manufacturing technology february 2016, vol....

87
MANUFACTURING TECHNOLOGY February 2016, Vol. 16, No. 1 Advisory Board Prof. hab. Dr. Stanislav Adamczak, MSc. Politechnika Kielce, Poland Prof. Dana Bolibruchová, MSc. PhD. UZ in Zilina, Slovakia Prof. Milan Brožek, MSc., Ph.D. CULS in Prague, Czech Prof. Dr. M. Numan Durakbasa Vienna University of Technology, Austria Prof. Dr. František Holešovský, MSc. president, JEPU in Usti n. Labem Prof. Jiří Hrubý, MSc., Ph.D. VSB TU in Ostrava Prof. Karel Jandečka, MSc., Ph.D. UWB in Pilsen, Czech Prof. h. c. Stanislaw Legutko, MSc., Sc.D. Politechnika Poznańska, Poland Prof. Karel Kocman, MSc., Sc.D. TBU in Zlin, Czech Prof. Pavel Kovac, MSc., Ph.D. University of Novi Sad, Serbia Prof. Dr. János Kundrák, MSc., Sc.D. University of Miskolc, Hungary Prof. Ivan Kuric, MSc., Ph.D. UZ in Zilina, Slovakia Prof. Jan Mádl, MSc., Ph.D. CTU in Prague, Czech Prof. Dr. Ivan Mrkvica, MSc. VSB TU in Ostrava, Czech Prof. Ioan D. Marinescu, Ph.D. University of Toledo, USA Prof. Iva Nová, MSc., Ph.D. TU in Liberec, Czech Prof. Dr. Hitoshi Ohmori, MSc. RIKEN, Japan Prof. Ing. Ľubomír Šooš, PhD. SUT in Bratislava, Slovakia Prof. Dr. Dalibor Vojtěch, MSc. ICHT in Prague, Czech Col. Assoc. Prof. Milan Chalupa, Ph.D. FMT, University of Defence, Czech Assoc. Prof. Jan Jersák, MSc., Ph.D. TU in Liberec, Czech Assoc. Prof. Daniela Kalincova, MSc., PhD. TU in Zvolen, Slovakia Assoc. Prof. Štefan Michna, MSc., PhD. JEPU in Usti n. Labem, Czech Assoc. Prof. Pavel Novák, MSc., Ph.D. ICHT in Prague, Czech Assoc. Prof. Iveta Vaskova, MSc., PhD. FM, TU in Kosice, Slovakia Dr. Michael N. Morgan John Moores University, Great Britain Dr. Thomas Pearce UWE Bristol, Great Britain Editor-in-chief Assoc. Prof. Martin Novak, Eng. MSc., Ph.D. Editor Radek Lattner, MSc. Editorial Office Address J. E. Purkyne University in Usti n. Labem FVTM, Campus UJEP, Building H Pasteurova 3334/7, 400 01 Usti n. Labem Czech Republic Phone: 00420 475 285 547 e-mail: [email protected] Print PrintPoint Ltd, Prague Publisher J. E. Purkyne University in Usti n. Labem Pasteurova 1, 400 96 Usti n. Labem Czech Republic VAT: CZ44555601 Published 6 p. a., 300 pcs. published in February 2016, 314 pages Permission: MK CR E 20470 ISSN 1213–2489 indexed on: http://www.scopus.com Content 4 – 12 Influence of Abrasive - Free Ultrasonic Finishing Process of Steel on Wear Zdeněk Aleš, Jindřich Pavlů, Miroslav Müller, Jaroslava Svobodová, Anatolii Lebedev, Alexander Yurov, Martin Pexa, Miloslav Linda 12 – 16 Cutting Tool Performance in End Milling of Glass Fiber-Reinforced Polymer Composites Ondřej Bílek, Milan Žaludek, Jiří Čop 16 – 20 Review of Processing Technologies for Spent Zinc Batteries Katarína Blašková, Jarmila Trpčevská, Tomáš Vindt 20 – 26 The Impact of Sr Content on Fe - Intermetallic Phase’s Morphology Changes in Alloy Al- Si10MgMn Kamil Borko, Eva Tillová, Mária Chalupová 26 – 29 Stability of the Casting Process According to the Method BOST Stanisław Borkowski, Manuela Ingaldi, Piotr Sygut, Dorota Klimecka-Tatar 29 – 34 The Influence of Surface Modification Using Low-Pressure Plasma Treatment on PE-LLD/α- Cellulose Composite Properties Martin Boruvka, Chakaphan Ngaowthong, Jiri Cerman, Petr Lenfeld, Pavel Brdlik 34 – 38 Carbon Dioxide Internal Cooling Technology of Extrusion Blow Moulding Production Brdlík Pavel, Martin Borůvka 38 – 45 Grinding of Inconel 713 Superalloy for Gas Turbines Jiří Čapek, Jiří Kyncl, Kamil Kolařík, Libor Beránek, Zdenek Pitrmuc, Jan Medřický, Zdenek Pala 45 – 48 Evaluation of Cutting Forces and Surface Roughness after Machining of Selected Materials Lenka Cepova, Dagmar Sokova, Sarka Malotova, Bartosz Gapinski, Robert Cep 49 – 53 Efficiency of Local Exhaust Ventilation System during Stainless Steel Grinding Miroslav Dado, Marián Schwarz, Alena Očkajová, Richard Hnilica, Daniela Borošová 53 – 58 Simulation Possibilities of 3D Measuring in Progressive Control of Production Mário Drbúl, Dana Stančeková, Ondrej Babík, Jozef Holubjak, Ingrid Görögová, Daniel Varga 58 – 63 Gauge Block Calibration by Interferometry Štěpánka Dvořáčková 63 – 69 Mold Surface Contamination during Polymer Processing Zdenek Dvorak, Eva Hnatkova, Michal Sedlacik 69 – 76 The Assessment of Tribiological Properties and the Condition of the Surface of Tool Steel for Hot Work 55nicrmov6 Subjected to the Process of Friction Krzysztof Dziedzic, Jerzy Józwik, Marcin Barszcz 76 – 81 Ultrasonic Identification of Weld Defects Made by Electrofusion Welding on Plastic Pipelines Martin Faturík, Miloš Mičian, Radoslav Koňár 81 – 86 The Effect of Beam Curvature on Bending Properties of Sandwich Structures Ladislav Fojtl, Sona Rusnakova, Milan Zaludek, Vladimir Rusnak 86 – 90 Mold Surface Analysis after Injection Molding of Highly Filled Polymeric Compounds Eva Hnatkova, Daniel Sanetrnik, Vladimir Pata, Berenika Hausnerova, Zdenek Dvorak 90 – 94 Use of Overlaying Technology in Area of Increasing Ploughshares Service Life Petr Hrabě, Miroslav Müller, Petr Novák 94 – 98 New Application of Powder Injection Molded Product in Medical Field Jakub Huba, Daniel Sanetrnik, Eva Hnatkova, Berenika Hausnerova, Zdenek Dvorak 99 – 102 The Use of 3x3 Matrix to Evaluate a Manufacturing Technology of Aluminium Systems for Building Industry Manuela Ingaldi, Stanisław Borkowski, Dorota Klimecka-Tatar, Piotr Sygut 103 – 106 The Influence of Nucleating Agents and Process Parameters on Phase Structure of Isotactic Polypropylene and its Copolymer with 3% Ethylene Josef Jakubíček, Martina Hřibová, Jaroslav Kučera, Milena Kubišová 107 – 113 Optimizing Management of the Measurement System of the Technological Process Dana Jenčuráková, Rudolf Palenčár

Upload: vuongnhi

Post on 11-Mar-2018

236 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

MANUFACTURING TECHNOLOGY February 2016, Vol. 16, No. 1

Advisory BoardProf. hab. Dr. Stanislav Adamczak, MSc.

Politechnika Kielce, PolandProf. Dana Bolibruchová, MSc. PhD.

UZ in Zilina, SlovakiaProf. Milan Brožek, MSc., Ph.D.

CULS in Prague, CzechProf. Dr. M. Numan Durakbasa

Vienna University of Technology, AustriaProf. Dr. František Holešovský, MSc.

president, JEPU in Usti n. LabemProf. Jiří Hrubý, MSc., Ph.D.

VSB TU in OstravaProf. Karel Jandečka, MSc., Ph.D.

UWB in Pilsen, CzechProf. h. c. Stanislaw Legutko, MSc., Sc.D.

Politechnika Poznańska, PolandProf. Karel Kocman, MSc., Sc.D.

TBU in Zlin, CzechProf. Pavel Kovac, MSc., Ph.D.

University of Novi Sad, SerbiaProf. Dr. János Kundrák, MSc., Sc.D.

University of Miskolc, HungaryProf. Ivan Kuric, MSc., Ph.D.

UZ in Zilina, SlovakiaProf. Jan Mádl, MSc., Ph.D.

CTU in Prague, CzechProf. Dr. Ivan Mrkvica, MSc.

VSB TU in Ostrava, CzechProf. Ioan D. Marinescu, Ph.D.

University of Toledo, USAProf. Iva Nová, MSc., Ph.D.

TU in Liberec, CzechProf. Dr. Hitoshi Ohmori, MSc.

RIKEN, JapanProf. Ing. Ľubomír Šooš, PhD.

SUT in Bratislava, SlovakiaProf. Dr. Dalibor Vojtěch, MSc.

ICHT in Prague, CzechCol. Assoc. Prof. Milan Chalupa, Ph.D.

FMT, University of Defence, CzechAssoc. Prof. Jan Jersák, MSc., Ph.D.

TU in Liberec, CzechAssoc. Prof. Daniela Kalincova, MSc., PhD.

TU in Zvolen, SlovakiaAssoc. Prof. Štefan Michna, MSc., PhD.

JEPU in Usti n. Labem, CzechAssoc. Prof. Pavel Novák, MSc., Ph.D.

ICHT in Prague, CzechAssoc. Prof. Iveta Vaskova, MSc., PhD.

FM, TU in Kosice, SlovakiaDr. Michael N. Morgan

John Moores University, Great BritainDr. Thomas Pearce

UWE Bristol, Great Britain

Editor-in-chief Assoc. Prof. Martin Novak, Eng. MSc., Ph.D.

EditorRadek Lattner, MSc.

Editorial Office AddressJ. E. Purkyne University in Usti n. Labem

FVTM, Campus UJEP, Building HPasteurova 3334/7, 400 01 Usti n. Labem

Czech RepublicPhone: 00420 475 285 547

e-mail: [email protected]

PrintPrintPoint Ltd, Prague

PublisherJ. E. Purkyne University in Usti n. Labem

Pasteurova 1, 400 96 Usti n. Labem Czech Republic

VAT: CZ44555601

Published 6 p. a., 300 pcs.published in February 2016,

314 pages

Permission: MK CR E 20470

ISSN 1213–2489indexed on: http://www.scopus.com

Content

4 – 12 Influence of Abrasive - Free Ultrasonic Finishing Process of Steel on Wear Zdeněk Aleš, Jindřich Pavlů, Miroslav Müller, Jaroslava Svobodová, Anatolii Lebedev, Alexander Yurov, Martin Pexa, Miloslav Linda

12 – 16 Cutting Tool Performance in End Milling of Glass Fiber-Reinforced Polymer Composites Ondřej Bílek, Milan Žaludek, Jiří Čop

16 – 20 Review of Processing Technologies for Spent Zinc Batteries Katarína Blašková, Jarmila Trpčevská, Tomáš Vindt

20 – 26 The Impact of Sr Content on Fe - Intermetallic Phase’s Morphology Changes in Alloy Al-Si10MgMn Kamil Borko, Eva Tillová, Mária Chalupová

26 – 29 Stability of the Casting Process According to the Method BOST Stanisław Borkowski, Manuela Ingaldi, Piotr Sygut, Dorota Klimecka-Tatar

29 – 34 The Influence of Surface Modification Using Low-Pressure Plasma Treatment on PE-LLD/α-Cellulose Composite Properties Martin Boruvka, Chakaphan Ngaowthong, Jiri Cerman, Petr Lenfeld, Pavel Brdlik

34 – 38 Carbon Dioxide Internal Cooling Technology of Extrusion Blow Moulding Production Brdlík Pavel, Martin Borůvka

38 – 45 Grinding of Inconel 713 Superalloy for Gas Turbines Jiří Čapek, Jiří Kyncl, Kamil Kolařík, Libor Beránek, Zdenek Pitrmuc, Jan Medřický, Zdenek Pala

45 – 48 Evaluation of Cutting Forces and Surface Roughness after Machining of Selected Materials Lenka Cepova, Dagmar Sokova, Sarka Malotova, Bartosz Gapinski, Robert Cep

49 – 53 Efficiency of Local Exhaust Ventilation System during Stainless Steel Grinding Miroslav Dado, Marián Schwarz, Alena Očkajová, Richard Hnilica, Daniela Borošová

53 – 58 Simulation Possibilities of 3D Measuring in Progressive Control of Production Mário Drbúl, Dana Stančeková, Ondrej Babík, Jozef Holubjak, Ingrid Görögová, Daniel Varga

58 – 63 Gauge Block Calibration by Interferometry Štěpánka Dvořáčková

63 – 69 Mold Surface Contamination during Polymer Processing Zdenek Dvorak, Eva Hnatkova, Michal Sedlacik

69 – 76 The Assessment of Tribiological Properties and the Condition of the Surface of Tool Steel for Hot Work 55nicrmov6 Subjected to the Process of Friction Krzysztof Dziedzic, Jerzy Józwik, Marcin Barszcz

76 – 81 Ultrasonic Identification of Weld Defects Made by Electrofusion Welding on Plastic Pipelines Martin Faturík, Miloš Mičian, Radoslav Koňár

81 – 86 The Effect of Beam Curvature on Bending Properties of Sandwich Structures Ladislav Fojtl, Sona Rusnakova, Milan Zaludek, Vladimir Rusnak

86 – 90 Mold Surface Analysis after Injection Molding of Highly Filled Polymeric Compounds Eva Hnatkova, Daniel Sanetrnik, Vladimir Pata, Berenika Hausnerova, Zdenek Dvorak

90 – 94 Use of Overlaying Technology in Area of Increasing Ploughshares Service Life Petr Hrabě, Miroslav Müller, Petr Novák

94 – 98 New Application of Powder Injection Molded Product in Medical Field Jakub Huba, Daniel Sanetrnik, Eva Hnatkova, Berenika Hausnerova, Zdenek Dvorak

99 – 102 The Use of 3x3 Matrix to Evaluate a Manufacturing Technology of Aluminium Systems for Building Industry Manuela Ingaldi, Stanisław Borkowski, Dorota Klimecka-Tatar, Piotr Sygut

103 – 106 The Influence of Nucleating Agents and Process Parameters on Phase Structure of Isotactic Polypropylene and its Copolymer with 3% Ethylene Josef Jakubíček, Martina Hřibová, Jaroslav Kučera, Milena Kubišová

107 – 113 Optimizing Management of the Measurement System of the Technological Process Dana Jenčuráková, Rudolf Palenčár

Page 2: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

MANUFACTURING TECHNOLOGY February 2016, Vol. 16, No. 1

Content 113 – 120

Vibration of Thin Walls during Cutting Process of 7075 T651 Aluminium Alloy Jerzy Józwik, Dariusz Mika, Krzysztof Dziedzic

121– 124 Continuous Production of Nanocrystalline TiO2 Nanofibers Pavel Kejzlar, Radovan Kovář

124 – 129Deformation of Aluminium Thin Plate Frantisek Klimenda, Josef Soukup, Milan Zmindak

129 – 132Indirect Measurement of Effective Throat Thickness in T-joint Weld by Ultrasonic Method Phased Array Radoslav Konar, Michal Sventek, Miroslav Bucha

132 – 136Inserts Coating Influence on Residual Stress of Turned Outer Bearings Marek Kordik, Jozef Struharnansky, Anton Martikan, Dana Stancekova, Sylvia Kusmierczak, Juraj Martinček

136 – 140Deformation of Print PLA Material Depending on the Temperature of Reheating Printing Pad Jan Krotký, Jarmila Honzíková, Pavel Moc

140 – 144Metallography of 3D Printed 1.2709 Tool Steel Ludmila Kučerová, Ivana Zetková

145 – 149Influence of Nb Micro-alloying on TRIP Steels Treated by Continuous Cooling Process Ludmila Kučerová, Hana Jirková, Bohuslav Mašek

149 – 154Chemical Analysis and Mechanical Properties of Selected Safety Components of Lifts Petra Kvasnová, Daniel Novák, Viktor Novák

154 – 159Influence of Laser Shock Peening Surface Treatment on Fatigue Endurance of Welded Joints from S355 Structural Steel Ján Lago, Mario Guagliano, František Nový, Otakar Bokůvka

159 – 162Grinding of Titanium Alloy Ti6Al4V with Silicon Carbide Grinding Wheel Radek Lattner, František Holešovský, Martin Novák, Marek Vrabeľ

162 – 168 Assessment of the Procedural Gases Influence at Turning Technology Miloslav Ledvina, Štěpánka Dvořáčková

168 – 173 Roughness Evaluation of the Machined Surface at Interrupted Cutting Process Sarka Malotova, Robert Cep, Lenka Cepova, Jana Petru, Dana Stancekova, Ladislav Kyncl, Michal Hatala

173 – 178 The Effect of Different Modifiers in AlSi7Mg0.3 Alloy on Built-up Edge Formation in Machining Michal Martinovský, Jan Madl

178 – 183 Barkhausen Noise Emission of Surfaces after Plasma Beam Machining Anna Mičietová, Miroslav Neslušan, Mária Čilliková, Kamil Kolařík

184 – 188 Influence of Stylus System Configuration on the Variability of Measurement Result on CMM Petr Mikeš

188 – 192 Creep Behaviour of the Polymer Composite with False Banana’s Fibres (Ensete Ventricosum) Čestmír Mizera, Petr Hrabě, Miroslav Müller, David Herák

192 – 198 Effect of Age Hardening Conditions on Mechanical Properties of AW 6082 Alloy Welds Jaromír Moravec, Iva Nováková, Josef Bradáč

198 – 204 Design of Control Jig for Inserts Measurement Ivan Mrkvica, Vojtech Sleha, Jana Petru, Miroslav Neslusan, Jozef Jurko, Anton Panda

204 – 209 Influence of Cyclic Degradation in Saline Solution on Mechanical Properties of Adhesive Bonds Miroslav Müller

209 – 214 Modification of AlSi9CuMnNi Alloy by Antimony and Heat Treatment and Their Influence on Tool Wear after Turning Natasa Naprstkova, Jaromir Cais, Manuela Ingaldi

214 – 220 Barkhausen Noise Emission in Case – Hardened Bearing Steels Miroslav Neslušan, Róbert Farda, Kamil Kolařík, Jiří Čapek

220 – 225 Evaluation of Applicability of Unconventional Cooling Method in Injection Mould Thang Nguyen Vo, Martin Seidl

225 – 230 Monitoring of the Diffusion Processes during Carburizing Automotive Steel Parts Iva Nová, Jiri Machuta

Page 3: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

MANUFACTURING TECHNOLOGY February 2016, Vol. 16, No. 1

Content 230 – 234

Dilatometric Measurements of Austenitic Stainless Steel as a Function of Temperature Monika Oravcová, Peter Palček, Máriusz Król

234 – 238Numerical Analysis of T-Joint Welding with Different Welding Sequences Marek Patek, Miloš Mičian, Augustín Sládek, Dalibor Kadáš

239 – 243Influence of the Selected Technological Factors on the Elimination of Misruns Radka Podprocká, Jozef Malik, Dana Bolibruchová

243 – 247Effect of Nickel on the Properties of the AlSi10MgMn Alloy with Increased Iron Content Ján Ščury, Dana Bolibruchová, Mária Žihalová

248 – 253Laser Hardening of the Functional Surfaces of Machine Tools Karel Šramhauser, Sylvia Kuśmierczak

253 – 259Influence of Manufacturing Parameters on Final Quality of Lapped Parts Dana Stancekova, Mario Drbul, Miroslav Janota, Natasa Naprstkova, Albert Kulla, Jozef Mrazik

259 – 264Research of Chemical Pre-treatment Created by Sol-gel Process on the Polished Surface of Aluminium Substrate Jaroslava Svobodova, Pavel Kraus, Jaromir Cais, Radek Lattner

264 – 267The Use of BOST Method as a Tool to Standardize Tasks in Hot Dip Galvanizing Process Improvement Piotr Sygut, Dorota Klimecka-Tatar, Manuela Ingaldi, Stanisław Borkowski

268 – 273Improving the Quality of Castings Using Thermovision Miroslava Ťavodová, Daniela Kalincová

274 – 280The Research of Options for the Innovation Heat Treatment of the Tools for Coinage in Order to Increase their Lifetime Miroslava Ťavodová, Daniela Kalincová, Rudolf Kaštan

280 – 284A Measuring Device for the Checking of 3D Indicators Šárka Tichá, Ondřej Srba, Jan Vavřina

284 – 289 The Study of Deformation Behaviour of DC06 Deep Drawing Steel Michal Tregler, Pavel Kejzlar, Tomáš Pilvousek, Zuzana Andršová, Lukáš Voleský

289 – 294 Research of the Chemical Heterogeneity during Crystallization for AlCu4MgMn Alloy and the Possibility of its Elimination Viktorie Weiss

295 – 299 Effect of Shot Peening on the Fatigue Properties of 40NiCrMo7 steel Denisa Závodská, Mario Guagliano, Otakar Bokůvka, Libor Trško

299 – 304Research on Mechanical Properties of Adhesive Bonds Reinforced with Fabric with Glass Fibres Jan Zavrtálek, Miroslav Müller

305 – 309 Influence of Selected Iron Correctors to Solidification of Secondary AlSi10MgMn Alloy Maria Zihalova, Dana Bolibruchova, Jaromir Cais

309 – 313 Contactless Thermal Bending of Steel Sheets Andrej Zrak, Jozef Meško, Ján Moravec, Rastislav Nigrovič, Dalibor Kadáš

FEBRUARY 2016, Vol. 16, No. 1 – INTERNATIONAL REVIEWERS AND EDITORS LIST

Technology and Assembly Material Engineering and Design

Frantisek Holesovsky Libor Benes Gejza Horvath Dana Bolibruchova Jiri Hruby Milan Brozek Jozef Jurko Josef Chladil Stanislav Legutko Ivan Lukac Ivan Mrkvica Stefan Michna Miroslav Muller Iva Nova Natasa Naprstkova Pavel Novak Miroslav Neslusan Vladimir Pata Martin Novak Augustin Sladek Dana Stancekova Eva Tillova Karol Vasilko Iveta Vaskova

home page http://journal.strojirenskatechnologie.cz/

indexed on databases [SC] http://www.scopus.com [IET] http://www.theiet.org

Page 4: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

4 indexed on: http://www.scopus.com

Influence of Abrasive - Free Ultrasonic Finishing Process of Steel on Wear

Zdeněk Aleš1, Jindřich Pavlů1, Miroslav Müller1, Jaroslava Svobodová2, Anatolii Lebedev3, Alexander Yurov1, Martin Pexa1, Miloslav Linda1 1Faculty of Engineering, Czech University of Life Sciences Prague. Czech Republic. E-mail: [email protected], pavluj@ tf.czu.cz, [email protected], [email protected], [email protected] 2Faculty of Production Technology and Management, Jan Evangelista Purkyně University in Ústí nad Labem. Czech Republic. E-mail: [email protected] 3Faculty of Agricultural Mechanization, Stavropol State Agrarian University, Russia. E-mail: [email protected]

The intensity of wear and particles formation are important factors at practical application of rotating machine components, because of negative effects on operability of the machines. The presence of undesired wear particles, for example in lubricating systems, poses a risk in terms of subsequent accelerated wear of lubricated points. In the extreme case, the negative impact of the wear particles leads to seizure of lubricated points. The aim of the research was to compare the classical machining and abrasive – free ultrasonic finishing (bufo) of steel. Ultrasonic set I-4 consisting of the ultrasonic generator (output power 630 W) with working frequency 22 kHz ± 10% was used for preparation of test surface. There were compared three different process fluids containing nanoparticles during abrasive - free ultrasonic finishing. In order to describe machined surface there was used measurement of surface roughness, hardness HBW 2.5/187.5 and results of microscopy. Research was focused on determining re-sistance of machined surfaces, using a standardized test Reichert M2 tester. Number of wear particles and their morphology are important for practical application. Wear particles were analyzed by automatic particle counter LaserNet Fines-C.

Keywords: Friction Wear, Abrasive - Free Ultrasonic Finishing, Wear Particles

Acknowledgement

Paper was created with the grant support – CZU CIGA 2015 - 20153001 - Use of butanol in internal combustion engines.

References

NOVÁK, M. (2012). Surfaces with high precision of roughness after grinding. In: Manufacturing technology. Vol. 12, pp. 66 -70.

NOVÁK, M. (2011). Surface quality of hardened steels after grinding. In: Manufacturing technology. Vol. 11, pp. 55-59.

MÜLLER, M., LEBEDEV, A., SVOBODOVÁ, J., NÁPRSTKOVÁ, N., LEBEDEV, P. (2014). Abrasive-free ultrasonic finishing of metals. In: Manufacturing Technology. Vol. 14, pp. 366-370.

ŤAVODOVA, M. (2013). The surface quality of materials after cutting by abrasive water jet evaluated by selected methods. In: Manufacturing technology. Vol. 13, pp. 236-241.

NOVÁK, M. (2013). New ways at the fine grinding. In: Key Engineering Materials. Vol. 581. pp. 255-260.

VENKATESH, G., SHARMA, A. K., KUMAR, P. (2015). On ultrasonic assisted abrasive flow finishing of bevel gears. In: International Journal of Machine Tools and Manufacture. Vol. 89, pp. 29-38.

SHAIKH, J.H., JAIN, N.K., VENKATESH, V.C. (2013). Precision finishing of Bevel Gears by Electrochemical Honing. In: Materials and Manufacturing Processes. Vol. 28, pp. 1117-1123.

SVOBODOVÁ J., KRAUS P., MÜLLER M., LEBEDEV A., YUROV A., LEBEDEV P. (2015): Influence of cutting fluid on abrasive – free ultrasonic finishing of aluminium alloy, In. Manufacturing Technology. Vol. 15, pp. 710-714.

CURODEAU, A., GUAY, J., RODRIGUE, D., BRAULT, L., GAGNE, D., BEAUDIOIN, L., P. (2008). Ultra-sonic abrasive μ-machining with thermoplastic tooling. In: International Journal of Machine Tools & Manu-facture. Vol. 48, pp. 1553-1561.

ALEŠ, Z., PEXA, M., PAVLŮ, J., KUČERA, M., ČEDÍK, J. (2015). The surface quality of materials after cutting by abrasive water jet evaluated by selected methods. In: Manufacturing technology. Vol. 15, pp. 664-670.

HÖNIG, V., SMRČKA, L., HORNÍČKOVÁ, Š. (2014). Application of discriminant analysis in monitoring the wear particles in the engine oil. In: Manufacturing technology. Vol. 14, pp. 322-326.

Page 5: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

indexed on: http://www.scopus.com 5

WANG J., XING J., CAO L., Su W., GAO Y. (2010). Dry sliding wear behavior of Fe3Al alloys prepared by mechanical alloying and plasma activated sintering, Wear, 268 (2-3), pp. 473-480.

KUČERA, M., ROUSEK, M., (2008). Evaluation of thermooxidation stability of biodegradable recycled ra-peseed-based oil NAPRO-HO 2003. In: Research in Agricultural Engineering. Vol. 54, pp. 163-169.

VESELÁ, K., PEXA, M., MAŘÍK, J., VALÁŠEK, P. (2014). Effect of biofuels on quality of engine oil. In: Advanced Materials Research. Vol. 1030-1032, pp. 414-417.

PETERKA, B., NOVOTNÁ, Z., JINDRA, P. (2013). Statistical evaluation of data obtained by particle counter using non-reference fluids. In: Trends in agricultural engineering 2013. 5th International conference TAE 2013, pp. 518-522.

Paper number: M20161 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 6: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

6 indexed on: http://www.scopus.com

Cutting Tool Performance in End Milling of Glass Fiber-Reinforced Polymer Composites

Ondřej Bílek, Milan Žaludek, Jiří Čop Department of Production Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 760 01 Zlin, Czech Republic. E-mail: [email protected], [email protected], [email protected]

The article deals with the machining of glass fiber-reinforced thermoset composite. Emphasis is placed on the selection of cutting tools for end milling. Experiment involved slot milling by special tools for composite machining with different geometries and surface coating. Further, the quality of the machined surface, cutting performance, dimensional accuracy, delamination factor and tool wear were evaluated. The results were compared with the end milling of carbon fiber-reinforced polymer composites.

Keywords: End Milling, GFRP, CFRP, Composites, Cutting Tools.

Acknowledgments

This study was supported by the internal grant of TBU in Zlín No. IGA/FT/2016/002 funded from the resources of specific university research.

References

AZMI, A. I., LIN, R.J.T., BHATTACHARYYA, D. (2012). Experimental Study of Machinability of GFRP Com-posites by End Milling. In: Materials and Manufacturing Processes, Vol. 27, pp.1045–1050. Taylor & Francis, UK.

AZMI, A.I. ET AL. (2011). Parametric Study of End Milling Glass Fibre Reinforced Composites. In: INTERNATIONAL CONFERENCE ON ADVANCES IN MATERIALS AND PROCESSING TECHNOLOGIES (AMPT2010), pp. 1083–1088. American Institute of Physics, US.

BEŇO, J., MIKÓ, B., MAŇKOVÁ, I., VRABEL, M. (2013). Influence of Tool Path Orientation on the Surface Roughness when End Ball Milling Rounded Surfaces. In: Key Engineering Materials, Vol. 581, pp. 329–334. TTP. Switzerland.

DAVIM, J.P., REIS, P. (2005). Damage and dimensional precision on milling carbon fiber-reinforced plastics using design experiments. In: Journal of Materials Processing Technology, Vol. 160, pp.160–167.

EL-HOFY, M.H. ET AL. (2011). Factors affecting workpiece surface integrity in slotting of CFRP. In: Procedia Engineering, Vol. 19, pp. 94–99.

GOTTFRIED W. E. (2009). Polymer composite materials (Polymerní kompozitní materiály). Scientia. Czech Re-public.

HINTZE WOLFGANG, W., HARTMANN, D., SCHÜTTE, C. (2011). Occurrence and propagation of delamina-tion during the machining of carbon fibre reinforced plastics (CFRPs) - An experimental study. In: Composites Science and Technology, Vol. 71, No. 15, pp.1719–1726.

HOLESOVSKY, F., NOVAK, M., LATTNER, M., VYSLOUZIL, T. (2013). Machining and its Influence to Sur-face Quality of Machine Parts. In: Key Engineering Materials, Vol. 581, pp.354–359. TTP. Switzerland.

HUSSAIN, S.A., PANDURANGADU, V. & KUMAR, K.P. (2011). Machinability of glass fiber reinforced plastic (GFRP) composite materials. In: International Journal of Engineering, Science and Technology, Vol. 3, No. 4, pp.103–118.

JERSÁK, J., VRKOSLAVOVÁ, L. (2013). The influence of process fluids on the properties of the surface layer of machined components. In. Manufacturing Technology, Vol. 13, No. 4, pp. 466–473. UJEP, Czech Republic.

JÓZWIK, J., KURIC, I., SÁGA, M., LONKWIC, P. (2014). Diagnostics of CNC machine tools in manufacturing process with laser interferometer technology. In: Manufacturing Technology, Vol. 14, No. 1, UJEP, Czech Repub-lic

KASINA, M., VASILKO, K. (2012). Experimental verification of the relation between the surface roughness and the type of used tool coating. In: Manufacturing Technology, Vol. 12, pp. 27–30. UJEP, Czech Republic

KOCMAN, K. (2011). Application of magnetic correlation analysis on the choice and correction of cutting pa-rameters for automated manufacturing systems. In: Manufacturing Technology, Vol. 11, pp. 28–32. UJEP, Czech Republic

Page 7: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

indexed on: http://www.scopus.com 7

LEGUTKO, S., KROLCZYK, G., KROLCZYK, J. (2014). Quality evaluation of surface layer in highly accurate manufacturing. In: Manufacturing Technology, Vol. 14, No. 1, pp.50–56. UJEP, Czech Republic

MIROSLAV, M., PETR, V. (2012). Abrasive wear effect on Polyethylene, Polyamide 6 and polymeric particle composites. In: Manufacturing Technology, Vol. 12, pp. 55–59. UJEP, Czech Republic

PECAT, O., RENTSCH, R., BRINKSMEIER, E. (2012). Influence of milling process parameters on the surface integrity of CFRP. In: Procedia CIRP, Vol. 1, pp. 466–470.

TETI, R. (2002). Machining of Composite Materials. In: CIRP Annals - Manufacturing Technology, Vol. 51, pp.611–634.

UHLMANN, E. ET AL. (2014). Machining of Carbon Fibre Reinforced Plastics. In: Procedia CIRP, Vol. 24, pp. 19–24.

VARGA, G., KUNDRÁK, J. (2013). Effect of Environmentally Conscious Machining on Machined Surface Qual-ity. In: Applied Mechanics and Materials, Vol. 309, pp. 35–42.

WANG, Y.G. et al. (2011). Cutting Performance of Carbon Fiber Reinforced Plastics Using PCD Tool. In: Ad-vanced Materials Research. Vol. 215, pp. 14–18. TTP. Switzerland.

Paper number: M20162 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 8: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

8 indexed on: http://www.scopus.com

Review of Processing Technologies for Spent Zinc Batteries

Katarína Blašková, Jarmila Trpčevská, Tomáš Vindt Faculty of Metallurgy, Technical University in Košice, Letná 9, 042 00 Košice. Slovak Republic. E-mail: [email protected], [email protected], [email protected]

This paper deals with the possibility of spent portable batteries treatment with the aim of zinc recovery. Perspec-tive of pyrometallurgical and hydrometallurgical process is described. Samples of zinc based portable batteries were submitted under the investigation. Aim of the work was to find the best conditions for zinc recovery. Exper-imental work focused on hydrometallurgical process was conducted. Results have shown 100 % zinc recovery under these conditions: leaching in medium 2 M (NH4)2CO3, addition of 20 ml of NH4OH as reductant, leaching temperature 20°C, within 10 minutes.

Keywords: spent zinc batteries, hydrometallurgy, leaching.

Acknowledgements

This work was supported by a grant from the Slovak National Grant Agency under the VEGA Project 1/0425/14.

References

YANG, L., and al. (2015). Recovery of Co, Mn, Ni, and Li from spent lithium ion batteries for the preparation of LiNixCoyMnzO2 cathode materials, Ceramics International, Volume 41, 11498-11503.

YANG, Y., and al. (2015). Thermal treatment process for the recovery of valuable metals from spent lithium-ion batteries, Hydrometallurgy.

NOGUEIRA, C. A., MARGARIDO, F. (2015). Selective process of zinc extraction from spent Zn-MnO2 batteries by ammonium chloride leaching, Hydrometallurgy, Volume 157,13-21.

ROSSINI, G., BERNARDES, A. E. (2006). Galvanic sludge metals recovery by pyrometallurgical and hydrome-tallurgical treatment, Journal of Hazardous Materials, Volume 131, 210-216.

SAYILGAN. E. (2009). A review of technologies for the recovery metals from spent alkaline and zinc-carbon batteries, vedecký výskum, Hydrometalurgia, 97, 158 – 166.

ESPINOSA, D., BERNARDES, A. (2004). An overview on the current processes for the recycling of batteries, Journal of Power Sources, 135, 311-319.

SAYILGAN. E. (2009) A review of technologies for the recovery metals from spent alkaline and zinc-carbon batteries, Hydrometalurgy, 97, 158 – 166.

BERNARDES, A., ESPINOSA, D. (2004). Recycling of batteries: a review of current processes and technologies, Journal of Power sources, 130, 291-298).

Batérie [online]. Dostupné na ineternete:http://batteryuniversity.com/learn/article/primary_batteries [citované 18.10. 2013].

ORÁČ, D., VINDT, T. (2014). Druhotné suroviny a odpady, návody na cvičenia, Košice, IBAN 978-80-553-1644-4.

CARSTEN, H. (2014). Recovery of Zinc from Spent Batteries by the Treatment in a Shaft Furnace, Erzmetall – World of Metallurgy, 67/2014 No.4, GDMB Verlag GmbH, ISSN 1613-2394.

Division of primary and secondary cells [online]. Available on the ineternet: http://www.separujodpad.sk/in-dex.php/obcan/ako-separovat/baterie-aakumulatory.Html.

VELOSO, L. a kol. (2005). Development of a hydrometallurgical route for the recovery of zinc and manganese from spent alkaline batteries, Journal of Power Sources 152, 295 – 302.

DE MICHELIS, I. a kol. (2007). Recovery of zinc and manganese from alkaline and zinc carbon spent batteries, vedecký výskum, Journal of Power Sources 172, 975 – 983.

MARTA DE SOUZA, C. a kol. (2001). Characterization of used alkaline batteries powder and analysis of zinc recovery by acid leaching, Journal of Power Sources 103, 120 – 126.

FREITAS, M. a kol. (2007). Recycling manganese from spent Zn – MnO2 primary batteries, Journal of Power Sources 164. 947 – 952.

Paper number: M20163 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 9: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

indexed on: http://www.scopus.com 9

The Impact of Sr Content on Fe - Intermetallic Phase’s Morphology Changes in Alloy AlSi10MgMn

Kamil Borko, Eva Tillová, Mária Chalupová Faculty of Mechanical Engineering, University of Žilina, Univerzitná 8215/1, 010 26 Žilina. Slovak Republic. E-mail: [email protected]

The effect of modification (with AlSr10) on the microstructure of hypoeutectic AlSi10MgMn cast was systemati-cally investigated. The samples were studied in as cast state without Sr (0 % Sr) and after modification (0.05 % Sr; 0.1 % Sr and 0.15 % Sr). Iron is added to Al-Si alloy to increase hot tear resistance and to reduce die sticking, but can change the solidification characteristics by forming pre- and post-eutectic β-Al5FeSi phase or other Fe-rich phases, which can be very detrimental to the mechanical properties of the final cast part. A combination of different analytical techniques (light microscopy upon black-white etching; scanning electron microscopy (SEM) upon deep etching and energy dispersive X-ray analysis (EDX); quantitative phase analyse upon Image analyzer NIS Elements 3.0) were therefore been used for the microstructure study. The results show that the addition of Sr into AlSi10MgMn cast alloy modified eutectic silicon as well as Fe-intermetallic phases and improves mechanical properties (ductility, strength).

Keywords: aluminium cast alloy, microstructure, Fe-rich phases and morphology

Acknowledgement

The authors acknowledge the financial support of the project VEGA No1/0533/15.

References

TILLOVÁ, E., CHALUPOVÁ, M. (2009). Structural analysis (Štruktúrna analýza), Edis Žilina (in Slovak).

ZHANG, G., ZHANG, J., LI, B., CAI, W. (2011). Characterization of tensile fracture in heavily alloyed Al−Si piston alloy. In. Progress in Natural Science: Materials International, 21, pp. 380-385.

TILLOVÁ, E., CHALUPOVÁ, M., HURTALOVÁ, L., ĎURINÍKOVÁ, E. (2011). Quality control of microstructure in recycled Al-Si cast alloys. In: Manufacturing Technology, Vol. 11, pp. 70-76.

PEZDA, J. (2014). Influence of heat treatment parameters on the mechanical properties of hypoeutectic Al-Si-Mg alloy, In. METABK, Vol. 53, 2, pp. 221-224.

PEZDA, J. (2015). Effect of the T6 heat treatment on change of mechanical properties of the AlSi12CuNiMg alloy modified with Strontium, In. Archives of Metallurgy and Materials, Vol. 60, 2, pp.627-632.

SHABESTARI, S. G. (2004). The effect of iron and manganese on the formation of intermetallic compounds in aluminum–silicon alloys. In. Materials Science and Engineering A, Vol. 383, pp. 289–298.

FARKAŠOVÁ, M., TILLOVÁ, E., CHALUPOVÁ, M. (2013). Fracture surface of recycled AlSi10Mg cast alloy. Manufacturing technology, Vol. 13, 1, p. 109-114.

TAYLOR, J. A. (2004). The effect of iron in Al-Si casting alloys. In: 35th Australian Foundry Institute National Conference, pp. 148-157, Adelaide, South Australia.

SEIFEDDINE, S. (2007). The influence of Fe on the microstructure and mechanical properties of cast Al-Si alloys. In. Literature review - Vilmer project. Jönköping University, Sweden.

KNUUTINEN, A., NOGITA, K., MCDONALD, S. D., DAHLE, A. K. (2001). Modification of Al-Si alloys with Ba, Ca, Y and Yb. In. Journal of Light Metals, 1, p. 229-240.

MARKER, M., SKOLYSZEWSKA-KÜHBERGER, B., EFFENBERGER, H. S., SCHMETTERER, C., RICHTER, K.W. (2011). Phase equilibria and structural investigations in the system Al-Fe-Si. In. Intermetallics, Vol. 19, pp. 1919-1929.

CASARI, D., FORTINI, A., MERLIN, M. (2013). Fracture behaviour of grain refined A356 cast aluminium alloy: tensile and Charpy impact specimens. Convegno Nazionale IGF XXII, Roma, Italia, pp. 314-321.

STUNOVÁ, B. B. (2012). Strontium as a structure modifier for non-binary Al-Si alloy. In. Acta Polytechnica. Vol. 52, No. 4, p. 26-32.

Page 10: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

10 indexed on: http://www.scopus.com

TILLOVÁ, E., CHALUPOVÁ, M., HURTALOVÁ, L. (2011). Evolution of phases in a recycled Al-Si cast alloy during solution treatment. Chapter 21: The scaning Electron Microscopy. Book edited by: Dr. Viacheslav Kazmi-ruk, pp. 411 - 438, INTECH.

BOLIBRUCHOVÁ, D., RICHTÁRECH, L. (2013). Effect of adding iron to the AlSi7Mg0.3 (EN AC 42 100, A356) alloy. In: Manufacturing Technology, Vol. 13, No. 3, pp. 276-281.

TRŠKO, L., GUAGLIANO, M., BOKŮVKA, O., NOVÝ, F. (2014). Fatigue life of AW 7075 Aluminium Alloy after Severe Shot Peening Treatment with Different Intensities. In. Procedia Engineering, Vol. 74. pp. 246-252.

NICOLETTO, G., KONEČNÁ, R., FINTOVÁ, S. (2012). Characterization of microshrinkage casting defects of Al–Si alloys by X-ray computed tomography and metallography. In. International Journal of Fatigue, Vol. 41, pp. 39-46.

KONEČNÁ, R., FINTOVÁ, S., NICOLETTO, G. (2011). Shrinkage pores and fatigue behavior of cast Al-Si alloys. In. Key Engineering Materials, Vol. 465. pp. 354 -357.

ASM Handbook. (2002). Vol.15 - Casting. ASM International.

VAŠKO, A. (2009). Analysis of the factors influencing microstructure and mechanical properties of austempered ductile iron. In: Communications. Vol. 4, pp. 43-47.

Taylor, J. A. (2012). Iron-containing intermetallic phases in Al-Si based casting alloys, In. Procedia Materials Science, 1, pp. 19-33.

Paper number: M20164 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 11: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

indexed on: http://www.scopus.com 11

Stability of the Casting Process According to the Method BOST

Stanisław Borkowski, Manuela Ingaldi, Piotr Sygut, Dorota Klimecka-Tatar Czestochowa University of Technology, Faculty of Management, Institute of Production Engineering, al. Armii Krajowej 19b, 42-200 Czestochowa, Poland, Email: [email protected], [email protected], [email protected], [email protected]

Process stability is one of the factors determining high quality of the products. By stable process, operations con-ducted in order to produce a given product are repeatable, and at the same time products manufactured in such process are repeatable and theirs quality is predictable. In the article the BOST method was used to evaluate casting process stability. The research in from of a survey was conducted in one of the Polish foundry. The results were presented in form of 2x2 matrix. This matrix has two variables: process stability (X axis) and product quality (Y axis). Employees quite highly evaluated the process stability, and medium and low product quality. Which means that the research foundry is located in the B zone of the map of process stability, which is referred as "Fundamental changes in the process".

Keywords: Stability, Quality, Foundry, Foundry products, BOST

References

INGALDI, M. (2014). Analiza stabilności procesu w wybranej odlewni. In: Toyotaryzm. Zagadnienia kontroli w metodzie BOST. Borkowski S., Ingaldi M. (Ed.), pp. 98-109, Oficyna Wydawnicza Stowarzyszenia Menedżerów Jakości i Produkcji, Częstochowa.

BORKOWSKI, S., INGALDI, M. (2015). Evaluation of the processes stability in metal industry. In: METAL 2015: 24th International Conference on Metallurgy and Materials. Ostrava: TANGER.

SYGUT, P., LABER, K., BORKOWSKI, S. (2012). Investigation of the non-uniform temperature distribution on the metallic charge length during round bars rolling process. In: Manufacturing Technology, Vol. 12, No. 13, pp. 260-263.

KLIMECKA-TATAR, D. (2014). The Powdered Magnets Technology Improvement by Biencapsulation Method and Its Effect on Mechanical Properties. In: Manufacturing Technology, Vol.14, No. 1, pp. 30-36.

KARDAS, E. (2013). The analysis of quality of ferrous burden materials and its effect on the parameters of blast furnace process. In: Metallurgy, vol. 52 (2), pp. 149-152.

PUSTEJOVSKA, P., JURSOVA, S., BROZOVA, S., SOUSEK, J. (2013). Effect of waste and alternative fuels on blast-furnace operation. In: Metallurgist, Vol. 56, Iss. 11-12, pp. 908-911.

INGALDI, M., BORKOWSKI, S. (2014). Recycling Process of the Aluminium Cans as an Element of the Susta-inable Development Concept. In: Manufacturing Technology, Vol.14, No 2, pp.172-178.

BORKOWSKI, S. (2012). Toyotaryzm. Wyniki badań BOST. Wyd. PTM, Warszawa.

BORKOWSKI, S. (2012). Zasady zarządzania Toyoty w badaniach. Wyniki badań BOST. Wyd. PTM, Warszawa Paper number: M20165 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 12: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

12 indexed on: http://www.scopus.com

The Influence of Surface Modification Using Low-Pressure Plasma Treatment on PE-LLD/α-Cellulose Composite Properties

Martin Boruvka1, Chakaphan Ngaowthong2,3, Jiri Cerman1, Petr Lenfeld1, Pavel Brdlik1 1Faculty of Mechanical Engineering, Technical University of Liberec, Studentská 2, 461 17 Liberec 1, Czech Republic. E-mail: [email protected], [email protected], [email protected], [email protected] 2The Sirindhorn International Thai – German Graduate School of Engineering (TGGS), King Mongkut’s University of Technology North Bangkok, 1518 Pracharat 1 Road, Bangsue, Bangkok 10800, Thailand. 3Faculty of Industrial Technology and Management, King Mongkut’s University of Technology North Bangkok Pra-chinburi Campus, 29 Moo 6, Tumbon Noenhom, Amphur Muang, Prachinburi 25230, Thailand E-mail: [email protected]

The use of plant source-based stiff fillers as reinforcement of polymer composite systems have attracted significant interests of researchers during last few decades. Unlike synthetic fibres, plant fibres are renewable, carbon neutral, biodegradable, non-petroleum based, and have low environmental, human health and safety risks. Moreover plant fibres have potential to reduce weight of composite parts up to 40% compared to the traditional synthetic compo-site reinforcement like glass fibres. The main disadvantage of plant fibres lies in combination of non-polar polymer matrix (hydrophobic) and polar plant fibres (hydrophilic). This combination creates poor interface with low ad-hesion of both components. That implies poor wettability of fibres by polymer matrix and low mechanical prope-rties of composites. To improve the compatibility various methods have been explored to increase the hydrophobi-city of plant fibres. The most used method is chemical surface treatments of fibres with large quantities of ha-zardous chemicals that are usually involved in the process. Therefore more greener sustainable technology, that is environmentally friendlier and industrially scalable was investigated in this paper. The process based on low-pressure plasma treatment of both fibres (α-cellulose) and matrix (PE-LLD) was implemented in processing of composites by twin screw extrusion and injection moulding. Resulted composites were characterized by means of scanning electron microscopy (SEM), thermal and mechanical testing.

Keywords: Polymer composite, Plasma treatment, Lightweight, Surface modification, Cellulose

Acknowledgement

This paper was written at the Technical University of Liberec with the support of the Specific University Research Grant SGS, as provided by the Ministry of Education, Youth and Sports of the Czech Republic in the year 2016.

References

MARCH G. (2003) Next step for automotive materials. Materials Today. 6, issue 4.

KALIA, S., DUFRESNE, A., CHERIAN, B. M., KAITH, B. S., AVÉROUS, L., NJUGUNA, J., NASSIOPOULOS, E., (2011) Cellulose-Based Bio- and Nanocomposites: A Review. International Journal of Polymer Science, vol. 2011.

[3]MOHANTY, A. K., MISRA, M., DRZAL, L. T., (2005). Natural fibers, biopolymers, and biocomposites. Ta-ylor & Francis, Boca Raton.

MÜSSIG J. (2010). Industrial application of natural fibres: structure, properties, and technical applications. Wiley, Chichester, West Sussex, U.K.

KALIA, S., KAITH, B. S. and KAUR, I. (2011). Cellulose fibers: bio- and nano-polymer composites. Springer, Berlin.

DUFRESNE A. (2012). Nanocellulose: From Nature to High Performance Tailored Materials. Walter de Gruyter GmbH & Co. KG.

DUFRESNE A. (2013). Nanocellulose: a new ageless bionanomaterial. Mater. Today, vol. 16, no. 6

ZIMMERMANN, T., POHLERAND, E. and GEIGER, T. (2004). Cellulose fibrils for polymer reinforcement. Advanced Engineering Materials 6, No. 9.

REITER, G., STROBL, G. R. (2007). Progress in understanding of polymer crystallization, Springer, vol. 714 Paper number: M20166 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 13: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

indexed on: http://www.scopus.com 13

Carbon Dioxide Internal Cooling Technology of Extrusion Blow Moulding Production

Brdlík Pavel, Martin Borůvka Faculty of Engineering Technology. Technical University of Liberec. Studentská 2, 464 17, Liberec. Czech Republic. E-mail: [email protected], [email protected]

The goal of every company is to be a successful producer. There are no easy ways because there are a lot of factors that have varying impacts on the final profit. One of the most significant factors is production time. If the pro-cessing phases of the production of polymer products are compared, cooling is clearly the most time-consuming. The reason lies in the poor thermal conductivity of polymers. Therefore is very important looking for the optimally way of cooling. One of the very interesting improvements of current production process is application of progres-sive internal cooling systems which using cold medium, such as deep-cooled air, the injection of a mixture of water droplets with pressurized air or the injection of liquefied inert gas (CO2, N2). When these internal cooling tech-niques are compared, it is clear that the highest production increasing is achieved by the technology injection liquefied gas. Although this technology has been known for some time, it has not been widely used until now. The reason for this could be some production restrictions and process disadvantages. The main goal of this paper is therefore focused on find out these limitations.

Keywords: Extrusion Blow Moulding, Internal Cooling, Calibration Pin, Carbon Dioxide.

Acknowledgement

This paper was prepared due to the financial support from Student Grant Contest project from the TUL part within the support of the specific university research.

References

ROSAT, D.V., ROSAT, A.V., DIMATHIA, D.P. (2004). Blow Moulding Handbook, pp. 237-243. Hanser Gardner Publications, Munich, Germany.

TAN, S.B., HORNSBY P.R., MCAFEE M.B., KEARNS M.P., MCCOURT M.P. (2011). Internal Cooling in Ro-tational Molding – a Review. In: Journal of Polymer Engineering and Science, Vol. 51, pp. 1683-1692. Wiley Online Library.

HUNKAR, D.B. (1973). Cooling Blow –Molded Bottles from the Inside Out. In: Journal of Plastic Engineering. Vol. 29, pp. 25-27. Wiley Online Library.

STIPSITS, B. (1993). Using -30°C Internal Cooling Air to Achieve Faster Extrusion Blow Molding Machine Cycle Via the CAC – Compressed Air Cooling System. In: 9th Annual High Performance Blow Molding Confer-ence, pp. 253-262. New Jersey, USA

MICHAELI, W., BRUMER, T. (2007). Reduction o Cooling Time by Using Atomized Water in Blow Molding. In: Proceedings of Society of Plastics Engineers Annual Technical Conference, ANTEC 2007. Vol. 4, pp. 2137-2141. Ohio, USA.

JORG, CH. (2006). Carbon dioxide cooling method may take the waiting out of plastic parts. In: Journal of Auto-motive Engineering, pp. 40-41. Loughborough University, UK.

Paper number: M20167 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 14: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

14 indexed on: http://www.scopus.com

Grinding of Inconel 713 Superalloy for Gas Turbines

Jiří Čapek2, Jiří Kyncl1, Kamil Kolařík2, Libor Beránek1, Zdenek Pitrmuc1, Jan Medřický2,3, Zdenek Pala4 1Faculty of Mechanical Engineering, Czech Technical University in Prague. Technická 4, 166 07 Prague. Czech Republic. E-mails: [email protected], [email protected], [email protected] 2Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague. Trojanova 13, 120 00 Prague, Czech Republic. E-mails: [email protected], [email protected] 3Institute of Plasma Physics CAS. Za Slovankou 3, 182 00 Prague. Czech Republic. E-mail: [email protected] 4Faculty of Engineering, University of Nottingham. University park, NG7 2RD Nottingham. United Kingdom. E-mail: [email protected]

From the viewpoint of residual stresses and microstructure of ground surface, Inconel 713 superalloy is an attractive material since it is frequently used in high temperature gas turbine applications where residual stresses are relevant for service life. The goal of this contribution is to find whether there exists a relation between grinding parameters and final surface integrity parameters such as residual stresses, roughness, crystalitte size, and gener-ally, microstructure. Highly productive creep feed grinding has been applied to produce both simple flat areas and complex fir three blade root. It has been found that the used grinding method lead to very thin deformed layer on the surface with compressive residual stresses and fine crystallites. Moreover, the detailed analyses have been carried out in order to pinpoint plausible reasons behind crack origination.

Keywords: Grinding, Gas turbine, Casting defects, Residual stresses, Nickel superalloy

Acknowledgement

Support of Technology Agency of the Czech Republic via grant number TA04010600 is gratefully acknowledged.

References

[1] ÖSTERLE, W., LI, P. X. (1997). Mechanical and thermal response of a nickel-base superalloy upon grinding with high removal rates. In: Materials Science and Engineering: A, Vol. 238, No. 2, pp. 357–366.

[2] DING, W. F., XU, J. H., CHEN, Z. Z., SU, H. H., FU, Y. C. (2010). Wear behavior and mechanism of single-layer brazed CBN abrasive wheels during creep-feed grinding cast nickel-based superalloy. In: International Journal of Advanced Manufacturing Technology, Vol. 51, pp. 541–550.

[3] SEDIGHI, M., AFSHARI, D. (2010). Creep feed grinding optimization by an integrated GA-NN system. In: Journal of Intelligent Manufacturing, Vol. 21, No. 6, pp. 657–663.

[4] OHISHI, S., FURUKAWA, Y. (1985). Analysis of Workpiece Temperature and Grinding Burn in Creep Feed Grinding. In: Bulletin of JSME, Vol. 28, No. 242, pp. 1775–1781.

[5] PALA, Z., et al. (2010). Surface Layers’ Real Structure of Metals Exposed to Inhomogeneous Thermal Fields and Plastic Deformation. In: Solid State Phenomena, Vol. 163, pp. 59–63.

[6] EZUGWU, E. O., WANG, Z. M., MACHADO, A. R. (1999). The machinability of nickel-based alloys: a review. In: Journal of Materials Processing Technology, Vol. 86, No. 1–3, pp. 1–16.

[7] BELAN, J., KUCHARIKOVÁ, L., TILLOVÁ, E., UHRÍČIK, M. (2015). The Overview of Intermetallic Phases Presented in Nickel Base Superalloys after Precipitation Hardening. In: Manufacturing Technology, Vol. 15, No. 6, pn. M201587.

[8] KUNZ, L., LUKÁŠ, P., KONEČNÁ, R. (2010). High-cycle fatigue of Ni-base superalloy Inconel 713LC. In: International Journal of Fatigue, Vol. 32, No. 6, pp. 908–913.

[9] PETRENEC, M., OBRTLÍK, K., POLÁK, J. (2005). Inhomogeneous dislocation structure in fatigued INCONEL 713 LC superalloy at room and elevated temperatures. In: Materials Science and Engineering: A, Vol. 400–401, pp. 485–488.

[10] PALA, Z., GANEV, N. (2008). The impact of various cooling environments on the distribution of macroscopic residual stresses in near-surface layers of ground steels. In: Materials Science and Engineering: A, Vol. 497, No. 1–2, pp. 200–205.

[11] PALA, Z., KOLAŘÍK, K., BERANEK, L., CAPEK, J., KYNCL, J., MUŠÁLEK, R., GANEV, N. (2014). Real Structure of Milled Inconel 738LC Turbine Blades. In: Advanced Materials Research, Vol. 996, pp. 646–651.

Page 15: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

indexed on: http://www.scopus.com 15

[12] HILL, R. (1952). The elastic behaviour of a crystalline aggregate. In: Proceedings of the Physical Society: A, Vol. 65, No. 5, pp. 349.

[13] CHEARY, R. W., COELHO, A. A., CLINE, J. P. (2004). Fundamental parameters line profile fitting in laboratory diffractometers. In: Journal of Research of the National Institute of Standards and Technology, Vol. 109, pp. 1–26.

[14] NOVÁK, M., NÁPRSTKOVÁ, N. (2015). Grinding of the Alloy INCONEL 718 and Final Roughness of the Surface and Material Share. In: Manufacturing Technology, Vol. 15, No. 6, pn. M2015187.

[15] BORBÉLY, A. (2015). Accurate strain determination from digital image correlation of Laue diffraction spots. In: Journal of Applied Crystallography, Vol. 48, No. 6, pp. 1614–1616.

Paper number: M20168 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 16: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

16 indexed on: http://www.scopus.com

Evaluation of Cutting Forces and Surface Roughness after Machining of Selected Materials

Lenka Cepova1, Dagmar Sokova1, Sarka Malotova1, Bartosz Gapinski2, Robert Cep1 1Faculty of Mechanical Engineering, VŠB – Technical University of Ostrava. 17. Listopadu 15/2172, Ostrava. Czech Republic. E-mail: [email protected], [email protected], [email protected], [email protected], 2Faculty of Mechanical Engineering and Management, Poznan Univerzity of Technology, ul. Piotrowo 3, 60 965, Poznan. Poland. E-mail: [email protected]

This article deals with the evaluation of changes in mean values of the individual components of cutting forces and measuring the roughness parameters after machining variable cutting conditions such as cutting speed and feed rate. Were evaluated 3 materials from different classes’ machinability: steel 14109, alloy CuZn40Pb2 and brass AlCu4PbMg. The materials have been chosen with respect to their use in the extrusion method of the ECAP. The experiment was carried out on the machine SUI 40, the forces were measured on a dynamometer KISTLER 9441 and on the roughness equipment Hommel Tester T2000. All measurements will be evaluated in tables and graphs. The results could be used in abbreviated testing machinability as indicative.

Keywords: Machining; measuring; cutting forces; surface roughness

Acknowledgment

This work was supported by the European Regional Development Fund in the IT4Innovations Centre of Excellence project CZ.1.05/1.1.00/02.0070, by Education for Competitiveness Operational Programme financed by Structural Founds of Europe Union in project Integrita CZ.1.07/2.3.00/20.0037 and by Student Grant Competitions SP2015/116 and SP2015/129 financed by the Ministry of Education, Youth and Sports and Faculty of Mechanical Engineering VŠB-Technical University of Ostrava.

References

NESLUŠAN, M., TUREK, S., BRYCHTA, J., ČEP, R., TABAČEK, M. (2007). Experimentálne metódy v tries-kovom obrábaní. Žilinská univerzita v Žilině/EDIS-vydavatelstvo ŽU, ISBN 978-80-8070-711-8.

BUDA, J., BÉKÉS, J. (1977). Teoretické základy obrábania kovov. Alfa: Vydavatelstvo technickej a ekonomickej literatúry Bratislava, 696 s.

BACH, P., POLÁČEK, M., CHVOJKA, P., DROBÍLEK, J. (2014). Dynamic Forces in Unstable Cutting during Turning Operation. Manufacturing Technology, Vol. 14, No. 1, pp. 3-8. ISSN 1213-2489.

OČENÁŠOVÁ, L. (2004). Identifikácia obrábitelnosti materiálu ADI 1000 (Diplomová práca). Žilinská univerzita v Žilině.

HRICOVÁ, J. (2013). Influence of Cutting Tool Material on the Surface Roughness of AlMgSi Aluminium Alloy. Manufacturing Technology, Vol. 13, No. 3, pp. 324-328. ISSN 1213-2489.

HAVRILA, M., BRYCHTA, J. (2006). Top trendy v obrábání – Obrábané materiály. Media/st s.r.o.

BRYCHTA, J., ČEP, R., NOVÁKOVÁ, J., PETŘKOVSKÁ, L. (2007). Technologie II - 1. díl. Ostrava: VŠB - TU Ostrava, ISBN 978-80-248-1641-8.

Ferona-Materiálové normy [online]. [cit.2009-04-23]. Dostupný na: http://www.ferona.cz/cze/kata-log/mat_normy.php

Pramet-Katalog [online]. [cit.2009-04-27]. Dostupný na: http://www.pramet.com/download/katalog/pdf/Tur-ning%202009%20CZSK%20screen.pdf

CEP, R., JANASEK, A., PETRU, J., CEPOVA, L., CZAN, A., VALICEK, J. (2013). Hard Machinable Machining of Cobalt-based Superalloy. Manufacturing Technology, Vol. 13, No. 2, pp. 142-147. ISSN 1213-2489.

Paper number: M20169 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 17: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

indexed on: http://www.scopus.com 17

Efficiency of Local Exhaust Ventilation System during Stainless Steel Grinding

Miroslav Dado1, Marián Schwarz2, Alena Očkajová3, Richard Hnilica1, Daniela Borošová4 1Faculty of Environmental and Manufacturing Technology, Technical University in Zvolen. Studentska 26, 960 53 Zvo-len. Slovak Republic. E-mail: [email protected], [email protected] 2Faculty of Ecology and Environmental Sciences, Technical University in Zvolen. T. G. Masaryka 24, 960 53 Zvolen. Slovak Republic. E-mail: [email protected] 3Faculty of Natural Sciences, Matej Bel University. Tajovskeho 40, 974 01 Banska Bystrica. Slovak Republic. E-mail: [email protected] 4Department of Chemical Analysis, Regional Authority of Public Health. Cesta k nemocnici 1, 975 56 Banska Bystrica. Slovak Republic. E-mail: [email protected]

In order to ensure acceptable level of risk associated with exposure to airborne dust they should have been mainly technical and organisation measures at workplaces with enhanced occurance of dust. Local exhaust ventilation (LEV) belongs to principal engineering control for prevention of airborne spreading. The aim of the study was to assess the efficiency of LEV system used at mechanical workshop for controlling respirable fraction of dust during stainless steel grinding activities. Dust control effectiveness was assessed by determining personal exposure levels with and without the use of LEV system. Personal dust samples were collected using a photometer-type dust mo-nitor. On the basis of results it can be concluded that LEV system significantly improved quality of workplace atmosphere at given workplace.

Keywords: Stainless Steel, Grinding Dust, Local Exhaust Ventilation, Photometer

Acknowledgement

The authors wish to thank Mr. David Keďúch for his participation in the study and Mrs. Lucia Mrózová for her skilful assistance in statistical analysis.

References

BROSSEAU, L. M., LUNGU, C. T. (2005). The nature and properties of workplace airborne contaminants. In: Occupational Hygiene, 3rd ed. (K. Gardiner, (Ed.)), pp. 85 – 104. Wiley-Blackwell, Oxford.

CROSS, H. J., BEACH, L. S., SADHRA, S., SORAHAN, T., McROY, C. (1999). Manufacture, processing and use of stainless steel: a review of the health effects. EUROFER, Bruxelles.

SANTONEN, T., STOCKMANN-JUVALA, H., ZITTING, A. (2010). Review on toxicity of stainless steel. Finish Institute of Occupational Health, Helsinki.

SR Government Ordinance No. 355/2006 Coll. on protection of employees against risks due to to exposure to chemical factors at work as amended. In: Collection of Laws, Part 125, pp. 2550 – 2578. (in Slovak).

JANKOWSKI, T. (2011). Impact of air distribution on efficency of dust capture from metal grinding – bench test method. In: Industrial Health, Vol. 49, No. 6, pp. 735 – 745.

GLINSKI, M. (2002). Dust emission and effiency of local exhaust ventilation during cast iron grinding. In: In-ternational Journal of Occupational Safety and Ergonomics, Vol. 8, No. 1, pp. 95 – 105.

CROTEAU, G. A., FLANAGAN, M. E., CAMP, J. E., SEIXAS, N. S. (2004). The efficacy of local exhaust ven-tilation for controlling dust exposures during concrete surface grinding. In: The Annals of Occupational Hygiene, Vol. 48, No. 6, pp. 509 – 518.

OJIMA, J. (2007). Efficiency of a tool-mounted local exhaust ventilation system for controlling dust exposure during metal grinding operations. In: Industrial Health, Vol. 45, No. 6, pp. 817 – 819.

FLYNN, M. R., SUSI, P. Local exhaust ventilation for the control of welding fumes in the construction industry – a literature review. In: The Annals of Occupational Hygiene, Vol. 56, No. 7, pp. 764 – 776.

LIVERSEED, D. R., LOGAN, P. W., JOHNSON, C. E., MOREY, S. Z., RAYNOR, P. C. (2013). Comparative emissions of random orbital sanding between conventional and self-generated vacuum systems. In: The Annals of Occupational Hygiene, Vol. 57, No. 2, pp. 221 – 229.

ARMISHAW, P. (2003). Estimating measurement uncertainty in the afternoon. A case study in the practical ap-plication of measurement uncertainty. In: Accreditation and Quality Assurance, Vol. 8, Issue 5, pp. 218 – 224.

Page 18: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

18 indexed on: http://www.scopus.com

HOLEŠOVSKÝ, F., NÁPRSTKOVÁ, N., NOVÁK, M. (2012). GICS for grinding process optimization. In: Ma-nufacturing Technology, Vol. 12, No. 12, pp. 22 – 26.

LUKÁČOVÁ, K., BADIDA, M., MORAVEC, M. (2011). Guidance for the assessment of exposure by inhala-tion to solid aerosols for comparison with limit value. In: Annals of Faculty of Engineering Hunedoar, Vol. 9, No. 2, pp. 141 – 144.

FRANSMAN, W., SCHINKEL, J., MEIJSTER, T., VAN HEMMEN, J., TIELEMANS, E., GOEDE, H. Develo-pment and evaluation of an exposure control efficacy library (ECEL). In: The Annals of Occupational Hygiene, Vol. 52, No. 7, pp. 567 – 575.

Paper number: M201610 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 19: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

indexed on: http://www.scopus.com 19

Simulation Possibilities of 3D Measuring in Progressive Control of Production

Mário Drbúl1, Dana Stančeková1, Ondrej Babík1, Jozef Holubjak1, Ingrid Görögová2, Daniel Varga1 1Katedra obrábania a výrobnej techniky, Strojnícka fakulta, Žilinská univerzita v Žiline Univerzitná1, 010 26 Žilina, Slo-venská republika: [email protected], [email protected], ondrej.babik@ fstroj.uniza.sk, [email protected] 2Materiálovotechnologická fakulta STU v Trnave, Ústav výrobných technológií, J. Bottu 23, 917 24 Trnava, Slovenská republika: [email protected]

The product price consists from several items. Time needed for adequate control of product is one of the most significant items, which can get expensive. So it is important, how the measurement strategy (measurement plan) is prepared. Time, which is not used for control of products by 3D measurement machine, is financial loss for company. This article deals with simulation of contact measurement, as a progressive tool, for preparation and creation of measurement plans for 3D coordinate measurement machines. Furthermore, the article deals with factors, that are not taken into account by offline programming during creation of measurement plan. Those can ultimately lead to significant difference between measurement simulation and measurement performed in workspace of measurement machines or CNC machines. This difference can cause serious shortcomings in mea-surement plans created in offline programming modules.

Keywords: Off-line programming, simulation measurement, coordinate measuring machine, CAD model

Acknowledgement

This work was supported in part by the VEGA č. 1/0836/13.

References

[online]. 2015, [cit. 2015-02-12]. Available on internet: http://www.solidcam.cz/cam-solutions/solid-probe/on-machine-verification/

[online]. 2015, [cit. 2015-02-12]. Available on internet: http://www.renishaw.cz

POKORNÝ, P.:Souřadnicové měřicí stroje. Skriptá TU v Liberci. Liberec 1999 ISBN 80-7083-326-2

Precision styli, 2015. [online]. 2015, [cit. 2015-02-12]. Available on internet:http://www.renishaw.cz/cs/na-spicce-pruvodce-pro-vyber-doteku-pro-souradnicovymerici-stroj--10927

MEŠKO, J. - ZRAK, A. – MULCZYK, K. – TOFIL, S.: Microstructure analysis of welded joints after laser wel-ding, In: Manufacturing Technology: journal for science, research and production, Vol. 14, No. 3 (2014), s. 355– 359. ISSN 1213-2489, Kód: ADM.

Paper number: M201611 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 20: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

20 indexed on: http://www.scopus.com

Gauge Block Calibration by Interferometry

Štěpánka Dvořáčková Department of Machining and Assembly, Faculty of Mechanical Engineering, Technical University of Liberec, 461 17 Liberec. Czech Republic. E-mail: [email protected]

Absolute length calibration of gauge blocks traceable to the definition of meter is an important task of the national metrology institutes responsible for providing reliable length artifacts for industrial use. The length of a gauge block (henceforth, represented as GB) is defined in ISO 3650 as the distance between its one measuring face and the surface of an auxiliary platen on which the other measuring face has been wrung. Accordingly, in central length calibration of K-grade GBs using interferometry, it is required that they be wrung onto an auxiliary platen whose characteristics are the same as the measuring face of the GBs. According to this definition, the length of a GB consists of its mechanical length between two faces and the wringing film thickness. This definition is practical and reasonable in many cases because GBs are used as length standards with wringing. Also this calibration method has the advantage that the thickness of the wringing film is propagated appropriately when lower grade GBs are calibrated by comparison to higher grade GBs via a mechanical comparator. In terms of this paper is briefly described interferometry method of gauge blocks calibration. The paper was written in conjunction with Czech Metrology Institute.

Keywords: Gauge Blocks, Measurement by Interferometry, Measurement Uncertainty.

Acknowledgement

This paper is related to the investigation on the Research Project TA03010663: Advanced systems for length calibra-tion gauge blocks and surface inspection of end standards, which are supported by the Technological Agency of the Czech Republic.

References

ISO3650 1998 Geometrical Product Specifications(GPS)—Length Standards—Gauge Blocks (Geneva, Switzer-land: International Organization for Standardization).

1984 Documents concerning the new definition of the meter Metrologia 19 163–77.

DECKER, J. E., PEKELSKY, J. R. (1997). Uncertainty evaluation for the measurement of gauge blocks by optical interferometry, Metrologia 34 479–93.

HARIHARAN, P. (1992). Basics of Interferometry, (Academic Press, Inc., New York), Chapter 8.

LEWIS, A. J. (1994). Measurement of length, surface form and thermal expansion coefficient of length bars up to 1.5m using multiple–wavelength phase–stepping interferometry, Meas. Sci. Technol. 5 694–703.

HOWICK, E. F., WATKINS, L. R., TAN, S. M. (2003). Automation of a 1960s Hilger gauge block interferometer Metrologia 40 139–45.

BIPM, IEC, IFCC, ISO, IUPAC, IUPAP and OIML 1995 Guide to the Expression of Uncertainty in Measurement (Geneva, Switzerland: International Organization for Standardization) (corrected and reprinted).

BONSCH, G. (1998). Gauge blocks as length standards measured by interferometry or comparison: length defini-tion, traceability chain, and limitations, Proc. SPIE 3477 199–210.

DOIRON, T. D., EVERETT, D., FAUST, B. S., STANFIELD, E. S. STOUP, J. R. (1998). Case against optical gauge block metrology, Proc. SPIE 3477 188–98.

DOIRON, T. (2008). Gauge blocks—a zombie technology, J. Res. Natl Inst. Stand. Technol. 113 175–84.

HUGHES, E. B. (1993). Measurement of the linear thermal expansion coefficient of gauge blocks by interferom-etry, Proc. SPIE 2088 179–89.

Paper number: M201612 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 21: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

indexed on: http://www.scopus.com 21

Mold Surface Contamination during Polymer Processing

Zdenek Dvorak1,2, Eva Hnatkova1,2, Michal Sedlacik1,2 1Department of Production Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 760 01 Zlin, Czech Republic 2Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida T. Bati 5678, 760 01 Zlin, Czech Republic. E-mail: [email protected]

The aim of this work is concerned with a problematic adhesion of polymer materials on the surface of processing tools. Such phenomenon plays especially an important role in production of rubber components which creates an additional and considerable costs associated with mold cleaning. However, the origin of contamination is still not fully known yet. From production point of view, the attention should be paid to three fundamental aspects: pro-cessed material, material of processing tool, and processing conditions. This study describes the results of mold’s surface contamination during processing a rubber compound in terms of material and surface treatment. A met-hod of spectral analysis in terms of FTIR was used for proper examination of this problem.

Keywords: Rubber; Fouling; Contamination; Mold Surface; FTIR

Acknowledgment

This work was supported by the Ministry of Education, Youth, and Sports of the Czech Republic - Program NPU I (LO1504). This study was also supported by the internal grant of TBU in Zlin IGA/FT/2016/002 funded from the resources of the specific university research. The authors would like also to thank Barbora Hanulikova for her help with FTIR analysis.

References

PREKOP, Š. (1998). Gumárska technológia I. Žilina: Žilinská univerzita.

ŠPAČEK, J. (1987). Technologie gumárenská a plastikářská. Brno: VUT.

DUCHÁČEK, V., HRDLIČKA Z. (2009). Gumárenské suroviny a jejich zpracování, Praha: VŠCHT v Praze.

FORREST, M. J. (2001). Rubber Analysis: Polymers, Compounds and Products, Vol. 139, iSmithers Rapra Publishing.

HORNSBY, P. R., SINGH, I., DALEY, J. R., FIRTH, J. (2006). Mould fouling of elastomers during injection moulding. Plastics, rubber and composites, vol. 35(8), pp. 331-339.

HAVLÍ ČKOVÁ, K. (2014). Methods of Mold Cleaning from Vulcanized Residues. Master thesis, Zlín: UTB in Zlín.

DAVIS, G. D. (1993). Contamination of surfaces: origin, detection and effect on adhesion. Surface and interface analysis, 20(5), pp. 368-372.

HÁBA, J. (2015). Contamination of tool steels during rubber vulcanization. Master thesis, University of Tomas Bata in Zlin.

ČERVINKA, M. (2015). Contamination and surface protection of molds made of aluminum alloys. Master thesis, Zlín: UTB in Zlín.

DVOŘÁK, Z. (2011). Zpracovatelské procesy gumárenské: pro konstrukční směry. Zlín: UTB ve Zlíně.

INSTITUT GUMÁRENSKÉ TECHNOLOGIE A TESTOVÁNÍ ZLÍN (1996). Problematika špinění forem: Studie o příčinách vzniku a možnostech jejího snížení. Zlin.

BUKHINA, M. F., MOROZOV, Y. L., Van de VEN, P. M., NOORDEMEER, J. W. M. (2003). Mould fouling of EPDM rubber compounds. Kautschuk Gummi Kunststoffe, 56(4), pp. 172-183.

Paper number: M201613 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 22: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

22 indexed on: http://www.scopus.com

The Assessment of Tribiological Properties and the Condition of the Surface of Tool Steel for Hot Work 55nicrmov6 Subjected to the Process of Friction

Krzysztof Dziedzic1, Jerzy Józwik2, Marcin Barszcz1 1Fundamentals of Technology Faculty, Lublin University of Technology, 38 Nadbystrzycka Street, 20-618 Lublin, Po-land, e-mail:[email protected], [email protected] 2Department of Production Engineering, Mechanical Engineering Faculty, Lublin University of Technology, 36 Nadbystrzycka Street, 20-816 Lublin, Poland, e-mail: [email protected]

The paper presents the evaluation of tribiological properties and condition of the tool steel surface for hot work 55NiCrMoV6 (WNL). Due to the fact that the steel 55NiCrMoV6 is used for components operating at high tem-perature, the tribological tests were performed at the room temperature as well as higher temperature (150 °C). The wear tests were performer with help of ball-on-disc tribotester, according to the standard ASTM G-99. The applied load was 5 N and 20 N. The counter specimen consisted of balls with the diameter of 6 mm made of steel 100Cr6. Steel samples 55NiCrMoV6 undergone thermal improvement. The average hardness amounted to 57 HRC. The test was performed with the slip speed of the friction pair 0.15 m/s and sliding distance 200 m. During the test, one registered the friction coefficient, frictional force, temperature and the depth of friction. Then, one calculated the wear rate for the friction agents. The evaluation of friction was performed after tribiological tests. For the load of 5 N the average friction coefficient in the room temperature amounted to µ=0.46. At the tempera-ture of 150 °C it increased up to µ=0.69. The wear rate for the sample subjected to tests at room temperature was 3.618×10-5 mm3N-1m-1. At the temperature of 150 °C it increased up to 8.058×10-5 mm3N-1m-1. The maximum Her-zian stress was 1.099 GPa. For the load of 20 N an average friction coefficient at the room temperature was µ=0.69. At the temperature of 150 °C the friction coefficient was µ=0.57. The wear rate for the sample subjected to tests at the room temperature amounted to 2.136×10-5 mm3N-1m-1. At the temperature of 150 °C it increased up to 2.737×10-5 mm3N-1m-1. The maximum Herzian stress was 1.741 GPa. The wear of the steel 55NiCrMoV6 increased with the increased temperature. It has been con-firmed by application of two different loads. The basic wear consisted in abrasive wear.

Keywords: tribological properties, friction, tool steel for hot work 55NiCrMoV6, condition of the surface

References

HAWRYLUK, M., ZWIERZCHOWSKI, M. (2009). Structural analysis of hot forming dies with regard to their life. In: Maintenance and reliability, No. 2, pp. 31 – 41.

GRONOSTAJSKI, Z., HAWRYLUK, M., KUZIAK, R., RADWANSKI, K., SKUBISZEWSKI, T., ZWIERZCHOWSKI, M. (2012). The equal channel angular extrusion process of multiphase high strength alu-minium bronze. In: Archives of Metallurgy and Materials, No. 4, pp. 897 – 909.

GRONOSTAJSKI, Z., HAWRYLUK, M. (2008). The main aspects of precision forging. In: Archives of civil and mechanical engineering, No. 8(2), pp. 39 – 57.

MÜLLER, M., VALASEK, P. (2012). Abrasive wear effect on Polyethylene, Polyamide 6 and polymeric particle composites. In: Manufacturing technology, Vol. 12, No. 12, pp. 55 – 59.

NAPRSTKOVA, N., SVOBODOVA, J., CAIS, J. (2013). Influence of strontium in AlSi7Mg0.3 alloy on the tool wear. In: Manufacturing Technology, Vol. 13, No. 3, pp. 368 – 373.

LIN, J., MISHRA, B., MOORE, J., SPROUL, W. (2008). A study of the oxidation behavior of CrN and CrAlN thin films in air using DSC and TGA analyses. In: Surf. Coat. Technol., No. 202, pp. 3272 – 3283.

SINGH, K., LIMAYE, P., SONI, N., GROVER, A., AGRAWAL, R., SURI, A. (2005). Wear studies of (Ti–Al) N coatings deposited by reactive magnetron sputtering. In: Wear, No. 258, pp. 1813 – 1824.

PANJAN, P., CVAHTE, P., CEKADA, M., NAVINSEK, B., URANKAR, I. (2001). PVD CrN coating for pro-tection of extrusion dies. In: Vacuum, No. 61, pp. 241 – 244.

NAPRSTKOVA, N., CAIS, J., STANCEKOVA, D. (2014). Influence of AlSi7Mg0.3 alloy modification by Sb on the tool wear. In: Manufacturing technology, Vol. 14, No. 1, pp. 75 – 79.

JERINA, J., KALIN, M. (2014). Initiation and evolution of the aluminium alloy transfer on hot work tool steel at temperatures from 20 °C to 500 °C. In: Wear, No. 319, pp. 234 – 244.

Page 23: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

indexed on: http://www.scopus.com 23

NAPRSTKOVA, N., CERVINKA, R., KUSMIERCZAK, S., CAIS, J. (2015). Modifications AlSi9CuMnNi alloy by ntimony and heat treatment and their influence on the resulting structure. In: Manufacturing technology, Vol. 15, No. 4, pp. 634 – 638.

PELLIZZARI, M. (2011). High temperature wear and friction behaviour of nitrided, PVD-duplex and CVD coated tool steel against 6082 Al alloy. In: Wear, No. 271, pp. 2089 – 2099.

KALIN, M., JERINA, J. (2015). The effect of temperature and sliding distance on coated (CrN, TiAlN) and un-coated nitrided hot-work tool steels against an aluminium alloy. In: Wear, No. 330-331, pp. 371 – 379.

AL-BUKHAITI, M.A., AL-HATAB, K.A., TILLMANN, W., HO FFMANN, F., SPRUTE, T. (2014). Tribological and mechanical properties of Ti/TiAlN/TiAlCN nanoscale multilayer PVD coatings deposited on AISI H11 hot work tool steel. In: Applied surface science, No. 318, pp. 180 – 190.

DOBRZAŃSKI, L.A., PIEC, M., KLIMPEL, A. (2007). Improvement of the hot work tool steel surface layers properties using a high power diode laser. In: Journal of achievements in materials and manufacturing engineer-ing, No. 21, pp. 13 – 22.

DOBRZAŃSKI, L.A., JONDA, E., LABISZ, K., BONEK, M., KLIMPEL, A. (2010). The comparision of tribo-logical properties of the surface layer of the hot work tool steels obtained by laser alloying. In: Journal of achieve-ments in materials and manufacturing engineering, No. 42, pp. 142 – 147.

YILBAS, B.S., PATEL, F., KARATAS, C. (2015). Laser controlled melting of H12 hot-work tool steel with B4C particles at the surface. In: Optics and laser technology, No. 74, pp. 36 – 42.

LUKOVICS, I., MALACHOVA, M. (2012). Laser machining of chosen materials. In: Manufacturing technology, Vol. 12, No. 12, pp. 38 – 42.

LEE, J., JANG, J., JOO, B., SON, Y., MOON, Y. (2009). Laser surface hardening of AISI H13 tool steel. In: Transactions of nonferrous metals society of China, No. 19, pp. 917 – 920.

Paper number: M201614 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 24: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

24 indexed on: http://www.scopus.com

Ultrasonic Identification of Weld Defects Made by Electrofusion Welding on Plastic Pipelines

Martin Faturík, Miloš Mičian, Radoslav Koňár University of Žilina, Univerzitná 1, Department of Mechanical Engineering Technologies; E-mail: [email protected], [email protected], [email protected]

In this article is described, how can ultrasonic method Phased Array be used for inspection of weld joints made by electrofusion welding on plastic pipelines. For purpose of testing and to develop a proper setup, several artificially made defects were created in the weld area to verify, if this method can be successfully used for this application, since standards for testing of plastic pipelines have no specific regulation for this method. Therefore we are trying to propagate this method for gas and water transport industry, because it can severely reduce risks of accidents caused by unidentified defects, which can occur in welded joints.

Keywords: ultrasonic defectoscopy, phased array, plastic pipelines, gas industry

Acknowledgement

Article was created within project solution VEGA: 1/0836/13, KEGA: 034ZU-4/2015 a KEGA: 014ZU-4/2015.

References

KOVÁČIK, M., HYŽA, R. (2013). Ultrazvuková skúška časti obvodového zvaru čpavkovej tlakovej nádoby technikami Phased Array a TOFD. [Online] 2013. [Date: 21. 04 2013.] http://www.ssndt.sk/files/od-borne/PA%20a%20TOFD%20na%20cpavku.pdf.

KOVÁČIK, M. (2010). Skúšanie materiálov ultrazvukom. Bratislava : s.n.,

MARTANČÍK, B. (2012). Výskum diagnostiky defektov pomocou nových ultrazvukových metód TOFD a Phased Array a vplyv na životnosť zváraných konštrukcií. Bratislava: Slovenská technická unverzita v Brati-slave, s. 151, dizertačná práca.

OBRAZ, J. (1989). Zkoušení materiálu ultrazvukem. Praha : SNTL Nakladatelství technické literatury, s. 464. ISBN 80-03-00097-1.

OLYMPUS. (2004). Introduction to Phased Array Ultrasonic Technology Applications. Waltham, MA : Olym-pus NDT, s. 351. ISBN 0-9735933-0-X.

OLYMPUS. (2012). Phased Array Testing Basic Theory for Industrial Applications. 2nd ed. Waltham, MA : Olympus NDT, s. 113. DMTA-20003-01EN.

LOYDA, M., ŠPONER, V.. ONDRÁČEK, L., a kol. (2001). Svařování termoplastů. Praha. Uno, 2001. ISBN 80-223-6603-6

MORAVEC, J., BRADÁČ, J., BERAN, D., NOVÁKOVÁ, I. (2014). The Impact of Thermal Cycles of Superhe-ated Steam on Pipes Material of By-Pass of Steam and Gas-Steam. In: 23rd International Conference on Me-tallurgy and Materials, Metal 2014, Brno, ISBN 978-80-87294-52-9.

SEJČ, P., BIELAK, R., ŠVEC, P., ROŠKO, M. (2006). Computer simulation of heat affected zone during MIG brazing of zinc-coated steel sheets. In Kovové materiály. Metallic materials. Roč. 44, č. 4, s.225-234. ISSN 0023-432X.

MEŠKO, J., ZRAK, A., MULCZYK, K., SZYMON, T. (2014). Microstructure analysis of welded joints after laser welding. In: Manufacturing technology: journal for science, research and production. - ISSN 1213-2489. - Vol. 14, no. 3, s. 355-359.

NORBERT, R., MEŠKO, J., ZRAK, A. (2014). Technology of laser forming. In: Manufacturing technology: journal for science, research and production. - ISSN 1213-2489. - Vol. 14, no. 3, s. 428-431.

Paper number: M201615 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 25: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

indexed on: http://www.scopus.com 25

The Effect of Beam Curvature on Bending Properties of Sandwich Structures

Ladislav Fojtl1,2, Sona Rusnakova1, Milan Zaludek1, Vladimir Rusnak3

1Department of Production Engineering, Faculty of Technology, Tomas Bata University in Zlín. Vavrečkova 275, 760 01 Zlín. Czech Republic. E-mail: [email protected], [email protected], [email protected] 2Centre of Polymer Systems, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic 3Faculty of Metallurgy and Materials Engineering, VŠB-Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic. E-mail: [email protected]

Sandwich composites are well known for many years and its place among the construction materials have they deserved mainly due to very good mechanical properties related to their weight. These materials have been a subject for many researches, but very few of them were focused on the behavior of curved constructions in bend with respect to their specific shape (curvature). With increasing number of new materials and resulting possible material combinations, it is necessary to characterize performance of new prepared structures and also evaluate the effect of a shape on the behavior of sandwich constructions with regard to their material composition. Pre-sented paper deals with an investigation of flat and curved beams of sandwich structures, which correspond by their material composition to those, used in transport industry. Specifically, the influence of curvature size on a change of bending properties of structures with specific material composition compared to flat constructions is evaluated. This influence is also investigated in terms of specimen clamping and type of bending test. Obtained results showed that properties of sandwich structures are dependent not only on size of curvature, bud also on core thickness. Moreover, these results can help designers, constructers or technologists with design, dimensioning or production of these materials for specific applications.

Keywords: Sandwich structure, Beam, Curvature, Shape, Bending, Load capacity, Core, Prepreg

Acknowledgement

The authors gratefully acknowledge the financial support of this research by the internal grant of Tomas Bata Uni-versity in Zlín No. Zlín No. IGA/FT/2016/002 funded from the resources of specific university research.

References

ZENKERT, D. (1997). Nordic Industrial Fund, The Handbook of Sandwich Construction, p. 447. EMAS Publish-ing, Worcestershire.

CAMPBELL, F. (2010). Structural Composite Materials, p. 612. ASM International, Ohio. LEHMHUS D., BUSSE M., HERRMANN A., KAYVANTASH K. (2013). Structural Materials and Processes

in Transportation, p. 598. Wiley-VCH Verlag GmbH, New York. SUBA, O., SYKOROVA, L., LUKOVICS, I. (2012). Stress analysis of injection - moulded cylindrical parts rein-

forced with short fibres. In: Manufacturing technology. Vol 12, No. 13, pp. 251 – 254. TOFT, G. (1983). Stresses in a curved laminated beam. In: Fibre Science and Technology, Vol. 19, Issue 4, pp.

243 – 267. BABA, B.O., THOPPUL, S. (2009). Experimental evaluation of the vibration behavior of flat and curved sandwich

composite beams with face/core debond. In: Composite Structures, Vol. 91, pp. 110-119. SMIDT, S. (1995). Bending of curved sandwich beams. In: Composite Structures. Vol. 33, pp. 211-225. SMIDT, S. (1999). Bending of curved sandwich beams, a numerical approach. In: Composite Structures. Vol. 34,

pp. 279-290. RUSNAKOVA, S., FOJTL, L., ZALUDEK, M., RUSNAK, V. (2014) Design of material composition and tech-

nology verification for composite front end cabs. In: Manufacturing Technology, Vol. 14, Issue 4, pp. 607-611. GIBSON L. J., ASHBY M. F. (1999). Cellular solids: structure and properties, p. 510. Cambridge University Press, Cambridge. Core materials, NetComposites. [online]. 2015 [cit. 2015-10-17]. Available at: <http://www.netcompo-sites.com/guide/core-materials/> Prepregs, Technical brochure. Gurit. [online]. 2015 [cit. 2015-10-03]. Available at: <http://www.gurit.com/files/documents/prepreg-brochurev3pdf.pdf> KAPPEL, E. (2015) Spring-in of curved CFRP/foam-core sandwich structures, In: Composite Structures. Vol. 128, pp. 155-164.

Paper number: M201616 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 26: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

26 indexed on: http://www.scopus.com

Mold Surface Analysis after Injection Molding of Highly Filled Polymeric Compounds

Eva Hnatkova1,2, Daniel Sanetrnik1,2, Vladimir Pata1, Berenika Hausnerova1,2, Zdenek Dvorak1,2 1Department of Production Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 760 01 Zlin, Czech Republic 2Centre of Polymer Systems, Tomas Bata University in Zlin, Trida T. Bati 5678, 760 01 Zlin, Czech Republic E-mail: [email protected], [email protected], [email protected], [email protected], [email protected]

This work deals with an impact of abrasive particles used in powder injection molding (PIM) on a surface rough-ness of the tool. For this purpose, the surface of new mold cavity was compared with the same mold cavity after 2 000 injection molding cycles. Processed PIM compounds contained polymeric binder with around 60 vol. % of metal or ceramic particles (0.1 up to 20 µm). Surface analysis was performed on cavity impressions prepared from a special silicone imprinting substance in two directions by a 3D surface scanner. Investigated parameters were surface roughness (Ra) and roughness depth (Rz) which have an influence on flow instabilities of highly filled compounds such as wall slip affecting the final product quality. Obtained results showed a significant wear of the mold cavity which was statistically confirmed by t-test and F-test parametric methods. A greater part of the mold cavity was smoothed during injection of PIM compounds, while the surface roughness increased near the point gate (runner system) probably due to a high injection pressure in this part of the mold.

Keywords: PIM, Cavity, Surface, Roughness, Wear

Acknowledgement

This work was supported by the Ministry of Education, Youth, and Sports of the Czech Republic - Program NPU I (LO1504). This study was also supported by the internal grant of TBU in Zlin IGA/FT/2016/002 funded from the resources of the specific university research. The authors would like also to thank Lenka Chovanova for her help with special imprints and contactless analysis.

References

GERMAN, R. M, BOSE, A. (1997). Injection Molding of Metals and Ceramics, Priceton, New Jersey.

HEANEY, D. F. (2012). Handbook of metal injection molding, Woodhead Publishing, Cambridge.

GERMAN, R. M. (2011). Metal injection molding, A comprehensive MIM design guide, Princeton, NY.

HAUSNEROVA, B., SANETRNIK, D., PARAVANOVA, G. (2014). Slip of Highly Filled Powder Injection Molding Compounds: Effect of Flow Channel Roughness, TOP 7th International conference, Times of Polymers and Composites, Ischia, Italy.

HENEKA, J., PROKOP, J. , BORSTING, P. , PIOTTER, V., RITZHAUPT KLEISSL, H. J. (2011) Wear-effects induced by powder injection molding of zirconia feedstocks, Proceedings of the 8th International Conference on Multi-Material Micro Manufacture, Stuttgart, Germany.

HAUSNEROVA, B., SANETRNIK, D., PONIZIL, P. (2013). Surface structure analysis of injection molded highly filled polymer melts, Polymer composites, vol. 34 (9), pp. 1553–1558.

JIRANEK, L. (2010). Testing mold design for investigation of powder-binder separation during powder injection molding, Master thesis, Tomas Bata University in Zlin, Czech Republic.

PATA, V., RAHULA J., SYKOROVA, L., ZAPLETALOVA, A., KNEDLOVA, J. (2014). Scanning and Evaluation of Biological Surface Using the Technique of Rapid Prototyping, Applied Mechanics and Materials, vol. 693, pp 256-260.

Paper number: M201617 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 27: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

indexed on: http://www.scopus.com 27

Use of Overlaying Technology in Area of Increasing Ploughshares Service Life

Petr Hrabě, Miroslav Müller, Petr Novák Faculty of Engineering, Czech University of Life Sciences Prague. Czech Republic. E-mail: [email protected], [email protected], [email protected].

A soil processing belongs among basic steps in an area of a crop farming. The research was focused on increasing a service life of ploughshares by an overlaying technology. The research within field conditions was focused on innovations of ploughshares in the area of a conventional processing of the soil by means of the overlaying tech-nology. A new functional profile was created by means of overlaying electrodes on the conventional tool in order to respect drainage of the processed soil, i.e. oblique overlays. The overlaying material was put in the most stressed places of the ploughshare, i.e. parallel with a face and an edge and these both in a front as well as in a back part. New functional surface was distinguished for a reinforcement of a top of the ploughshare edge and the back part of the ploughshare. Overlaying material was of carbide type OK Tubrodur 15.82. Within the tools service life testing under the field conditions the change of the tools shape and their mass loss were investigated. Statistical methods were used for evaluating of the experiments.

Keywords: soil, abrasive wear, functional surface, overlaying material

Acknowledgement

This paper has been done when solving the grant IGA TF.

References

MÜLLER, M., VALÁŠEK, P. (2012). Abrasive wear effect on Polyethylene, Polyamide 6 and polymeric particle composites. In: Manufacturing Technology, Vol. 12, No. 12, pp. 55-59.

PETRÁSEK, S., MÜLLER, M. (2014). Setting of Angle of Soil Flow on Ploughshare at traditional Processing of Soil. In: Manufacturing technology, Vol. 14, No 3, pp. 407-412.

KIM, S., SON, K. J., YANG, Y.S., YARAGADA, P.K.D. (2003). Sensitivity analysis for process parameters in GMA welding processes using a factorial design method. In: International Journal of Machina Tools and Manu-facture, Vol. 43, pp. 763-769.

VOTAVA, J., ČERNY, M., FILÍPEK, J. (2007). Abrasive wear of ploughshare blades made of Austempered Duc-tile Iron. In: Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Vol. 55, No. 1, pp. 173-182.

LIŠKA, J., FILÍPEK, J. (2012). The resistance of ledeburitic tool steels against the abrasive wear. In: Acta Uni-versitatis Agriculturae et Silviculturae Mendelianae Brunensis, Vol. 60, No. 6, pp. 231-242.

LEGÁT, V., JURČA, V., ALEŠ, Z. (2011). Contribution to plough shares and chisels useful life optimization. In: Scientia Agriculturae Bohemica, Vol. 42, No. 2, pp. 73-78.

NOVÁK, P., MÜLLER, M., HRABĚ, P. (2015). Application of overlaying material on surface of ploughshare for increasing its service life and abrasive wear resistance. In: Agronomy Research, Vol. 13, No. 1, pp. 158-166.

NOVÁK, P., MÜLLER, M., HRABĚ, P. (2014). Research of material and constructional solution in area of con-ventional soil processing. In: Agronomy Research, Vol. 12, No. 1, pp. 143-150.

KEJVAL, J., MÜLLER, M. (2013). Mechanical properties of multi-component polymeric composite with particles of Al2O3/SiC. In: Scienty Agriculturae Bohemica, Vol. 4, pp. 237-242.

VALÁŠEK, P. (2014). Mechanical properties of epoxy resins filled with waste rubber powder. In: Manufacturing Technology, Vol. 14, No. 4, pp. 632-637.

DOUBEK, P., FILÍPEK, J. (2011). Abrasive and erosive wear of technical materials. In: Acta Universitatis Agri-culturae et Silviculturae Mendelianae Brunensis, Vol. 59, No. 3, pp. 13-21.

HRABĚ, P., MÜLLER, M. (2013). Research of overlays influence on ploughshare lifetime. In: Research in Agri-cultural Engineering, Vol. 59, No. 4, pp. 147-152.

NATIS, A., PETROPOULOS, G., PANDAZARAS, C. (2008). The influence of soil type, soil water and share sharpness of a mouldboard plough on energy consumption, rate of work and tillage quality. In: Journal of Agri-cultural Engineering Research, Vol. 42, No. 2, pp. 171-176.

Paper number: M201618 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 28: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

28 indexed on: http://www.scopus.com

New Application of Powder Injection Molded Product in Medical Field

Jakub Huba1,2, Daniel Sanetrnik1,2, Eva Hnatkova1,2, Berenika Hausnerova1,2, Zdenek Dvorak1,2 1Department of Production Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 760 01 Zlin, Czech Republic. 2Centre of Polymer Systems, Tomas Bata University in Zlin, Trida T. Bati 5678, 760 01 Zlin, Czech Republic E-mail: [email protected], [email protected], [email protected], [email protected], [email protected]

Nowadays, majority part of powder injection molding (PIM) market in Europe consists in automotive (43 %). In contrast, to medical applications only 13 % of market is devoted. This paper is focused on a new design and pro-duction technology of the adenoid cutting curette used in otorhinolaryngology. In the theoretical part, the present design issues of the cutting curette are shown, and time consumption and wear problems of sterilisation are described. Experimental part consists in selection of suitable metal powder for medical application, computer-aided engineering (CAE) Moldflow analysis of proper gating system followed by construction of injection mold and production of real samples. The new design of replaceable cutting edge is easily customized according to va-rious shapes of patient oral cavity and for doctor’s need.

Keywords: PIM, Adenoid, Otorhinolaryngology, Medical Device, Curette.

Acknowledgement

This work was supported by the Ministry of Education, Youth, and Sports of the Czech Republic - Program NPU I (LO1504). This study was also supported by the internal grant of TBU in Zlin IGA/FT/2016/002 funded from the re-sources of the specific university research. The authors would like also to thank MUDr. Vladimir Zlinsky who works for Otolaryngology Clinics, Trida T. Bati 3929, 76001 Zlin, Czech Republic for his collaboration, consultations and professional medical advices.

References

GERMAN, R. M, BOSE, A. (1997). Injection Molding of Metals and Ceramics. Priceton, New Jersey.

HEANEY, D. F. (2012). Handbook of metal injection molding. Woodhead Publishing Limited, Cambridge.

GERMAN, R. M. (2011) Metal injection molding, A comprehensive MIM design guide. Princeton, NY.

RAK, Z. S. (1999). New trends in powder injection moulding. Powder metallurgy and metal ceramics, vol. 38(4), pp.126-132.

HAUSNEROVA, B. (2011). Powder Injection Molding – An Alternative Processing Method for Automotive Items, New Trends and Developments in Automotive Systems Engineering, pp. 130-146.

HAUSNEROVA, B., SANETRNIK, D., PONIZIL, P. (2013). Surface structure analysis of injection molded highly filled polymer melts, Polymer Composites, Vol. 34, pp. 1553–1558.

GASBARRE, T.G., JANDESCA, W.F. (1989). Advances in Powder Metallurgy, Metal Powder Industries Feder-ation, Princeton, NJ.

HAUSNEROVA, B., MARCANIKOVA, L., FILIP, P., SAHA P. (2011). Optimization of powder injection mold-ing of feedstock based on aluminium oxide and multicomponent water-soluble polymer binder. Polymer Engi-neering & Science, vol. 51(7), pp. 1376-1382.

RATNER, B. D. (2004). Biomaterials Science: An Introduction to Materials in Medicine. Academic Pres, Am-sterdam.

WILLIAMS, N. (2012). PM2012 World Congress: Special Interest Seminar Reveals Strong Global Growth for PIM, with Asia Leading the Way. Powder injection moulding international, vol. 6(4), p.47.

SIDAMBE, A. T., FIGUERO, I. A., HAMILTON, H. G. C., TODD, I. (2012). Metal injection moulding of CP-Ti components for biomedical applications, Journal of Materials Processing Technology, vol. 212(7), pp.1591-1597.

NEWELL, M. A., DAVIES, H. A., MESSER, P. F., GREENSMITH, D. J. (2005). Metal injection moulding of scissors using hardenable stainless steel powders, Powder metallurgy, vol. 48(3), pp.227-230.

Paper number: M201619 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 29: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

indexed on: http://www.scopus.com 29

The Use of 3x3 Matrix to Evaluate a Manufacturing Technology of Aluminium Systems for Building Industry

Manuela Ingaldi, Stanisław Borkowski, Dorota Klimecka-Tatar, Piotr Sygut Czestochowa University of Technology, Faculty of Management, Institute of Production Engineering al. Armii Krajowej 19b, 42-200 Czestochowa, Poland, E-mail: [email protected], [email protected], [email protected], [email protected]

Different types of aluminium systems are popular in building industry. Manufacturing technology of such produ-cts is a very important factor influencing the final result of production and hence the cost of production. Good quality of these systems results in good quality of investment where they are used. There is big competition on aluminium system market. The product competition decides about the existence of the manufacturer on the mar-ket. Therefore, it was decided to use the 3x3 matrix to evaluation manufacturing technology of aluminium systems produced by chosen Polish company for building industry. This matrix can be easily used to evaluate the techno-logy of any aluminium products. From the analysis presented in the paper it results that the research company is located in area 9 of the 3x3 matrix, i.e. "Search for occasions", and the factors which decided about this position were evaluated by staff at the medium level.

Keywords: aluminium systems, technology possibilities, product competition, 3x3 matrix

References

KLIMECKA-TATAR, D. (2014). The Powdered Magnets Technology Improvement by Biencapsulation Method and Its Effect on Mechanical Properties. In: Manufacturing Technology, Vol.14, No. 1, pp.30-36.

SYGUT, P., LABER, K., BORKOWSKI, S. (2012). Investigation of the non-uniform temperature distribution on the metallic charge length during round bars rolling process. In: Manufacturing Technology, Vol. 12, No. 13, pp. 260-263.

KARDAS, E. (2010). A technical and economic analysis of pig iron production. In: Materials Science Forum, Vol. 638-642, pp. 3291-3296.

KOTUS, M., HOLOTA, T., PAULIČEK, T., PETRÍK, M., SKLENÁR, M. (2013). Quality and reliability of ma-nufacturing process in automation of die-casting. In: Advanced Materials Research, vol. 801, special iss., pp 103-107.

LESTYÁNSZKA ŠKŮRKOVÁ, K.; KUDIČOVÁ, J. (2011). The process capability study of pressing process for force closed. In: Vedecké práce MtF STU v Bratislave so sídlom v Trnave. Research papers Faculty of Materials Science and Technology Slovak University of Technology in Trnava, v. 19, n. 30, p. 51-57.

BORKOWSKI, S., CZAJKOWSKA, A. (2010). Analysis of the Structure of Downtime Affecting the Level of Non-Conforming Products in Die Casting. In: International Journal of Applied Mechanics and Engineering, Vol.15, No 2, pp.557-562.

KADŁUBEK, M. (2014). Identification of the Distribution Structure in Chosen Metallurgical Enterprise. In: METAL 2014: 23rd Anniversary International Conference on Metallurgy and Materials. pp. 1546-1551. Ostrava: TANGER.

LOWE, P. (1995). Management of Technology: Perception and Opportunities. London: Chapman & Hall.

INGALDI, M. (2014). Use of the SWOT ANALYSIS and 3x3 matrix to determine the technological position of the chosen metal company. In: Acta Metallurgica Slovaca - Conference, Vol.4, 2014. pp. 1338-1660.

BORKOWSKI, S., INGALDI, M. (2013). Workers Evaluations of Ribbed Wire Competition and Rolling Mill Technological Possibilities. In: METAL 2013: 22nd International Conference on Metallurgy and Materials. pp. 1920-1925. Ostrava: TANGER.

INGALDI, M., BORKOWSKI, S. (2013). Management of the Technical Possibilities and Product Competition in the Market in the Chosen Company. In: Nauka i obrazovanie transportu. Materialy VI Mezdunarodnoj naucno-prakticeskoj konferencii, posvascennoj 40-letiu Samarskogo gosudarstvennogo universiteta putej soobscenia. 5-7 noabra 2013 g. p. 104-107. Samara. Pub. Samara: SamGUPS.

Paper number: M201620 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 30: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

30 indexed on: http://www.scopus.com

The Influence of Nucleating Agents and Process Parameters on Phase Structure of Isotactic Polypropylene and its Copolymer with 3% Ethylene

Josef Jakubíček1, Martina Hřibová1, Jaroslav Kučera2, Milena Kubišová1 1Tomas Bata University in Zlin, Faculty of Technology, Vavrečkova 275,760 01 Zlin, Czech Republic. E-mail: [email protected] 2Polymer Institute Brno s.r.o., Tkalcovská 36/2, 656 49 Brno, Czech Republic, E-mail: [email protected]

The homopolymer of the isotactic polypropylene (iPP) and the random copolymer of the isotactic polypropylene and 3% ethylene (iPPE) were used in this study. Isotactic polypropylene can be prepared in α, β and γ morpholo-gical phases depending on its crystallization conditions. The phase β content has a strong influence on mechanical, optical and thermal properties. The samples with nucleating agents (NA) α and β were used. Various process parameters were used to prepare melted samples: two thicknesses and three different cooling regimes. Wide-angle X-ray scattering (WAXD) and scanning electron microscopy (SEM) were used to investigate the phase structure. The results show that iPP without nucleation agents (4mm, <1°C /min) has the highest crystallinity (83.7%). The sample of iPP with β-NA (4mm, <1°C /min) has the highest phase β (61.3%); the slower cooling regime and the higher thickness increased the crystallinity (73.3%). iPPE with β-NA (0.4mm, 15°C /min) has the lower amount of the phase β (33.8%); the higher thickness and slower cooling regime decreased the amount of the phase β (7.1%) however the crystalline content of iPPE (63.7%) is increased.

Keywords: nucleation, isotactic polypropylene, crystallization

Acknowledgement

This work was supported by a grant from the internal TBU IGA / FT / 2016/005 and financed from funds for specific academic research.

References

MAIER, C. CALAFUT, T.. (1998). Polypropylene - The Definitive User's Guide and Databook. William Andrew Publishing/Plastics Design Library.

NATTA, G., CORRADINI, P. (1960). Structure and properties of isotactic polypropylene, Nuovo Cim. 15 (1), 40–51

TRIPATHI, DEVESH. (2002). Practical Guide to Polypropylene. Smithers Rapra Technology.

[J. KANG, J. LI, S. CHEN, S. ZHU, H. LI, Y. CAO, F. YANG, M. XIANG. (2013). Hydrogenated petroleum resin effect on the crystallization of isotactic polypropylene, J. Appl. Polym. Sci. 130 (1), 25–38.

LOTZ, B. (2000). What can polymer crystal structure tell about polymer crystallization processes? Eur. Phys. J. E 3 (2), 185–194.

ALFONSO, G. C., AZZURRI, F., CASTELLANO. (2001). M. J. Therm. Anal. Calorim, Vol. 66, pp. 197–207.

THANOMKIAT. P.; SUPAPHOL, P.; PHILLIP, P., R.: Influence of Different Molecular Characteristics of Synd. Polypropylene on Equil. Melting Temperature and Crystall. Behavior. Chulalongkorn University, Thailand

SHANKS, R. A., TIGANIS B. E: Nucleating agents for thermoplastics, Plastics aditived: An A-Z Reference, Cha-pman & Hall, London, 1998, ISBN 0 412 72720 X

KARGER-KOCSIS, J.: Polypropylene – An A-Z Reference, Kluwer Publishers, Dordrecht.1999

ELIAS, H. G.: An introduction to plastics - 2nd completely rev. ed.: Wiley-VCH, 2003, 387 s. ISBN 3-527-29602-6

HOFFMAN, J. D.; DAVIS, G. T.; LAURITZEN Jr., J. I.; Treatise on Solid State Chemistry Vol. 3, Crystalline and Noncrystalline Solids, N. B. Hannay, ed., Plenum, New York, 1976 Chap. 7

BRUCKNER, S., PHILLIPS, P.J., MEZGHANI, K., MEILLE, S.V. (1997). On the crystallization of ɣ-isotactic polypropylene: a high pressure study, Macromol. Rapid Commun. 18 (1), 1–7.

LU, Q., DOU, Q. J. (2009). Polym. Res., 16, 555

J. KANG, J. CHEN, Y. CAO, H. LI, (2010). Effects of ultrasound on the conformation and crystallization behavior of isotactic polypropylene and β-isotactic polypropylene, Polymer 51 (1), 249–256.

Page 31: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

indexed on: http://www.scopus.com 31

Q. LU, Q. DOU. (2009). β-Crystal formation of isotactic polypropylene induced by N,N0- dicyclohexylsuccina-mide, J. Polym. Res. 16 (5), 555–560.

ALEXANDER, L. E. (1969). X-Ray Diffraction Methods in Polymer Science. New York: Wiley-Interscience, 1969. 582 p.

RYBNIKÁŘ, F. (1985), Selective etching of polyolefines. I. Isotactic polypropylene. J. Appl. Polym. Sci., 30: 1949–1961. doi:10.1002/app.1985.070300513

Paper number: M201621 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 32: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

32 indexed on: http://www.scopus.com

Optimizing Management of the Measurement System of the Technological Process

Dana Jenčuráková, Rudolf Palenčár Institute of automation, measurement and applied informatics, Faculty of Mechanical Engineering, Slovak University of Technology in Bratislava, Námestie Slobody 17, 812 31 Bratislava, Slovak Republic, E-mail: [email protected], [email protected]

The present contribution represents the analysis and optimizing management of the measurement system of the technological process of pressing. It has been chosen the combination of appropriate methods for achieving the objective to minimize the cost of quality assurance of the measurement process by means its management. The quality of the measurement process has been verified by the reference standard (etalon). The optimization of eva-luation measurement has been searched by utilizing QFD method (Quality Function Deployment). The subsequent optimization has been implemented by the taking into account the results of the use of the control charts and the deployment of QFD method and Kalman filter.

Keywords: Measurement System, Control Chart, QFD Method, Kalman Filter, Management, Quality, Optimization

Acknowledgement

The paper was supported by the Faculty of Mechanical Engineering of Slovak University of Technology in Bratislava, grant from Grant Agency VEGA, project No. 1/0604/15 and No. 1/0748/15 and grant from Grant Agency KEGA, project No. 014STU-4/2015.

References

DUCAN, A. J. (1974). Quality Control and Industrial Statistics. Irwin, Homewood.

MONTGOMERY, D. C. (1991). Introduction to Statistical Quality Control. John Wiley, New York.

FRANCESCHINI, F. (2001). Advanced Quality Function Deployment. CRP Press, New York.

FICALORA, J. P., COHEN, L. (2009). Quality Function Deployment and Six Sigma. Prentice Hall, New York.

ISO 3534-2:2006. Statistics -- Vocabulary and symbols -- Part 2: Applied statistics.

JCGM 100:2008. GUM 1995 with minor corrections. Evaluation of measurement data - Guide to the expression of uncertainty in measurement.

SIMON, D. (2006). Optimal State Estimation: Kalman, H Infinity and Nonlinear Approaches. Wiley, New York.

WILLSKY, A. S. (1976). A Survey of Design Methods for Failure Detection in Dynamic Systems. In: Automa-tica, Vol. 12, pp. 601-611. Pergamon Press, Oxford.

JAZWINSKI, A. H. (1969). Adaptive filtering. In: Automatica, Vol. 5, No. 4, pp. 475–485. [Online]. Available: http://dx.doi.org/10.1016/0005-1098(69)90109-5.

Paper number: M201622 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 33: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

indexed on: http://www.scopus.com 33

Vibration of Thin Walls during Cutting Process of 7075 T651 Aluminium Alloy

Jerzy Józwik1, Dariusz Mika2, Krzysztof Dziedzic3 1Department of Production Engineering, Mechanical Engineering Faculty, Lublin University of Technology, 36Nadby-strzycka Street, 20-816 Lublin, Poland, e-mail: [email protected] 2The State School of Higher Education, The Institute of Technical Sciences and Aviation, 54Pocztowa Street, 22-100 Chełm, Poland, e-mail: [email protected] 3Fundamentals of Technology Faculty, Lublin University of Technology, 38Nadbystrzycka Street, 20-618 Lublin, Poland, e-mail: [email protected]

The subject of this study is the analysis of vibrations induced during milling of a thin-walled element. The milling was performed with a 2-flute custom end mill for machining Al alloys (FENES, 12x22x80-45°W-Z2), diameter d=12 mm. The rectangular 7075-T651 aluminium alloy workpiece of the following original dimensions: 120x60x12, was machined in a DMG MORI DMU 65 MonoBLOCK 5-axis milling machine. The vibrations of the aluminium alloy test plate were identified with Siemens LMS Scadas Mobile system and LMS Test Lab software. A PCB Piezotronics triaxial ICP accelerometer (model 356B21), offering sensitivity of 10mV/g, was employed. The sampling frequency was 11.5 kHz. The first stage consisted in measuring the vibration levels of the sample, in the function of its thickness and federate vf, at constant technological parameters of machining. The feed vf was set to 1500, 2000, 2500 and 3000mm/min, the depth of cut ap =2mm, the cutting speed was constant and equal to vc = 150.7 m/min (n=4000rev/min). The wall thickness b of samples was equal to: 30mm – reference sample and 11, 9, 7, 5, 3mm – test samples. The vibration signal was measured by two sensors attached to the surface of the sample in two extreme positions on the sample: point P1 and point P2.

Keywords: Cutting Process, Aluminium Alloy, Vibration, Chatter, Thin-Walls

References

GALEWSKI, M. (2007). Nadzorowanie drgań podczas frezowania szybkościowego smukłymi narzędziami z wy-korzystaniem zmiennej prędkości obrotowej wrzeciona. In: Rozprawa doktorska, Gdańsk.

JÓZWIK, J., KOBYŁKA, M. (2011). Badanie wpływu parametrów geometrycznych kieszeni prostokątnej oraz warunków realizacji procesu skrawania na drgania podczas frezowania trochoidalnego. In: Postępy Nauki i Tech-niki / Advances in Science and Technology, No 8, pp. 37-44. Lublin.

JEMIELNIAK, K., WYPYSIŃSKI, R. (2013). Symulacja numeryczna drgań samowzbudnych – przegląd metod, możliwości i potencjalnych korzyści. In: Mechanik, No 8-9, suplement - wersja elektroniczna, pp. 43-56, War-szawa.

JÓZWIK, J. (2011). Modelowanie ugięć sprężystych przedmiotów obrabianych w procesie skrawania toczeniem. In: Postępy Nauki i Techniki/Advances in Science and Technology, nr 8, pp.183-191. Lublin.

JÓZWIK, J. (2014). Analiza ruchu podczas obróbki frezarskiej przedmiotów cienkościennych z zastosowaniem wizyjnego systemu pomiarowego 3D. In: Mechanik, No 8-9, pp. 551-562. Warszawa.

JÓZWIK, J., FILIPIAK, P. (2009). Analysis of feedrate correction influence on corner radius errors of workpieces during milling. In: Journal of Machine Engineering, vol. 9, No 1, 66-77.

KĘCIK, K., RUSINEK, R., WARMINSKI, J. (2013). Modelling of high-speed milling process with frictional effect. In: Journal of Muti-body Dynamics, Proceedings of the Institution of Mechanical Engineers, Part K, vol.1(1), pp. 3-11.

KUCZMASZEWSKI, J., PIEŚKO, P. (2014). Wear of milling cutters resulting from high silicon aluminium alloy cast AISi21 CuNi machining. In: Maintenance and Reliability, No 1, vol. 16, 37-41, Warszawa.

KUCZMASZEWSKI, J., Zaleski, K. (2015). Obróbka skrawaniem stopów aluminium i magnezu, Politechnika Lubelska. Lublin.

MÜLLER, M., LEBEDEV, A., SVOBODOVÁ, J., NÁPRSKOVÁ, N., LEBEDEV, P. (2014). Abrasive-free Ul-trasonic Finishing of Metals. In: Manufacturing Technology, Vol. 14, No. 3, ISSN 1213–2489. Usti nad Labem.

Müller, M. (2015). Research on Constructional Shape of Bond at Connecting Galvanized Sheet of Metal. In: Man-ufacturing Technology, Vol. 15, No. 3, ISSN 1213–2489. Usti nad Labem.

RUSINEK, R. (2010). Vibrations In Cutting Process Of Titanium Alloy. In: Maintenance and Reliability, No 3, pp. 48-55. Warszawa.

Page 34: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

34 indexed on: http://www.scopus.com

RUSINEK, R. WARMIŃSKI, J., SZABELSKI, K. (2006). Drgania nieliniowe w procesie skrawania toczeniem. In: Monografia. IZT Sp.z. o., Lublin.

SŁODKI, B., ZĘBALA, W. (2009). Stanowisko do rejestracji obrazów szybkozmiennych w procesach skrawania. In: Obróbka skrawaniem zaawansowana technika pod redakcją Huberta Latosia, Wydawnictwo Uczelniane Uniwersytetu Technologiczno – Przyrodniczego, pp. 215-220. Bydgoszcz,

SVOBODOVÁ, J, KRAUS, P., MÜLLER, M., LEBEDEV, A., YUROV, A., LEBEDEV, P. (2015). Influence of Cutting Fluid on Abrasive – Free Ultrasonic Finishing of Aluminium Alloy. In: Manufacturing Technology, Vol. 15, No 4, ISSN 1213–2489. Usti nad Labem.

CHRUŚCIELSKI, G. (2012). Wpływ anizotropii po walcowaniu na odporność na pękanie materiału AW 7075-T651. In: Postępy Nauki i Techniki / Advances in Science and Technology, No 12, pp. 19-27. Lublin.

Paper number: M201623 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 35: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

indexed on: http://www.scopus.com 35

Continuous Production of Nanocrystalline TiO2 Nanofibers

Pavel Kejzlar1, Radovan Kovář2 1Department of Preparation and Analysis of Nanostructures; Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentska 1402/2, 461 17 Liberec, Czech Republic. Email: [email protected] 2Department of Machinery Construction; Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentska 1402/2, 461 17 Liberec, Czech Republic. Email: [email protected]

Titanium dioxide in its anatase allotropic modification is well known for its photovoltaic and photocatalytic acti-vity. Through a modification of Nanospider™ device it was achieved a continuous production of nanocrystaline anatase nanofibers. These inorganic fibres have a huge specific surface area due to their fine diameter and structure and thus offer a promising potential in many applications. In this article it is described the device all-owing continuous production of inorganic TiO2 nanofibers by the use of electrospinning process and optimization of following calcination process leading to obtaining of almost pure nanocrystaline anatase structure.

Keywords: Anatase, Electrospinning, Nanofiber, NanospiderTM, Photocatalysis, Structure

Acknowledgement

The results of this project LO1201 were obtained with co-funding from the Ministry of Education, Youth and Sports as part of targeted support from the "Národní program udržitelnosti I" programme.

References

JAMIESON, J. C., OLINGER, B. (1968). High-Pressure Polymorphism of Titanium Dioxide. In: Science, Vol. 161, No. 3844, pp. 893-895.

DACHILLE, F., SIMONS, P. Y., ROY, R. (1968). Pressure-temperature studies of Anatase, Brookite, Rutile and TiO2-II. In: The American mineralogist, Vol. 53, pp. 1929-1939.

FUJISHIMA, A., HONDA, K. (1972). Electrochemical photolysis of water at a semiconductor electrode. In: Na-ture, Vol. 238, No. 5358, pp. 37 – 38.

DING, X. Z., LIU, X. H., HE, Y.Z. (1996). Grain size dependence of anatase-to-rutile structural transformation in gel-derived nanocrystalline titania powders. In: Journal of Materials Science Letters, Vol. 15, No. 20, pp. 1789-1791.

HANAOR, D., SORRELL, CH. (2011). Review of the anatase to rutile phase transformation. In: Journal of Ma-terials Science, Vol. 46, No. 4, pp. 855-874.

DAVID, L. (2011). Comprehensive nanoscience and technology. Elsevier, London. IBÁÑEZ, J. A., LITTER, M. I., PIZARRO, R. A. (2003). Photocatalytic bactericidal effect of TiO2 on enterobacter

clocae, comparative study with other gram (-) bacteria. In: J. Photochem. Photobiol. A: Chem., Vol. 157, pp. 81-85.

MANESS P. Ch. et al. (1999). Bactericidal Activity of Photocatalytic TiO2 Reaction: toward an Understanding of Its Killing Mechanism. In: Appl. Environ. Microbiol., Vol. 65, No. 9, pp. 4094-4098.

RAMAKRISHNA, S. (2005). An introduction to electrospinning and nanofibers. Hackensack, NJ: World Scienti-fic. LUKAS, D. et al. (2009). Physical principles of electrospinning (Electrospinning as a nano-scale technology of the twenty-first century). In: Textile Progress, Vol. 41, No. 2, pp. 59-140. JIRSÁK O. et al. (2005), CZ Patent, CZ294274 (B6), A, Method of nanofibers production from polymer solution using electrostatic spinning and a device for carrying out the Metod, WO 2005024101. PETRŮ, M., NOVÁK, O., LEPŠÍK, P. (2012). Increase of the efficiency of the production lines for the spinning of inorganic nanofibers by the electrostatic field intensity optimization. In: MM Science Journal, No. 4, pp. 382-385. KOVÁŘ, R. (2012).Ways to Pull Down Spinning Nanofibersfrom the Rotating Brush in High Voltage Area. In: 53rd International Conference of Machine Design Departments, Brno, pp. 141- 144. WETCHAKUN N. et al. (2012). Influence of calcination temperature on anatase to rutile phase transformation in TiO2 nanoparticles synthesized by the modified sol–gel method. In: Materials Letters, Vol. 82, pp. 195-198.

Paper number: M201624 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 36: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

36 indexed on: http://www.scopus.com

Deformation of Aluminium Thin Plate

Frantisek Klimenda1, Josef Soukup1, Milan Zmindak2 1Faculty of Production Technology and Management, University of J. E. Purkyne in Usti nad Labem. Pasteurova 3334/7, 400 01 Usti nad Labem. Czech Republic. E-mail: [email protected], [email protected] 2Faculty of Material Engineering, University of Zilina, Univerzitna 1, 010 26, Slovak Republic, E-mail: [email protected]

The article is deals by an introduction to the theory of impact load for thin plates. This is the plates that are characterized by a structure which is bounded by upper and lower surface plane. These surfaces are spaced by a distance h, which is substantially smaller in comparison which other dimensions of the plate (a × b). The impact causes a deformation of the plate which is vibrated. The deformation is only within the limits of Hook's law. The-refore there is not permanent deformation of the plate. In the plate is induced shear stress, bending stress and shear forces. The second part of the article is focused on the numerical solution of thin isotropic aluminium plate which is made from AL 99.9. This plate has a dimension of 100 × 100 × 2 mm. It was solved the deformation of the plate after the impact load which were produced in the centre of the plate by FEM in software ADINA. By results was a graph of the deformation, velocity and acceleration of response wave in the material.

Keywords: Isotropic material, Stress, Deformation, Vibration

Acknowledgement

The research work is supported by the SGS – UJEP, Czech Republic.

References

KLIMENDA, F. (2015). Ráz a přenos impulzu v tenké desce, Odborná studie ke státní doktorské zkoušce, FVTM UJEP Ústí nad Labem

ŽMINDÁK, M., PELAGIC, Z., SOUKUP, J. (2014). Response of composite plates reinforced by undirectional fibers to ballistic loads. In. Sborník příspěvků na CD ROM z XII. Mezinárodní konference Dynamika tuhých a deformovatelných těles 2014, FVTM UJEP v Ústí nad Labem, ISBN 978-80-7414-749-4

SOUKUP, J., SKOČILAS, J., SKOČILASOVÁ, B., RYCHLÍKOVÁ, L. (2014). Motion Equations Isotropic and Orthotropic Plate by Elastic Rod. Jurnal of Applied Nonlinear Dynamics, vol. 3, no. 4, p. 393-401. L&H Scientific Publishing, LLC, USA, ISSN 2164-6457 (print), ISSN 2164-6473 (online), DOI 10.5890/JAND.201412.010

SOUKUP, J., ZMINDAK, M., SKOCILAS, J., RYCHLIKOVA, L.(2014) Application of Mesh-free Methods in Transient Dynamic Analysis of Orthotropic Plates, Manufacturing technology, Vol. 14, No. 3, pp 441-447, ISSN 1213-2489

ZMINDAK, M., PELAGIC, Z., SOUKUP, J. (2015). Analysis of Fiber Orientation Influence to Dynamic Proper-ties of Composite Structures, Manufacturing technology, Vol. 15, No. 3, pp 490-494, ISSN 1213-2489

Paper number: M201625 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 37: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

indexed on: http://www.scopus.com 37

Indirect Measurement of Effective Throat Thickness in T-joint Weld by Ultrasonic Method Phased Array

Radoslav Konar1, Michal Sventek2, Miroslav Bucha3 1Department of Technological Engineering, Faculty of Mechanical Engineering, University of Zilina, Univerzitna 8215/1, 010 26 Zilina. Slovak Republic. E-mail: [email protected], 2MONT IRP s.r.o., Oceliarska 2, 010 01 Zilina, Slovak Republic. E-mail: [email protected] 3SPP-distribucia, a.s., Levicka 9, 950 54 Nitra, Slovak Republic. E-mail: [email protected]

The article deals with non-destructive measurement of the effective throat thickness of fillet weld with deep pene-tration in T-joint. Ultrasonic Phased Array technology is used to indirectly measurement of effective weld throat thickness. Phased Array ultrasonic systems utilise multi-element probes, which are individually excited under computer control. By exciting each element in a controlled manner, a focused beam of ultrasound can be generated. Software enables the beam to be steered. Two and three dimensional views can be generated showing the sizes and locations of any flaws detected. The results of Phased Array ultrasonic measurements are compared with the real results obtained from the real macrostructural analysis. The methodology is appropriate for verifying compliance with the design weld throat thickness in the production of steel structures.

Keywords: Ultrasonic testing, T-joint, Phased Array

Acknowledgement

This work has been supported by the Scientific Grant Agency of the Ministry of Education of the Slovak Republic, grant VEGA: 1/0836/13, KEGA: 034ZU-4/2015 and KEGA: 014ZU-4/2015.

References

LANGENBERG, K., J., MARKLEIN, R., MAYER, K. (2012). Ultrasonic nondestructive testing of materials – Theoretical foundations. pp. 772. CRC Press, New York.

KOPEC, B. et al.: Nondestructive Testing of Materials and Structures, CERM, s.r.o. : Brno, 2008, p. 573, ISBN 978-80-7204-591-4.

MEŠKO, J., ZRAK, A., MULCZYK, K., TOFIL, S. (2014). Microstructure analysis of welded joints after laser welding. In: Manufacturing technology, Vol. 14, No. 3, pp. 355-359. J.E. Purkyne University, Ústi nad Labem.

RADEK, N., MEŠKO, J., ZRAK, A. (2014). Technology of laser forming. In: Manufacturing technology, Vol. 14, No. 3, pp. 428-431. J.E. Purkyne University, Ústi nad Labem.

MICIAN, M., PATEK, M., SLADEK, G. (2014). Concept of Reapiring Branch Pipes on High-pressure Pipelines by Using split Sleeve. In: Manufacturing technology, Vol. 14, No. 3, pp. 60-66. J.E. Purkyne University, Ústi nad Labem.

DOPJERA, D., MICIAN, M. (2014). The Detection of Artificially Made Defects in Welded Joint with Ultrasonic defectoscopy Phased Array. In: Manufacturing technology, Vol. 14, No. 1, pp. 12-17. J.E. Purkyne University, Ústi nad Labem.

VRZGULA, P., FATURÍK, M., MICIAN, M. (2014). New Inspection Technologies for Identification of Failure in the Materials and Welded Joints for Area of Gas Industry. In: Manufacturing technology, Vol. 14, No. 3, pp. 487-492. J.E. Purkyne University, Ústi nad Labem.

MORAVEC, J., BRADAC, J., NOVAKOVA, I. (2014) Ways of numerical prediction of austenitic grain size in heat-affected zone of welds. In: 7th International Conference on Innovative Technologies for Joining Advanced Materials, TIMA 2014, Trans Tech Publications Ltd.

KONAR, R., MICIAN, M. (2014). Non-destructive testing of welds in gas pipelines repairs with Phased Array ultrasonic technique. In: Manufacturing technology, Vol. 14, No. 1, pp. 42-47. J.E. Purkyne University, Ústi nad Labem.

OLYMPUS (2013). The company Olympus NDT. Online: <http://www.olympus-ims.com/cs>. Paper number: M201626 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 38: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

38 indexed on: http://www.scopus.com

Inserts Coating Influence on Residual Stress of Turned Outer Bearings

Marek Kordik1, Jozef Struharnansky1, Anton Martikan1, Dana Stancekova1, Sylvia Kusmierczak2, Juraj Martinček1 1University of Zilina, Faculty of Mechanical Engineering, Univerzitna 1, 010 26, Zilina, Slovak Republic, E-mail: [email protected], [email protected], [email protected], [email protected], 2J.E.Purkyně Univerzity, Faculty of Production Technology and Management, Ústí nad Labem, CZ, E-mail: [email protected]

Residual stresses significantly affect the life of parts material, especially in bearing manufacturing, where the stress introduced into the material in the manufacturing process affect the component throughout its whole operating life. It is therefore important to know the size and orientation of these stresses and to optimize the production process of the bearing rings, in order to eliminate as many of these undesirable stresses. The subject of the article is chosen at demand of practice and has to correlate coating cutting tool for residual stress and microstructure in turning the outer bearing rings made of material 1.3520, which is widely used in bearing production. Turning cutting tool WNMG 080408E-M was used with two different coatings. We conducted measurements on a X-ray diffractometer. We measured normal stress parameter and the FWHM (full width half maximum at), which i s decisive, and it is related to the grain size of the material. We found that the residual axial stress approaching the zero value, depending on the etched layer.

Keywords: residual stresses, bearing rings, coatings, inserts

Acknowledgement

The article was funded by the grant project VEGA 1/0773/12 - “Implementation of technical ceramic material research to increase the innovation of hybrid products”.

References

KOURIL, K., CEP, R., JANASEK, A., KRIZ, A., STANCEKOVA, D. (2014). Surface integrity at reaming opera-tion by MT3 head. Manufacturing Technology, Vol. 14, Issue 2, pp. 193 – 199.

NÁPRSTKOVÁ, N., SVOBODOVÁ, J., CAIS, J. (2013). Influence of strontium in AlSi7Mg0.3 alloy on the tool wear. Manufacturing Technology, Vol. 13, Issue 3, pp. 368-373.

STANCEKOVA, D., KURNAVA, T., SAJGALIK, M., NAPRSTKOVA, N., STRUHARNANSKY, J., ŠČOTKA, P. (2014). Identification of machinability of ceramic materials by turning. Manufacturing Technology, Volume 14, Issue 1, 2014, pp. 91- 97

RUDAWSKA, A., KUCZMASZEWSKI, J. (2006). Surface free energy of zinc coating after finishing treatment. Materials Science- Poland, Vol. 24, Issue 4, pp. 975-981

KUMIČÁKOVÁ, D., GÓRSKI, F., MILECKI, A., GRAJEWSKI, D. (2013). Utilization of advanced simulation methods for solving of assembly processes automation partial tasks. Manufacturing Technology, Vol. 13, Issue 4, pp. 478 - 486.

CZÁN, A., MARTIKÁŇ, A., HOLUBJÁK, J., STRUHÁRŇANSKY, J. (2014). Identification of stress and structure properties in surface and subsurface layers of nuclea reactor austenitic steel. Manufacturing Technology. Vol. 14, Issue 3, pp. 276-281

MRAZOVA, M., STANCEKOVA, D., SEMCER, J. (2011) Comparasion of machinability of biocompatible ma-terials used in medicine for dental implants. DAAAM, pp. 1115-1116.

SADÍLEK, M., KRATOCHVÍL, J., PETRŮ, J.,CEP, R., ZLÁMAL, T., STANČEKOVÁ, D. (2014) Cutting tool wear monitoring with the use of impedance layers. Tehnicki Vjesnik, volume 21, 3/2014, pp. 639 – 644.

NESLUŠAN, M., ČILLIKOVÁ, M. (2015). Teoretické základy trieskového obrábania, EDIS, Žilina, 153 s.

PETRŮ, J., ZLÁMAL, T., ČEP, R., PAGÁČ, M., GREPL, M. (2013). Influence of strengthening effect on ma-chinability of the welded inconel 625 and of the wrought Inconel 625. IMETI 2013 - 6th International Multi-Conference on Engineering and Technological Innovation, Proceedings, pp.155 – 159.

Paper number: M201627 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 39: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

indexed on: http://www.scopus.com 39

Deformation of Print PLA Material Depending on the Temperature of Reheating Printing Pad

Jan Krotký, Jarmila Honzíková, Pavel Moc

Faculty of Education, University of West Bohemia in Pilsen, 306 14 Pilsen. Czech Republic. E-mail: [email protected], [email protected], [email protected]

The article presents results of research in the field of prototyping – 3D printing. The authors are focused on poly-lactic acid material known by the abbreviation PLA, which is widely used in 3D printing method to produce ob-jects. The tech-nology of successive layering of plastics and its solidification causes states of tension in printed objects and subsequently their deformation. That may even lead to torn the object from the print pad. The article deals with dimensions of the deformations at the specimen just in dependence on heating of the print pad. The authors also suggest a compromise solution between excessive deformation of underlying layers and therefore proportional change of physical dimensions of the object and low adhesion of the object to the underlying heating bed, which can be seen as cut off the object during the printing process as mentioned.

Keywords: 3D print, FDM, PLA, Polylactic acid, Warping, Deformation, Heated bed

Acknowledgement

Special thanks to Prof. Ing. Vaclav Pilous, Dr.Sc. for methodology of material research and Mgr. Jan Fadrhonc and Mgr. Jan Král for the possibility of a technical solution experimental system.

References

NMC Horizon Report 2013: Higher Education Edition. In: [online]. Austin, Texas, USA: New Media Consortium, 2013, 3.2. 2013 [cit. 2014-04-25]. Dostupné z: http://www.nmc.org/publications/2013-horizon-report-higher-ed

SAYRE, R. (2014). A Comparative Finite Element Stress Analysis of Isotropic and Fusion Deposited 3D Printed Polymer, Rensselaer Polytechnic Institute, Hartford, 45 s.

KRUTH, J. P. (1991). Material incress manufacturing by rapid prototyping technologies. CIRP Annals, roč. 40, č. 2, CIRP – The International Academy for Production Engineering, Paris, s. 603 – 614.

PHAM, D. T., GAULT, R. S., (1998). A comparison of rapid prototyping technologies. International Journal of Machine Tools and Manufacture, roč. 38, č. 10-11, Elsevier Publishing, s. 1257 – 1287.

KRASSENSTEIN, E. (2015). ToyBuilder Labs & FusionTech Officially Launch Free ideaMaker 3D Printing Sli-cing Software at CES. 3Dprint.com, Dostupné z: http://3dprint.com/36216/ideamaker-3d-slicing/

GRYFFEY, J. (2014). Chapter 2: The Types of 3-D Printing. Library Technology Reports, roč. 50, č. 5, American Library Association TechSource, s. 5 – 30.

Thermoplastic Elastomers TPE, TPR. BFP British Plastics Federation [online]. London, 2015, [cit. 2015-12-10]. Dostupné z: http://www.bpf.co.uk/plastipedia/polymers/thermoplastic_elastomers.aspx

EVANS, B. (2012). Practical 3D Printers: The Science and Art of 3D Printing. Apress, New York, 332 s.

SEN-LIN, Y., ZHI-HUA, W., WEI, Y., MING-BO, Y. (2008). Thermal and mechanical properties of chemical crosslinked polylactide (PLA). Polymer Testing, roč. 27, č. 8, Elsevier Publishing, s. 957 – 963.

BAIARDO, M., FRISONI, G., SCANDOLA, M., RIMELEN, M., LIPS, D., RUFFIEUX, K., WINTERMANTEL, E. (2003). Thermal and Mechanical Properties of Plasticized Poly (L-lactic acid). Journal of Applied Polymer Science, roč. 90, č. 7, s. 1733 – 1738.

MENDONSA, C., SHENOY, V. D. (2014). Additive Manufacturing Technique in Pattern making for Metal Casting using Fused Filament Fabrication Printer. Journal of Basic and Applied Engineering Research, roč. 1, č. 1, Krishi Sanskriti Publications, s. 10 – 13.

TIAN-MING, W., JUN-TONG, X., YE, J. (2006). A model research for prototype warp deformation in the FDM process. The International Journal of Advanced Manufacturing Technology, roč. 33, č. 11, Springer-Verlag, Lon-don, s. 1087 – 1096.

MOC, P. (2015). Influence Washers Temperature of 3D Printers on Print Quality. Proceedings of Technologies Contest Pilsen 2015, roč. 2015, č. 1, University of West Bohemia in Pilsen, Pilsen, s. 222 – 225.

Paper number: M201628 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 40: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

40 indexed on: http://www.scopus.com

Metallography of 3D Printed 1.2709 Tool Steel

Ludmila Kučerová, Ivana Zetková RTI, UWB in Pilsen, Universitni 8, 30614 Pilsen, Czech Republic. E-mail: [email protected], [email protected]

3D printing is a new and advanced technology of material processing, which belongs to additive manufacturing process. Products with complex geometries can be produced quickly with high precision from powder materials on the base of a CAD-model. Layers of powder particles are successively molten by laser beam. There are several metallographic issues connected with 3D printed microstructures. Laser beam processing is usually accompanied with high heating and cooling rates and therefore also with high thermal gradients. This is the reason why non-equilibrium phases and structural components can occur in the final microstructure. The microstructure could be also finer in comparison with the one produced by standard manufacturing methods. Porosity of the final micro-structure is also an important factor, as it might deteriorate mechanical properties of the product. Thorough metallographic analysis of 3D printed materials is therefore necessary to ensure high quality of final components.

Keywords: 3D print, metallography, tool steel

Acknowledgement

The present contribution has been prepared under project LO1502 ‘Development of the Regional Technological In-stitute‘ under the auspices of the National Sustainability Programme I of the Ministry of Education of the Czech Republic aimed to support research, experimental development and innovation.

References

SHELLABEAR, M., NYRHILA, O. (2004). DMLS-Development History And State Of The Art. In: Proceedings of the 4th LANE 2004, Sept. 22.-24.

HINDUJA, S., Li, L. (2012). Comparison of theoretical and practical studie sof heat input in laser assisted additive manufacturing of stainless steel. In: Proceedings of the 37th International MATADOR Conference. Springer-Ver-lag New York.

GIBSON, I., ROSEN, D. W., STUCKER, B. (2010). Generalized Additive Manufacturing Process Chain. In: Ad-ditive Manufacturing Technologies:. Springer-Verlag New York.

YASA E., KEMPEN K., KRUTH J.-P., THIJS L., Van HUMBEECK J. (2010). Microstructure and mechanical properties of marging steel 300 after selective laser melting, In: International Solid Freeform Fabrication Sympo-sium, pp.383-396.

Paper number: M201629 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 41: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

indexed on: http://www.scopus.com 41

Influence of Nb Micro-alloying on TRIP Steels Treated by Continuous Cooling Process

Ludmila Kučerová, Hana Jirková, Bohuslav Mašek, RTI, UWB in Pilsen, Universitni 8, 30614 Pilsen, Czech Republic. E-mail: [email protected], [email protected], [email protected]

TRIP (transformation induced plasticity) steels are low alloyed steels with multiphase microstructure consisting of ferrite, carbide-free bainite and retained austenite. They are typically produced by thermo-mechanical treat-ment, which involves the hold in bainite transformation region. The hold ensures enough bainite in the final mi-crostructure and also helps to stabilize higher amount of retained austenite. Due to transformation induce plastic-ity effect; TRIP steels possess very good combination of high strength and high ductility. In response to industrial demands, C-Mn-Si and C-Mn-Si-Nb TRIP steels were subjected to thermo-mechanical treatment with continuous cooling which corresponded to real rolling mill processing of the steel with similar chemical compositions. Typical TRIP microstructures with 10-15% of retained austenite were achieved for both steels after optimization of cooling schedules. However, cooling by two different cooling rates had to be applied to C-Mn-Si steel to obtain the con-venient microstructure. Beneficial effect of Nb micro-alloying on low sensitivity of TRIP steel to variations in cool-ing parameters has been found out. Mechanical properties of the most convenient microstructures were very promising, ultimate tensile strength reached 850MPa with ductility A 5mm around 25%.

Keywords: TRIP steel, continuous cooling, retained austenite

Acknowledgement

The present contribution has been prepared under project LO1502 ‘Development of the Regional Technological In-stitute‘ under the auspices of the National Sustainability Programme I of the Ministry of Education of the Czech Republic aimed to support research, experimental development and innovation.

Reference

ZAEFFERERA, S., OHLERTB, J., BLECK, W. (2004). A study of microstructure, transformation mechanisms and correlation between microstructure and mechanical properties of a low alloyed TRIP steel. In: Acta Materialia, Vol. 52 , pp. 2765–2778.

B.C. De COOMAN (2004). In: Current Opinion in Solid State and Materials Science, Vol. 8, pp. 285–303. SHEN, Y.F., QIU, L.N., SUN, X.,et.al. (2015). Effects of retained austenite volume fraction, morphology, and

carbon content on strength and ductility of nanostructured TRIP-assisted steels. In: Materials Science and Engi-neering: A, Vol. 636, pp. 551-564.

LI, L. , B.C.De COOMAN, WOLLANTS, P., HE, Y., ZHOU, X. (2004). Effect of Aluminum and Silicon on Transformation Induced Plasticity of the TRIP Steel. In: J. Mater. Sci. Technol., Vol. 20, pp. 135-138.

CHIANG, J., BOYD, J.D., PILKEY, A.K. (2015). Effect of microstructure on retained austenite stability and tensile behaviour in an aluminum-alloyed TRIP steel. In: Materials Science and Engineering: A, Vol. 638, pp. 132-142.

HULKA, K. (2005). The Role of Niobium in Cold Rolled TRIP Steel. In: Materials Science Forum, Vols. 473-474, pp. 91- 102.

FENG, Q., LI, L., YANG, W., SUN, Z. (2014). Microstructures and mechanical properties of hot-rolled Nb-mi-croalloyed TRIP steels by different thermo-mechanicalprocesses. In: Materials Science and Engineering: A, Vol. 605, pp. 14-21.

MASEK, B., JIRKOVA, H., KUCEROVA, L., et al. (2011). Material-Technological Modelling of Various Hold-ing Times at Partitioning Temperature in AHSS with Different Alloying Strategies, In: Advances in Heterogeneous Material Mechanics 2011, pp. 701-704.

GREJCAR, A., SKRZYPCZYK P., WOZNIAK, D. (2014). Thermomechanically Rolled Medium-Mn Steels Con-taining Retained Austenite. In: Archives of Metallurgy and Materials, Vol. 59, No. 4, pp. 1691-1697. KUČEROVÁ, L., JIRKOVÁ, H., MAŠEK, B. (2015). Continuous cooling of CMnSi TRIP steel. In: Materials Today: Proceedings, Vol. 2, Sup. 3, pp. S677–S680, International Conference on Martensitic Transformations, ICOMAT-2014. LI, Z., DI, W, LV ,H., FANG S. (2007). Continuous Cooling Transformation Behaviour of C-Si-Mn TRIP Steel. In: Journal of Iron and Steel Research, International, Vol. 14, No. 5, pp. 277-281.

Page 42: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

42 indexed on: http://www.scopus.com

MASEK, B., STANKOVA, H., MALINA, J. et al. (2007). Physical Modelling of Microstructure Development during Technological Processes with Intensive Incremental Deformation. In: Mechanical Behavior of Materials X, Vols. 345-346, pp. 943-946. MAŠEK, B., JIRKOVÁ, H., KUČEROVÁ, L., et al. (2011). Material-technological Modelling of Real Thin Sheet Rolling Process. In: Proceedings of METAL 2011, pp.2016-220, TANGER, Ostrava. MAŠEK, B., STAŇKOVÁ, H., NOVÝ, Z.; et al. (2009). The Influence of Thermomechanical Treatment of TRIP Steel on its Final Microstructure. In: Journal of Materials Engineering and Performance, Vol. 18, No. 4, pp. 385-389.

Paper number: M201630 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 43: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

indexed on: http://www.scopus.com 43

Chemical Analysis and Mechanical Properties of Selected Safety Components of Lifts

Petra Kvasnová1, Daniel Novák1, Viktor Novák2 1Matej Bel University, Faculty of Natural Sciences, Department of Technology, Tajovského 40, 974 01 Banská Bystrica, Slovakia. E-mail: [email protected], [email protected] 2Czech University of Life Sciences Prague, Faculty of Engineering, Department of Electrical Engineering and Automa-tion, Kamýcká 129, 165 21 Prague 6, Czech Republic. E-mail: [email protected]

This paper deals with materials of selected safety components of lifts and it describes their mechanical and chem-ical testing. It particularly concerns with chemical analysis of two basic types of pulleys from gray and ductile cast iron, and subsequently with the measurement of the hardness and the strength of these materials. The aim of the research was to prove if these types of pulleys, widely used as safety components in the lift industry, meet the current law requirements. Finally, the results of the research are briefly discussed as well as their application in the university education.

Keywords: Lifts, Pulleys, Cast iron, Chemical analysis, Mechanical testing

References

MELATRIM, S.R.O. (2014). Company documentation, Oravská Jasenica, Slovakia.

HOCKICKO, P., KRIŠŤÁK, L., NĚMEC, M. (2015). Development of students’ conceptual thinking by means of video analysis and interactive simulations at technical universities. In: European Journal of Engineering Educa-tion, Vol. 40, No. 2, pp. 145-166. ISSN 0304-3797.

JOHN, B.S. (2015). HiST project. Connecting technology and people. Sør-Trøndelag University College, Fac-ulty of Technology - 7004 Trondheim, Norway. [online], [cit. 2015-11-20]. <http://histproject.no/sites/histpro-ject.no/files/2_20.pdf>.

KUČERKA, M. (2013). Vybrané kapitoly zo strojov a zariadení. Belianum, Banská Bystrica, Slovakia. ISBN 978-80-557-0620-7.

KURACINA, R., SZABOVÁ, Z., BALOG, K. (2015). Metódy analýzy rizík pri zváraní laserom. Kníhviazačstvo - Ing. Miroslav Binovec, Trnava, Slovakia. ISBN 978-80-972163-0-6.

KVASNOVÁ, P. (2013). Materiály a technológie 3. Belianum, Banská Bystrica, Slovakia. ISBN 978-80-557-0620-7.

MRAČKOVÁ, E., KRIŠŤÁK, L., KUČERKA, M., GAFF, M., GAJTANSKA, M. (2016). Creation of wood dust during wood processing: Size analysis, dust separation, and occupational health. In: BioRes. 11(1), pp. 209-222. ISSN 1930-2126.

STEBILA, J. (2015). Inovatívne vyučovacie metódy a ich využitie v technickom vzdelávaní. Belianum, Banská Bystrica, Slovakia. ISBN 978-80-557-0944-4.

STEBILA, J. (2010). New forms of natural sciences education in the context of lower secondary education in the Slovak Republic. In: Komunikacie, Vol. 12, No. 3, pp. 48-55. ISSN 1335-4205.

VIRTUÁLNY INŠTITÚT MATNET (2015). Sivé liatiny, Ústav materiálov a mechaniky strojov SAV, Brati-slava, Slovakia. [online], [cit. 2015-11-20]. <http://www.matnet.sav.sk/index.php?ID=146>.

ZELENÝ, J., OČKAJOVÁ, A. (2013). Identifikácia a posudzovanie rizika. Belianum, Banská Bystrica, Slova-kia. ISBN 978-80-557-0586-6.

ŽÁČOK, Ľ. (2014). Trendy technického a odborného vzdelávania v súčasnej škole. Belianum, Banská Bystrica, Slovakia. ISBN 978-80-557-0775-4.

Paper number: M201631 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 44: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

44 indexed on: http://www.scopus.com

Influence of Laser Shock Peening Surface Treatment on Fatigue Endurance of Welded Joints from S355 Structural Steel

Ján Lago1, Mario Guagliano2, František Nový1,3, Otakar Bokůvka1,3

1University of Žilina, Faculty of Mechanical Engineering, Department of Materials Engineering, Univerzitná 8215/1, 010 26 Žilina. E-mail: [email protected], [email protected] 2Politecnico di Milano, Department of Mechanical Engineering, Via La Masa 1, 20156 Milano. E-mail: [email protected] 3Research Centre of University of Žilina, Univerzitná 8215/1, 010 26 Žilina. E-mail: [email protected]

This work deals with fatigue testing of the EN S355 structural steel welded joint. The weld was manufactured by the MIG welding technology and as the filler material was used the G3Si1 wire. The fatigue tests were carried out in the rotating bending mode on the specimens manufactured from the welded joint of the S355 steel. The main aim was to evaluate the fatigue endurance of the weld material and for this reason were used machined axis sym-metrical specimens to remove the notch effect of the weld shape. In order to increase the fatigue endurance of the weld, the Nd-YAG laser was used for laser shock peening (LSP) of specimens surfaces, which lead to removing of the weld defects but in overall caused that LSP has behaved as the notch and lead to decreasing of the fatigue endurance. Obtained results of fatigue tests are compared, discussed and supported by correlation with results of additional experiments, e.g. identification of incurred structures after the laser shock peening by the metallo-graphic observations and micro-hardness tests.

Keywords: S355, fatigue, laser shock peening.

Acknowledgment

The research was supported by European regional development fund and Slovak state budget by the project “Research Centre of University of Žilina”, ITMS 26220220183 (40 %), Scientific Grant Agency of the Ministry of Education, Science and Sports of the Slovak Republic and Slovak Academy of Sciences, grant No.: 1/0123/15 (30 %) and by the project APVV 14-0096 (30 %).

References

MICHALEC, I., MARÔNEK, M., BÁRTA, M., NOVÝ, F. (2012). Weld joints fatigue properties of thin carbon steel sheet treated by nitrooxidation. Tehnički vjesnik. Vol. 19. No. 1, pp. 65-69. ISSN 1330-3651.

MAZUR, M., ULEWICZ, R., BORKOWSKI, S. (2012). Properties of steel used in the production of semi-trailers car. In. Zb. SEMDOK, 17th, Žilina, University of Žilina, p. 81-84, ISBN 978-80-554-0477-6.

ULEWICZ, R., MAZUR, M., SZATANIAK, P. (2012). Fatigue properties of selected grades of steel used for main components of semitrailers and agricultural machines. In. Proc. 29thinternational colloquium: Advanced Ma-nufacturing and Repair Technologies in Vehicle Industry, Žilina – Terchová, EDIS ŽU Žilina, pp. 58-63, ISBN 978 – 80-554-0533-9.

VRZGULA, P., FATURÍK, M. (2014). New inspection technologies for identification of failure in the materials and welded joints for area of gas industry. Manufacturing Technology, Vol. 14, No. 3, pp. 487-492, ISSN 1213-2489.

KONAR, R., MICIAN, M., HLAVATY, I. (2014). Defect detection in pipelines during operation using magnetic flux leakage and phased array ultrasonic method. Manufacturing Technology, Vol. 14, No. 3, pp. 337-341, ISSN 1213-2489.

DOPJERA, D., KONAR, R., MICIAN, M. (2014). Ultrasonic testing of girth welded joint with TOFD and phased array. Manufacturing Technology, Volume 14, Issue 3, Pages 281-286, ISSN 1213-2489.

MESKO, J., ZRAK, A., MULCZYK, K., TOFIL, S. (2014). Microstructure analysis of welded joints after laser welding. Manufacturing Technology, Vol. 14, No. 3, pp. 355-359, ISSN 1213-2489.

RADEK, N., MESKO, J., ZRAK, A. (2014). Technology of laser forming. Manufacturing Technology, Vol. 14, No. 3, pp. 428-431, ISSN 1213-2489.

ZRAK, A., KONAR, R., JANKEJECH, P. (2015). Influence of chemical composition in steel on laser cutting stability, Manufacturing Technology, Vol. 15, No. 4, pp. 748-752, ISSN 1213-2489.

Page 45: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

indexed on: http://www.scopus.com 45

YOU, L., LIQUN, L., LINA, S. (2015). Effect of shot peening on the fatigue resistance of laser surface melted 20CrMnTi steel gear. Material science and engineering A, Vol. 629, pp.8-15, ISSN: 0921-5093.

CHANG, Y., YILIANG, L., SUSLOVB, S., DONG, L., GARY, J. C. (2014). Ultrahigh dense and gradient nano-precipitates generated by warm laser shock peening for combination of high strength and ductility. Materials Science & Engineering A, Vol. 609,pp. 195–203, ISSN: 0921-5093

LIUCHENG, Z., WEIFENG, H., SIHAI, L., CHANGBAI, L., CHENG, W., XIANGFAN, N. GUANGYU, H. XIAOJU S. YINGHONG, L. (2016). Laser shock peening induced surface nanocrystallization and martensite transformation in austenitic stainless steel. Journal of Alloys and Compounds, Vol. 655, pp. 66-70, ISSN: 0925-8388.

SHADANGI, Y., CHATTOPADHYAY, K., RAI, S.B., SINGH, V. (2015). Effect of LASER shock peening on microstructure, mechanical properties and corrosion behavior of interstitial free steel. Surface & Coatings Tech-nology, Vol. 280, pp. 216–224, ISSN: 0257-8972.

GANESH, P., SUNDAR, R., KUMAR, H., KAUL, R., RANGANATHAN, K., HEDAOO, P., RAGHAVENDRA, G., ANAND KUMAR, S., TIWARI, P., NAGPURE, D.C., BINDRA, K.S., KUKREJA, L.M., OAK, S. M. (2014). Studies on fatigue life enhancement of pre-fatigued spring steel specimens using laser shock peening. Materials and Design, Vol. 54, pp. 734–741, ISBN: 978-0-08-098205-2.

LAGO, J., BOKUVKA, O., NOVY, F. (2015). The weld toe improvement of Domex 700 by laser remelting. Materials today: Proceeding, (in press), ISSN: 2214-7853.

MARKOVICOVA, L., HURTALOVA, L., ZATKALIKOVA, V., GA RBACZ, T. (2014). Evaluation of compo-site structures by light microscopy and image analysis. Manufacturing Technology, Vol. 14, No. 3, pp. 351-355, ISSN 1213-2489.

Paper number: M201632 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 46: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

46 indexed on: http://www.scopus.com

Grinding of Titanium Alloy Ti6Al4V with Silicon Car bide Grinding Wheel

Radek Lattner1, František Holešovský1, Martin Novák1, Marek Vrabeľ2 1Department of Technologies and Material Engineering, Faculty of Production Technologies and Management, J. E. Pur-kyně University in Ústí nad Labem, Pasteurova 3334/7, 400 96 Ústí nad Labem. E-mail: [email protected], [email protected], [email protected]. 2Faculty of Mechanical Engineering, Technical University of Košice, Letná 9, 042 00 Košice. E-mail: [email protected]

Grinding is one of the technologies for surface finishing of large scale of material. This paper deals with grinding of titanium alloy Ti6Al4V with silicon carbide grin ding wheel. Ti6Al4V is the most widely used titanium alloy. Its utilization can be found in medical, aerospace, chemical and other industries. This experiment deals with evalua-ting of surface roughness after grinding. The roughness parameters (Ra, Rz) were measured on each specimen ten times. Also cutting forces were measured while grinding each specimen. All these measured values were evaluated and presentated in graphs.

Keywords: grinding, surface integrity, titanium alloy, silicon carbide

References

GALANIS, N.I., MARKOPOULOS, A.P., GIANNAKOPOULOS, I.D., MANOLAKOS, D.E. (2013). Manu-facturing of Femoral Heads from Ti-6Al-4V Alloy with High Speed Machining: 3D Fiinite Element Modelling Experimental Validation. In: Manufacturing technology. Vol. 13, No. 4, p. 437-444, ISSN: 1213-2489

MACEK, K. (1991). Kovové materiály. Praha, ČVUT, 157 s.

MASLOV, J. N. (1979). Teorie broušení kovů. Praha. SNTL. 248 s.

MACEK, K. et al. (2002). Nauka o materiálu. Praha, ČVUT, 209 s.

JANOVEC, J., CEJP, J., STEIDL, J. (2001). Prespektivní materiály. Praha, ČVUT, 135 s.

VASILKO, K. (2015). Metal of the Future – Titanium and the problems of its Manufacturing. In: Journal of Production Engineering, Vol. 18, Nr. 1, ISSN 1821-4932.

LATTNER, R., HOLEŠOVSKÝ, F., KAREL, T., LATTNER, M. (2015). Abrasive Machining of Ti6Al4V Alloy, In: Manufacturing technology, Vol. 15, September, No. 4, ISSN 1213-2489.

NOVAK, M., KASUGA, H., OHMORI, H. (2013). Differences at the Surface Roughness by the ELID and Grin-ding Technology, In: Manufacturing Technology, Vol. 13, No. 2, ISSN 1213-2489.

KUNDRAK, J., FEDOROVICH, V., MARKOPOULOS, A. P., PYZHOV, I., KRYUKOVA, N. (2014). Impro-vements of the Dressing Process of Super Abrasive Diamond Grinding Wheels, In: Manufacturing Technology, Vol. 14, December, No. 4, ISSN 1213-2489.

Paper number: M201633 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 47: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

indexed on: http://www.scopus.com 47

Assessment of the Procedural Gases Influence at Turning Technology

Miloslav Ledvina, Štěpánka Dvořáčková Department of Machining and Assembly, Faculty of Mechanical Engineering, Technical University of Liberec, 461 17 Liberec. Czech Republic., E-mail: [email protected], [email protected]

This paper deals with the assessment of the procedural gases progressive cooling methods and cooling by proce-dural liquids at turning technology on the final workpiece surface quality. Turning by using liquefied CO2, lique-fied nitrogen and subcooled air supplied through the vortex tube was compared with the turning without process medium (taken as reference conditions) and with two procedural liquids EOPS 1030 and HOCUT 795 B. At eval-uation effect of procedural gases there were monitored acting forces, cutting tool cooling rate and the machined layer of the material, cutting tool durability and cut surface quality which was characterized by surface roughness and dimensional accuracy. During the experimental part there were used devices as lathe SU50, piezoelectric dy-namometer, the evaluation unit and profilometer. This issue was solved within solving the project TACR - TA03010492.

Keywords: Turning, Cooling by Gas, Acting Forces, Tool Durability, Temperature, Surface Quality.

Acknowledgement

This paper was realized though the financial support of the Czech Republic state budget means – Technological Agency of the Czech Republic (project TA03010492).

References

BARTUŠEK, T., JERSÁK, J. (2009). Metoda MQL a její vliv na technologické parametry procesu broušení. Stro-jírenská technologie. Rec. prof. Mádl. 14. roč., březen, č. 1 s. 12-18. ISSN 1211-4162.

ČEP, R. Technologie II – 1. díl. Skriptum. VŠB Ostrava [online]. [cit. 12.12.2015]. Dostupné z < http://ho-mel.vsb.cz/~cep77/PDF/skripta_Technologie_II_1dil.pdf >

FOREJT, M., PÍŠKA, M. (2006). Teorie obrábění, tváření a nástroje. 1.vyd. Brno: Akademické nakladatelství CERM, 225 s. ISBN 80-2374-9.

GREENWOOD, N. N., EARNSHAW, A. (1993). Chemie prvků I. Informatorium, Praha, 793 s. ISBN 80-85427-38-9.

HOLEŠOVSKÝ, F., JERSÁK, J. aj., (2005). Terminologie obrábění a montáže - 1. vyd. Ústí nad Labem: Uni-versita J. E. Purkyně, ÚTŘV, 2005, Kapitola: Teorie a technologie obrábění, s. 7-66, ISBN 80-7044-616-1.

KOCMAN, K. (2001). Aktuální příručka pro technický úsek :Svazek 7. Obrábění. Praha: Dashöfer, ISBN 80-902247-2-5.

KOCMAN, K., PROKOP, J. (2005). Technologie obrábění - 2. vyd., Brno: Akademické nakladatelství CERM Brno, s.r.o., 270 s., ISBN 80-214-3068-0.

KROUPA, A. Kryogenní technologie chlazení reaktorů a vymrazování VOC pro chemii a farmacii. Chemagazin [online]. 2009/3 [cit. 13.12.2015]. Dostupné z: < http://www.chemagazin.cz/userdata/chemaga-zin_2010/file/chxix_3_cl6.pdf >

LEDVINA, M., KARÁSEK J., DVOŘÁČKOVÁ Š. (2014). Hodnocení vlivu procesních plynů při technologii frézování. Konference ICTKI 2014, Strojírenská technologie, ročník XVIII, č. 3, s. 32-37, ISSN 1211-4162

LEDVINA, M., KARÁSEK, J., DVOŘÁČKOVÁ, Š. (2015). Hodnocení vlivu procesních plynů při technologii frézování. Strojírenská technologie Plzeň 2015: sborník abstraktů: VI. ročník mezinárodní konference konaná ve dnech 3. - 4. 2015 v Plzni. Vyd. 1. Plzeň: ZČU v Plzni, s. 137-145. ISBN 978-80-261-0304-2

LONTECH, Vírové trubice [online]. Lontech.cz [cit. 09.12.2015]. Dostupné z < http://www.lontech.cz/clanky-1.-virove-trubice.html >.

MÁDL, J., HOLEŠOVSKÝ, F. (2010). Strojírenská technologie pro moderní výrobu - 1. vyd. FVTM : UJEP Ústí n. Labem. 56s. ISBN 987-880-7414-218-5.

MM SPECTRUM, Následné doladění pro obráběcí stroje. MM spektrum [online]. 2012/10 [09.12.2015]. Dostupné z < http://www.mmspektrum.com/novinka/nasledne-doladeni-pro-obrabeci-stroje.html >.

Page 48: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

48 indexed on: http://www.scopus.com

MM SPECTRUM, V budoucnosti budou těžce obrobitelné materiály obráběny za velmi nízkých teplot. MM spek-trum [online]. 2012/6 [cit. 19.11.2015]. Dostupné z < http://www.mmspektrum.com/novinka/v-budoucnosti-bu-dou-tezce-obrobitelne-materialy-obrabeny-za-velmi-nizkych-teplot.html >.

PAGÁČ, M. Walter představil na veletrhu EMO kryogenní chlazení. Průmysl.cz [online]. 2013 [cit. 17.11.2015]. Dostupné z < http://www.prumysl.cz/walter-predstavil-na-emo-kryogenni-chlazeni/ >

PAZDERA, J. Oxid uhličitý v roli ochrance životního prostředí. Osel.cz [online]. 2005 [cit. 07.11.2015]. Dostupné z < http://www.osel.cz/index.php?obsah=6&akce=showall&clanek=1216 >

PETŘÍK, V. (2011). Využití různých systémů chlazení pro obrábění materiálů, Diplomová práce, UTB ve Zlíně.

POPOV, A. Obrobitelnost materiálů a řezivost řezných nástrojů (podklad pro výuku Teorie obrábění), [cit. 08.07.2015], dostupné na http://www.technomat.cz/data/katedry/kom/KOM_TO_ PR_13_CZE_Popop_Obrobitelnost_materialu_a_rezivost_reznych_nastroju.pdf.

ŘASA, J.; GABRIEL, V. (2000). Strojírenská technologie 3 - 1. díl - Metody, stroje a nástroje pro obrábění. 1. vyd. Praha: Scientia, spol. s.r.o., 256s. ISBN 80-7183-207-3.

STRUŠKA, O. (2011). Kryogenní chlazení při broušení kovových a plastových materiálů, Bakalářská práce, UTB ve Zlíně, [cit. 13.12.2015]. Dostupné z < https://dspace.k.utb.cz/bitstream/han-dle/10563/17614/stru%C5%A1ka_2011_bp.pdf?sequence=1 >.

Paper number: M201634 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 49: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

indexed on: http://www.scopus.com 49

Roughness Evaluation of the Machined Surface at Interrupted Cutting Process

Sarka Malotova1, Robert Cep1, Lenka Cepova1, Jana Petru1, Dana Stancekova2, Ladislav Kyncl1, Michal Hatala3

1Faculty of Mechanical Engineering, VŠB – Technical University of Ostrava. 17. Listopadu 15/2172, Ostrava. Czech Republic. E-mail: [email protected], [email protected], [email protected], [email protected] 2Faculty of Mechanical Engineering, Univerzity of Žilina, Univerzitna 1, 010 26, Zilina. Slovakia. E-mail: [email protected] 3Faculty of Manufacturing Technology with seat in Presov, Technical University in Kosice, Bayerova 1, 080 01 Prešov, E-mail: [email protected]

The article deals with the evaluation of the roughness of the machined surface, steel ISO C45 and ISO 11CrMo9-10 after machining at interrupted cutting conditions. A regular interrupted cut and irregular interrup ted cut can have significant effect on the resulting surface of components. Parameters of roughness were measured on the slats, which was machined with using the interrupted cutting simulator. The slats were gradually machined - 4, 3, 2 and 1 slat for getting irregular interrupted cut. Selected parameters of roughness which were tested; Ra – an average arithmetic deviation, Rq – an average quadratic deviation and Rz – the maximum height of the roughness profile. Experiment took place in cooperation with Faculty of Mechanical Engineering of VSB – TU Ostrava and Faculty of Mechanical Engineering of ZU Zilina – machining in the laboratories of ZU Zilina, Slovak Republic.

Keywords: surface roughness, interrupted cutting, slat test

Acknowledgment

This work was supported by the European Regional Development Fund in the IT4Innovations Centre of Excellence project CZ.1.05/1.1.00/02.0070, by Education for Competitiveness Operational Programme financed by Structural Founds of Europe Union in project Integrita CZ.1.07/2.3.00/20.0037 and by Student Grant Competitions SP2015/116 and SP2015/129 financed by the Ministry of Education, Youth and Sports and Faculty of Mechanical Engineering VŠB-Technical University of Ostrava.

References

NESLUŠAN, M. et al. (2007). Experimentálne metódy v trieskovom obrábaní. 1. vyd. Žilina: Žilinská univerzita v Žiline, 349 s. ISBN 978-80-8070-711-8

TICHÁ, Š. (2004). Strojírenská metrologie: část 1. 1. vyd. Ostrava: Vysoká škola báňská - Technická univerzita, 104 s. ISBN 80-248-0671-1. Dostupné také z: http://books.fs.vsb.cz/StrojMetro/strojirenska-metrologie.pdf

NOVÁK, M. (2012). Surface with High Precision of Roughness after Grinding. Manufacturing Technology, Vol. 12, No. 12, pp. 66-70. ISSN 1213-2489.

EVERS, D. (2009). Interrupted Turning: Innovations in turning tooling combat the challenges of interrupted cutting. Canada's Metalworking & Fabricating Technology Magazine., č. 9. Dostupné z: http://www.cimin-dustry.com/article/tooling/interrupted-turning

SHAW, M. C. (2005). Metal Cutting Principles. 2nd edition. New York : Oxford University Press, 651. p. ISBN 0-19-514206-3.

ČSN EN ISO 4287. Geometrické požadavky na výrobky (GPS) – Struktura povrchu: Profilová metoda – Termíny, definice a parametry struktury povrchu. 1999.

MALOTOVÁ, Š. (2015). Vliv technologických parametrů v závislosti na povrchová napětí při obrábění na simu-látoru přerušovače řezu. Ostrava, 2015. Diplomová práce. VŠB - TU Ostrava.

ČEP, R. (2010). Návrh a ověření metodiky testování řezných nástrojů při přerušovaném řezu. Ostrava, 2010. 119 s. Habilitační práce. Vysoká škola báňská - Technická univerzita Ostrava.

CEP, R., JANASEK, A., PETRU, J., CEPOVA, L., CZAN, A., VALICEK. (2013). Hard machinable machining of cobalt-based superalloy. Manufacturing Technology, Vol. 13, No. 2, pp. 142-147. ISSN 1213-2489.

Pokrok v měření a hodnocení struktury povrchu. MM průmyslové spektrum. 2001, (4). Dostupné také z: http://www.mmspektrum.com/clanek/pokrok-v-mereni-a-hodnoceni-struktury-povrchu.html

BÁTORA, B., VASILKO, K. (2000). Obrobené povrchy: technologická dedičnosť, funkčnosť. Trenčín: Trenčian-ska univerzita, 183 s. ISBN 80-889-1419-1.

Page 50: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

50 indexed on: http://www.scopus.com

VASILKO, K., MACUROVÁ, A (2012). Two local extremes of cutting speed. Manufacturing Technology, Vol. 12, No. 12, pp. 86 – 89. ISSN 1213-2489

PFEILER, P. (2012). Metodika testování keramických řezných nástrojů při přerušovaném řezu. Ostrava, 147 s. Disertační práce. Vysoká škola báňská - Technická univerzita Ostrava.

DAVIM, J. Paulo, editor. Surface integrity in machining. London: Springer, 2010. ISBN 978-184-8828-742.

KOURIL, K., CEP, R., JANASEK, A., KRIZ, A., STANCEKOVA, D. (2014). Surface integrity at reaming ope-ration by MT3 head. Manufacturing Technology, Vol. 14, No. 2, pp. 193-199. ISSN 1213-2489.

Paper number: M201635 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 51: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

indexed on: http://www.scopus.com 51

The Effect of Different Modifiers in AlSi7Mg0.3 Alloy on Built-up Edge Formation in Machi-ning

Michal Martinovský, Jan Madl Faculty of Production Technology and Management, J. E. Purkyně Univerzity in Usti nad Labem, Pasteurova 3334/7, 400 01, Usti nad Labem, Czech Republic. E-mail: [email protected], [email protected]

Aluminium and silicon alloys are widely used in practice. But there is increasingly more emphasis placed on the research and development of these materials. The aim of this article is to analyse modified aluminium alloy AlSi7Mg0.3. The paper is focused on the effect of particular modifiers in AlSi7Mg0.3 alloys on built-up edge for-mation in machining. Four variants of castings (unmodified alloy and alloy modified by chemical elements - stron-tium, calcium and antimony) were used. All alloys were compared with non-modified alloy. There were moulded castings from each modified variant and the casting of non-modified alloy. It was casted using a gravity-die casting into a metal mould with a thermal insulation.

Keywords: Al-Si alloys, modifiers, machining, built-up edge.

Acknowledgements

The article was co-financed through internal grant provided from Purkyně University in Usti nad Labem, called SGC, i.e. the Student Grant Competition.

References

[1] MADL, J., KOUTNY, V. (2000). Machinability Tests of Aluminium Alloys. MATAR, FS ČVUT, Praha, pp. 124-127.

[2] PALMAI, Z. (2012). Model of Chip Formation During Turning in the Presence of a Built-up Edge. Manufacturing Technology, Vol. 12, No. 13, Univerzita J. E. Purkyně, Usti nad Labem, pp. 207-212. ISSN 1213–2489.

[3] VASILKO, K. (2006) Physical and Metallurgical Approach to Chip Creation. Manufacturing Technology, Vol. 6, No. 6, Univerzita J. E. Purkyně, Usti nad Labem, pp. 56-62. ISSN 1213–2489.

[4] MADL, J., KOUTNY, V. (1998). Surface Quality and Cutting Fluids. Nauka, inovacionnye proizvodstva, mened-zment (Russia). No. 7-8, pp. 166-169.

[5] KOCMAN, K. (2004). Specialni technologie obrabeni. FSI VUT, Brno, pp 155, ISBN 80-214-2562-8.

[6] VASILKO, K., MADL, J. (2012). Teorie obrabeni, FVTM UJEP, Usti ad Labem, p. 298. ISBN 978-80-7414-459-2.

[7] BOOTHROPYD, G. (1975). Fundamentals of Machining and Machine Tools, MARCEL DEKKER, New York, pp. 545, ISBN 0-8247-7852-9.

[8] MADL, J. (1981). Machinability of aluminium alloys. KOVO, No.4, pp. 22-40.

[9] BOLIBRUCHOVA, D., TILLOVA, E. (2005). Zlievarenske zlitiny Al-Si, ZU, Zilina, pp. 180. ISBN 80-87-485-6.

[10] MARTINOVSKY, M., MADL, J. (2014). Vliv modifikatoru na obrobitelnost a vlastnosti Al-Si slitin. Strojírenská technologie, Vol. 14, No. 3, FVTM UJEP, Usti ad Labem, pp. 212-219. ISSN 1211-4162.

[11] MADL, J., RUZICKA, L., LATTNER, M. (2013). The Effect of Chemical Elements on the Machinability of Aluminium Alloys. Manufacturing Technology, Vol. 13, No. 3, pp. 349-353. ISSN 1213–2489.

[12] STEFAN MICHNA et al. (2007). Aluminium Materials and Technologies from A to Z. Adin, Presov, p. 632. ISBN 9789-80-89244-18-8.

[13] ALUMINIUM TASCHENBUCH. (1988). Aluminium-Verlag, Dusseldorf, pp. 234. Paper number: M201636 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 52: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

52 indexed on: http://www.scopus.com

Barkhausen Noise Emission of Surfaces after Plasma Beam Machining

Anna Mičietová1, Miroslav Neslušan1, Mária Čilliková1, Kamil Kolařík2 1University of Žilina, Faculty of Mechanical Engineering, Univerzitná 1, 010 26 Žilina, Slovak Republic; email: [email protected] 2ČVUT Praha, Trojanova 13, 120 00 Praha 2, Czech Republic

This paper deals with analysis of surface integrity of steel after plasma beam machining (PBM). The paper dis-cusses surface integrity expressed in term of rms values of Barkhausen noise and reports about variables affecting Barkhausen noise emission such as plasma current, nozzle distance, thickness of machined surface and feed speed. The paper demonstrates variable degree of surface hardening due to elevated temperatures and the following rapid cooling. Except magnetic investigation of surface also stress state and structure observation are reported.

Keywords: Plasma Beam Machining, Barkhausen Noise, Surface Hardening

Acknowledgement

This project is solved under the financial support of KEGA agency (project n. 009ŽU-4/2014 and 005ŽU-4/2014) and project CZ-SK 2013-0017.

References

MIČIETOVÁ, A. (2007). Nekonvenčné metódy obrábania - výber, využitie, perspektívy, EDIS Žilina, ISBN 978-80-8070-775-0.

MIČIETOVÁ, A., MAŇKOVÁ, I., VELÍŠEK, K. (2007). Top trendy v obrábaní, V. časť - Fyzikálne technológie obrábania. MEDIA/ST, s.r.o., ISBN 80-968954-7-2, Žilina.

MAŇKOVÁ, I. (2000). Progresívne technológie. Vienala, Košice.

ALLEN, D M, et all. (2009). Ion beam focused ion beam and plasma discharged machining. In: CIRP Annals Vol. 58/2, pp. 647-662.

ARNOLD, T., BOHM, G. (2012). Application of atmospheric plasma jet machining for effective surface figuring of SiC. In: Precision Engineering, Vol. 36/4, pp. 546-553.

MIČIETOVÁ, A., NESLUŠAN, M., ČILLIKOVÁ, M. (2013). Influence of surface geometry and structure after non-conventional methods of parting on the following milling operation. In: Manufacturing technology, Vol.13, pp. 199-204.

MIČIETOVÁ, A., NESLUŠAN, M., ČILLIKOVÁ, M. (2013). Residual stresses after thermal methods parting. In: Machines Technologies Materials, Vol. 2, pp. 235 – 240.

VAJDOVÁ, A. el all. (2014). Analysis of surface integrity of parts after non conventional methods of machining. In: Manufacturing technology, Vol.14, pp. 470-474.

KAMEDA, J., RANJAN, R. (1987). Nondestructive evaluation of steels using acoustic and magnetic Barkhausen signals – II. Effect of inter granular impurity segregation. In: Acta Metall., Vol. 35/7, pp. 1527-1531.

BUTTLE, D.J., et all. (1991). Magneto-acoustic and Barkhausen emission: their dependence on dislocations in iron. In: NDT & E Int., Vol. 24, pp. 47 – 54.

GATELIER-ROTHEA, C., et all. (1998). Characterization of pure iron and carbon-iron binary alloy by Barkhau-sen noise measurements: study of the influence of stress and microstructure. In: Acta Mater. Vol. 46/14, pp. 4873 - 4882.

RANJAN, R., JILES, C., RASTOGI, P. (1987). Magnetic properties of decarburized steels: An investigation of the effects of grain size and carbon content. In: IEEE Trans. Magn., Vol. 23/3, pp.1869-1876.

DURSTOVÁ, Z. et all. (2014). Non-destructive evaluation of ground surfaces made of bearing steel of variable hardness. In: Manufacturing technology, Vol.14, pp. 297-303.

ČILLIKOVÁ, M. et all. (2014). Detection of surface damage after grinding of large case-hardened bearing rings. In: Engineering materials, Vol. 581, pp. 205-210.

BLAOW, M., EVANS, J., SHAW, B. (2005). Magnetic Barkhausen noise: the influence of microstructure and deformation in bending. In: Acta Materialia, Vol. 53, pp.279-287.

Page 53: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

indexed on: http://www.scopus.com 53

MOORTHY, V. et all. (2001). Evaluation of heat treatment and deformation induced changes in material proper-ties in gear steels using magnetic Barkhausen noise analysis. In: ICBN 03 Tampere, Finland.

BREZANI, J. (2012). Model vzájomných relácií pri termickom rezaní materiálov. PhD. Thesis 2012, University of Žilina.

PANDA, A. et all. (2016). Vibration and experimental comparison of machining process. In: Key Engineering Materials, Vol. 669, pp.179-186, Switzerland.

Paper number: M201637 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 54: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

54 indexed on: http://www.scopus.com

Influence of Stylus System Configuration on the Variability of Measurement Result on CMM

Petr Mikeš Department of Machining, Process Planning and Metrology, Faculty of Mechanical Engineering, Czech Technical Uni-versity in Prague, Technická 4, 166 07 Praha 6, E-mail: [email protected]

The article deals with the measurement on CMMs with tactile stylus system. Accuracy of CMM is mostly indicated by the parameter MPEE (Maximum Permissible Error for length measurement). This parameter refers to an er-rors during the measurement of distance between two points in space. Verification of MPEEparameter is described in an ISO standard 10 360-2 Acceptance and re-verication tests for coordinate measuring machines. These ac-ceptance and re-verification tests are often conducted with a short and stiff reference stylus which is not and also mostly cannot be used in real measurements. On the contraryin applications such as a measurement of engine blocks and transmission housings very complex styli configurations are used. The influence of stylus system con-figuration on the variability of measurement when using long extensions, different materials (aluminium, carbon fiber composites) and high scanning speed in not described. The aim of this article is to design a methodology for testing the styli systems used in complex metrology applications in quality control of hi-precision mechanical com-ponents, to analyze the contribution of stylus system configuration to the measurement system variability in the form of a standard measurement uncertainty described by standard deviation.

Keywords: Coordinate Measuring Machines, stylus system, variability of measurement result

References

BOSH, J. (1995). Coordinate measuring machines and systems. New York: MARCELL DEKKER, 444s

Inspection Engineering. Zeiss contact sensors [online]. 1.6.2013. 2013 [cit. 2013-06-15]. Dostupné z:http://www.inspectionengineering.com/Zeiss_Contact_Sensors.htm

BERÁNEK, L. (2013). Využití souřadnicové měřicí techniky v moderních procesech kontroly kvality, In: 6. Od-borný seminář Kvalita a rizika ve výrobě. Jaroměř: Centrum pro povrchové úpravy, s. 50-53. ISBN 978-80-87583-05-0.

RATAJCZYK, E. (2005). Wspolrzednosciowa technika pomiarowa. Warszawa: Oficyna Wydawnica Politechniki Warszawskiej, 356 s.

PFEIFER, T., IMKAMP, D., SCHMITT, R. (2006). Coordinate Metrology and CAx-Application in Industrial Production: Basic, Interfaces and Integration, Munich: Carl Hanser Verlag, 205 s.

VASILKO, K., MURČINKOVÁ, Z. (2013). Analysis of geometric accuracy of turned workpieces. Manufacturing Technology, 13(2), 247-252.

IŽOL, P., FABIAN, M., KOPAS, M., FEDORKO, G. (2013). Evaluation of machining strategies for productionof free form surfaces using 3-axle milling. Manufacturing Technology, 13(4), 458-465.

Paper number: M201638 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 55: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

indexed on: http://www.scopus.com 55

Creep Behaviour of the Polymer Composite with False Banana’s Fibres (Ensete Ventricosum)

Čestmír Mizera, Petr Hrabě, Miroslav Müller, David Herák Faculty of Engineering, Czech University of Life Sciences Prague. Czech Republic. E-mail: [email protected], [email protected], [email protected], [email protected].

This study was focused on the analysis of creep behaviour of the polymer composite with continuous phase in the form of two-part epoxies and discontinuous phase (reinforcing particles) in the form of fibres of false banana (Ensete ventricosum). The aim of the experiment was to describe the short term flexural creep behaviour, flexural strength and Charpy impact strength of polymer composite reinforced by fibres of false banana. The fibres of Ensete ventricosum, originally from Ethiopian region Hawassa, were used for this experiment. Reinforcing fibres were prepared in size of length 1-2 mm with randomly fibres arrangement in matrix. The amount of reinforcing particles in the composite material was 0.5; 2 and 30 wt.%. Moulds for casting specimens were produced from the material Lukapren N regarding to the prepared models whose shape corresponds to the technical standard CSN EN ISO 3167. Composite which was used to prepare specimens according to CSN EN ISO 3167 (Plastics - Multi-purpose test specimens, English Standard Institution) was created by mixing of fixed rate of matrix and filler.

Keywords: agriculture, impact strength, flexural strength

Acknowledgement

This paper has been made with the assistance of the grant IGA TF CZU No. 2015:31130/1312/3104.

References

ALVES, C., FERRARO, P.M.C., SILVA, A.J., REIS, L.G., FREITAS, M., RODRIGUES, L.B. (2010). Ecodesign of automotive components making use of natural jute fiber composites. Journal of Cleaner Production, 18, 313-327.

ACHA, B.A., REBOREDO, M.M., MARCOVICH, N.E. (2007). Creep and dynamic mechanical behavior of PP-jute composites: Effect of the interfacial adhesion. Composites: Part A, 38, 1507 – 1516.

AMUTHAKKANNAN, P., MANIKANDAN, V., WINOWLIN JAPPES, J.T., UTHAYAKUMAR, M. (2013). Effect of fibre length and fibre content on mechanical properties of short basalt fibre reinforced polymer matrix composites. Materials Physics and Mechanics, 16, 107-117.

ASEER, J.R., SANKARANARAYANASAMY, K., JAYABALAN, P., NATARAJAN, R., DASAN, K.P. (2013). Morphological, Physical and Thermal Properties of Chemically Treated Banana Fiber. Journal of Natural Fibers, 10, 365 – 380.

ASAE S410.1 DEC97. 1998. Moisture measurement of peanut. In: ASAE standards, 45th edition. 560–561.

BLAHOVEC, J. (2008). Agromaterials – study Guide. Czech University of Life Sciences Prague, Prague.

ČSN EN ISO 3167. 2004. Plastics - Multipurpose test specimens. In: Czech Standard Institution

ČSN EN ISO 178. 2011. Plastics – Determination of flexural properties. In: Czech Standard Institution

ČSN EN ISO 899-2. 2004. Plastics – Determination of creep behaviour - Part 2: Flexural creep by three-point loading. In: Czech Standard Institution

DIRIBA, H.D., MAZANCOVÁ, J., RUŠAROVÁ, K., Havrland, B. (2013). Possibilities and Acceptance of Al-ternative Energies from Farm Solid Waste Material (Kocho): Case Study from Kembata Tenbaro Zone. Ethiopi-aTropentag 2013 International Research on Food Security, Natural Resource Management and Rural Develop-ment Agricultural development within the rural-urban continuum, Gottingen.

FARUK, O., BLEDZKI, A.K., FINK, H.P., SAIN, M. (2012). Biocomposites reinforced with natural fibers: 2000–2010. Progress in Polymer Science, 37, 1552–1596.

HARUN, J., ABDAN, K., ZAMAN, K. (2008). Rheological behaviour of injection moulded oil palm empty fruit bunch fiber-polypropylene composites: effects of electron beam processing versus maleated polypropylene. Mo-lecular Crystals and Liquid Crystals Science, 484, 134–142.

HERÁK, D., BLAHOVEC, J., KABUTEY, A. (2014). Analysis of the axial pressing of bulk Jatropha curcas L. seeds using reciprocal slope transformation. Biosystems Engineering, 121, 67 – 76.

Page 56: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

56 indexed on: http://www.scopus.com

HPSA, K., ISMAIL, H., ROZMAN, H.D., AHMED, M.N. (2001). The effect of acetylation on interfacial shear strength between plant fibers and various matrices. European Polymer Journal, 37, 1037–1045.

JACKEL, M., SCHEIBNER, W. (1991). Boundary layer induced modification of thermal and mechanical proper-ties of epoxy resin composites. Cryogenics, 31, 269-272.

KALIA, S., THAKUR, K., CELLI, A., KIECHEL, M.A., SCHAUER, C.L. (2013). Surface modification of plant fibers using environment friendly methods for their application in polymer composites, textile industry and anti-microbial activities. Journal of Environmental Chemical Engineering, 1, 97–112.

KELLER, A. (2003). Compounding and mechanical properties of biodegradable hemp fiber composites. Compo-site Science and Technology, 63, 1307–1316.

KIM, J.H., LEE, H.J., LEE, H.S., LIM, E.J., IMM, J.Y., SUH, H.J. (2012). Physical and sensory characteristics of fibre – enriched sponge cakes made with Opuntia humifusa. Food Science and Technology, 47, 478–484.

LEE, B.H., KIM, H.J., Yu, W.R. (2009). Fabrication of long and discontinuous natural fibre reinforced polypro-pylene biocomposites and their mechanical properties. Fibers and Polymers, 10, 83–90.

LU, X., QIU ZHANG, M., ZHI RONG, M., SHI, G., CHENG YANG, G. (2003). Melt processable composites of sisal. Composites Science and Technology, 63,177–186.

MOMINUL HAQUE, M., HASAN, M., SAIFUL ISLAM, M., ERSHAD ALI, M. (2009). Physical– mechanical properties of chemically treated palm and coir fiber reinforced polypropylene. Bioresource Technology, 100, 4903–4906.

MÜLLER, M., CIDLINA, J., DĚDIČOVÁ, K., KROFOVÁ, A. (2015). Mechanical properties of polymeric com-posite based on aluminium Microparticles. Manufacturing Technology, 15, 624-628.

POOLE, A.J., CHURCH, J.S., HUSON, M.G. (2009). Environmentally sustainable fibers from regenerated Pro-tein. Biomacromolecules, 10, 1–8.

SHARIFAH, H.A., MARTIN, P.A. (2004). The effect of alkalization and fiber alignment on the mechanical and thermal properties of kenaf and hemp bast fiber composites: Part 1 – polyester resin matrix. Composites Science and Technology, 64, 1219–30.

TSEHAYE, Y., KEBEBEW, F. (2006). Diversity and cultural use of Enset (Enset ventricosum (Welw.) Chees-man) in Bonga in situ Conservation Site, Ethiopia. Ethnobotany Research and Applications, 4, 147 – 157.

VALÁŠEK, P. (2014). Mechanical Properties of Epoxy Resins Filled with Waste Rubber Powder. Manufacturing Technology, 14, 632 – 637.

VINCENT, H., WIERSAMA, J., KELL, S., FIELDER, H., DOBBIE, S., CASTANEDA-ALVAREZ, N.P., GUARINO, L., EASTWOOD, R., LEON, B., MAXTED, N. (2013). A prioritized crop wild relative inventory to help underpin global food security. Biological Conservation, 167, 265 – 275.

WAMBUA, P., IVENS, J., VERPOEST, I. (2003). Natural fibres: can they replace glass in fibre reinforced plas-tics? Composites Science and Technology, 63, 1259–1264.

YIRMAGA, M.T. (2013). Improving the Indigenous Processing of Kocho, an Ethiopian Traditional Fermented Food. Journal of Nurition and Food Science, 3, 1 – 6.

Paper number: M201639 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 57: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

indexed on: http://www.scopus.com 57

Effect of Age Hardening Conditions on Mechanical Properties of AW 6082 Alloy Welds

Jaromír Moravec, Iva Nováková, Josef Bradáč Technical University of Liberec. Studentská 2, 461 17 Liberec 1. Czech Republic. E-mail: [email protected], [email protected], [email protected]

The present paper expands the knowledge in the field of welding of age hardening aluminium alloys using MIG method. Aluminium alloy AW 6082 (AlSi1MgMn) according to the specification standard CSN 42 4400 was used for the experiment. This type of alloy is used in industrial practice e.g. for medium stressed parts in railway and motor vehicles and in water, oil or petrol pipes. For the purpose of assessing the impact of multiple cycles on the properties in the heat affected zone the weld was designed as a multi-layer weld. The objective of this paper is not only the impact assessment of the degradation of the mechanical properties, but also the possibility of recovery of these properties by heat treatment. During the experiment, the effect of temperature holding time by solution annealing and artificial hardening on the mechanical properties of the base material, HAZ and weld was studied. The effect of heat treatment was evaluated by Vickers hardness test.

Keywords: AW 6082, welding, heat treatment

Acknowledgement

This paper was written at the Technical University of Liberec with the support of the Specific University Research Grant SGS, as provided by the Ministry of Education, Youth and Sports of the Czech Republic in the year 2016.

References

MICHNA, Š. et al. (2005). Aluminium Encyclopedia. pp. 119 - 228. Prešov: ADIN. ISBN 80-89041-88-4. Composite Authors. (2001). Materials and their Weldability. pp. 233 - 240. Ostrava: ZEROSS. ISBN 80-85771-

85-3. SAHUL, M., TURŇA, M., ŠUGÁROVÁ, J., SAHUL, M. (2013). Influence of laser welding aluminium alloy on

mechanical properties of welded joints. In: Manufacturing Technology, Vol. 13, No. December 2013, pp. 526 -530.

KOPAS, P., SÁGA, M. (2013). In-phase multi-axial fatigue experimental analysis of welded cylindrical 6063-T66 aluminium alloy specimens. In: Manufacturing Technology, Vol. 13, No. March 2013, pp. 59 - 64.

BAYAZID, S.M. et al. (2016). Effect of cyclic solution treatment on microstructure and mechanical properties of friction stir welded 7075 Al alloy. In: Materials Science and Engineering A, Vol. 649, No. January 01, pp. 293 - 300.

CHEN, Y. et al. (2016). Influence of multi-pass friction stir processing on the microstructure and mechanical properties of Al-5083 alloy. In: Materials Science and Engineering A, Vol. 650, No. January 05, pp. 281 - 289.

SHIRAZI, H., KHEIRANDISH, S., SAFARKHANIAN, M.A. (2015). Effect of process parameters on the ma-crostructure and defect formation in friction stir lap welding of AA5456 aluminium alloy. In: Journal of the Inter-national Measurement Confederation, Vol. 76, No. 12 December 2015, pp. 62 - 69.

HAN, Y., ZHANG, S., PANG, S., HONG, H. (2015). Arc behaviour during variable polarity TIG welding of aluminum alloy. In: Hanjie Xuebao/Transactions of the China Welding Institution, Vol. 36, Issue 9, No. 25 Sep-tember 2015, pp. 51-54 and 59.

KOLÁŘ, V. Weldability of aluminium alloys [online]. [cite 2015-10-25]. Available from www: <http://www.cws-anb.cz/t.py?t=2&i=502>. ČSN EN 515. Aluminium and its alloys – Formed products – Identification of states. Praha: Czech standard institute, 1995. 22 p. Class number: 42 0053. MORAVEC, J. (2014). Three layer butt weld of AW 6082. TUL-Z-14-VS-AW6082-01, TU Liberec, Liberec, pp. 2-27. MORAVEC, J. (2014). Hardness measurement HV 10 in base material, HAZ and weld metal for three-layered weld made of Al6082 alloy. TUL-Z-AW6082-MT-01, TU Liberec, Liberec, pp. 2-27. MORAVEC, J. (2014). Hardness measurement HV 10 in base material, HAZ and weld metal for three-layered weld made of Al6082 alloy after age hardening. TUL-Z-AW6082-TZ-MT-01, TU Liberec, Liberec, pp. 2-25.

Paper number: M201640 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 58: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

58 indexed on: http://www.scopus.com

Design of Control Jig for Inserts Measurement

Ivan Mrkvica1, Vojtech Sleha1, Jana Petru1, Miroslav Neslusan2, Jozef Jurko3, Anton Panda3 1Faculty of Mechanical Engineering, VSB-Technical University of Ostrava, 17. listopadu 15/2172, 708 33 Ostrava-Po-ruba, Czech Republic. E-mail: [email protected], [email protected], [email protected] 2Faculty of Mechanical Engineering, Zilina University in Zilina, Univerzitna 1, 010 26 Zilina, Slovakia. E-mail: [email protected] 3Faculty of Manufacturing Technologies with a seat in Presov, Technical University of Kosice, Sturova 31, 080 01 Presov, Slovakia. E-mail: [email protected], [email protected]

This paper aims to design a control jig for cutting inserts measurement. These inserts are made from standardized inserts by grinding. The control jig is intended to be used on two different types of measuring devices and it has to meet the functional requirements of these devices.The intoduction describes specific functional requirements on the jig, provides information about measuring devices and examples of cutting edges grinded on inserts. Next part describes the design of several variants of jig parts and reasons for their application. Paper is focused specifically on design of jig body variants, description of measuring arm and the way of clamping of inserts in the control jig. The measuring range is described for each of proposed variant. In the closing part of the article particular variants are compared according to their suitability, stability during measuring and range of serviceability for measuring of the inserts.

Keywords: control jig, body, arm, cutting insert

Acknowledgement

This work was supported by the European Regional Development Fund in the IT4Innovations Centre of Excellence project CZ.1.05/1.1.00/02.0070 and by Education for Competitiveness Operational Programme financed by Structural Founds of Europe Union in project Integrita CZ.1.07/2.3.00/20.0037 and by Student Grant Competitions SP2015/116 and SP2015/129 financed by the Ministry of Education, Youth and Sports and Faculty of Mechanical Engineering VŠB-Technical University of Ostrava.

References

MICIETOVA, A., NESLUSAN, M., CILLIKOVA, M. (2013). Influence of surface geometry and structure after non-conventional methods of parting on the following milling operations. In: Manufacturing Technology, Vol. 13, No. 2, pp. 199-204.

PILC, J., VASILKO, K. (2013). Development and applications of a rotating turning tool. In: Manufacturing Tech-nology, Vol. 13, No. 2, pp. 226-231.

CEP, R., JANASEK, A., PETRU, J., CEPOVA, L., CZAN, A., VALICEK, J. (2013). Hard machinable machining of cobalt-based superalloy. In: Manufacturing Technology, Vol. 13, No. 2, pp. 142-147.

WECKENMANN, A., RADHAKRISHNAN, V.P., SCHMITZ, S. (1999). Fringe projection method for measuring geometry and wear of cutting tool inserts. In: Proceedings of ASPE, 14th Annual Meeting Monterey, USA, pp. 473-476.

SCHWENKE, H., NEUSCHAEFER-RUBE, U., PFEIFER, T., KUNZMANN, H. (2002). Optical methods for dimensional metrology. In: CIRP Annals – Manufacturing Technology, Vol. 51, No. 2, pp. 685-699.

LIM, T. Y., RATNAM, M.M. (2014). Measurement of nose radii of multiple cutting tool inserts from scanned images using sub-pixel edge detection. In: Proceedings of 13th International Conference on Control, Automation, Robotics & Vision Marina Bay Sands, Singapore, pp. 100-105.

WECKERMANN, A., NALBANTIC, K. (2003). Precision measurement of cutting tools with two matched optical 3D-sensors. In: CIRP Annals – Manufacturing Technology, Vol. 52, No. 1, pp. 443-446.

LIM, T. Y., RATNAM, M.M. (2014). Edge detection and measurement of nose radii of cutting tool inserts from scaned 2-D image. In: Optics and Lasers in Engineering, Vol. 50, No. 11, pp. 1628-1642.

Monometal nástroje s.r.o. [online]. 2015 [cit. 2015-12-10]. Available: http://www.monometal.com. Universal measuring device Smart Tcheck [online]. 2015 [cit. 2015-12-10]. Available: http://www.zoller.cz/wp-content/uploads/2014/04/smarTcheck-600.pdf PC500 Measurement equipment: Detailed Documentation. [online]. 2015 [cit. 2015-12-10]. Available: [http://www.avyac-machines.com/pc500-multicheck-for-england.html]. IPM Measuring Systems: TC-210 [online]. 2015 [cit. 2015-12-10]. Available: [http://www.ipm-measu-ring.com/english/tc_210.htm].

Paper number: M201641 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 59: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

indexed on: http://www.scopus.com 59

Influence of Cyclic Degradation in Saline Solution on Mechanical Properties of Adhesive Bonds

Miroslav Müller Faculty of Engineering, Czech University of Life Sciences Prague. Czech Republic. E-mail: [email protected]

The adhesive bond is the complex of three layers – adhesive bonded material (called adherent), adhesive layer and cohesive layer. Degradation aspects act all parts of the adhesive bond. The aim of this research was the evaluation of influence of degradation environment on the strength of structural two-component epoxy adhesives. Adhesive bonds and process of testing the adhesive bonds were in accordance with standard ČSN EN 1465. The degradation environment in form of 5 % saline solution was used within this experiment. Adhesive bonded testing samples were subjected to cyclic loading of saline solution. On the basis of evaluation of performed experiments it is possible to say, that resulting strength of adhesive bonds decreases at simultaneous acting of environment. The strength of adhesive bond after 8th cycle, i.e. after 56 days, significantly decreased from 67 to 78 %. Using the electron micros-copy within the experimental research it was proved that the spontaneous failure of the adhesive layer occurred at 8th cycle.

Keywords: adhesive bond strength, corrosive, scanning electron microscopy (SEM), structural two-component epoxy

Acknowledgement

This paper has been done when solving the grant IGA TF (2015:31140/1312/3106).

References

MÜLLER, M., VALÁŠEK, P. (2012). Degradation medium of agrokomplex - adhesive bonded joints interaction. In: Research in Agricultural Engineering, Vol. 58, pp. 83-91.

RUDAWSKA, A. (2014). Selected aspects of the effect of mechanical treatment on surface roughness and adhe-sive joint strength of steel sheets. In: International Journal of Adhesion and Adhesives, Vol. 50, pp. 235-243.

MESSLER, R., W. (2004). Joining of materials and structures from pragmatic process to enabling technology. Burlington: Elsevier, 816 pp.

MÜLLER, M. (2013). Research of Liquid Contaminants Influence on Adhesive Bond Strength Applied in Agri-cultural Machine Construction. In: Agronomy Research, Vol.11, pp. 147-154.

CIDLINA, J., MÜLLER, M., VALÁŠEK, P. (2014). Evaluation of Adhesive Bond Strength Depending on Deg-radation Type and Time. In: Manufacturing Technology, Vol. 14, No. 1, pp. 8-12.

MÜLLER, M., HERÁK, D. (2013). Application possibilities of adhesive bonds – Europe, Indonesia. In: Scientia Agriculturae Bohemica, Vol. 44, pp. 167-171.

CROCOMBE, A. D. (1997). Durability modelling concepts and tools for the cohesive environmental degradation of bonded structures. In: International Journal of Adhesion & Adhesives, Vol. 17, No. 3, p. 229-238.

DOYLE, G., PETHRICK, R. A. (2009). Environmental effects on the ageing of epoxy adhesive joinst. In: Inter-national Journal of Adhesion & Adhesives, Vol. 29, p. 77–90.

SARGENT, J. P., (2005). Durability studies for aerospace applications using peel and wedge tests. In: Interna-tional Journal of Adhesion & Adhesives, Vol. 25, p. 247-256.

COMYN, J. (1983). Kinetics and Mechanism of Environmental Attack. Durability of structural adhesives. Re-printed. Ed. Kinloch A. J. London: Applied Science, p. 85-131.

MÜLLER, M., RUŽBARSKÝ, J., VALÁŠEK, P. (2014). Degradation process in area of connecting metal sheets by adhesive bonding technology in agrocomplex. In: Applied Mechanics and Materials, Vol. 616, pp. 52-60.

PERAIRA, A. M., REIS, P.N.B., FERREIRA, J.A.M., ANTUNES, F.V. (2013). Effect of saline environment on mechanical properties of adhesive joints. In: International Journalof Adhesion and Adhesives, Vol. 65, No. 47, p. 99-104.

VALÁŠEK, P. (2014). Long-term degradation of composites exposed to liquid environments in agriculture. In: Scientia Agriculturae Bohemica, Vol. 3, No. 1, pp 187-192.

Page 60: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

60 indexed on: http://www.scopus.com

MÜLLER, M., HERÁK, D., VALÁŠEK, P. (2013). Degradation limits of bonding technology depending on des-tinations Europe, Indonesia. In: Tehnicki Vjesnik- Technical Gazette, Vol. 20, pp. 571-575.

KINLOCH, A. J., OSIYEMI, S. O. (1993). Predicting the fatigue life of adhesively-bonded joints. In: Journal of adhesion, Vol. 43, No. 12, p. 79-90.

CROCOMBE, A. D. (1997). Durability modelling concepts and tools for the cohesive environmental degradation of bonded structures. In: International Journal of Adhesion & Adhesives, Vol. 17, No. 3, p. 229-238.

COURT, R. S., SUTCLIFFE, M.P.F., TAVAKOLI, S.M. (2001). Ageing of adhesively bonded joints – fracture and failure analysis using video imaging techniques. In: International Journal of Adhesion & Adhesives, vol 21, p. 455–463.

LOH, W.K, CROCOMBE, A.D, ABDEL WAHAB, M.M., ASHCROFT, I.A. (2002). Environmental degradation of the interfacial fracture energy in anadhesively bonded joint. In: Engineering Fracture Mechanics, Vol. 69, No. 18, p. 2113-2128.

RUGGIERO, A., VALÁŠEK, P., MEROLA, M. (2015). Friction and wear behaviors of Al/Epoxy Composites during Reciprocating Sliding tests. In: Manufacturing technology, Vol. 15, No. 4, p. 684-689.

DAVIS, M., BOND, D. (1999). Principles and practices of adhesive bonded structural joints and repairs. In: In-ternational Journal of Adhesion & Adhesives, Vol. 19. p. 91-105.

Paper number: M201642 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 61: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

indexed on: http://www.scopus.com 61

Modification of AlSi9CuMnNi Alloy by Antimony and H eat Treatment and Their Influence on Tool Wear after Turning

Natasa Naprstkova1, Jaromir Cais1, Manuela Ingaldi2 1Faculty of Production Technology and Management, J. E. Purkyne University in Usti nad Labem. Pasteurova 1, 400 96 Usti nad Labem. Czech Republic. E-mail: [email protected]; [email protected], 2Faculty of Management of Czestochowa University of Technology, ul. Armii Krajowej 19 B, 42-200 Czestochowa, Poland. E-mail: [email protected]

Modification alloy is an important part of the metallurgical process, and this also applies, of course, for aluminum alloys, particularly for Al-Si (silumins). As a modification of the material we can use the modification using the selected element or heat treatment of alloys, or a combination of both processes. One of the elements that it is possible to modify the alloy of Al-Si used is antimony (Sb). The paper examines the possible effect of the modifica-tion that element and heat treatment on the final tool wear after machining of the alloy AlSi9CuMnNi. In the experiments were made three castings from the alloy AlSi9CuMnNi without modification, three castings with the modification and without heat treatment, three castings with modification and without heat treatment, and three castings with modification and heat treatment too. These all castings were machining by turning with the same cutting conditions and next the tool wear of using inserts was analyzed. The described experiments and analysis are part of extensive research, focusing on a Faculty of Production Technology and Management, J. E. Purkyne University in Usti nad Labem.

Keywords: alloy, aluminium, modification, antimony, heat treatment, wear, machining

Acknowledgement

Authors are grateful for the support of grant SGS 2014 UJEP and of grant OP 2.2 No. CZ.1.07/2.2.00/28.0296.

References

BOLIBRUCHOVA, D., TILLOVÁ, E. (2005). Zlievarenske zliatiny Al-Si. ZU v Ziline, EDIS, Zilina, Slovak Re-public.

LIPINSKI, T. (2011). Microstructure and Mechanical Properties of the AlSi13Mg1CuNi Alloy with Ecological Modifier. In: Manufacturing Technology, Vol. 11, No. 1, pp. 40-44, FPTM JEPU, Usti nad Labem, Czech Repub-lic.

ROUČKA, J. (2004). Metalurgie neželezných slitin. 148 p., CERM,. Brno, Czech Republic.

MICHALCOVA, A., VOJTECH, D. (2012). Structure of rapidly solidified aluminium alloys. In Manufacturing Technology. Vol. 12, No. 13, pp. 166-169, FPTM JEPU, Ústí nad Labem, Czech Republic.

MICHNA, S., LUKAC, I., OCENASEK, V., KORENY, R., DRAPALA, J., SCHNEIDER, H., MISKUFOVA, A. and coll. (2005). Encyklopedie hliníku. Adin, Prešov, Slovak Republic.

MICHNA, S., KUSMIERCZAK, S. (2008). Technologie a zpracovani hlinikovych materialu. JEPU, Ustí nad Labem, Czech Republic.

NAPRSTKOVA, N. (2012). Vliv ockovani slitiny AlSi7Mg0,3 ockovadlem AlTi5B1 na opotrebeni nastroje pri jejim obrabení. In: Strojirenska technologie. Vol. 17, No. 5,6, pp. 330-338, FPTM JEPU, Usti nad Labem, Czech Republic.

BILIK, O., MADL, J. (2001). Trvanlivost britu a provozni spolehlivost obrabeciho nastroje. Knihovnicka Strojirenske technologie, sv. 1., 78 p., FPTM, JEPU, Ústí nad Labem, Czech Republic.

CZAN, A., STANCEKOVA, D., DURECH, L., STEKLAC, D., MARTIKAN, J. (2006). Zaklady opotrebenia pri suchom tvrdom sustruzení. In: Nastroje 2006 - ITC 2006, 5. - 6. september 2006, Zlin, Czech Republic.

DUGIN, A., POPOV, A. (2012). Effect of the cutting tool wear on the ploughing force value. In: Strojirenska technologie. Vol. 17, No. 1,2, pp. 19-23, FPTM JEPU, Usti nad Labem, Czech Republic.

DUGIN, A., POPOV, A. (2013). Increasing the accuracy of the effect of processing material and cutting tool wear on the ploughingforce values. In: Manufacturing Technology, Vol. 13, No. 2, pp. 169-173, FPTM JEPU, Usti nad Labem, Czech Republic.

KOCMAN, K. (2011). Technologicke procesy obrabeni. CERM, Brno, Czech Republic.

Page 62: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

62 indexed on: http://www.scopus.com

KALINCOVA, D. (2010). Skusanie mechanických vlastnosti materialov - prehlad meracich metod a zariadeni. In: proceedings Zvysovanie efektivnosti vzdelavacieho procesu prostrednictvom inovacnych prostriedkov, KEGA 3/6370/08., pp. 13-26, TU vo Zvolene, Zvolen, Slovak Republic.

MADL, J., KOUT, V., RAZEK, V., STRANSKY, R., DUFEK, V. (2004). Metoda pro simulaci zkousek opotre-beni slinutych karbidu. In: Strojirenska technologie. Vol. 9, No. 1, pp. 28-32, FPTM JEPU, Usti nad Labem, Czech Republic.

ISO 3685 (1993) Tool-life testing with single-point turning tools.

MADL. J. (2012). Surface properties in Precise and Hard Machining.In: Manufacturing Technology, Vol. 12, No. 13, pp. 158-166, FPTM JEPU, Usti nad Labem, Czech Republic.

SUCHANEK, D., DUSAK, K. (2011). Impact of cutting conditions on tool wear. In: Strojirenska technologie, Vol. 16, No. 5, pp. 33-37, FPTM JEPU, Usti nad Labem, Czech Republic.

SEBELOVÁ, E., CHLADIL, J. (2013). Tool wear and Machinability of Wood-based Material During Machining Process. In: Manufacturing Technology. Vol. 13, No. 2, pp. 231-236, FPTM JEPU, Usti nad Labem, Czech Re-public.

VALICEK, J., RUSNAK, J., MULLER, M., HRABE, P., KADNAR, M., HLOCH, S., KUSNEROVA, M. (2008). Geometricke aspekty drsnosti povrchu klasických a netradicních technologii. In: Jemna mechanika a optika, Vol. 53, No. 9, p. 249-253, Praha, Czech Republic.

OSICKA, K. (2009). Prumerna aritmeticka uchylka drsnosti povrchu - statisticke vyhodnoceni plochy. In: Strojí-renska technologie. Vol. 14, No. 1, p. 30-33, FPTM JEPU, Usti nad Labem, Czech Republic.

Paper number: M201643 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 63: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

indexed on: http://www.scopus.com 63

Barkhausen Noise Emission in Case – Hardened Bearing Steels

Miroslav Neslušan1, Róbert Farda1, Kamil Kolařík2, Jiří Čapek2

1ŽU Žilina, Univerzitná 1, 010 26 Žilina, KOVT, SjF, E-mail: [email protected], 2ČVUT Praha, Trojanova 13, 120 00, Praha 2, ČR

This paper deals with detection of surface burn after grinding operations on bearing rings made of case - hardened steels. The paper reports about Barkhausen noise technique employed for non destructive monitoring of grinding burn and discusses the main aspects affecting the Barkhausen noise emission such as thickness of heat affected zone, micro hardness, stress state, carbides, dislocation density and volume of retained austenite. Results of exper-iments indicate that the influence of stress state on Barkhausen noise is only minor whereas influence of structure features dominates. On the other hand, it is difficult to unwrap influence microstructure features contribution to the Barkhausen noise. For this reason their influence should be studied on the model surfaces undergoing the different regime of chemical and heat treatment.

Keywords: grinding burn, Barkhausen noise, bearings

Acknowledgment

This article was edited under the financial support of KEGA projects n. 005ŽU - 4/2014 and 009ŽU - 4/2014.

References

BARKHAUSEN, H. (1919). Phys. Zeitschrift, 20, pp. 201.

MOORTHY, V. et all. (2007). Assessment of Depth Grinding Damage on Gear Teeth using Magnetic Barkhausen Noise Measurement, ICBN 06, Valenciennes, France.

SORSA, A. et all. (2012). Quantitative prediction of residual stresses and hardness in case-hardened steel based on the Barkhausen noise measurement, NDT&E Int.Vol.46, pp. 100-106.

ABUKU, S., CULLITY, R.D. (1971). A Magnetic Method for Determination of Residual Stress, Exp. Mech.,11.

VASHISTA, M., PAUL, S. (2009). Correlation between Surface integrity of Ground Medium Carbon Steel with Barkhausen Noise Parameters and Magnetic Hysteresis Loop Characteristics, Materials and Design Vol. 30, pp. 1595-1603.

NESLUŠAN, M., ROSIPAL M., OCHODEK, V. (2011). Analysis of some Aspects of Surface Integrity after Grinding and Hard Turning trough Barkhausen Noise, ICBN 09, Hejnice, Czech Republic.

ČILLIKOVÁ, M. et all. (2013). Non-destructive micromagnetic evaluation of surface damage after grinding, Man-ufacturing Technology, Vol.13/2, pp. 152-157.

BATISTA, I., RABE, U., HIRSEKORN, S. (2013). Magnetic micro- and nanostructures of unalloyed steels: Do-main wall interactions with cementite precipitates observed by MFM, NDT&E Int. Vol. 57, pp. 58–68.

RANJAN, R., et all. (1987). Magnetic properties of decarburized steels: An investigation of the effects of grain size and carbon content, NDT&E Int. Vol.23/3, pp.1869-1876.

BUTTLE, D.J. et all. (1994). Magneto-acoustic and Barkhausen emission: their dependence on dislocations in iron, NDT & E Int. Vol.24, pp. 47-54.

HAJKO, V., POTOCKÝ, L., ZENTKO, A. (1982). Magnetization processes, ALFA Bratislava. Paper number: M201644 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 64: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

64 indexed on: http://www.scopus.com

Evaluation of Applicability of Unconventional Cooling Method in Injection Mould

Thang Nguyen Vo, Martin Seidl Faculty of Mechanical Engineering, Department of Engineering Technology, Technical University of Liberec. Studentská 2, 461 17 Liberec. Czech Republic. E-mail: [email protected], [email protected]

To increase the intensity of cooling the unconventional methods can be used, which enable to achieve quick and steady heat transfer from the injection mould and from the plastic product. This paper is devoted to the cooling method based on high cooling potential of liquid carbon dioxide that is included among the unconventional met-hods of mould temperature control system. The main objective of this paper is to evaluate the applicability of cooling with using liquid CO2 in the injection mould with regard to several aspects that have a direct impact on the final cooling efficiency. The practical experiment deals with the design of the shaped mould insert with the incorporated progressive cooling system by means of CO2 and its comparison with conventional tempering by water. The study is based on evaluations of the temperature profiles reached from thermocouples located in three positions in the injection mould and analysis of temperature fields measured on the surface of the product after its removal from the shaped insert. All the analyses were carried out for three cooling modes and before individual testing steps the technological parameters of cooling were optimized.

Keywords: Injection Mould, Unconventional Cooling, Liquid Carbon Dioxide, CO2

Acknowledgement

This paper was written at the Technical University of Liberec with the support of the Specific University Research Grant SGS, as provided by the Ministry of Education, Youth and Sports of the Czech Republic in the year 2016.

References

Information on http://scifun.chem.wisc.edu/chemweek/pdf/carbondioxide.pdf

Information on http://www.ascoco2.com

Information on http://www.mathesongas.com/industrialgas/pdfs/bulk-carbon-dioxide.pdf

NOVÁKOVÁ, I., SEIDL, M., BRDLÍK, P., ŠTVERÁK, J., MORAVEC, J. (2015). In: Cooling thin parts of pres-sure casting moulds by means of liquid CO2, Vol. 669, pp. 71-78. TU of Liberec.

Paper number: M201645 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 65: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

indexed on: http://www.scopus.com 65

Monitoring of the Diffusion Processes during Carburizing Automotive Steel Parts

Iva Nová, Jiri Machuta Faculty of Mechanical Engineering, Technical University of Liberec, Studentská 2, 461 17 Liberec 1, Czech Republic. E-mail: [email protected], [email protected]

The article deals with the prediction of diffusion process of steel components, respectively diffusion of carbon during carburizing. The calculation was made on the basis of the solution diffusion in semi-infinite space. For the calculation there was used the II. Fick's law. For the reason that the transfer medium is formed at the interface environments diffusion boundary layer, for the more accurate calculations, it is necessary to consider the coeffi-cient of transfer of β atoms of carbon. For the calculation of the diffusion coefficient D was used Arrhenius´s equation, which is based on the rate of diffusion processes (diffusion). It was calculated the time for diffusion of carbon to achieve the concentration of 0.8% C. There was also made a calculation of carbon diffusion in the gear from material EN DIN 1.7142 (DIN 14221). Diffusion was performed at 950 ° C, the initial concentration of carbon was 0.2%. Carburizing carbon concentration was 1.1% C and carburizing time was 1, 3 and 6 hours.

Keywords: Carburizing, Diffusion, Carbon, Gearwheel, Calculation

Acknowledgement

This article is financially supported by Ministry of Education Youth and Sports of Czech Republic through the project SGS.

References

TOTTEN, G. E. (2006). Steel heat treatment hand book. Metallurgy and technologies. ISBN 9780824727413 – CAT – DK 3125.

ASKELAND, D. R a Pradeep P PHULÉ. (2003). Science and engineering of materials. 4 th ed. Pacific Grove: Books/Cole-Thomson Learning, 1003 s. ISBN 0534953735.

CALLISTER, W. D. (2003). Materials science and engineering: anintroduction. 6th ed.New York: John Wiley and Sons, Inc., 820 s. ISBN 0-471-22471-5.

PISEK, F.et al. (1974). Nauka o materiálu I/1 (Science of material I/1) 1st. edition,(in Czech).

DULCY, J,. BILGER, P, ZIMMERMANN , D. AND GANTOIS, M. (1999). Characterization and Optimization of a Carburizing Treatment in Gas Phase: Definitionof a New Process, In: Metall. Ital., 91(4), p 39-44

STRANSKY, K. (1977). Termodynamika kvazistacionární difúze uhlíku v ocelích a její aplikace. 1. vyd. Praha: ACADEMIA, 148 s. (in Czech).

MILLION, B., BACILEK, K., KUCERA, J., MICHALICKA, P., REK, A. (1995). Carbon Diffusion and Thermo-dynamic Characteristicsin Chromium Steels, In: Z. Metllkd., 86 (10), p. 706-712 (Materials Research and Adva-nced Techniques).

KUCERA, J., STRANSKY, K. (2003). The Dependence of Carbon Diffusion Coefficients in Austenitic Ternary Alloys on Concentration of Additive Elements. In: Acta Tech. CSAV, 48(4), p. 353-364 (Ceskoslovenska Akade-mie Ved).

KARABELCHTCHIKOVA, O., SISSON, R.D. (2006). Carbon Diffusion in Steels: A Numerical Analysis Based on Direct Integration of the Flux. In: Journal of Phase Equilibia and Diffusion. Vol. 27 No 6., p. 598 – 604.

RIMMER, K. E., SCHWARZ-BERGKAMPF, E., WUNNING, J. (1975). Surface Reaction Rate in Gas Carburi-zing. In: Haerterei-Technische Mitteilungen, 30 (3), p. 152-160.

Paper number: M201646 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 66: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

66 indexed on: http://www.scopus.com

Dilatometric Measurements of Austenitic Stainless Steel as a Function of Temperature

Monika Oravcová1, Peter Palček1, Máriusz Król2 1University of Žilina, Faculty of Mechanical Engineering, Department of Materials Engineering, Univerzitná 1, 01026 Žilina, Slovakia. E-mail: [email protected], [email protected] 2Institute of Engineering Materials and Biomaterials, Faculty of Mechanical Enginering, Konarskiego 18A Stret, 44-100 Gliwice, Poland. E-mail: [email protected]

Many solid materials are subjected to structural changes, e.g. phase transformations within temperature change. These phase transformations are usually accompanied by a significant change in particular volume. The change in volume of a solid material is measured by the corresponding change in length of a specimen of the material. The experimental method which is based on measurement of volume/ length change during linear heating or cooling is dilatometry. Dilatometry is characterised by the linear thermal expansion coefficient which can be described as the relative length- change divided by the corresponding temperature interval. The basis of the thermal expansion of crystalline material is related with the function between interatomic forces in crystal lattice. This paper inves-tigates the effect of temperature on structural changes within austenitic stainless steel that underwent different heat treatment before the measurement.

Keywords: Austenitic stainless steel, Dilatometry, Temperature dependance, Thermal expansion coefficient

Acknowledgement

This work has been supported by Scientific Grant Agency of Ministry of Education of Slovak republic VEGA 1/0683/15 and project APVV SK-CZ-2013-0076.

References

RASHID, M.W.A., GAKIM, M., ROSLI, Z. M., AZAM, M. A. (2012). Formation of Cr23C6 during the sensiti-zation of AISI 304 stainless steel and its effect to pitting corrosion, International Journal of Electrochemical Science, ESG, s. 9465-9477.

LIMA, A. S., NASCIMENTO, A. M., ABREU, H. F. G., LIMA-NETO, P. (2005). Sensitization evaluation of the stainless steel AISI 304L, 316L, 321 and 347, Journal of Materials Science, volume 40, s. 139 - 144.

KHATAK, H.S., RAJ, B. (2002). Corrosion of austenitic stainless steels mechanism, mitigation and monitoring, Woodhead Publishing Limited, Abington Hall, England, s. 117- 130.

ČÍHAL, V. (1984). Mezikrystalová koroze ocelí a slitin, Praha: SNTL.

McGUIRE, M. F. (2008). Austenitic Stainless Steels, Stainless Steels for Design Engineers, ASM International), s. 69 – 90.

PORTER, W. D. (1993). Thermal expansion data on several iron- and nickel-aluminide alloys, Scripta Metallur-gica et Materialia, USA.

KANAGARAJ, S., PATTANAYAK, S. (2003). Measurement of the thermal expansion of metal and FRPs, Cry-ogenics, volume 43, issue 7, s. 399 – 424.

ŠVEC, M., MACAJOVÁ, E. (2015). Coefficient Thermal Expansion of Fe3Al and FeAl – type iron aluminides, Manufacturing Technology, volume 13, issue 3, Czech Republic, s. 399 - 404.

MATULA, M., et al. (2001). Intergranular corrosion of AISI 316L steel, Materials Characterization, volume 46, issues 2-3, s. 203 - 210.

CHRISTIEN, F., TELLING, M.T.F., KNIGHT, K.S. (2013). A comparison of dilatometry and in-situ neutron diffraction in tracking bulk phase transformations in a martensitic stainless steel, Materials Characterization, vo-lume 82, s. 50 – 57.

DONG-WOO, S., CHANG-SEOK, O., HEUNG, N. H., SUNG-JOON, K. (2007). Dilatometric Analysis of Phase Fraction during Austenite Decomposition into Banded Microstructure in Low-Carbon Steel, Metallurgical & Ma-terials Transactions, volume 38, issue 12, s. 2963 – 2973.

Paper number: M201647 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 67: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

indexed on: http://www.scopus.com 67

Numerical Analysis of T-Joint Welding with Different Welding Sequences

Marek Patek1, Miloš Mičian1, Augustín Sládek1, Dalibor Kadáš2 1University of Žilina, Faculty of Mechanical Engineering, Department of Technological Engineering, Univerzitná 8215/1, 010 26 Žilina, Slovakia. E-mail: [email protected], [email protected], [email protected] 2Schaeffler Slovensko, spol. s r.o., Dr. G. Schaefflera 1, 024 01 Kysucké Nové Mesto, Slovakia. E-mail: [email protected]

Numerical simulation of welding is an efficient tool for prediction of temperature distribution during welding process, residual stresses and final distortions of the welded parts. Importance of numerical analysis can be even higher during optimization of the large structures welding, in which preparing of the experimental samples is more expensive. Numerical analysis of T-joint welding for bridge construction parts in SYSWELD software is presented in the article. Welding simulation was prepared for two welding sequences with the same welding parameters required to ensure penetration of the weld metal. Obtained thermal analysis results were compared to measure-ment by thermocouples, and final distortions were compared with contactless measurement by TRITOP system. Lower distortion were obtained by simulation and experiments in welding at once by the two welding devices, while the second device followed the first one with technological delay of 25 seconds.

Keywords: Finite element modelling, Sequence of welding, Welding simulation, Welding distortions

Acknowledgement

This work has been supported by Scientific Grant Agency of Ministry of Education of the Slovak Republic, grant KEGA 034ŽU-4/2015. Authors acknowledge the grant agency for support.

References

ISLAM, M., BUIJK, A., RAIS-ROHANI, M., MOTOYAMA, K. (2015). Process parameter optimization of lap joint fillet weld based on FEM-RSM-GA integration technique. In: Advances in Engineering Software, Vol. 79, pp. 127-136.

ZRAK, A., KOŇÁR, R., JANKEJECH, P. (2015). Influence of Chemical Composition in Steel on Laser Cutting Stability. In: Manufacturing Technology, Vol. 15, No. 4, pp. 748-752.

MEŠKO, J., ZRAK, A., MULCZYK, K., TOFIL, S. (2014). Microstructure analysis of welded joints after laser welding. In: Manufacturing Technology, Vol. 14, No. 3, pp. 355-359.

JIANG, .C., WANG, B.Y., GONG, J.M., TU, S.T. (2011). Finite element analysis of the effect of welding heat input and layer number on residual stress in repair welds for a stainless steel clad plate. In: Materials and Design, Vol. 32, pp. 2851-2857.

AKBARI, D., SATTARI-FAR, I. (2009). Effect of the welding heat input on residual stresses in butt-welds of dissimilar pipe joints. In: International Journal of Pressure Vessels and Piping, Vol. 86, pp. 769–776.

HACKMAIR, C., WERNER, E., PONISCH, M. (2003). Application of welding simulation of chassis component within the development of manufacturing methods. In: Computational material science, Vol. 28, pp. 540-547.

PATEK, M. et al. (2015). Numerical analysis of distortions and residual stresses during automated T-joint welding. In: 43. International Conference WELDING 2015, pp. 45-55. SZS, Bratislava.

DURANTON, P. et al. (2004). 3D modelling of multipass welding of a 316L stainless steel pipe. In: Journal of Materials Processing Technology, Vol. 153-154, pp. 457-463.

MORAVEC, J., SLOVÁČEK, M. (2014). Application of Numerical Simulations at Welding Multilayer Welds from the Material X22CrMoV12-2. In: Advanced Materials Research, Vol. 1029, pp. 31-36.

SYSWELD Engineering Guide of Training and Toolbox. (2006). ESI Group, France.

NOVÁK, P., MEŠKO, J., ŽMINDÁK, M. (2013). Finite element implementation of multi-pass fillet weld with phase changes. In: Manufacturing Technology, Vol. 13, No. 1, pp. 79-85.

Paper number: M201648 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 68: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

68 indexed on: http://www.scopus.com

Influence of the Selected Technological Factors on the Elimination of Misruns

Radka Podprocká1, Jozef Malik2, Dana Bolibruchová1 1Department of Technological Engineering, Faculty of Mechanical Engineering, University of Zilina, Univerzitna 8215/1, 010 26 Žilina. Slovak Republic. E-mail: [email protected]. 2Metallurgy Faculty, Department of Metallurgy, Iron and Casting, Košice, Slovak Republic. E-mail: [email protected]

High pressure die-castin of aluminum alloys is a complicated process depending on a number of factors which relate between each other. That is why these factors must be regulated in the process of casting. This contribution focuses on the possibilities of eliminating the defects of short run. This defect is located on the edge of the flow opening of the casted body STIRNPLATTE 033. From the view of functionality this kind of defect is inadmissible. Experimental castings from the AlSi12CuNiMg alloy were casted by using different technological parameters where the work surface temperature of the mould and the profile layout of the piston path differed. Experimental measurements of the mechanical properties and RTG analysis were conducted. From the measured values it is possible to state that by infringing the optimal temperature in the mould and the incorrect setting of the piston path parameters has the biggest influence on the amount of misruns.

Keywords: cast, misruns, mould, temperature, pressure

Acknowledgement

This article was created according to grant project VEGA 1/0363/13. Authors are grateful to the grand commission for their assistance.

References

RAGAN, E. a kol. (2007). Liatie kovov pod tlakom, 392s., FVT Prešov, ISBN 978-80-8073-979-9

VALECKÝ, J. a kol. (1963). Lití kovu pod tlakem, 450 s., SNTL Praha.

LAUKLI, H. I. (2004). High pressure die casting of aluminium and magnesium alloys, Norwegian University of Science and Technology, (Ph.D. thesis).

VINARCIK, E. J. (2003). High Integrity Die Casting Processes, John Wiley and Sons, New York, NY, USA.

NOVÁ, I., NOVÁKOVÁ, I., MACHUTA, J. (2011). Aluminium alloys squeeze casting. In.: Slévárenství. ISSN 1213-2489, Vol. LIX, No. 9-10(2011), p. 304-308.

THIRUGNANAM, M. (2013). Modern high pressure die-casting processes for aluminium casting, Transactions of 61 st Indian Foundry Congress, pp. 1-7

EPERJEŠI, Ľ., MALIK, J., EPERJEŠI, Š., FECKO, D., (2013). Influence of returningmaterial on porosity of die-casting, In: Manufacturing Technology., Vol. 13, No.1, pp. 36-39

BRÜNA, M., KUCHARČÍK, SLÁDEK, A. (2013). Complex evaluation of porosity in A356 aluminium alloy using advanced porosity module, In: Manufacturing Technology, Vol. 13, No. 1, p. 26-30

MICHALCOVÁ, A., VOJTECH, D. (2012). Structure of rapidly sodified aluminium alloys. In: Manufacturing Technology. ISBN 1213-2489. Vol. 11, p. 166-169

PASTIRČÁK, R. (2014). Effect of low pressure application during solidification on microstructure of AlSi all-oys. In: Manufacturing Technology. ISSN 1213-2489. Vol. 14, No. 3 (2014), p. 397-402.

TILLOVÁ, E., CHALUPOVÁ, M., HURTALOVÁ, L., ĎURNIKOVÁ, E. (2011). Quality control of microstructure in recycled Al-Si cast alloys, In: Manufacturing Technology, Vol. 11, No. 11, p. 70-76

Paper number: M201649 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 69: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

indexed on: http://www.scopus.com 69

Effect of Nickel on the Properties of the AlSi10MgMn Alloy with Increased Iron Content

Ján Ščury, Dana Bolibruchová, Mária Žihalová Department of Technological Engineering, Faculty of Mechanical Engineering, University of Žilina. Univerzitná 8215/1, 010 26 Žilina. Slovak Republic. E-mail: [email protected], [email protected], [email protected]

The article deals with the issue of secondary aluminum alloys with higher iron content and the possibility of reducing the negative impact of the iron by adding certain elements (correctors of iron). This paper evaluated the impact of nickel on amount of gas and mechanical properties of AlSi10MgMn alloy with increased iron content. For evaluation purposes master alloy AlNi20 with concentrations of 0.1, 0.3 and 0.5 wt. % was used. The main conclusion is that the addition of nickel corrector appears to have positive influence on reducing the negative effects of iron. The next conclusion is that the addition of 0.5 wt. % AlNi20 according to the results in the paper seem to be most benefical.

Keywords: AlSi10MgMn alloy, mechanical properties, intermetallic phase based on iron content, nickel

Acknowledgement

This work was created in the framework of the grant projekt VEGA N˚1/0363/13. The authors acknowledge the grant agency for support.

References

BOLIBRUCHOVÁ, D., PASTIRČÁK, R. SLÁDEK, A. (2005). Zlievarenská metalurgia - neželezné kovy, pp. 88, EDIS, Žilina.

BOLIBRUCHOVÁ, D., TILLOVÁ, E. (2005). Zlievarenské zliatiny Al-Si, pp. 88, EDIS, Žilina.

MICHNA, Š. a kol. (2005). Encyklopedie hliníku, pp. 15, Adin, Prešov.

RICHTÁREK, L., BOLIBRUCHOVÁ, D. (2014). Effect of Selected Elements on the Microstructure of Secondary Al-Si Alloys. In: Manufacturing Technology, Vol. 14, No. 3, pp. 431-437. J. E. Purkyne University in Ústi nad Labem, Ústi nad Labem, ČR.

TILLOVÁ, E., CHALUPOVÁ, M. (2009). Štruktúrna analýza zliatin Al-Si, pp. 191, EDIS, Žilina.

PASTIRČÁK, R. (2014). Effect of Low Pressure Application during Solidification on Microstructure of Al-Si Alloys. In: Manufacturing Technology, Vol. 14, No. 3, pp. 397-400. J. E. Purkyne University in Ústi nad Labem, Ústi nad Labem, ČR.

DINNIS, C.M., TAYLOR, J.A., DAHLE, A.K. (2005). As-cast morphology of iron-intermetallics in Al-Si foundry alloys. In: Scripta Materialia 53, Vol. 53, pp. 955-958.

BOLIBRUCHOVÁ, D., ŽIHALOVÁ, M. (2013). Possibilities of iron elimination in aluminium alloys by vana-dium. In: Manufacturing Technology, Vol. 13, No. 3, pp. 289-296. J. E. Purkyne University in Ústi nad Labem, Ústi nad Labem, ČR.

TAYLOR, J. A. (2004). The effect of iron in Al-Si casting alloys. In: 35th Australian Foundry Institute National Conference, Adelaide, South Australia, pp. 148-157.

HURTALOVÁ, L., TILLOVÁ, E. (2013). Elimination of the negative effect of Fe-rich intermetallic phases in secondary (recycled) aluminium cast alloy. In: Manufacturing Technology, Vol. 13, No. 1, pp. 44-50. J. E. Purkyne University in Ústi nad Labem, Ústi nad Labem, ČR.

PETRÍK, J., HORVÁTH, M. (2011). The iron correctors in Al-Si alloys. In: Annals of Faculty Engineering Hune-doara – International Journal of Engineering, Vol. 9, No. 3, pp. 401-405. University Politehnica Timisoara, Ro-mania.

BOLIBRUCHOVÁ, D., RICHTÁREK, L. (2013). Effect of adding iron to the AlSi7Mg0.3 (EN AC 42 100, A356) alloy. In: Manufacturing Technology, Vol. 13, No. 3, pp. 276-281. J. E. Purkyne University in Ústi nad Labem, Ústi nad Labem, ČR.

Paper number: M201650 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 70: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

70 indexed on: http://www.scopus.com

Laser Hardening of the Functional Surfaces of Machine Tools

Karel Šramhauser, Sylvia Kuśmierczak Faculty of Production Technology and Management, University of J. E. Purkyně in Usti nad Labem, Czech Republic. E-mail: [email protected], [email protected], [email protected]

The purpose of using modern technology is to reduce costs, facilitate the work and simplify as far as the most comprehensive set of operations. One of many modern technological processes involved in the refining of materials are technologies of surface hardening using a laser beam. This method can harden precisely defined areas with minimal thermal influence of surrounding areas it is possible to achieve less residual stress and less distortion of components compared the volumetric hardening, it is also possible to use controlled robotic units and all for the absence of cooling, which proceeds spontaneously to the surrounding material itself and atmosphere. These advantages of laser surface hardening are used by companies for which the prospect of minor damage to the material, increase of the material durability, material stiffness ensuring etc. is initiation for the use of modern technology.

Keywords: laser hardening, cast iron, hardness, microstructure

References

PLUHAŘ, J., KORITTA, J. (1977). Strojírenské materiály. Vyd. 2., přeprac. Praha: SNTL, 562 s. Redakce báňské a strojírenské literatury. ISBN 04-212-77.

HRABĚ, P., CHOTĚBORSKÝ, R. (2005). Zvyšování životnosti abrazivně opotřebených strojních částí. MM Průmyslové spektrum. Praha: Vogel Publishing, 18. 5. roč. 2005, č. 5.

SCHUBERT, S. (2011). Kalení laserem urychluje výrobu součástí a nástrojů. MM Průmyslové spektrum [online]. Praha: Vogel Publishing, č. 7 [cit. 2015-05-03]. Dostupné z: http://www.mmspektrum.com/clanek/kaleni-la-serem-urychluje-vyrobu-soucasti-a-nastroju.html

Laserové kalení. VÚTS Liberec [online]. 2013 [cit. 2015-05-03]. Dostupné z: http://www.vuts.cz/laserove-ka-leni-2.html

ZATLOUKAL, P. (2007). Tepelné zpracování laserem. Welding.cz [online].[cit. 2015-05-03]. Dostupné z: http://www.welding.cz/laser/tepelne.htm

Schématické zobrazení laserového kalení. 2015. KULIČKOVÉ ŠROUBY KUŘIM, a.s. [online]. [cit. 2015-05-09]. Dostupné z: http://www.ks-kurim.cz/laserove-kaleni/

Legovaná nástrojová ocel pro práci za studena a na pružiny 102Cr6. ING. FÜRBACHER. M-Busch [online]. 2008, 3. 5. [cit. 2015-01-01]. Dostupné z: http://www.techportal.cz/33/legovana-nastrojova-ocel-pro-praci-za studena-a-na- pruziny-102cr6-uniqueidmRRWSbk196FNf8-jVUh4Eo VtBWjC68CLJHLE75AcqcMO6VlftQMFg/?sekce=34

ZETEK, M., ČESÁKOVÁ, I., SAMCOVÁ, M., SOUKUP, O. (2011). Obrábění tepelně zpracovaných ploch la-serem. Strojírenská technologie. XVI(5): 49-53. ISSN 1211-4162).

LUCEFIN GROUP. Technical card. Gruppo Lucefin [online]. 2011 [cit. 2015-03-31]. Dostupné z: http://www.lucefin.com/wp-content/files_mf/1.2067102cr6ing.pdf

Materiálový list jakosti Unibar 250: Kontinuálně litý litinový profil. UCB Technometal [online]. 2013, 1. 7. [cit. 2015-01-01]. Dostupné z: http://www.ucbtechnometal.cz/storage/get/143-unibar-250-cz.pdf

KŘÍŽ, A. (2004). METAL 2004: 13. mezinárodní konference metalurgie a materiálů : sborník přednášek = 13th international metallurgical. Vyd. 1. Ostrava: Tanger, 91 s. ISBN 80-859-8895-X.

G 99 – 034. Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus. 2014. West Conshohocken Spojené státy Americké): ASTM International.

Paper number: M201651 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 71: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

indexed on: http://www.scopus.com 71

Influence of Manufacturing Parameters on Final Quality of Lapped Parts

Dana Stancekova1, Mario Drbul1, Miroslav Janota1, Natasa Naprstkova2, Albert Kulla1, Jozef Mrazik1 1University of Zilina, Faculty of Mechanical Engineering, Univerzitna 1, 010 26, Zilina, Slovak Republic, E-mail: [email protected], [email protected], [email protected], [email protected], 2J.E.Purkyně Univerzity, Faculty of Production Technology and Management, Ústí nad Labem, CZ, E-mail: [email protected]

For a variety of engineering technologies, machining has a specific position because it is a technology that meets the highest requirements on accuracy and quality of products and involves processes that are final, i.e. the last in the production processes of parts machining. Therefore, these processes largely affects the final shape and dimen-sional requirements of high quality components and hence their performance characteristics, particularly the ac-curacy and durability. Such production methods designed to achieve high dimensional and shape accuracy is grinding and other finishing methods (superfinishing, polishing, lapping) involved in a high percentage of the pro-duction of components whose quality can not be achieved by other technologies, eventually very difficultly. Lap-ping and about influence of modification of production parameters on quality of lapped surface after lapping. In the experimental part were taken measurement of roughness parameter Rt. From measured values was evaluated which production parameters are useful and economic preferable by demanded reduction of production time and by keeping the roughness parameter at Rt = 2 μm.

Keywords: lapping, quality, machining, grinding

Acknowledgement

The article was funded by the grant project VEGA 1/0773/12 - “Implementation of technical ceramic material research to increase the innovation of hybrid products”.

References

MARINESCU, I. D., UHLMAN, E., DOI, T.K. (2006) Handbook of lapping and polishing. CRC Press.

DUPLÁK, J., ZAJAC, J., HATALA, M., MITAĽ, D., KORMOŠ, M. (2014). Study of surface quality after turning of steel AISI 304 . In. Manufacturing Technology, Vol. 14, Issue 4, pp. 527 - 532.

KRÓLCZYK G., GAJEK M., LEGUTKO S. (2013). Effect of the cutting parameters impact onto tool life in duplex stainless steel turning process, Tehnički Vjesnik - Technical Gazette, 20, 4, pp. 587-592.

KROLCZYK G.M., NIESŁONY P., LEGUTKO S. (2015). Determination of tool life and research wear during duplex stainless steel turning, Archives of Civil and Mechanical Engineering, 15, 2, pp. 347 – 354.

KRÓLCZYK G., LEGUTKO S., RAOS P.: Cutting wedge wear examination during turning of duplex stainless steel, Tehnički Vjesnik - Technical Gazette

KOURIL, K., CEP, R., JANASEK, A., KRIZ, A., STANCEKOVA, D. (2014). Surface integrity at reaming opera-tion by MT3 head. In. Manufacturing Technology, Vol. 14, Issue 2, pp. 193 – 199.

MRAZOVA, M., STANCEKOVA, D., SEMCER, J. (2011) Comparasion of machinability of biocompatible ma-terials used in medicine for dental implants. In. DAAAM, pp. 1115-1116.

RUDAWSKA, A., KUCZMASZEWSKI, J. (2006). Surface free energy of zinc coating after finishing treatment. In. Materials Science- Poland, Vol. 24, Issue 4, pp. 975-981.

LIPA, Z. – JANÁČ, A. (2000). Dokončovacie spôsoby obrábania. Bratislava: STU.

PETRŮ, J., ZLÁMAL, T., ČEP, R., PAGÁČ, M., GREPL, M. (2013). Influence of strengthening effect on ma-chinability of the welded inconel 625 and of the wrought Inconel 625. In. IMETI 2013 - 6th International Multi-Conference on Engineering and Technological Innovation, Proceedings, pp.155 – 159.

BAS, G., STOEV, L. DURAKBASA, N.M. (2015). Assessment o. The production quality in machining by inte-grating a system of high precision measurement. In. Energy Procedia, Vol. 100, Issue C, pp. 1616-1624.

http://www.tuzvo.sk/files/FEVT/katedry_fevt/kvtm/dso_obr.pdf

MÁDL, J. a kol.. (2000) Technologie obrábění 3.díl, Praha: ČVUT.

STÄHLI, A.W. (2001). Die Läpp-Technik, Firmendruckschrift der A.W. Stähli AG. Schweiz Peiterlen.

Page 72: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

72 indexed on: http://www.scopus.com

NÁPRSTKOVÁ, N., CAIS, J., STANCEKOVÁ, D. : Influence of Alsi7Mg0.3 alloy modification by Sb on the tool wear. In. Manufacturing Technology, 1/2014, pp. 75 – 79.

CUBONOVA, N., KURIC, I. (2014). Data structures implementation of the protocol STEP-NC at CNC machines programming. In. Komunikacie, Vol. 16, Issue 3A, pp 176-183.

STANCEKOVA, D., KURNAVA, T., SAJGALIK, M., NAPRSTKOVA, N., STRUHARNANSKY, J., ŠČOTKA, P. (2014). Identification of machinability of ceramic materials by turning. Manufacturing Technology, Volume 14, Issue 1, 2014, pp. 91- 97.

http://www.harrisons-engineering.co.uk/wp-content/gallery/lapping-machine/lapping-machine.jpg

JANÁČ, A. a kol. (2004). Technológia obrábania, Bratislava: STU.

CZÁN, A., MARTIKÁŇ, A., HOLUBJÁK, J., STRUHÁRŇANSKY, J. (2014). Identification of stress and structure properties in surface and subsurface layers of nuclea reactor austenitic steel. Manufacturing Technology. Volume 14, Issue 3, 2014, pp. 276 - 281.

http://www.polishing-technology.com/en/product/composite-lapping-plates-new-lamr-mm.html Paper number: M201652 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 73: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

indexed on: http://www.scopus.com 73

Research of Chemical Pre-treatment Created by Sol-gel Process on the Polished Surface of Aluminium Substrate

Jaroslava Svobodova, Pavel Kraus, Jaromir Cais, Radek Lattner Faculty of Production Technology and Management, J. E. Purkyne University in Usti nad Labem. Pasteurova 7, 400 96 Usti nad Labem. Czech Republic. E-mail: [email protected], [email protected], [email protected], [email protected]

This paper reports the preparation and characterization of thin transparent nanolayers with phase composition ZrF 4 and different modification of SiO2 with special focus on the affecting the surface roughness of the material and the way of exclusion of the thin nanolayer on the surface of the polished aluminium material. The thin nanola-yer was prepared by the sol-gel method. The final treatment based on PTFE was applied on the surface of some samples. This treatment is suitable for the increasing of the wear resistance. The films were characterized with help of SEM microscopy and EDS analysis. The surface roughness was measured with classical surface roughness tester. There was published results on this theme but not on the polished surface of the aluminium material. The results from the experiment shows on the problems with application of these nanolayers because there were found a cracks on the surface of the material and deformations of the layer after application of two nanoproduts and PTFE final layer. The surface layer formation is discussed.

Keywords: sol-gel technology, nanolayers, aluminium alloys, surface roughness, SEM

References

BALGUDE, D., SABNIS, A., SOL-GEL SCI TECHNOL. (2012). Sol-gel derived hybrid coatings as and envi-ronment friendly surface treatment for corrosion protection of metals and their alloys, Springer, Vol. 64, pp. 124-134, DOI 10.1007/S10971-012-2838-z.

SVOBODOVA, J. (2014). SEM and EDS Analysis Used in Evaluation of Chemical Pre-treatment Based on Na-notechnology. Manufacturing Technology, Journal for Science, Research and Production, Vol. 14, No. 3, ISSN 1213-2489.

CHOU, T. P., CHANDRASEKARAN, C., LIMMER, S., NGUYEN, C., CAO, G. Z. (2002). Organic-inorganic sol-gel coating for corrosion protection of stainless steel, Journal of Materials Science Letters, Vol. 21, p. 251-255, Print ISSN: 0261-8028; Online ISSN: 1573-4811.

NOVOTNA, P., KRYSA, J., MAIXNER, J., KLUSON, P., NOVAK, P. (2010). Photocatalytic activity of sol-gel TiO2 thin films deposited on soda lime glass and soda lime glass precoated with a SiO2 layer, Surface & Coatings Technology, Vol. 204, p. 2570-2575, ISSN 0257-897, 2 DOI:10.1016/j.surfcoat.2010.01.043.

SVOBODOVA, J. (2015). Evaluation of New Type of Chemical Pre-treatment Applied on Low-carbon Steel Sub-strate Using SEM and EDS Analysis, Engineering for Rural Development, 14th International Scientific Confe-rence, ISSN 1691-5976 (dostupné na http://www.tf.llu.lv/conference/proceedings2015).

VOEVODIN, A. A., SHTANSKY, D. V., LEVASHOV, E., A., MOORE, J. J. (2004). Nanostructured Thin Films and Nanodispersion Strengthened Coatings, Springer - Nato Science Series II, Vol. 155, ISBN 1-4020-2221-2.

CAVALEIRO, A., HOSSON, J. T. (2006). Nanostructured Coatings - Nanostructure Science and Technology, Springer, p. 648, ISBN 0-387-25642-3.

SVOBODOVÁ, J., KRAUS, P. (2015). Hodnocení drsnosti a morfologie povrchu hliníkového plechu po aplikaci chemických předúprav na bázi nanotechnologií, Strojírenská technologie, ročník XX, číslo 2, s. 103-109, ISSN 1211-4162.

Paper number: M201653 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 74: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

74 indexed on: http://www.scopus.com

The Use of BOST Method as a Tool to Standardize Tasks in Hot Dip Galvanizing Process Im-provement

Piotr Sygut, Dorota Klimecka-Tatar, Manuela Ingaldi, Stanisław Borkowski Institute of Production Engineering, Faculty of Management, Czestochowa University of Technology. ul. Armii Krajowej 19 B 42-200 Czestochova, Poland. E-mail: [email protected], [email protected], [email protected], [email protected],

Standardization is the basis for improvement in the company. This allows for repeatability performance of activ-ities and thus the stability of the process. This chapter presents the standardization as part of Toyota's production system. Standardization is also one of the elements examined using the method BOST, because it was used for hot dip galvanizing process improvement. The research was carried out in one of the national companies producing steel products and providing services in the field of modern anti-corrosion protection, in particular hot-dip galva-nizing.

Keywords: hot-dip galvanizing, BOST method, improvement of production processes

References

BORKOWSKI, S. (2012). Toyotaryzm. Wyniki badań BOST. Wydawnictwo Menedżerskie PTM. Warszawa.

BORKOWSKI, S., KONSTANCIAK, M. (2010). Toyotarity. Standardization in enterprises. Wyd. Makovetsky, Dnipropetrovsk.

BORKOWSKI, S., ULEWICZ, R. (2008). Zarządzania produkcją, systemy produkcyjne. Wyd. Humanitas, Sos-nowiec, 2008.

BORKOWSKI, S., INGALDI. M. (2014). Pojęcie standaryzacji i jej znaczenie. Toyotaryzm. Ujęcie standaryzacji

w metodzie BOST. Monografia naukowa. Red. nauk. Stanisław Borkowski, Manuela Ingaldi. Oficyna Wydawnicza Stowarzyszenia Menedżerów Jakości i Produkcji, Częstochowa p. 9-20.

BORKOWSKI, S., SZKLARZYK, P., KONP, K. (2014). Transformation methods of production organization from the far east to the metal industry in Poland, Manufacturing Technology, journal for science, research and production. Volume 14, Issue 2, Pages 125-130.

KLIMECKA-TATAR, D. (2014). The powdered magnets technology improvement by biencapsulation method and its effect on mechanical properties. Manufacturing Technology, journal for science, research and production. March, Volume 14, Issue 1, Pages 30-36

LIKER, J. K. (2005). Droga Toyoty: 14 zasad zarządzania wiodącej firmy produkcyjnej świata.Wyd. MT Biznes, Warszawa.

SYGUT, P., KLIMECKA-TATAR, D., SZKLARZYK, P. (2013). Round Bars Production Process Improvement

Including the Toyota Management Principles. Toyotarity. Evoluation and Processes'/Products' Improvement. Monograph. Scientific Editors Stanisław Borkowski, Manuela Ingaldi. p. 95-105.

SYGUT, P., LABER, K., BORKOWSKI, S. (2012). Investigation of the non-uniform temperature distribution on the metallic charge length during round bars rolling process, Manufacturing Technology, journal for science, re-

search and production. December. Vol. 12, No 13, s. 260-263. Paper number: M201654 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 75: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

indexed on: http://www.scopus.com 75

Improving the Quality of Castings Using Thermovision

Miroslava Ťavodová, Daniela Kalincová Faculty of Environmental and Manufacturing Technology, Technical University in Zvolen, Študentská 26, 960 53. Slovak republic. E-mail: [email protected], [email protected]

The paper gives practical using of thermovision for quality casts assessment, which are casting to permanent moulds. Thermovision allows monitoring temperature of moulds and their cooling process by refrigerant medium in foundry engineering. It helps when the problems with elimination internal defects exist. Tests in experiment were implemented by DAS scan and local surface modification of water cores of cylinder heads. Cylinder heads are produced by ROTACAST foundry technology. Results of experiment showed that in location of defects is no directionally solidified. It is necessary to modify tools to defect eliminate. Tests consist of four parts. Each test has its contribution to improve the situation. The last test, when were implemented the heating cartridges was most effective and the problem was eliminated.

Keywords: Thermovizion, Cast, Quality, DAS Scan, Defect

References

BOLIBRUCHOVÁ, D, TILLOVÁ, E. (2005). Zlievárenské zliatiny AlSi, Žilinská univerzita v Žiline 2005, ISBN 80-8070-485-6.

KALINCOVÁ, D., ŤAVODOVÁ, M., ČIERNA, H. (2015). Root cause analysis for identifying defects in the process of cylinder head castings from aluminium alloy In. Manufacturing Technology. - Vol. 15, No. 4 ISSN 1213-2489, pp. 546-553.

PASTIRČÁK, R. BOLIBRUCHOVÁ, D. SLÁDEK A. (2009). Teória zlievania, Žilinská univerzita v Žiline, 2009, ISBN 978-80-89401-04-8, 155 p.

JÁNOŠ, V. (2016). Sledovanie kvality hliníkových odliatkov pri odlievaní do trvalých foriem pomocou termogra-fie: bakalárska práca. Zvolen: Technická univerzita vo Zvolene. Fakulta environmentálnej a výrobnej techniky. 2016. 42 p.

MICHNA, Š., NOVÁ, I. (2008). Technologie a zpracování kovových materiálů. Adin, s.r.o. Prešov 2008, ISBN 978-80-89244-38-6, 326 p.

TILLOVÁ, E., CHALUPOVÁ, M., HURTALOVÁ, L., ĎURINÍKOVÁ, E. (2011). Quality control of microstructure in recycled Al-Si cast alloys. In. Manufacturing Technology, Vol. 11, No. 11, ISSN 1213–2489, pp. 70-76.

BOLIBRUCHOVÁ, D., RICHTÁRECH, L. (2013). Study of the gas content in aluminum alloys, In: Manufactu-ring technology, Vol. 3, No. 1, ISSN 1213–2489, pp.14-20.

CZAN, A., STANČEKOVA, D., SVITANA, M., JURKY, M. (2011). Termovizni diagnostika obraběcich strojů. Strojírenská technologie, No.1, pp. 3-9, ISSN 1211-4162.

NÁPRSTKOVÁ, N., MICHNA, Š., LUKAČ, I. (2011). Aplikace fraktografie při řešeni problematiky kvality odlitků. Strojírenská technologie, No.4, pp. 62-66, ISSN 1211-4162

MULLER, M., PAVELKA, R. (2011). Testovani seriovych a opravarenskych natěrů aplikovanych v automobilo-vem průmyslu. Strojirenska technologie červen 2012, ročník XVII., číslo 3 ISSN 1211-4162

Paper number: M201655 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 76: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

76 indexed on: http://www.scopus.com

The Research of Options for the Innovation Heat Treatment of the Tools for Coinage in Or-der to Increase their Lifetime

Miroslava Ťavodová1, Daniela Kalincová1, Rudolf Kaštan2 1Faculty of Environmental and Manufacturing Technology, Technical University in Zvolen, Študentská 26, 960 53. Slo-vak republic. E-mail: [email protected], [email protected]. 2Mincovňa Kremnica, State Enterprise. Slovak Republic. E-mail: [email protected]

This paper describes research in technology of the heat treatment for tool steel Böhler K455 designed for cold work. The aim of the research was based on operational experiments to draft procedures for heat treatment of the tools in a vacuum hardening furnace. Testing of two alternative methods and comparison of the state of microstructure and the mechanical properties with the current state of these indicators of dies quality will highlight the importance of introducing innovations to achieve higher lifetime of dies and the justification for the purchase of new technological equipment.

Keywords: coining dies, heat treatment, innovation, quality of properties, lifetime

References

ŠUGÁR, P., ŠUGÁROVÁ, J. (2009). Výrobné technológie: zlievanie, zváranie, tvárnenie. Banská Bystrica DALI-BB, 2009, 291 s. ISBN 978-80-89090-587.

ZDRAVECKÁ, E., FECSU, Š. (2010). Zvyšovanie životnosti nástrojov pri tvárnení za studena. [online]. 2012. [cit. 2012-11-16] Dostupné na internete: < http://www.tribotechnika.sk/tribotechnika-22010/zvysovanie-zivot-nosti-nastrojov-pri-tvarneni-za-studena.html>.

FREMUNT, P., KREJČÍK, J., PODRÁBSKÝ, T., (1994). Nástrojové oceli, Dum techniky Brno 1994, 229 s.,

BÖHLER. 2013. K 455 - prospekt firmy. [online]. 2013. [cit. 2013.05.16] Dostupné na internete: http://www.bo-hler.sk/slovak/files/downloads/023_BOHLER_K455.pdf

VOJTĚCH, D., (2010). Materiály a jejich mezní stavy, Vysoká škola chemicko-technologická v Prahe, 212 s., ISBN 978-800-7080-741-5

VALÁŠEK, P. (2015). Influence of Surface Treatment of Steel Adherends on Shear Strength of Filled Resins. Manufacturing Technology, Vol. 15, No. 3, ISSN 1213–248

HRUBÝ, J., RENTKA, J., SCHINDLEROVÁ, V., KREJČÍ, L., ŠEVČÍKOVÁ, X. (2013). Possibilities of pre-diction of service life of forming tools. Manufacturing Technology, Vol. 13, No. 2, pp. 178-181, ISSN 1213-2489.

HRUBÝ, J., SCHINDLEROVÁ, V., RENTKA, J. (2015). Degradation Processes in the Contact Layers of Forming Tools. Manufacturing Technology, Vol. 15, No.5, pp. 836-842, ISSN 1213–2489 26.

Paper number: M201656 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 77: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

indexed on: http://www.scopus.com 77

A Measuring Device for the Checking of 3D Indicators

Šárka Tichá1, Ondřej Srba2, Jan Vavřina2 1Department of Machining, Assembly and Engineering Metrology, Faculty of Engineering, VŠB-Technical University of Ostrava. 17. listopadu 15/2172, 70833 Ostrava-Poruba. Czech Republic. E-mail:[email protected] 2UNIMETRA Company Ltd., Těšínská 773/396, 71600 Ostrava-Radvanice, Czech Republic. E-mail: [email protected], [email protected]

This paper was based on the cooperation the Department of Machining, Assembly and Engineering Metrology with company accredited by Czech Institute for Accreditation. It deals with issues of calibration 3D indicators. Generally, the calibration of non-specified working gauges integral part of every company, which uses such gauges. Checking/calibration of measuring instruments is important for ensuring the uniformity and accuracy of meas-urements to ensure continuity of measurement results. The paper deals with streamlining the process of calibration of indicators 3D design and practical verification of appropriate gauge for the calibration. The target of innovation is to eliminate the errors and shortcomings of the current solutions. In the conclusion are the results of calibration by help current and new solution checking device and their comparison.

Keywords: 3D indicator, calibration, checking device, calibration procedure

Acknowledgement

This work was supported by the European Regional Development Fund in the IT4 Innovations Centre of Excellence project CZ.1.05/1.1.00/02.0070 and by Education for Competitiveness Operational Programme financed by Structural Founds of Europe Union in project Integrita CZ.1.07/2.3.00/20.0037 and by Student Grant Competitions SP2015/116 and SP2015/129 financed by the Ministry of Education, Youth and Sports and Faculty of Mechanical Engineering VŠB-Technical University of Ostrava.

References

SRBA, O. (2013). Calibration of the 3D Taster. Thesis. Ostrava: VŠB-TU Ostrava, 100 p.

Document EA4/02. (2013). Evaluation of the uncertainty of measurement in calibration. Prague: Czech Standards Institute, 70 p.

ČSN EN ISO 10012-1. (2003). Quality assurance requirements for measuring equipment - Part 1: Metrological confirmation system for measuring equipment. Prague: Czech Standards Institute, 27 p.

ČSN EN ISO 9493. (2011). Geometrical product specifications (GPS) – Dimensional measuring equipment: Dial test indicators (lever type) – Design and metrological characteristics. Prague: The Office for Standards, Metrology and State Testing, 27 p.

ČSN EN ISO 463. (2006). Geometrical product specifications (GPS) - Dimensional measuring equipment – De-sign and metrological characteristics of mechanical dial gauges. Prague: Czech Standards Institute, 18 p.

JANOŠ, M., MRKVICA, I. (2010). Design of Jig for Turbo-blower Support Machining. Návrh přípravku pro obrábění podpěr turbodmychadel. Strojírenská technologie. Volume XIV. Special issue. Ústí nad Labem: UJEP Ústí nad Labem, pp. 96-99. ISSN 1211-4162

KOBAYOSHI, M., CHUI, Q. S. H. (2005). The positioning influence of dial gauges on their calibration re-sults. Measurement Journal of the International Measurement Confederation. Volume 38. Issue 1. São Paulo: Elsevier Ltd., pp. 67-76. ISSN 263-2241

MARTÍN, M. J., FLORES, I., SEBASTIÁN, M. Á. (2009). Analysis of standards and specific documentation about equipment of dimensional metrology. 3rd Manufacturing Engineering Society International Conference. MESIC 2009. Alcoy-Spain: June 2009, pp. 213-221. ISSN 0094243X. ISBN 978-073540722-0

Paper number: M201657 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 78: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

78 indexed on: http://www.scopus.com

The Study of Deformation Behaviour of DC06 Deep Drawing Steel

Michal Tregler1, Pavel Kejzlar2, Tomáš Pilvousek3, Zuzana Andršová2, Lukáš Voleský2 1Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentska 1402/2, 461 17 Liberec, Czech Republic. Email: [email protected] 2Department of the Preparation and Analysis of Nanostructures; Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentska 1402/2, 461 17 Liberec, Czech Republic. Email: [email protected], [email protected], [email protected] 3Škoda Auto, VFS1, V. Klementa 869, 293 60 Mladá Boleslav, Czech Republic. Email: [email protected]

The occurrence of any cracks or defects in car body parts processed by deep drawing technology is not allowed by high quality standards. This kind of defect is considered as the most dangerous for the process quality and stability because it cannot be easily detected during the manufacturing in the steel plant and also in final inspection after pressing, that’s why the occurrence of these defects has always to be studied in detail. For the prevention of defects, it is necessary to study the deformation behaviour of the material in the immediate vicinity the crack tip in detail. For the study the controlled scratched samples were tensile deformed and then were studied using UHR-SEM equipped witd EBSD detector. The EBSD technique allowed detailed inspection of the effect of deformation on the grain structure as changes in grain orientation or local crystal lattice missorientation and thus directly observe and evaluate both, elastic and plastic strain. Obtained results showed that the scratch does not affect deformability of the DC06 deep drawing sheet negatively due to too large tip radius with respect to low sheet thickness.

Keywords: EBSD, Deformation, Stress, Strain, Structure

Acknowledgement

Authors wish to thank to the institutional support of Technical University of Liberec, Faculty of Mechanical Engine-ering, Department of Materials and to the project LO1201 “Národní program udržitelnosti I” and to the Škoda Auto a.s. that participated on the presented research.

References

ANDERSON, T. (2005). Fracture mechanics: fundamentals and applications. 3rd ed. Boca Raton, FL: Taylor & Francis

VELES, P. (1985). Mechanické vlastnosti a skúšanie kovov: celoštátna vysokoškolská učebnica pre hutnícke a strojnícke fakulty vysokých škôl. 1. vyd. Bratislava: Alfa

BROBERG, K. B. (1999). Cracks and Fracture. London: Academic Press

WRIGHT, S. I., NOWELL, M. M., FIELD, D. P. (2011). A Review of Strain Analysis Using Electron Backscatter Diffraction. In: Microscopy and Microanalysis, Vol. 17, No. 03, pp. 316-329

Characterizing local strain variations around crack tips using EBSD mapping. Application note. Available online: http://www.oxford-instruments.com/getmedia/2cf71e40-9a0d-4f49-9113-69475a4c84fb/Characterising-local-strain-variations-around-crack-tips-using-EBSD-mapping

BREWER, L. N. et al. (2002). Misorientation Mapping for Visualization of Plastic Strain via Electron Back-Scat-tered Diffraction. In: Microscopy and Microanalysis, Vol. 8, No. 02, pp. 684-685.

WILKINSON, A. J., Britton, T. B. (2012). Strains, planes, and EBSD in materials science. In: Materials Today, Vol. 15, No. 9, pp. 366-376

WILKINSON, A.J., DINGLEY, D.J. (1991). Quantitative deformation studies using electron back scatter pat-terns. In: Acta Metallurgica et Materialia, Vol. 39, No. 12, pp. 3047-3055

KAMAYA, M. (2009). Measurement of local plastic strain distribution of stainless steel by electron backscatter diffraction. In: Materials Characterization, Vol. 60, No. 2, pp. 125-132

KEJZLAR, P., ANDRŠOVÁ, Z., ŠVEC, M. (2015). Structure of Al-targets Used for PVD Coating in Jewellery. In: Manufacturing technology, Vol. 15, No. 4, pp. 553 – 557.

KEJZLAR, P., PILVOUSEK, T. (2015). DC 06 ZE Deep Drawing Sheet Crack Analysis. Will be published in: Scientific.net

Page 79: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

indexed on: http://www.scopus.com 79

EN 10 152 Electrolytically zinc coated cold rolled steel flat products for cold forming - Technical delivery con-ditions. Škoda Auto a.s. - internal factory documents.

Kovové materiály – zkoušení tahem ČSN EN ISO 6892-1. (2010). Praha : Úřad pro technickou normalizaci, me-trologii a státní zkušebnictví.

LEJČEK, P., NOVÁK, P. (2008). Fyzika kovů. Praha. Available online: http://old.vscht.cz/met/stranky/vyuka/stu-dijni_materialy/fyzika_kovu/fyzika_kovu.pdf

Paper number: M201658 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 80: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

80 indexed on: http://www.scopus.com

Research of the Chemical Heterogeneity during Crystallization for AlCu4MgMn Alloy and the Possibility of its Elimination.

Viktorie Weiss The Institute of Technology and Business in České Budějovice, Okružní 517/10, 370 01 České Budějovice. E-mail: [email protected]

Crystal segregation is taken as chemical heterogeneity under the micro-scale and it develops during the crystalli-zation process. Alloy crystallization does not take place under a particular temperature, as it happens in the case of pure metals, but it runs under a certain temperature interval. When cooling the melt, various places start deve-lopment among dendritic cells which differ in their chemical composition. Crystal segregation can be generally defined as chemical heterogeneity developing during the alloy crystallization process, and it can be either en-riched or in contrast depleted with alloying elements and impurities, which are unevenly segregating over the en-tire dendritic surface. In the central part of the dendritic cells there is an alloy, which is depleted with alloying elements, while the edge areas of dendritic cells and interdendrite space present higher concentration of alloying elements. This concentration shows a hyperbolic development; when the central part of dendritic cells area has the lowest alloying elements concentration, while the edge part of a dendritic tree and the interdendrite space show the ma-ximum concentration. The distance between two main axes of dendritic cells is affected by the temperature interval running between the liquid and solid phase of the chosen alloy, as well as by melt cooling rate and temperature gradient during the solidification phase. The shorter distance between the axes of dendritic cells appears under faster cooling, which allows very fast heat dissipation and creates very fine structure of the resulting alloy. The longer distance between the main axes of dendritic cells stimulates greater segregation appearing under slow melt cooling. Crystal segregation formation of aluminum alloys enriched with alloying elements and impurities cannot be pre-vented, only its extension can be regulated and it can be suppressed with the correct choice of heat treatment parameters. To suppress the crystal segregation the casts should undergo heat treatment which is called homoge-nization annealing.

Keywords: homogenization annealing, AlCu4MgMn alloy, crystal segregation, EDX analysis, image analysis

References

MICHNA, Š., LUKÁČ, I. et al. (2007). Aluminium materials and technologies from A to Z, Printed by Adin, s.r.o., Prešov. ISBN 978-80-8244-18-8.

MICHNA, Š., NOVÁ, I. (2008). Technologie a zpracování kovových materiálů, Adin, s.r.o., Prešo, ISBN 978-80-89244-38-6.

VAJSOVÁ, V. (2011). Optimization of homogenizing annealing for Al-Zn5.5-Mg2.5-Cu1.5 alloy, Metallurgist, Volume 54, Issue 9, ISSN 0026 – 0894.

VAJSOVÁ, V., MICHNA, Š. (2010). Optimization of AlZn5.5Mg2.5Cu1.5, Alloy Homogenizing Annealing, Me-tallofizika i noveishie tekhnologii, Volume 32, No. 7, ISSN 1024 – 1809.

WEISS, V., STŘIHAVKOVÁ, E. (2012). Influence of the homogenization annealing on microstructure and me-chanical properties of AlZn5,5Mg2,5Cu1,5 alloy, Manufacturing Technology, Vol. 12, No, 13, ISSN 1213 -2489.

STŘIHAVKOVA, E., WEISS, V. (2012) The Identification of the struktures new type Al-Si-Mg Ca alloys with different Ca kontent using of the color metallography, Manufacturing Technology, Vol. 12, No, 13, ISSN 1213 -2489.

WEISS, V. (2012). Hodnoceni vlivu teploty a doby homogenizačního žíhaní slitiny AlCu4MgMn z hlediska mi-krostruktury, obrazové analýzy a metody EDX, Strojírenská technologie, ročník XVII, ISSN 1211 – 4162.

WEISS, V., STŘIHAVKOVÁ, E. (2011). Optimalizace homogenizačního žíhaní slitiny AlCu4MgMn, Strojíren-ská technologie, ročník XVI, ISSN 1211 – 4162.

WEISS, V. (2012). Vliv slévárenských forem na kvalitu povrchu a strukturu slitiny AlZn5,5Mg2,5Cu1,5, Strojí-renská technologie, ročník XVII, č. 1 a 2, 2012, ISSN 1211 – 4162.

WEISS, V. (2012). Hodnoceni vlivu teploty a doby homogenizačního žíhaní slitiny AlCu4MgMn z hlediska mi-krostruktury, obrazové analýzy a metody EDX, Strojírenská technologie, ročník XVII, ISSN 1211 – 4162.

Page 81: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

indexed on: http://www.scopus.com 81

MICHNA, Š., NÁPRSTKOVÁ, N. (2012). The use of fractography in the analysis of cracking after formed work-piece blank mechanical machining from the AlCuSnBi alloy, Manufacturing Technology, Vol.12, No 13. ISSN 1213 -2489.

NOVÁK, M. (2013). Differences at the Surface Roughness by the ELID and Grinding Technology. In Manu-facturing Technology, roč. 13, No. 2, UJEP: Ústí n. Labem. 210 – 215 pp. ISSN 1213-2489.

Paper number: M201659 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 82: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

82 indexed on: http://www.scopus.com

Effect of Shot Peening on the Fatigue Properties of 40NiCrMo7 steel

Denisa Závodská1, Mario Guagliano2, Otakar Bokůvka3, Libor Trško4

1University of Žilina, Faculty of Mechanical Engineering, Univerzitná 8215/1, 010 26 Žilina, Slovakia. E-mail: [email protected] 2Politecnico di Milano, Department of Mechanics, Via La Masa 1, 201 58 Milano, Italy. E-mail: [email protected] 3University of Žilina, Faculty of Mechanical Engineering and Research Centre of University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia. E-mail: [email protected] 4University of Žilina, Research Centre of University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia. E-mail: li-bor.trš[email protected]

Fatigue properties of 40NiCrMo7 low alloy steel in the high cycle region were tested by rotating bending fatigue loading (f = 40 Hz, T = 20�5�, R = -1) on notched specimens after application of shot peening surface treatment (cast steel balls with diameter of 0.43 mm, Almen intensity 12A, coverage 100 % and consequently the surface was re-peened with glass beads to decrease the final roughness). The compressive residual stresses created by shot peening increased the time necessary for fatigue crack initiation what in the final case increased fatigue properties. The fatigue limit σc was higher for almost 28 % in the case of notched shot peened specimens.

Keywords:40NiCrMo7 low alloy steel, fatigue lifetime, shot peening, residual stresses

Acknowledgements

The research was supported by the Slovak Research and Development Agency under the contract grant No. 1/0123/15 (45 %), project APVV-14-096 (45%) and project Research Centre of the University of Žilina, ITMS 26220220183 (10 %).

References

ARMIGLIATO, A. (2014). Connecting Innovations Wielton, pp. 25 – 32. Warsaw.

Low alloy steel 40NiCrMo7, on-line http://www.steelforgepieces.com/Alloy-Steel/40NICRMO7.html.

BAGHERIFARD, S., GHELICHI R., GUAGLIANO, M. (2012). On the shot peening surface coverage and its assessment by means of finite element simulation: A critical review and some original developments, pp. 186-194.

NOVÝ, F., BOKŮVKA, O., ŠKORÍK, V. (1991). Influence of machinning and glass bead peening on fatigue resistance of AW-6082-T6 alluminium alloy. In: Chemické Listy, Vol. 105, Issue 16, pp. 494 - 496.

TRŠKO, L., BOKŮVKA, O., NOVÝ, F., GUAGLIANO, M. (2014). Effect of severe shot peening on ultra-high-cycle fatigue of a low alloy steel. In: Materials and Design, pp. 103 – 113.

ZHANG, P., LINDEMANN, J., LEYENS, C. (2010). Shot peening on the high-strength wrought magnesium alloy AZ80 - Effect of peening media, Journal of Materials Processing Technology, Vol. 246, pp. 445–450.

MARTIN, U., ALTENBERGER, I., SCHOLTES, B., KREMMER, K., OETTEL, H. (1998). Cyclic deformation and near surface microstructures of normalized shot peened steel SAE 1045. In: Materials Science and Enginee-ring A246, pp. 69-80.

NASIŁOWSKA, B., BOGDANOWICZ, Z., WOJUCKI, M. (2015). Shot peening effect on 904 L welds corrosion resistance. In: Journal of Constructional Steel Research, Vol. 115, pp. 276–282.

SUBRAMANIAN, K. (1994). Surface Engineering, In: ASM Handbook, Vol. 5, pp. 278-280.

MIKOVÁ, K., BAGHERIFARD, S., BOKŮVKA, O., GUAGLIANO, M., TRŠKO, L. (2013). Fatigue behavior of X70 microalloyed steel after severe shot peening. In: International Journal of Fatigue, pp. 33–42.

BAGHERIFARD, S., COLOMBO, CH., GUAGLIANO, M. (2013). Application of different fatigue strength cri-teria to shot peened notched components. Part 1: Fracture Mechanics based approaches, pp. 1-8.

BAGHERIFARD, S., GUAGLIANO, M. (2012). Fatigue behavior of a low-alloy steel with nanostructured surface obtained by severe shot peening. In: Engineering fracture Mechanics, pp. 56-68.

TRŠKO, L., GUAGLIANO, M., BOKŮVKA, O., NOVÝ, F. (2014). Fatigue life of AW 7075 aluminium alloy after severe shot peening treatment with different intensities, pp. 246-252.

Page 83: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

indexed on: http://www.scopus.com 83

ZÁVODSKÁ, D., GUAGLIANO, M., BOKŮVKA, O., TRŠKO, L. (2015). Fatigue resistance of low alloy steel after shot peening. In: 32nd Danubia-Adria Symposium on Advances in Experimental Mechanics, pp. 164-165. ISBN 978-80-554-1094-4. EDIS, Žilina.

ZHANG, P., LINDEMANN J., LEYENS, C. (2010). Shot peening on the high-strength wrought magnesium alloy AZ80—Effect of peening media. In: Journal of Materials Processing Technology, pp. 445-450.

KLANICA, O., SVOBODA E., JOSKA, Z. (2015). Changes of the surface texture after surface treatment HS6-5-2-5 steel. In: Manufacturing Technology, Vol. 15, pp. 47-53.

DUBOVSKA, R., MAJERIK, J. (2015). Experimental investigation and analysis of cutting forces when machining X5CrNi18-10 stainless steel. In: Manufacturing Technology, Vol. 15, pp. 322-329.

Paper number: M201660 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 84: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

84 indexed on: http://www.scopus.com

Research on Mechanical Properties of Adhesive Bonds Reinforced with Fabric with Glass Fibres

Jan Zavrtálek, Miroslav Müller Faculty of Engineering, Czech University of Life Sciences Prague. Czech Republic. E-mail: [email protected], [email protected].

In this paper the mechanical behaviour of structural two-component epoxy adhesives in T-joints is experimentally investigated. Laboratory experiments were performed on standardized test specimens of structural carbon steel S235J0 made according to standard ČSN ISO 11339. The aim of experiments was to confirm or disprove a hypothesis about a possibility to increase the adhesive bond peeling strength by means of an interlayer from glass fibres. The research was focused on an effect of an improving a resistance of the adhesive bond stressed by peeling by adding an interlayer created by fabric from glass fibres. The testing of these properties was performed in accor-dance with standard ČSN EN ISO 11339. An epoxy resin was used as the adhesive for connecting adherents created by sheets of steel. The fabric from glass fibres of the type E in a plain weave was added as the reinforcement for creating the composite bond. For optimization of properties of the composite bond it was used various weight in grams of fabric in the extent of 80, 110, 160, 220 g/m2.

Keywords: Adhesive bond strength, peeling strength, T-joint, two-component epoxy adhesives

Acknowledgement

This paper has been done when solving the grant IGA TF (2015:31140/1312/3106).

References

PING HU, QI SHAO, WEIDONG LI, XIAO HAN. (2012). Experimental and numerical analysis on load capacity and failure process of T-joint: Effect produced by the bond-line length. In: International Journal of Adhesion and Adhesives, 38: 17-24.

SALIH AKPINAR, MURAT DEMIR AYDIN and ADNAN ÖZEL. (2013). A study on 3-D stress distributions in the bi-adhesively bonded T-joints. In: Applied Mathematical Modelling. 37.10220-10230.

MESSLER, R. W. (2004). Joining of materials and structures from pragmatic process to enabling technology. Burlington: Elsevier.

HABENICHT, G. (2002). Kleben: Gundlagen, Technologien, Anwendung. Berlin: Springer.

CIDLINA, J., MÜLLER, M., VALÁŠEK, P. (2014). Evaluation of Adhesive Bond Strength Depending on De-gradation Type and Time. Manufacturing Technology, 14(1): 8-12.

MÜLLER, M. (2014). Setting of causes of adhesive bonds destruction by means of optical analysis. Manufacturing Technology, 14(3): 371-375.

MÜLLER, M. (2013). Research of Liquid Contaminants Influence on Adhesive Bond Strength Applied in Ag-ricultural Machine Construction. In: Agronomy Research, Vol.11, pp. 147-154.

MÜLLER, M. (2011). Influence of Surface Integrity on Bonding Process. In: Research in Agricultural Enginee-ring, Vol. 57, pp. 153-162.

RUDAWSKA, A. (2014). Selected aspects of the effect of mechanical treatment on surface roughness and adhe-sive joint strength of steel sheets. In: International Journal of Adhesion and Adhesives, Vol. 50, pp. 235-243.

NAITO, K., ONTA, M., KOGA, Y. (2012). The Effect of Adhesive Thickness on Tensile and Shear Strength of Polyimide Adhesive. In: International Journal of Adhesion & Adhesives, Vol. 36, pp. 77-85.

KARBHARI, V. M., & ABANILLA, M. A. (2007). Design factors, reliability, and durability prediction of wet layup carbon/epoxy used in external strengthening. Composites Part B: Engineering, 38(1), 10–23.

MAHERI, M. R. (2010). The effect of layup and boundary conditions on the modal damping of FRP composite panels. Journal of Composite Materials, 45(13), 1411–1422.

NOVÁK, M. (2012). Surfaces with high precision of roughness after grinding. In: Manufacturing technology. Vol. 12, pp. 66 -70.

Page 85: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

indexed on: http://www.scopus.com 85

NOVÁK, M. (2011). Surface quality of hardened steels after grinding. In: Manufacturing technology. Vol. 11, pp.55-59.

HOLEŠOVSKÝ, F., NÁPRSTKOVÁ, N., NOVÁK, M. (2012). GICS for grinding process optimization. In: Ma-nufacturing technology. Vol. 12, pp. 22-26.

HRICOVA, J. (2014): Environmentally conscious manufacturing: the effect of metalworking fluid in high speed machining. In: Key engineering materials. Vol. 581, pp. 89-94.

ŤAVODOVA, M. (2013). The surface quality of materials after cutting by abrasive water jet evaluated by selected methods. In: Manufacturing technology. Vol. 13, pp. 236-241.

RUGGIERO, A., VALÁŠEK, P., MEROLA, M. (2015). Friction and wear behaviors of Al/Epoxy Composites during Reciprocating Sliding tests. In: Manufacturing technology, Vol. 15, No. 4, p. 684-689.

MÜLLER, M., VALÁŠEK, P. (2012). Degradation medium of agrokomplex - adhesive bonded joints interaction. In: Research in Agricultural Engineering, Vol. 58, pp. 83-91.

MÜLLER, M. (2015). Influence of loading speed on a change of parameters of adhesive bonds based on cyanoacrylates. In: Research Agricultural Engineering, Vol. 61, No. 4, pp. 177-182.

MÜLLER, M. (2015). Research on Surface Treatment of Alloy AlCu4Mg Adhesive bonded with Structural Sin-gle-component Epoxy Adhesives. In: Manufacturing Technology, Vol. 15, No. 4. pp. 629-633.

KOTOUSOV, A. (2007). Effect of a thin plastic adhesive layer on the stress singularities in a bi-material wedge. In: International Journal of Adhesion & Adhesives, Vol. 27, No. 8, pp. 647–652.

GRANT, L. D. R., ADAMS, R.D., LUCAS da SILVA F.M. (2009). Experimental and numerical analysis of single-lap joints for the automotive industry. In: International Journal of Adhesion & Adhesives, Vol. 29, No. 4, pp. 405–413.

Paper number: M201661 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 86: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

86 indexed on: http://www.scopus.com

Influence of Selected Iron Correctors to Solidification of Secondary AlSi10MgMn Alloy

Maria Zihalova1, Dana Bolibruchova1, Jaromir Cais2 1Department of Technological Engineering, Faculty of Mechanical Engineering, University of Zilina, Univerzitna 8215/1, 010 26 Zilina. Slovak Republic. E-mail: [email protected], [email protected] 2Faculty of Production Technology and Management, J. E. Purkyne University in Usti nad Labem. Pasteurova 3334/7, 400 01 Usti nad Labem. Czech Republic. E-mail: [email protected]

Secondary (recycled) aluminium alloys are still not widely used in the foundry industry, because of the higher amounts of impurities that require more strictly control of the manufacturing process. The most problematic im-purity of aluminium cast alloys is iron, which is in alloy mostly present in form of hard and brittle intermetallic phases. Such phases are thought to be detrimental to alloy mechanical and foundry properties and have to be removed or modified to eliminate negative effects. Several techniques might be used to this purpose, from which the most beneficial seems to be addition of some elements, so-called “iron correctors”. Influence of the iron correctors can be also analysed by thermal analysis that serve as a tool to prediction of solidification behaviour of the alloy. Influence of V, Cr and Ni (alone and in selected combinations) to solidification behaviour of AlSi10MgMn alloy with increased iron level is presented in this article. Selected iron correctors influenced temperatures of ther-mal arrests representing formation of primary aluminium, iron intermetallics and also eutectic silicon.

Keywords: AlSi10MgMn alloy, Intermetallic phase, Iron correctors, Thermal analysis

Acknowledgement

This research was created within the framework of the grant project VEGA N° 1/0363/13. The authors acknowledge the grant agency for support.

References

DINNIS, C.M., TAYLOR, J.A., DAHLE, A.K. (2005). As-cast morphology of iron-intermetallics in Al-Si foundry alloys. In: Scripta Materialia, Vol. 53, pp. 955 – 958.

PETRIK, J., HORVATH, J. (2011). The iron correctors in Al-Si alloys. In: Annals of faculty engineering Hune-doara, Vol. 9, No. 3, pp. 401 – 405.

HURTALOVA, L., TILLOVA, E. (2013). Elimination of the negative effect of Fe-rich intermetallic phases in secondary (recycled) aluminium cast alloy. In Manufacturing Technology, Vol. 13, No. 1, pp. 44-50

KRIVOŠ, E., PASTIRČÁK, R., MADAJ, R. (2014). Effect of technological parameters on the quality and dimen-sional accuracy of castings manufactured by patternless process technology. In: Archives of metallurgy and mate-rials, Vol. 59, No. 3, pp. 1069-1072.

TAYLOR, J.A. (2004). The effect of iron in Al-Si casting alloys. In: 35th Australian Foundry Institute National Conference, pp. 148 – 157, Adelaide, South Australia.

CAO, X., CAMPBELL, J. (2006). Morphology of Al5FeSi phase in Al-Si cast alloys. In: Materials Transactions, Vol. 47, No. 5, pp. 1303 -1312.

TAYLOR, J.A. (2012). Iron-containing intermetallic phases in Al-Si based casting alloys. In: Procedia Materials Science, Vol. 1, pp. 19 – 33.

HEUSLER, L., SCHNEIDER, W. (2002). Influence of alloying elements on the thermal analysis results of Al-Si cast alloys. In: Journal of Light Metals, Vol. 2, pp. 17-26.

CANALES, A.A. et al. (2010). Thermal analysis during solidification of Al-Si alloys. In: Thermochimica Acta, Vol. 510, pp. 82-87. KUMARI, S.S.S., PILLAI, R.M., RAJAN, T.P.D., PAI, B.C. (2007). Effects of individual and combined additions of Be, Mn, Ca and Sr on the solidification behaviour, structure and mechanical properties of Al-7Si-0.3Mg-0.8Fe alloy. In: Material Science and Engineering A, Vol. 460-461, pp. 561 – 573. PASTIRCAK, R. (2014). Effect of Low Pressure Application during Solidification on Microstructure of Al-Si Al-loys. In: Manufacturing Technology, Vol. 14, No. 3, pp. 397-400. BRUNA, M., KUCHARCIK, L., SLADEK, A. (2013). Complex evaluation of porosity in A356 aluminium alloy using advanced porosity module. In: Manufacturing Technology, Vol. 13, No. 1 pp. 26–30.

Paper number: M201662 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

Page 87: MANUFACTURING TECHNOLOGY February 2016, Vol. …journal.strojirenskatechnologie.cz/templates/obalky_casopis/XVI... · Prof. Milan Brožek, MSc., Ph.D. ... Berenika Hausnerova, Zdenek

February 2016, Vol. 16, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

indexed on: http://www.scopus.com 87

Contactless Thermal Bending of Steel Sheets

Andrej Zrak, Jozef Meško, Ján Moravec, Rastislav Nigrovič, Dalibor Kadáš

Faculty of Mechanical Engineering, University of Žilina, Univerzitná 1, 010 08 Žilina. Slovak Republic. E-mail: [email protected], [email protected], [email protected], [email protected], dalibor.kadas@fstroj .uniza.sk

The article deals with contactless thermal forming of metals. In the introduction the bending theory of components by using flame technology is described. On the basics of information obtained from the analysis of previous re-search a technological procedure was developed. This technology uses gained characteristics of material behavior in the process of heterogeneous circumferential heating. The principal of material concentrating in the process of local heating the area which is placed in a quasi prism leads to a bending moment. This bending moment evokes deformation of the material which was compacted this way. Application of subscribed technology pushes the limits of forming to a higher level because by using conventional forming processes the trajectory of the component is not straight but curved. Because of this phenomenon it would be necessary to apply forming tools which dynami-cally change and do not still exist.

Keywords: thermal bending, laser bending, mild steel

Acknowledgement

This contribution was made with the financal assistance of VEGA agency, project No. 1/055/14.

References

RADEK, N., MEŠKO, J., ZRAK, A. (2014). Technology of laser forming. In: Manufacturing technology: jour-nal for science, research and production. - ISSN 1213-2489. - Vol. 14, no. 3 (2014), s. 428-431.

ASHBY M.F., EASTERLING K.E. (1984). The transformation hardening of steel surfaces by laser beams – I. In: Hypo-eutectoid steels. Acta Metall. Vol. 32, No 11, pp. 1935-1948.

RADEK, N., ANTOSZEWSKI, B. (2009). Influence of laser treatment on the properties of electro-spark deposi-ted coatings. In: Kovove Materialy - Metallic Materials 47, pp. 31-38, 2009

KOŇÁR, R., MIČIAN, M., HLAVATÝ, I. (2014). Defect detection in pipelines during operation using Magne-tic Flux Leakage and Phased Array ultrasonic method. In: Manufacturing technology, Vol. 14, No. 3, pp. 337-341. J.E. Purkyne University, Ústi nad Labem.

KOŇÁR, R., MIČIAN, M. (2014). Non-destructive testing of welds in gas pipelines repairs with Phased Array ultrasonic technique. In: Manufacturing technology, Vol. 14, No. 1, pp. 42-47. J.E. Purkyne University, Ústi nad Labem.

DOPJERA, D., KOŇÁR, R., MIČIAN, M. (2014). Ultrasonic testing of girth welded joint with TOFD and Phased Array. In: Manufacturing technology, Vol. 14, No. 3, pp. 281-286. J.E. Purkyne University, Ústi nad La-bem.

DOMAGALA, A., TOFIL, S. (2011). The comparison between different types of cutting – selection of the best method. In: 9-th European Conference of Young Research and Scientific Workers, Transcom 2011, 27-29 June 2011, Słowacja

NOVÁK, P., ŽMINDÁK, M., PELAGIĆ, Z. (2014). High-pressure pipelines repaired by steel sleeve and epoxy composition. In: Applied mechanics and materials. Vol. 486, pp. 181-188. ISSN 1660-9336.

RADZISZEVSKI, L. (1993). Laser-ultrasonic in isotropic polymers: generation and propagation, In: Proceed-ings of the Ultrasonics International Conference 1993, Vienna, pp. 811 – 814.

DOPJERA, D., MIČIAN, M. (2014). The detection of articullary made defects in welded joint with ultrasonic defectoscopy Phased Array. In: Manufacturing Technology, Vol. 14, No. 1, pp. 12-17, ISSN 1213-2489

MIČIETOVÁ, M., NESLUŠAN, M., ČILLÍKOVÁ, M. (2013). Influence of surface geometry and structure after non-conventional methods of parting on the following milling operations. In: Manufacturing technology, Vol. 13, No. 2, pp. 152-157. ISSN 1213-2489

Paper number: M201663 Copyright © 2016. Published by Manufacturing Technology. All rights reserved.