mapping s

49
Mathematical Foundations -1- Mappings © John Riley October 11, 2013 Mappings 

Upload: lionshare148

Post on 04-Jun-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Mapping s

8/13/2019 Mapping s

http://slidepdf.com/reader/full/mapping-s 1/49

Mathematical Foundations  -1- Mappings 

© John Riley October 11, 2013

Mappings 

Page 2: Mapping s

8/13/2019 Mapping s

http://slidepdf.com/reader/full/mapping-s 2/49

Mathematical Foundations  -2- Mappings 

© John Riley October 11, 2013

Mappings:  transformations, correspondences, functions

Linear Transformationn m

 

11 1

1

. .. . . .

[ ]. . . .

. .

n

ij

m mn

a a

a

a a

A  

Anm n

dimensional array. We call this array a matrix.

Special matrices:

1   n  matrix 11 1[ ,..., ]na a   a row vector 1m  matrix

11

1

.

.

.

m

a

a

  a column vector

It is often useful to think of an m n  matrix as either a row of n column vectors or a column of m row

vectors

Page 3: Mapping s

8/13/2019 Mapping s

http://slidepdf.com/reader/full/mapping-s 3/49

Mathematical Foundations  -3- Mappings 

© John Riley October 11, 2013

Linear transformation

Linear combination of column vectors

11

1

.

.

.

m

a

a

,

12

2

.

.

.

m

a

a

,…,

1

.

.

.

n

mn

a

a

  y =

11

1

1

.

.

.

m

a

 x

a

+

12

2

2

.

.

.

m

a

 x

a

+…+

1

.

.

.

n

n

mn

a

 x

a

 

We write

 y xA  where1

n

i ij j

  j

 y a x

 

The inner product of the i-th row and the vector x 

Page 4: Mapping s

8/13/2019 Mapping s

http://slidepdf.com/reader/full/mapping-s 4/49

Mathematical Foundations  -4- Mappings 

© John Riley October 11, 2013

Linear Transformations2 2  

For any pair of column vectors

11

21

a

a

,

12

22

a

a

 

Let y be a linear combination of these two column vectors.

1 11 12 11 1 12 221

2 21 22 21 1 22 2

 y a a a x a x x x

 y a a a x a x

  (*)

Graphically,

scale up the first vector by1

 x ,

scale up the second by2

 x  

and then add the two resulting vectors as shown.

Page 5: Mapping s

8/13/2019 Mapping s

http://slidepdf.com/reader/full/mapping-s 5/49

Mathematical Foundations  -5- Mappings 

© John Riley October 11, 2013

For any set 2 X    the linear combinations transform all the elements of X  into a set 2

Y    

Linear transformation

We write the linear transformation as follows.

 y xA   or1 11 12 1

2 21 22 2

 y a a x

 y a a x

 

Theni

 y  is the inner product of the row vector 1 2i ia a  and the column vector

1

2

 x

 x

 

1 11 12 1 11 1 12 2

2 21 22 2 21 1 22 2

 y a a x a x a x

 y a a x a x a x

 

Page 6: Mapping s

8/13/2019 Mapping s

http://slidepdf.com/reader/full/mapping-s 6/49

Mathematical Foundations  -6- Mappings 

© John Riley October 11, 2013

Compound linear transformations

Consider the linear transformations  y x A  and  z yB  

  1

1 2

2

i i i

 y

 z b b  y

    ,

1 11 1 12 2

2 21 1 22 2

 y a x a x

 y a x a x

.

Then

  11 1 12 2

1 2 1 11 2 21 1 1 12 2 22 2

21 1 22 2

( ) ( )i i i i i i i

a x a x z b b b a b a x b a b a x

a x a x

    1

1 11 2 21 1 12 2 22

2

i i i i

 xb a b a b a b a

 x

 

 

Therefore

1 11 11 12 21 11 12 12 22 1

2 21 11 22 21 21 12 22 22 2

 z b a b a b a b a x

 z b a b a b a b a x

.

Thus the compound mapping is the linear transformation

 z xC  where

21

1 2

2 1

 j

ij i i ik kj

 j k 

a

c b b a ba

  .

Inner product of i-th row of B and j-th column of A

We write the compound mapping as C=BA.

Page 7: Mapping s

8/13/2019 Mapping s

http://slidepdf.com/reader/full/mapping-s 7/49

Mathematical Foundations  -7- Mappings 

© John Riley October 11, 2013

Linear Transformationsn n

 

Matrixes are square

Identity matrix n= 2

1 0

0 1

I  

 Note that, by the rules of matrix multiplication, the identity matrix maps x onto itself.

 x xI  

Transpose of a square matrix

Flip rows and columns

The ith row becomes the ith colum

11 12

21 22

a a

a a

  A .

Transpose

11 21

12 22

a a

a a

  

A  

Page 8: Mapping s

8/13/2019 Mapping s

http://slidepdf.com/reader/full/mapping-s 8/49

Mathematical Foundations  -8- Mappings 

© John Riley October 11, 2013

Determinant of a matrix 

n=2

11 12

21 22

a a

a a

  A  

Delete a row and column and you get a numberij

m  .

The matrix of these numbers is

11 12 22 21

21 22 12 11

m m a a

m m a a

 

Convert this into a matrix of cofactorsij

c  where ( 1)i j

ij ijc m

 

2 311 12 22 2111 12

3 421 22 12 1121 22

( 1) ( 1)

( 1) ( 1)

c c a am m

c c a am m

 

Then the determinant of A is defined as follows:

1 1

n n

ij ij ij ij

  j i

a c a c

A  

It is a lovely theorem that it does not matter which row or column of A that we pick.

Page 9: Mapping s

8/13/2019 Mapping s

http://slidepdf.com/reader/full/mapping-s 9/49

Mathematical Foundations  -9- Mappings 

© John Riley October 11, 2013

Example:

6 2

8 3

A ,

11 12

21 22

3 8

2 6

m m

m m

   

 

2 311 12   11 12

3 421 22   21 22

3 8( 1) ( 1)

2 6( 1) ( 1)

c c   m m

c c   m m

       

C  

1 1

2

n n

ij ij ij ij

  j i

a c a c

A  

Page 10: Mapping s

8/13/2019 Mapping s

http://slidepdf.com/reader/full/mapping-s 10/49

Mathematical Foundations  -10- Mappings 

© John Riley October 11, 2013

n=2

11 12

21 22

a a

a a

 

A  

Eliminating a row and column yields a number so the minors are easily computed.

The matrix of minors is

11 12 22 21

21 22 12 11

m m a a

m m a a

 

The matrix of cofactors is

11 12 22 21

21 22 12 11

c c a a

c c a a

C .

Try any row or column and you will be able to confirm that

11 22 21 12a a a a A  

Page 11: Mapping s

8/13/2019 Mapping s

http://slidepdf.com/reader/full/mapping-s 11/49

Mathematical Foundations  -11- Mappings 

© John Riley October 11, 2013

n=3

Consider the ij-th minor matrix created by deleting the i-th row and  j-th column of A. This is a 2 2

matrix. Letij

m  be the determinant of this minor matrix.

Define the cofactor ( 1)ij ij

c m .

Then the determinant of A is defined as follows:

1 1

n n

ij ij ij ij

  j i

a c a c

A  

Again it does not matter which row or column of A that we pick.

A second feature of the matrix of cofactors is that if you compute the sum product of the k -th row

where k i  and the ith row of cofactors, then the product is zero. The same is true for columns.

1

0,n

kj i j

 j

a c k i

,

1

0,n

ik ij

i

a c k j

 

Page 12: Mapping s

8/13/2019 Mapping s

http://slidepdf.com/reader/full/mapping-s 12/49

Mathematical Foundations  -12- Mappings 

© John Riley October 11, 2013

Inverse of a matrix

C = matrix of cofactors

11 12 22 21

21 22 12 11

c c a a

c c a a

C .

Then the transposed matrix of cofactors is

11 21 22 11

12 22 21 11

c c a a

c c a a

  C  

 Now consider the product of A  and C  

11 12 11 21 11 12 22 11

21 22 12 22 21 22 21 11

0

0

a a c c a a a a

a a c c a a a a

     

AAC

11 21 11 12 22 11 11 12

12 22 21 22 21 11 21 22

0

0

c c a a a a a a

c c a a a a a a

     

A

CA A  

Finally, if 0A  define22 111

21 11

1 1   a a

a a

   

A CA A

.

Page 13: Mapping s

8/13/2019 Mapping s

http://slidepdf.com/reader/full/mapping-s 13/49

Mathematical Foundations  -13- Mappings 

© John Riley October 11, 2013

22 111

21 11

1 1   a a

a a

   

A CA A

.

22 111

21 11

1 1   a a

a a

 

  A C

A A .

Then

1   1 A A C A I

A and 1   1

AA AC IA

 

Mapping

 y xA  

Inverse mapping

1 1 y x x x

A A A I  

We call 1   1A C

A the inverse matrix.

Page 14: Mapping s

8/13/2019 Mapping s

http://slidepdf.com/reader/full/mapping-s 14/49

Mathematical Foundations  -14- Mappings 

© John Riley October 11, 2013

Linear independence of the columns of an invertible matrix

Proof by contradiction.

11 1 1 11 1

1

1 1

. .

. . . . . . ....

. . . . . . .

. .

n n

n

n nn n n nn

a a x a a

 x x x

a a x a a

A  

If the columns are linearly dependent then, for some 0 x   , 0 x A  .

Since A  is invertible, 1 10 0 x x

A A A  . A contradiction.

Exercise:

0 1 1

1 0 1

1 1 0

A  

(a)  Compute the nine minor determinants of A and hence compute A .

(b)  Use your results to obtain C and hence C  and hence obtain the inverse matrix.

Page 15: Mapping s

8/13/2019 Mapping s

http://slidepdf.com/reader/full/mapping-s 15/49

Mathematical Foundations  -15- Mappings 

© John Riley October 11, 2013

Computing the inverse matrix

Example:

1 1 1

1 2 0

0 1 3

A ,

11

2 0

1 3m    ,

12

1 0

0 3m   ,

13

1 2

0 1m    

21

1 1

1 3m    , 22

1 1

0 3m   , 23

1 1

0 1m    

31

1 1

2 0m    ,

32

1 1

1 0m   ,

33

1 1

1 2m    

6 3 1

[ ] 2 3 12 1 1

ijm

 

6 3 1

[ ] 2 3 12 1 1

ijc

C

 

6 2 2

3 3 11 1 1

 

C  

([ th row of [ ],[ th row of [ ]) 4ij iji i sumproduct a c A  

Page 16: Mapping s

8/13/2019 Mapping s

http://slidepdf.com/reader/full/mapping-s 16/49

Mathematical Foundations  -16- Mappings 

© John Riley October 11, 2013

Inverse of A  

1 1 1

1 2 0

0 1 3

A

 

1

6 2 2

1 1 3 3 14

1 1 1

A CA

 

As may readily be checked,

-1A A = I  

M h i l F d i M i

Page 17: Mapping s

8/13/2019 Mapping s

http://slidepdf.com/reader/full/mapping-s 17/49

Mathematical Foundations  -17- Mappings 

© John Riley October 11, 2013

Function 1

( ) ( ,..., )n

  f x f x x  

single valued mapping from nS   

Increasing Function

The function ( ) f x  is increasing over the set X  if for any  x and  x X   

( ) ( ) x x f x f x  

Strictly increasing function

The function ( ) f x  is increasing over the set X  if for any  x and  x X   

( ) ( ) x x f x f x  

M h i l F d i M i

Page 18: Mapping s

8/13/2019 Mapping s

http://slidepdf.com/reader/full/mapping-s 18/49

Mathematical Foundations  -18- Mappings 

© John Riley October 11, 2013

Class Exercise:

(a) If a function : f  

   is differentiable and strictly increasing at 0 x , does it follow that the slope

of the function is strictly positive at 0 x ?

(b) If the function :  n

 f      is increasing at 0 x in all of its arguments is it an increasing function?

** 

M th ti l F d ti M i

Page 19: Mapping s

8/13/2019 Mapping s

http://slidepdf.com/reader/full/mapping-s 19/49

Mathematical Foundations  -19- Mappings 

© John Riley October 11, 2013

Class Exercise:

(a) If a function : f  

   is differentiable and strictly increasing at 0 x , does it follow that the slope

of the function is strictly positive at 0 x ?

(b) If the function :  n

 f      is increasing at 0 x in all of its arguments is it an increasing function?

(a)  Consider the following function

3 0( ) , 0 f x x x  

M th ti l F d ti M i

Page 20: Mapping s

8/13/2019 Mapping s

http://slidepdf.com/reader/full/mapping-s 20/49

Mathematical Foundations  -20- Mappings 

© John Riley October 11, 2013

Class Exercise:

(a) If a function : f  

   is differentiable and strictly increasing at 0 x , does it follow that the slope

of the function is strictly positive at 0 x ?

(b) If the function :  n

 f      is increasing at 0 x in all of its arguments is it an increasing function?

(a) Consider the following function

3 0( ) , 0 f x x x  

(b) Consider the following function 2: f  

   

4 2 2 4

1 1 2 2( ) 4 f x x x x x  

Suppose

0

(0,0) x   . Both

4

1 1( , 0) f x x

 and

4

2 2(0, ) f x x

are strictly increasing functions on

2

 .However if

1 2( , ) ( , ) x x z z   then

4( , ) 2 f z z z  . Thus the function f  is definitely not an increasing

function.

M th ti l F d ti 21 M i

Page 21: Mapping s

8/13/2019 Mapping s

http://slidepdf.com/reader/full/mapping-s 21/49

Mathematical Foundations  -21- Mappings 

© John Riley October 11, 2013

Mathematical Foundations 22 Mappings

Page 22: Mapping s

8/13/2019 Mapping s

http://slidepdf.com/reader/full/mapping-s 22/49

Mathematical Foundations  -22- Mappings 

© John Riley October 11, 2013

Special functions

Linear Function ( )l x a x  

Quadratic form ( )q x x x   A   where A is a square matrix

WOLOG we may assume that A is symmetricij ji

a a  

11 12 1 11 1 12 2   2 2 2 2

1 2 1 2 11 1 21 21 1 2 22 2 11 1 12 1 2 22 221 22 2 21 1 22 2

[ ] [ ] ( ) 2a a x a x a x

 y x x x x a x a a x x a x a x a x x a xa a x a x a x

 

Quadratic Function ( ) f x k a x x x   A  

Equivalently, ( ) f x k a x x x   A  

Mathematical Foundations 23 Mappings

Page 23: Mapping s

8/13/2019 Mapping s

http://slidepdf.com/reader/full/mapping-s 23/49

Mathematical Foundations  -23- Mappings 

© John Riley October 11, 2013

Special functions 

Linear Function ( )l x a x  

Quadratic form ( )q x x x   A   where A is a square matrix

WOLOG we may assume that A is symmetricij ji

a a  

11 12 1 11 1 12 2   2 2 2 2

1 2 1 2 11 1 21 21 1 2 22 2 11 1 12 1 2 22 221 22 2 21 1 22 2[ ] [ ] ( ) 2

a a x a x a x

 y x x x x a x a a x x a x a x a x x a xa a x a x a x

 

Quadratic Function ( ) f x k a x x x   A  

Equivalently, ( ) f x k a x x x   A  

Mathematical Foundations 24 Mappings

Page 24: Mapping s

8/13/2019 Mapping s

http://slidepdf.com/reader/full/mapping-s 24/49

Mathematical Foundations  -24- Mappings 

© John Riley October 11, 2013

Negative definite matrix

A symmetric matrix A with the property that ( ) 'q x x x   A is strictly negative for all 0. x  

Consider n=2 2 2

11 1 12 1 2 22 2( ) 2q x x x a x a x x a x A  

?

**

Mathematical Foundations 25 Mappings

Page 25: Mapping s

8/13/2019 Mapping s

http://slidepdf.com/reader/full/mapping-s 25/49

Mathematical Foundations  -25- Mappings 

© John Riley October 11, 2013

Negative definite matrix

A symmetric matrix A with the property that ( ) 'q x x x   A is strictly negative for all 0. x  

Consider n=2 2 2

11 1 12 1 2 22 2( ) 2q x x x a x a x x a x A  

 Note first that11

  0a    (set2   0 x   )

*

Mathematical Foundations 26 Mappings

Page 26: Mapping s

8/13/2019 Mapping s

http://slidepdf.com/reader/full/mapping-s 26/49

Mathematical Foundations  -26- Mappings 

© John Riley October 11, 2013

Negative definite matrix

A symmetric matrix A with the property that ( ) 'q x x x   A is strictly negative for all 0. x  

Consider n=2 2 2

11 1 12 1 2 22 2( ) 2q x x x a x a x x a x A  

 Note first that11

  0a    (set2   0 x   )

Complete the square 2 2 2

1 1 1( ) 2 x x x     

22 2 2 212 12 12

11 1 1 2 2 22 2

11 1 1 11

( ) ( 2 ( ) ) ( )a a a

q x a x x x x a xa a a

 

2 2 21211 1 2 11 22 12 2

11 11

1( ) ( )

a

a x x a a a x

a a

 

Then ( ) 0q x    for all 0 x    if and only if11

  0a    and 2

11 22 12  0a a a  

Mathematical Foundations -27- Mappings

Page 27: Mapping s

8/13/2019 Mapping s

http://slidepdf.com/reader/full/mapping-s 27/49

Mathematical Foundations  -27- Mappings 

© John Riley October 11, 2013

Negative semi-definite matrix

A symmetric matrix A with the property that ( ) 'q x x x   A is negative for all  x .

n=2: ( ) 0q x    for all  x  if and only if11 22

0, 0a a  and 2

11 22 12  0a a a  

Mathematical Foundations -28- Mappings

Page 28: Mapping s

8/13/2019 Mapping s

http://slidepdf.com/reader/full/mapping-s 28/49

Mathematical Foundations  28 Mappings 

© John Riley October 11, 2013

Negative semi-definite matrix

A symmetric matrix A with the property that ( ) 'q x x x   A is negative for all  x .

n=2: ( ) 0q x    for all  x  if and only if11 22

0, 0a a  and 2

11 22 12  0a a a  

Case (i)11

  0a    

2 2 21211 1 2 11 22 12 2

11 11

1( ) ( ) ( )

aq x a x x a a a x

a a  

Then a necessary and sufficient condition is11

  0a    and 2

11 22 12  0a a a  

Mathematical Foundations -29- Mappings

Page 29: Mapping s

8/13/2019 Mapping s

http://slidepdf.com/reader/full/mapping-s 29/49

Mathematical Foundations  29 Mappings 

© John Riley October 11, 2013

Negative semi-definite matrix

A symmetric matrix A with the property that ( ) 'q x x x   A is negative for all  x .

n=2: ( ) 0q x    for all  x  if and only if11 22

0, 0a a  and 2

11 22 12  0a a a  

Case (i)11   0a    

2 2 21211 1 2 11 22 12 2

11 11

1( ) ( ) ( )

aq x a x x a a a x

a a  

Then a necessary and sufficient condition is 11   0a    and2

11 22 12   0a a a  

Case (ii) 11

  0a    

Exercise: Complete the proof.

Mathematical Foundations -30- Mappings

Page 30: Mapping s

8/13/2019 Mapping s

http://slidepdf.com/reader/full/mapping-s 30/49

Mathematical Foundations  30 Mappings 

© John Riley October 11, 2013

Limit of a function 

The function :   n f S   has a limit L at 0 x S   if, for any 0   , there exists a deleted

neighborhood 0( , )

 D N x       such that if 0

( , ) D

 x N x S     then ( ) f x L      .

Exercise: Suppose2

2

1 , 1( )

2 , 1

 x x f x

 x x

   

 .

(a)  Does the function have a limit at 0 1 x    if [0,2]S   ?

(b)  What if [0,1]S   ?

Continuous function

Let  f   be a function defined on nS   and suppose 0

 x S  . Then  f   is continuous at 0 x  if it has a

limit at 0 x  equal to 0( ) f x .

Mathematical Foundations  -31- Mappings 

Page 31: Mapping s

8/13/2019 Mapping s

http://slidepdf.com/reader/full/mapping-s 31/49

3 pp g

© John Riley October 11, 2013

Example 1: A function : f      with no limit at 02 x    

Consider some small   .

For all x in the interval (2 ,2)   , ( ) f x  is close to 2.

For all x in the interval (2,2 )   , ( ) f x  is close to 4.

Thus the function does not approach a limit L as

 x approaches 02 x   .

2

4

Mathematical Foundations  -32- Mappings 

Page 32: Mapping s

8/13/2019 Mapping s

http://slidepdf.com/reader/full/mapping-s 32/49

pp g

© John Riley October 11, 2013

Example 2: A function :[0,2) (2,4] f      with a limit point at 02 x    

 Note that even though the function is not defined

at 0 2 x   , for all  x  close to 2, ( ) f x  is close to 4.

Thus the limit of the function is 4 L .

KEY POINT:  The function itself need not be defined at 0 x  to have a limit point at 0

 x .

4

Mathematical Foundations  -33- Mappings 

Page 33: Mapping s

8/13/2019 Mapping s

http://slidepdf.com/reader/full/mapping-s 33/49

pp g

© John Riley October 11, 2013

Example 3: A discontinuous function : f      with a limit point

Arguing as in Example 2, the function has a

limit 2 L  at 02 x   . Also 0

( ) f x a .

Therefore the function is discontinuous at 0 x  unless 2a   .

a

2

Mathematical Foundations  -34- Mappings 

Page 34: Mapping s

8/13/2019 Mapping s

http://slidepdf.com/reader/full/mapping-s 34/49

pp g

© John Riley October 11, 2013

Rules of limits: : , :n n f S f S   

Rule 1: Limit of sum = sum of limits

Rule 2: Limit of product = product of limits

We will prove Rule 1 this assuming that1 2, 0 L L   .

We know that for any1 2,   there exist deleted delta neighborhoods 0 0

1 2( , ), ( , ) D D

 N x N x     such that

0

1 1 1 1 1( ) , ( , ) D L f x L x N x S     , 0

2 2 2 2 2( ) , ( , ) D

 L g x L x N x S      

We wish to prove that for any    there exists a deleted delta neighborhood 0( , ) D

 N x      such that

0

1 2 1 2( ) ( ) , ( , ) D L L f x g x L L x N x S     

Mathematical Foundations  -35- Mappings 

Page 35: Mapping s

8/13/2019 Mapping s

http://slidepdf.com/reader/full/mapping-s 35/49

pp g

© John Riley October 11, 2013

We will prove Rule 1 this assuming that1 2

, 0 L L   .

We know that for any1 2

,   there exist deleted delta neighborhoods 0 0

1 2( , ), ( , ) D D

 N x N x    such that

01 1 1 1 1( ) , ( , ) D L f x L x N x S    , 0

2 2 2 2 2( ) , ( , ) D L g x L x N x S     

We wish to prove that for any    there exists a deleted delta neighborhood 0( , )

 D N x       such that

0

1 2 1 2( ) ( ) , ( , ) D L L f x g x L L x N x S      

*

Mathematical Foundations  -36- Mappings 

Page 36: Mapping s

8/13/2019 Mapping s

http://slidepdf.com/reader/full/mapping-s 36/49

© John Riley October 11, 2013

Proof:

We will prove Rule 1

0

1 1 1 1 1( ) , ( , )

 D

 L f x L x N x S    

,

0

2 2 2 2 2( ) , ( , )

 D

 L g x L x N x S    

 

Then

1 1 2 2 1 1 2 2 1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) ( ) L L f x g x L L L L   ,

for all 0( , ) D x N x S     where1 2{ , } Min     

Mathematical Foundations  -37- Mappings 

Page 37: Mapping s

8/13/2019 Mapping s

http://slidepdf.com/reader/full/mapping-s 37/49

© John Riley October 11, 2013

Proof:

We will prove Rule 1

0

1 1 1 1 1( ) , ( , )

 D

 L f x L x N x S    

,

0

2 2 2 2 2( ) , ( , )

 D

 L g x L x N x S    

 

Then

1 1 2 2 1 1 2 2 1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) ( ) L L f x g x L L L L   ,

for all 0( , ) D x N x S     where1 2{ , } Min     

That is,

1 2 1 2 1 2 1 2 1 2 1 2( ) ( ) ( ) ( ) ( ) L L f x g x L L L L   ,

for all 0( , ) D

 x N x S     where1 2

{ , } Min     

Mathematical Foundations  -38- Mappings 

Page 38: Mapping s

8/13/2019 Mapping s

http://slidepdf.com/reader/full/mapping-s 38/49

© John Riley October 11, 2013

Proof:

We will prove Rule 1

0

1 1 1 1 1( ) , ( , )

 D

 L f x L x N x S    

,

0

2 2 2 2 2( ) , ( , )

 D

 L g x L x N x S    

 

Then

1 1 2 2 1 1 2 2 1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) ( ) L L f x g x L L L L   ,

for all 0( , ) D x N x S     where1 2{ , } Min     

That is,

1 2 1 2 1 2 1 2 1 2 1 2( ) ( ) ( ) ( ) ( ) L L f x g x L L L L   ,

for all 0( , ) D

 x N x S     where1 2

{ , } Min     

Choose1

1   2    and1

2   2   .

Then1 2 1 2( ) ( ) L L f x g x L L    

QED

Mathematical Foundations  -39- Mappings 

Page 39: Mapping s

8/13/2019 Mapping s

http://slidepdf.com/reader/full/mapping-s 39/49

© John Riley October 11, 2013

Properties of functions on a set

Some properties of functions must be defined point-wise. When this is the case and the property P  

holds for the function f  at every point in a set S , the function  f   is said to have the property P  on S.

Example 1:1 2

( ) f x x x  is continuous on 2

 (the set of all positive elements of 2 ) because it is

continuous at each point in 2

  .

Example 2:1 2( ) ln  f x x x  is continuously differentiable on 2

 (the set of strictly positive elements of

2 ) because the partial derivatives exist and are continuous at each point in 2

 .

 Note: If the partial derivatives of a function :  n f S    are continuous we write 1 f C  .

Mathematical Foundations  -40- Mappings 

Page 40: Mapping s

8/13/2019 Mapping s

http://slidepdf.com/reader/full/mapping-s 40/49

© John Riley October 11, 2013

However if a property need not be defined point-wise, it is best defined on a set directly.

An increasing function can defined point-wise on a set or directly on the set. To see why

mathematicians take the latter approach consider the following example.

Example 1:

[0,1] [2,3]S    ,, [0,1]

( )5, [2,3]

 x x f x

 x x

 

 .

 Note that the function is strictly increasing at each point in S  however the function is not strictly

increasing on S .

Mathematical Foundations  -41- Mappings 

Page 41: Mapping s

8/13/2019 Mapping s

http://slidepdf.com/reader/full/mapping-s 41/49

© John Riley October 11, 2013

Key foundational theorem for economics

Extreme Value Theorem 

If the function f  is continuous over a compact (i.e. closed and bounded) set nS   , then f  attains its

maximizing and minimizing value at some point in S .

Class exercise:

To see that there may be no maximizing value if S  is not compact and f   is not continuous,

consider the following examples.

(i)  ( ) , [0, 2)  f x x S   

(ii)  ( ) ,  f x x S 

 (the set of positive real numbers)

(iii)  , 1( ) , [0,1]

0, 1

 x x f x S 

 x

 

Mathematical Foundations  -42- Mappings 

Page 42: Mapping s

8/13/2019 Mapping s

http://slidepdf.com/reader/full/mapping-s 42/49

© John Riley October 11, 2013

Exercise: Suppose that   : f S   is continuous and for every 0 x S   there exists a 0     such that for

all 0( , ) x N x      ,0

0

( ) ( )0

 f x f x

 x x

 . If S  is a closed interval, show that f  is strictly increasing on S  .

HINT: If not, then for some 0 x  and 1 0

 x x  , (a) 1 0( ) ( ) f x f x  or (b) 1 0( ) ( ) f x f x  . First consider

case (a) and appeal to the Extreme Value theorem for the interval 0 1[ , ] x x  . Use your conclusion to

obtain a contradiction. 

Mathematical Foundations  -43- Mappings 

Page 43: Mapping s

8/13/2019 Mapping s

http://slidepdf.com/reader/full/mapping-s 43/49

© John Riley October 11, 2013

Correspondence: 

Multi valued mapping

Each point n x X   is mapped into a subset ( )

  m y x    

Example 1: Supply correspondence

6 , [0,10]

( ) 60 12( 10), (10, 20]

, (20, )

q q

C q q q

q

 

The firm solves the following maximization problem.

{ ( ) | }q

 Max pq C q q

 

The set of quantities that solve this problem is written as follows. 

( ) arg { ( ) | }q

 y p Max pq C q q

.

 Note that ( ) y p is not single valued for all prices.

q

Mathematical Foundations  -44- Mappings 

Page 44: Mapping s

8/13/2019 Mapping s

http://slidepdf.com/reader/full/mapping-s 44/49

© John Riley October 11, 2013

Example 2: Demand correspondence

A consumer enjoys ice cream but really loves raspberry ripple.

Each scoop of raspberry ripple (commodity 2) is as good as two scoops of vanilla (commodity 3)

1 2 3 1 2 3( , , ) ln ln(2 )U x x x x x x  

The marginal utilities of the three commodities are

1 1

1U 

 x x

 ,2 2 3

2

2

 x x x

,3 2 3

1

2

 x x x

 

Hence the marginal utilities per dollar are

1 1 1 1

1 1U 

 p x p x

 ,

2 2 2 2 3

1 2 1( )

2

 p x p x x

,

3 3 3 3

1 1U 

 p x p x

.

Mathematical Foundations  -45- Mappings 

Page 45: Mapping s

8/13/2019 Mapping s

http://slidepdf.com/reader/full/mapping-s 45/49

© John Riley October 11, 2013

Case (i)2 3{ | 2 }

r  p P p p p  

Then the marginal utility per dollar is higher for scoops of raspberry so*

3 ( ) 0 x p    

Equating marginal utilities per dollar

1 1 1 1 2 3 2 2

1 1 1 2 1( )

2

U U 

 p x p x p x p x

.

Then spending on each of the other two commodities is half total spending so

*

1 2

( ) ( , ,0)2 2

 I I  x p

 p p .

Case (ii)  2 3{ | 2 }v

 p P p p p  

By an almost identical argument

*

1 3

( ) ( ,0, )2 2

 I I  x p

 p p  .

Mathematical Foundations  -46- Mappings 

Page 46: Mapping s

8/13/2019 Mapping s

http://slidepdf.com/reader/full/mapping-s 46/49

© John Riley October 11, 2013

Case (iii) 3 \b r v p P P P 

 

2 2 3 3

1 1U U 

 p x p x

 

Consumer is indifferent between

0

1 2

( ) ( , ,0)2 2

 I I  x p

 p p , 1

1 3

( ) ( ,0, )2 2

 I I  x p

 p p  and any convex combination.

Thus for b p P    there is a set of maximizing consumption bundles

* 0 1( ) (1 ) ( ) ( ), 0 1 x p x p x p   .

Mathematical Foundations  -47- Mappings 

Page 47: Mapping s

8/13/2019 Mapping s

http://slidepdf.com/reader/full/mapping-s 47/49

© John Riley October 11, 2013

Correspondence

A non-empty set valued mapping   ( ) X      of each value of    into a subset of n

.

Upper hemi-continuous correspondence 

The set valued mapping ( ) X      is upper hemi-continuous at 0   if for any open neighborhood, V   of

0( ) X       there exists a    neighborhood of 0

  , 0( , ) N      , such that ( ) X V     ,for all 0

( , ) N      

Exercise: Explain why the following correspondence is upper hemi-continuous on [0,4]S   . 

[2 ,3 ], 0 2( )[ , 4 ], 2 4

 X      

 

 

Lower hemi-continuous correspondence 

The set valued mapping ( ) X      is lower hemi-continuous at 0   if for any open set V   that intersects

0( ) X      , there exists a     neighborhood of 0

  , 0( , ) N      , such that ( ) X      intersects V for all

0( , ) N     

Mathematical Foundations  -48- Mappings 

Page 48: Mapping s

8/13/2019 Mapping s

http://slidepdf.com/reader/full/mapping-s 48/49

© John Riley October 11, 2013

Consider the examples below. In both cases ( ) X      is an interval. Note that the left hand mapping is

continuous from the right 0   and the second is continuous from the left but neither is continuous.

However the mapping on the left satisfies the conditions for upper hemi-continuity and the one on the

right does not.

The right-hand diagram does, however, satisfy the conditions for lower hemi-continuity while the one

on the left does not.

Upper hemi-continuity Lower hemi-continuity

Mathematical Foundations  -49- Mappings 

Page 49: Mapping s

8/13/2019 Mapping s

http://slidepdf.com/reader/full/mapping-s 49/49

Continuous correspondence

A mapping is continuous if it is both upper and lower hemi-continuous.

Exercise:  Supply correspondence 

Explain why the supply correspondence of Example 1 is upper hemi-continuous.

Exercise: Demand correspondence

For the demand correspondence of Example 2, explain why * ( ) x p is upper hemi-continuous but not

lower hemi-continuous