march 1 li yin kwan, jess building services and system case study lloyds building 1978-86, london...

50
MArch 1 Li Yin Kwa n, Jess Building Services and System Case Study Lloyds Building 1978-86, London Richard Rogers cover

Upload: mario-tabb

Post on 14-Dec-2015

229 views

Category:

Documents


0 download

TRANSCRIPT

MArch 1 Li Yin Kwan, Jess

Building Services and System Case Study

Lloyds Building 1978-86, LondonRichard Rogers

cover

General information

Lloyds Building 1978-86, London

Client: Corporation of Lloyd's of London

Bussiness nature: Insurance

Design Team:

Richard Rogers Partnership

Structural Engineer:

Ove Arup & Partners

Services Engineer:

Ove Arup & Partners

Quantity Surveyor:

Monk Dunstone Mahon & Sears

Lighting:

Friederich Wagner of Liccttehnische Planung

Acoustics:

Sandy Brown Associates

site

Site description

The Lloyds Building is located on Leadenhall Street in the heart of the financial district of the city of London. The site is awkwardly shaped due to the medieval character of London’s street plan. Typical of medieval streets, the streets surrounding the Lloyds Building are tight and winding, providing a sharp contrast between solid and void, between building and street.

Lloyds Building 1978-86, London

Description

The Lloyds Building, consisting of twelve stories to the north, stepping down to six stories to the south, was a replacement for the previous buildings which Lloyds of London occupied but found to be too small for its continued growth.

Presently, the Lloyds Building with its 52,200 square metres gross area (37,500 square metres net area) is a 66 percent increase over the Cooper buildings it replaced. "The Room" takes all the area of the ground floor and extends into the upper second, third, and fourth floors. Office spaces take up the remaining upper floors.

General information

Requirements

The Room – required large open adaptive space

Dating back to the 17th century, Lloyds of London has today transformed itself into a modern market place operating on the principles of a traditional market. Composed of a society of underwriters, each having their individual stall in the Lloyd's market, the efficiency and success of Lloyd's depends on the interaction between individuals and in the contact gained from working in a large open space, an open market, called "The Room".

Expansion – continue growth leads to need of expansion and flexible structural and services layout

The Corporation of Lloyds of London had already moved several times in attempt to suit its continued growth before acquiring the site on Leadenhall Street in the 1920’s. During the World War II, German bombs flattened the adjacent sites; however, the Cooper building in which Lloyds resided survived. In 1950, Lloyds, foreseeing a further need for expansion bought the surrounding sites and began to build the "new" Lloyds. This new building, completed in 1958, was linked to the 1928 building by a 38-foot bridge spanning over Lime Street.Continued growth of Lloyds quickly led them to reevaluate their situation and again look for ways to expand. By the 1960s and 1970s, the 1958 building was already too small and Lloyds now began to look at 1928 building as a possibility in meeting their expansionist ideals. The 1928 building ultimately became their solution. Although listed (grade II) by the government, it was allowed by the City to be demolished in 1981 in place of the current Lloyds Building, which was completed in 1986.

General information

Climatic Summary

Latitude: 51 09 N

Longitude: 000 11 W

Elevation: 62 m

London has a relatively cool climate year round. Temperatures range from 22 degrees Celsius in the summer to 0 degrees Celsius in the winter. London receives substantial amounts of precipitation throughout the year.

The sky conditions are largely overcast and the wind comes primarily from the southwest with a speed of

approximately 10 knots.

Considerations

-heat loss to outside

-Interior temperature

Climate

Strategy

Strategic diagram for services

-use of natural light while with insulation-Consideration of the future need of electronics facilities-Growth

Services

Natural light

Circulation route – staircases & elevators

Utilities rooms – generator room, air handling units, water tank, services shaft, lavatories

Piping – supply/ return air duct, water supply, drainage, lighting, fire service piping

Services

Strategy 1

Strategy 2

break1

Strategy 1

Strategy 1 – natural lighting

Strategy 1 - Natural lighting

Stepping Form

The Lloyds Building, consisting of twelve stories to the north, stepping down to six stories to the south, sunlight penetration thus utilized.

the incorporation of the atrium

The atrium was a key feature in the reduction of the loads coming from lighting. The atrium increases in volume and surface area as it progresses toward the south.

The office levels increase as the progress northward allowing a large surface area for diffused light coming from the north.

A significant amount of natural lighting reaching down into "The Room" demonstrates the success in the design of the atrium.

Furthermore, every location in the building is located within 7 meters from a natural source of light.

Break 2

Strategy 2

Services data

Preliminary Sizing of Mechanical Systems

Preliminary estimates indicate that the Lloyd's Building with a 500,000 sq. ft. gross area would require the following sizing in environmental control systems.

Cooling capacity: 5250 Mcal/secTotal space for boiler and chilled water plant: 1000 sq.mSpace for cooling towers: 110 sq.mCooling air volume: 148 cu.m/secArea of main supply or return ducts: 18 sq.mArea of branch supply or return ducts: 29 sq.mArea of fan rooms: 950 sq.mArea of fresh air louvers: 117 sq.m

Served & servant

Served & servant

Strategy 2 – served & serva

nt

Strategy 2 – the served and servant

It was Kahn’s notion of ‘served’ and ‘servant’ spaces inspired Rogers. In the case of Llyods, servant spaces concentrate in towers.

Served zone

Servant towers with incorporation of raised flooring system and ceiling viod

Servant tower –pl

an

Served zone

Servant towers with incorporation of raised flooring system and ceiling void

The services towers, 3 of them principally for fire fighting and escape.

The other 3 for lifts, lavatories and risers, are the visual expression of the Kahnian doctrine of ‘served and servant spaces’

Tower – vertical planning

The towers form a flexible framework for the ventilation plant, lifts, service risers and lavatories (all the 33 lavatory units were manufactured and fitted out) attached to them.

Four towers carry major plant-rooms, with mains services running vertically down the towers and connected into each level of the building.

The largest services duct contained the air-conditioning, with lesser duct for water, drains, power and electronics

The towers carry majors plant rooms on top

Main services running vertically down the towers

Tower – detailed l

ayout

Typical detailed layout services tower

All the 33 prefabricated lavatory pods were brought to the site on trucks and then hoisted into position prior to linking up to the service riser

Access and escape routes were provided by means of lifts and staircases

service risers with ducts for water, drains, power and electronics running vertically down the towers and connected into each level of the building

The largest services duct contained the air-conditioning running vertically down the towers and connected into each level of the building.

Served zone

integration

Integration

Raised fl & ceiling void-

section deatil

Sectional detail – services ALUZINC duct extracting air through light fittings

Insulated stainless steel ‘fish tail’ extract duct

Anodized aluminum cladding with triple glazing and ventilation cavity

Clear double glazed window operable at office

Extruded aluminum grille

600x600mm lightweight concrete filled steel floor tiles on pedestals

Insulated supply air duct

350mm deep raise floor services plenum

Supply ductworks

Extracted ductworks

Anodized aluminum sandwich panel, 1hr FRP

440mm deep service void

Sprinkler head

Silver aluminum light spill ring

Black painted spun aluminum luminaries shield

Sub-Air conditioning

Air conditioning

Air cond. & heat cycle1

Air conditioning system

Supply ductworks

Conditioned air is distributed through a sub-floor plenum into the offices

stale air is extracted from above through the multi-function luminaries

ALUZINC duct extracting air through light fittings

The extracted air is passed to the perimeter of the building and forced through the triple-layered exterior glazing – ensuring an almost zero heat loss from the offices during the winter and reducing heat gain in summer.

Extracted ductworks

The operable window allows individuals the ability to "acquire" fresh air if the feel it necessary. The placement of the window encourages individuals to work while sitting rather than standing since that is where the views are held. It also allows interior light to be reflected back into the interior during the night and diffuses direct sunlight during the day. The need to take mechanical systems into careful consideration when designing energy conscious builidings is made evident when one compares the the overall space that they consume in a building in relation to the human being

Clear double glazed window operable at office

Air cond.

The largest services duct contained the air-conditioning running vertically down the towers and connected into each level of the building.

Served zone

Air cond. & heat cycle2

The heat cycleHeat from the return air is collected in the basement sprinkler tanks and re-used. The internal concrete soffits and slabs are ‘heat sinks’, absorbing heat during occupation and being cooled off overnight using naturally chilled night air.

This allow cooling to follow a 24-hour cycle and reduces the peak cooling requirement.

Air handling equipment is located at basement level and in four service tower plant-rooms.

Strategy 2 -lower Basement plant room

Lower basement room provided services for lower basement level to G/F level

boiler

Sub-station

generators

chillers

Air handling plants

Sub-lighting

Lighting

Lighting

Multi-functioned luminaries

Lighting

Every location in the building is located within 7 meters from a natural source of light.

Furthermore, a significant amount of natural lighting reaching down into G/F through the atrium demonstrates the success in the design of the atrium.

Natural light come through window

triple glazing and ventilation cavity ensuring an almost zero heat loss from the offices during the winter and reducing heat gain in summer.

Sub-power&ele

Power and electronic

Power and electronic

Power and electronic

350mm deep raise floor services plenum housed the power and electronic conduit

Power and electronic

service risers with ducts for water, drains, power and electronics running vertically down the towers and connected into each level of the building

Served zone

Power and electronic

Sub-fire

Fire protection

Fire protection

Anodized aluminum sandwich panel, 1hr FRP

Sprinkler head

Fire protection

Sprinkler system was hold in the ceiling void and sprinkler heads were incorporated into the multi-functioned luminaries

Fire protection

Access and escape routes were provided by means of lifts and staircases

Served zone

Structural system

Structural system

description

Description

The basic form of the building is that of a large atrium, surmounted by steel and glass arched roof, surrounded by galleries (12levels of them on the north side) which contain the bulk of the underwriting space and a variable a mount of lettable space, depending on the changing accommodation need of the Llyods market itself.

 

The floors were constructed on reinforced concrete columns on a 10.8x18metre grid. The load is transferred between the columns and the floor beams by means of a pre-casted bracket. Pre-cast ‘yokes’ cast into inverted U-beam transmit the loads of the floor grid to the perimeter columns via the brackets.

The great columns, both the exterior of the building and within the atrium, stand proud of the cladding, increasing the highly articulated ‘Gothic’ effects of Llyods. External cross-braces are actually made of steel tube concrete grid open to view.

Atrium Light steel roof

Design of the atrium roof

A lightweight contrast to the concrete superstructure of the building

floor and column

Columns, Beams and Floors

The floors were constructed on reinforced concrete columns on a 10.8x18metre grid. The load is transferred between the columns and the floor beams by means of a pre-casted bracket. Pre-cast ‘yokes’ cast into inverted U-beam transmit the loads of the floor grid to the perimeter columns via the brackets. The great columns, both the exterior of the building and within the atrium, stand proud of the cladding, increasing the highly articulated ‘Gothic’ effects of Llyods. External cross-braces are actually made of steel tube concrete grid open to view.

By using beams with parallel sides and sharp arises Rogers emphasizes that the floor is a grid not a solid, coffered slab

The waffle slab

In situ concrete was latter substituted. U-beams transfer the loads of the floor grid to the columns via a bracket system

Main concrete columns

concrete bracket

‘Yokes’

assemble

Pre-cast concrete bracket and ‘yoke’ assemblies

Pre-cast concrete bracket

yoke

services support

Services supports

Axonometrics of the pre-cast concrete ‘kit of parts’ for the sevices towers

section

Sectional detail - structure

Pre-cast concrete bracket

In-situ concrete column

Painted ductwork support bracket

In situ concrete beam

Permanent steel formwork incorporating acoustic panel

100mm in situ concrete slab

Anodized Aluminum wind bracing

Photos

Photos

photos- Overall

view

Photos – atrium

A significant amount of natural lighting reaching down into G/F demonstrates the success in the design of the atrium.

Photos -connection of the service

s

mains services running vertically down the towers and connected into each level of the building through the raised floor and ceiling void.

photos - services

The layers of structure, services and cladding articulate the elevation

Photos – raised flooring system & ceiling v

oid

Servant towers with incorporation of raised flooring system and ceiling void

photos– in situ concrete column & pre-ca

st concrete bracket

Photos – prefabricated l

av.

All the 33 prefabricated lavatory pods were brought to the site on trucks and then hoisted into position prior to linking up to the service riser

Conclusion

Undoubtedly, the Llyods building demonstrated Richard Rogers and his engineers’ very best skill in handling the appropriate building sevices and structural systems.

It suits very well of the need of growthAnd the future development of IT, thus the need of electronics spaces…….

It is overwhelming

Thanks Mr. Rogers. Llyods taught us a lot.

conclusion

‘ A house is a machine for living in.’ Le Corbusier

However, is that Le Corbusier taught us to design like a machine ?

‘Do not forget architecture.’

Thanks Mr. Rogers. Llyods taught us a lot.