpha (Frey et al., 1978; de Gibert et al., 2006) are the shape and distribution of the pellets (de Gibert et al., 2006). Based on the regularly ovoidal uniformly distributed pellets, it can be placed under Ophiomorpha nodosa. As no branching was observed in the specimen, it cannot be considered as a burrow system (Fernández & Pazos, 2012). These traces may have been burrow systems, but are only partially preserved by erosion or lateral variation.

Skolithos Haldeman, 1840

Skolithos linearis Haldeman, 1840(Figures 3C, E)

Description. Straight, vertical to inclined, unbranched cylindrical, endostratal burrows, with smooth walls. Burrows are approximately 0.7 cm in width, and have a maximum length of 9.8 cm. The filling is massive, composed of medium- to fine sandstone, and is similar in composition to the host rock (Figures 3C and 3E).

Page 4: MARGINAL MARINE TRACE FOSSILS FROM THE CÁRDENAS … · Palma-Ramírez et al. – Marginal marine trace fossils from the Cárdenas Formation 93 Palaeophycus Hall, 1847 Palaeophycus

92 Revista Brasileira de Paleontologia, 22(2), 2019

Remarks. Skolithos occurs in a broad variety of environments, but is most typical of shallow-water, high-energy settings (Pervesler et al., 2011), and it is interpreted as dwelling (domichnion) and feeding (fodichnion) burrows of annelids or phoronids (Alpert, 1974). It has been historically distinguished from Monocraterion Torell, 1870 by the funnel-shaped upper portion of this latter (Mángano et al., 2005). Alpert (1974) mentioned about 35 species of Skolithos and related synonimized ichnogenera, but only considered valid five ichnospecies: S. verticalis (Hall, 1843), S. linearis Haldeman, 1840, S. magnus Howell, 1944, S. ingens Howell, 1945, and S. annulatus (Howell,

1957). Furthermore, it has been pointed out that S. verticalis is distinguished from S. linearis and S. magnus because these last two ichnospecies show a great diameter (3–7 mm and 6–12 mm, respectively) (Alpert, 1974; Fernández & Pazos, 2012). Besides having a large diameter, Skolithos ingens and S. annulatus have characteristically ornamented walls (protuberances in S. ingens and annulations in S. annulatus), which are absent in S. verticalis (Fernández & Pazos, 2012). The characteristics of this trace, such as its verticality, cylindrical form, and smooth walls, are similar to those reported by Lech et al. (2000) as the typical trace of S. linearis.

Figure 3. Trace fossils of the Cárdenas Formation at Amoladeras. A, Diplocraterion parallelum; B, Ophiomorpha nodosa; C, E, Skolitos linearis; D, F, Palaeophycus tubularis. Scale bars = 2 cm.

Page 5: MARGINAL MARINE TRACE FOSSILS FROM THE CÁRDENAS … · Palma-Ramírez et al. – Marginal marine trace fossils from the Cárdenas Formation 93 Palaeophycus Hall, 1847 Palaeophycus

Palma-Ramírez et al. – Marginal marine trace fossils from the Cárdenas Formation 93

Palaeophycus Hall, 1847

Palaeophycus tubularis Hall, 1847(Figure 3D, F)

Description. Preserved as an endichnion, traces are straight to slightly curved, unbranched cylindrical burrows horizontal to bedding planes. Burrows have smooth surface walls, and are about 0.8 cm in diameter and 5.3 cm in length. The passive filling of the burrow is constituted by gray shale (Figure 3F).Remarks. Palaeophycus is interpreted as a dwelling trace (domichnia) produced mainly by worm-like animals or insects (Buatois & Mángano, 2011), that are either suspension feeders or predators, such as polychaetes (Osgood, 1970; Pemberton & Frey, 1982). Palaeophycus tubularis is distinguished from the other ichnospecies of Palaeophycus by its thin wall and the absence of ornamentation (Mángano et al., 2005).

DISCUSSION

The lithology of the studied section at Amoladeras shows an alternation of shale and sandstone, with interlayered limestone toward the top documenting transgressive-regressive conditions in the Valles-San Luis Platform. Sources of sediment for the Cárdenas Formation were located to the west and northwest, the sediments filled an elongated shallow basin that was bordered to the east by a barrier that represented the beginning of folding and uplift of the Sierra Madre Oriental during the initial Laramide pulsations (Vega et al., 1995). The physical characteristics of the rocks as well as low fragmentation of the rudist association (Schafhauser et al., 2003; Oviedo-García, 2005; Pons et al., 2013) at Amoladeras suggest subtidal and lagoon conditions, with low to moderate energy and soft substrates. This is congruent with the trace fossils identified in the present study, represented by Diplocraterium parallelum, Ophiomorpha nodosa, Skolithos linearis, and Palaeophycus tubularis. This ichnological assemblage represents the archetypal Skolithos Ichnofacies, typical of nearshore environments (Seilacher, 2007), and generally corresponding to beach, estuarine point bars, and tidal delta deposits (MacEachern et al., 2012).

In accordance with Šimo & Olšavský (2007), the eustatic changes of sea level and tidal activity, shallow water environment conditions, and loose ground to firm ground substrate, are characteristic environmental conditions for the producers of Diplocraterion. This dwelling burrow of suspension feeders are characterisitc of settings with strong wave and current energy (Šimo & Olšavský, 2007). In particular, Diplocraterium parallelum has been associated with transgressions across coastal plain coals (Saunders & Pemberton, 1990) and with wave ravinement of delta plain coal horizons (Dam, 1990). Besides, it might be an indicator of transgressive and regressive pulses (Olóriz & Rodríguez-Tovar, 2002).

Ophiomorpha is a dwelling and feeding structure (Frey et al., 1978) associated with shallow water environments (Pollard et al., 1993; Tiwari et al., 2011), characterized by high-energy events, drastic changes in the sedimentation

rate and erosion surface (Singh et al., 2008; Tiwari et al., 2011). It can be found nowadays in all kinds of nearshore environments, including lagoons and estuary floors (Pollard et al., 1993). Ophiomorpha nodosa is common in siliceous and calcareous sediments of post-Paleozoic ages (Singh et al., 2008), represented by marginal marine and shallow marine sandy environments, as well as tidal and estuarine channel deposits (Frey et al.,1978; Pollard et al., 1993; Nagy et al., 2016). The aforementioned environments are consistent with the siliciclastic deposits that compose the Cárdenas Formation (Myers, 1968; Ríos-Vázquez & Maldonado-Sarabia, 2016).

Skolithos traces are dwelling burrows of suspension feeding organism (Patel & Desai, 2009) produced by annelids or phoronids (Singh et al., 2008). It is associated with environments characterized by relatively high levels of wave or current energy and abrupt changes in rates of deposition (Pemberton et al., 1992) in nearshore to marginal settings (Singh et al., 2008). Skolithos linearis is commonly interbedded between the lower offshore and the offshore transition facies, and it records a distinctive onshore-offshore trend (Mángano et al., 2005).

Palaeophycus is considered a dwelling or feeding structure of mobile, suspensivorous or predatory worm-like-organism, such as annelids (Fernández & Pazos, 2012). It is a eurybenthic facies-crossing form produced probably by polychaetes or annelids (Pemberton & Frey, 1982) and it occurs few centimeters below the sediment-water interface, suggesting an unconsolidated substrate, in relatively moderate to low energy shorface/offshore conditions (Tiwari et al., 2011). Palaeophycus tubularis occurs in soft substrates (Krapovickas et al., 2008) of lower offshore deposits (Mángano et al., 2005). The lithological characteristics, the fossil content, and the ichnological signature of the Cárdenas Formation at Amoladeras allow interpreting a lower-mid tidal setting where the hydrodynamic regime permitted an efficient gain of nutrients from suspended matter in the water columns by the burrowers organisms (Figure 4), as has been previously noticed in Paleozoic rocks of Kansas (Mángano et al., 2002). The intense activity in the mid-lower tidal flats encourages the presence of deep-burrowing forms (McIlroy & Timms, 2013) of infaunal suspension feeders and/or passive predators, forming low-diversity suites in a well-oxygenated water column by waves and currents (Buatois & Mángano, 2011).

CONCLUSIONS

Diplocraterion parallelum, Ophiomorpha nodosa, Skolithos linearis, and Palaeophycus tubularis are described here for the first time from the Cárdenas Formation. The ichnofaunal assemblage of Amoladeras suggests that worm-like animals, crustacean, annelids, phoronids, sipunculids, – representing both suspension feeders and passive predators – were present in the Cárdenas Formation despite the absence of most of them in the body fossil record. Lithological features, the rudist assemblage, and the trace fossils suggest that the deposition of the Cárdenas Formation at Amoladeras took place in a low to high-energy conditions in nearshore

Page 6: MARGINAL MARINE TRACE FOSSILS FROM THE CÁRDENAS … · Palma-Ramírez et al. – Marginal marine trace fossils from the Cárdenas Formation 93 Palaeophycus Hall, 1847 Palaeophycus

94 Revista Brasileira de Paleontologia, 22(2), 2019

paleoenvironments with storms events, under a fluctuating sea level, mainly in transgressive phase.

ACKNOWLEDGEMENTS

Financial support for this research came from the Mexican Geological Survey through the “Geological-Mining Cartography” Program and the “Mexican Stratigraphic Lexicon” Project. We are indebted to H. Francischini (UFRGS, Brazil) and one anonymous reviewer for their comments and suggestions. Thanks to S. Martínez (UdelaR, Uruguay) for his help along the editing and handling process of the manuscript. We are very grateful to A.L. Reyes-Martínez (MSc candidate in Energy, UNAM) for her useful comments on the manuscript. Warm thanks to A. Montiel-Beltrán (Marketing Staff, SGM) for shooting some pictures. Special thanks go to R. Gámez and A. Villanueva for their hospitality in Ríoverde Town, San Luis Potosí, during the fieldwork.

REFERENCES

Alpert, S.P. 1974. Systematic review of the genus Skolithos. Journal of Paleontology, 48:661–669.

Baron-Szabo, R.C.; Schafhauser, A.; Götz, S. & Stinnesbeck, W. 2006. Scleractinian corals from the Cárdenas Formation (Maastrichtian), San Luis Potosí, Mexico. Journal of Paleontology, 80:1033–1046. doi:10.1666/0022-3360(2006)80[1033:SCFTCF]2.0.CO;2

Bromley, R.G. 1996. Trace fossils. Biology, taphonomy and applications. 2nd ed. Berlin, Springer-Science+Business Media B.V., 361 p.

Buatois, L.A. & Mángano, M.G. 2011. Ichnology: the role of organism-substrate interactions in space and time.1st ed. Cambridge, Cambridge University Press, 358 p.

Carrillo-Bravo, J. 1971. La Plataforma Valles-San Luis Potosí. Ciudad de México, Asociación Mexicana de Geólogos Petroleros, 106 p. (Boletín 23).

Caus, E.; Tambareau, Y.; Colin, J.P.; Aguilar, M.; Bernaus, J.M.; Gómez-Garrido, A. & Brusset, S. 2002. Upper Cretaceous microfauna of the Cárdenas Formation, San Luis Potosí, NE Mexico. Biostratigraphical, palaeoecological, and palaeogeographical significance. Revista Mexicana de Ciencias Geológicas, 19:137–144.

Dam, G. 1990. Paleoenvironmental significance of trace fossils from the shallow marine Lower Jurassic Neill Klinter Formation, East Greenland. Palaeogeography, Palaeoclimatology, Palaeoecology, 79:221–248. doi:10.1016/0031-0182(90)90019-4

de Gibert, J.M.; Netto, R.G.; Tognoli, F.M.W. & Grangeiro, M.E. 2006. Commensal worm traces and possible juvenile thalassinidean burrows associated with Ophiomorpha nodosa, Pleistocene, southern Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 230:70–84. doi:10.1016/j.palaeo.2005.07.008

Ekdale, A.A. & Mason, T.R. 1988. Characteristic trace-fossil associations in oxygen-poor sedimentary environments. Geology, 16:720–723. doi:10.1130/0091-7613(1988)016<0720:CTFAIO>2.3.CO;2

Fernández, D.E. & Pazos, P.J. 2012. Ichnology of marginal marine facies of the Agrio Formation (Lower Cretaceous, Neuquén Basin, Argentina) at its type locality, Ameghiniana, 49:505–524. doi:10.5710/AMGH.23.7.2012.439

Frey, R.W.; Howard, J.D. & Pryor, W.A. 1978. Ophiomorpha: its morphological, taxonomic, and environmental significance. Palaeogeography, Palaeoclimatology, Palaeoecology, 23:199–229. doi:10.1016/0031-0182(78)90094-9

Haldeman, S.S. 1840. Supplement to number one of “A monograph of the Limniades, or freshwater univalve shells of North America”, containing descriptions of apparently new animals in different classes, and the names and characters of the subgenera in Paludina and Anculosa. J. Dobson, Philadelphia, 3 p.

Figure 4. Scheme of the depositional environment of the Cárdenas Formation at Amoladeras locality during the Maastrichtian (modified from Buatois & Mángano, 2011). Abbreviations: Kcm, Campanian to Maastrichtian sandstone and shale (Cárdenas Fm.); Kass Cz, Albian to Santonian limestone (El Abra Fm.); Ktss Cz, Turonian to Santonian limestone (Tamasopo Fm.); VSLPP, Valles-San Luis Potosí Platform.

Page 7: MARGINAL MARINE TRACE FOSSILS FROM THE CÁRDENAS … · Palma-Ramírez et al. – Marginal marine trace fossils from the Cárdenas Formation 93 Palaeophycus Hall, 1847 Palaeophycus

Palma-Ramírez et al. – Marginal marine trace fossils from the Cárdenas Formation 95

Hall, J. 1847. Palaeontology of New York. Albany, C. van Benthuysen, 338p.

Ifrim, C.; Stinnesbeck, W. & Schafhauser, A. 2005. Maastrichtian shallow-water ammonites of northeastern Mexico. Revista Mexicana de Ciencias Geológicas, 22:48–64.

Krapovickas, V.; Mángano, M.G.; Mancuso, A.;Marsicano, C.A. & Volkheimer, W. 2008. Icnofaunas triásicas en abanicos aluviales distales: evidencias de la Formación Cerro Puntudo, Cuenca Cuyana, Argentina. Ameghiniana, 45:463–472.

Lech, R.R.; Aceñolaza, F.G. & Grizink, M.M. 2000. Icnofacies Skolithos-Ophiomorpha en el Neogeno del valle inferior del río Chubut, provincia del Chubut, Argentina. Buenos Aires, INSUGEO, p.147–161 (Correlación Geológica 14).

López-Ramos, E. 1980. Geología de México. 2nd ed. Mexico, Trillas, 454 p.

Lundgren, S.A. 1891. Studier öfver fossilförande lösa block. Geologiska Föreningens i Stockholm Förhandlingar, 13:111–121.

MacEachern, J.A.; Bann, K.L.; Gingras, M.K.; Zonneveld, J.P.; Dashtgard, S.E. & Pemberton, S.G. 2012. The ichnofacies paradigm. In: D. Knaust & R.G. Bromley (eds.) Trace fossils as indicators of sedimentary environments, Oxford, Elsevier, p. 103–138 (Developments in Sedimentology 64). doi:10.1016/B978-0-444-53813-0.00004-6

Mángano, M.G., Buatois, L.A. & Muniz-Guinea, F. 2005. Ichnology of the Alfarcito Member (Santa Rosita Formation) of northwestern Argentina: animal-substrate interactions in a lower Paleozoic wave-dominated shallow sea. Ameghiniana, 42:641–668.

Mángano, M.G.; Buatois, L.A.; West, R.R. & Maples, C.G. 2002. Ichnology of an equatorial tidal flat: the Stull Shale Member at Waverly, eastern Kansas. Bulletin of the Kansas Geological Survey, 245:1–130.

Marín-Ávila, A.A. 2012.Taxonomía de los equinodermos de dos localidades (La Calzada y Puerto de Sta. Gertrudis) de la Formación Cárdenas en el municipio de Cd. del Maíz, S.L.P. Ingeniería en Geología, Universidad Autónoma de San Luis Potosí, Bachelor’s thesis, 52 p.

McIlroy, D. 2007. Ichnology of macrotidal tide-dominated deltaic depositional system: the Lajas Formation, Neuquén Province, Argentina. In: R.G. Bromley; L.A. Buatois; G. Mángano; J.F. Genise; R.N. Melchor (eds.) Sediment–organism interactions: a multifaceted ichnology, Tulsa, Society for Sedimentary Geology, p. 195–211 (Special Publication 88). doi:10.2110/pec.07.88

Myers, R.L. 1968. Biostratigraphy of the Cárdenas Formation (Upper Cretaceous) San Luis Potosí, Mexico. Paleontología Mexicana,24:1–89.

Nagy, J.; Rodríguez-Tovar, F.J. & Reolid, M. 2016. Environmental significance of Ophiomorpha in a transgressive-regressive sequence of the Spitsbergen Paleocene. Polar Research, 35:24192. doi:10.3402/polar.v35.24192

Naing, T. 1990. Palaeoenvironmental studies of the Middle Triassic uppermost Narrabeen group, Sydney Basin: Palaeoecological constraints with particular emphasis on trace fossil assemblages. School of Earth Sciences, Macquarie University, PhD dissertation, 630 p.

Navarro-Moctezuma, A. 2004. Descripción del Phyllum Celenterata y Echinodermata del miembro superior de la Formación Cárdenas del Cretácico Tardío de la localidad tipo, Cárdenas, S.L.P. Ingeniería en Geología, Universidad Autónoma de San Luis Potosí, Bachelor’s thesis, 112 p.

Olóriz, F. & Rodriguez-Tovar, F.J. 2002. Trace-fossils and minor discontinuities in a marl limestone rhythmite, Lower-Middle Kimmeridgian, southern Spain. Geobios, 35:581–593. doi:10.1016/S0016-6995(02)00076-1

Omaña, L.; Alencáster, G.; Torres-Hernández, J.R. & López-Doncel, R. 2012. Morphological abnormalities and dwarfism in Maastrichtian foraminifers from the Cárdenas Formation, Valles–San Luis Potosí Platform, Mexico: evidence of paleoenvironmental stress, Boletín de la Sociedad Geológica Mexicana, 64:305–318.

Omaña, L.; Pons, J.M. & Alencáster, G. 2008. Latest Cretaceous foraminífera from the Cárdenas Formation, San Luis Potosí, Mexico: Biostratigraphical, paleoenvironmental and paleobiogeographical significance, Micropaleontology, 54:445–462.

Osgood, R.G. 1970. Trace fossils of the Cincinnati area. Palaeontographica Americana, 6:276–444.

Oviedo-García, A. 2005.Rudistas del Cretácico Superior del centro al sureste de México. Departamento de Geología, Universidad Autónoma de Barcelona, PhD dissertation, 123 p.

Patel, S.J. & Desai, B.G. 2009. Animal-sediment relationship with the crustaceans and polychaetes in the inter-tidal zone near Mandvi Gulf of Kachchh, Western India. Journal of the Geological Society of India, 74:233–259.

Pemberton, S.G. & Frey, R.W. 1982. Trace fossil nomenclature and the Planolites-Palaeophycus dilemma. Journal of Paleontology, 56:843–881.

Pemberton, S.G.; MacEachern, J.A. & Frey, R.W. 1992. Trace fossil facies models: environmental and allostratigraphic significance. In: R.G. Walker & N.P. James (eds.) Facies models’ response to sea level change, Geological Association of Canada, p. 47–72.

Pemberton, S.G.; MacEachern, J.A.; Gingras, M.K. & Zang, J. 2000. Significance of ichnofossils to genetic stratigraphy: examples from the Cretaceous of Alberta, Canada. Science in China, Series D, Earth Sciences, 43:541–560. doi:10.1007/BF02875316

Pemberton, S.G.; Spila, M.; Pulham, A.J.; Saunders, T.; MacEachern, J.A.; Robbins, D. & Sinclair, I.K. 2002. Ichnology and sedimentology of shallow to marginal marine systems. New found land, The Geological Association of Canada, 343 p. (Short Course Notes 15).

Pérez-Martínez, M.B. 2010. Identificación de 4 especies de brachiopodos de la Formación Cárdenas, en la localidad La Calzada, municipio de Ciudad del Maíz, como primer reporte de este grupo. Ingeniería en Geología, Universidad Autónoma de San Luis Potosí, Bachelor’s thesis, 45 p.

Pervesler, P.; Roetzel, R. & Uchman, A. 2011. Ichnology of shallow sublittoral siliciclastics of the Burgschleinitz Formation (Lower Miocene, Eggenburgian) in the Alpine-Carpathian Foredeep (NE Austria). Austrian Journal of Earth Sciences, 104:81–96.

Pollard, J.E.; Goldring, R. & Buck, S.G. 1993. Ichnofabrics containing Ophiomorpha: significance in shallow-water facies interpretation. Journal of the Geological Society, 150:149–164. doi:10.1144/gsjgs.150.1.0149

Pons, J.M.; Vicens, E.; Oviedo, A.; Aguilar, J.; García-Barrera, P. & Alencáster, G. 2013. The rudist fauna of the Cárdenas Formation, Maastrichtian, San Luis Potosí State, Mexico. Journal of Paleontology, 84:726–754. doi:10.1666/12-116

Ríos-Vázquez, J.R. & Maldonado-Sarabia, R.C. 2016. Carta geológico-minera Ríoverde F14-C17, estado de San Luis Potosí,

Page 8: MARGINAL MARINE TRACE FOSSILS FROM THE CÁRDENAS … · Palma-Ramírez et al. – Marginal marine trace fossils from the Cárdenas Formation 93 Palaeophycus Hall, 1847 Palaeophycus

96 Revista Brasileira de Paleontologia, 22(2), 2019

scale 1:50000. Pachuca, Hidalgo, México. Servicio Geológico Mexicano, 78 p.

Santamaría-Orozco, D.; Arenas-Partida, R. & Escamilla-Herrera, A. 1990. Normalización de la nomenclatura estratigráfica en las cuencas mesozoicas de México (Etapa I: Zona Norte. Cretácico). Mexico City, Instituto Mexicano Del Petróleo, 140 p.

Saunders, T. & Pemberton, S.G. 1990.Trace fossils and sedimentology of the Appaloosa Sandstone: Bearpaw-Horseshoe Canyon Formation Transition, Dorothy, Alberta. Calgary, Canadian Society of Petroleum Geologists, 69 p.

Savdra, C.E. 2009. Taphonomy of trace fossils. In: W. Miller (ed.) Trace fossils. Concepts, problems, prospects, Elsevier, p. 92–109.

Schafhauser, A.; Götz, S.; Baron-Szabo, R. & Stinnesbeck, W. 2003. Depositional environment of coral-rudist associations in the Upper Cretaceous Cardenas Formation (Central Mexico). Geologica Croatica, 56:187–198.

Schafhauser, A.; Götz, S. & Stinnesbeck, W. 2007. Rudist decline in the Maastrichtian Cardenas Formation (East-central Mexico). Palaeogeography, Palaeoclimatology, Palaeoecology, 251:210–221. doi:10.1016/j.palaeo.2007.03.047

Seilacher, A. 2007. Trace fossil analysis. 1st ed. Heidelberg, Springer-Verlag, 226 p. doi:10.1007/978-3-540-47226-1

Šimo, V. & Olšavský, M. 2007. Diplocraterion parallelum Torrell, 1870, and other trace fossils from the Lower Triassic of the Drienok Nappe in the Western Carpathians, Slovakia. Bulletin of Geosciences, 82:165–173. doi:10.3140/bull.geosci.2007.02.165

Singh, R.K.; Rodríguez-Tovar, F.J. & Ibotombi, S. 2008. Trace Fossils of the Upper Eocene-Lower Oligocene Transition of the Manipur Indo-Myanmar Ranges (Northeast India). Turkish Journal of Earth Science, 17:821–834.

Tiwari, R.P.; Rajkonwar, C.; Lachwimawii; Lalnuntluanga, P.; Malsawa, J.; Ralte, V.R. & Patel, S.J. 2011. Trace fossils from Bhuban Formation, Surma Group (Lower to Middle Miocene) of Mizoram India and their palaeonvironmental significance. Journal of Earth System Science, 6:1127–1143.

Torell, O.M. 1870. Petrificata Suecana Formation is Cambricae. Lunds Universitets Årskrift, 6:1–14.

Vega, F.J.; Feldmann, R.M. & Sour-Tovar, F. 1995. Fossil crabs (Crustacea: Decapoda) from the Late Cretaceous Cárdenas Formation, east-central Mexico. Journal of Paleontology, 69:340–350. doi:10.1017/S0022336000034661

Zimbrón-Uresti, H.I. & Alvarado-Valdez, G. 2015. Caracterización de icnofacies de la Formación Cárdenas en la localidad La Calzada, municipio de Cd. del Maíz, 61-62. In: CONGRESO NACIONAL DE PALEONTOLOGÍA, 16, 2015. Libro de resúmenes, Chihuahua, p. 61–62.

Zimbrón-Uresti, H.I. 2016.Caracterización de ichnofacies de la Formación Cárdenas en la localidad de La Calzada, municipio de Cd. del Maíz. Ingeniería en Geología, Universidad Autónoma de San Luis Potosí, Bachelor’sthesis, 126 p.

Received in 19 December, 2018; accepted in 21 May, 2019.