manuel romero_pequeños sist. para centrales solares termoeléctricas

30
Small Solar Thermal Power Systems/ Pequeños Sistemas para Centrales Solares Termoeléctricas Jornada de difusión técnica Madrid, 1 de julio de 2010 UNION EUROPEA FONDO SOCIAL EUROPEO FONDO SOCIAL EUROPEO

Upload: imdea-energia

Post on 29-Nov-2014

410 views

Category:

Documents


1 download

DESCRIPTION

Seminario: Pequeños sistemas modulares para centrales solares termoeléctricas. Coorganizado por IMDEA Energía junto con EOI

TRANSCRIPT

Page 1: Manuel Romero_Pequeños Sist. para Centrales Solares Termoeléctricas

Small Solar Thermal Power Systems/ Pequeños Sistemas

para Centrales Solares pTermoeléctricas

Jornada de difusión técnica

Madrid, 1 de julio de 2010

UNION EUROPEAFONDO SOCIAL EUROPEOFONDO SOCIAL EUROPEO

Page 2: Manuel Romero_Pequeños Sist. para Centrales Solares Termoeléctricas

IMDEA Energía

• Mission:• To promote the development of renewable

energies.• To promote the development of clean energy

technologies having none or minimum environmental impact.

R h t i• Research topics:• Solar energy (high flux/high temperature).• Sustainable fuels: biofuels wastes hydrogenSustainable fuels: biofuels, wastes, hydrogen.• Energy storage.• Smart energy networks.• Efficient end-use of energy• CO2 valorisation

• 40 Researchers (18 PhD; 16 ( ;from foreign R&D Centers)

Page 3: Manuel Romero_Pequeños Sist. para Centrales Solares Termoeléctricas

High Temperature Processes Unit

Development of efficient and cost-effective high temperature technologiesObjectives

Development of efficient and cost effective high temperature technologies and applications with special emphasis on Concentrating Solar Power Systems and production of Solar Fuels and Chemicals.

Modular concepts with minimum environmental

R&D linesModular concepts with minimum environmental impactAdvanced thermal fluids for high temperature applications and energy storageS l i d tSolar receivers and reactorsSolar concentration opticsHigh flux/high temperature characterization techniques and simulation toolstechniques and simulation toolsEfficient integration schemes into power conversion systemsSolar-driven high temperature production of H2 /Chemicals

Page 4: Manuel Romero_Pequeños Sist. para Centrales Solares Termoeléctricas
Page 5: Manuel Romero_Pequeños Sist. para Centrales Solares Termoeléctricas

CSP in the world

Source: Photon International (December 2009)Source: Photon International (December 2009)- Spain: 831 MW grid-connected by December 2010 and permits assigned for 2,5 GW by 2013.-USA: Near- to medium-term CSP pipeline over 10 GW, with 4.5 GW to break ground by the end of 2010.with 4.5 GW to break ground by the end of 2010.

Page 6: Manuel Romero_Pequeños Sist. para Centrales Solares Termoeléctricas

Concentrating Solar Power:

Cost and Availabilityy• Future costs depend on many things

– technology progress– production rates and continuity

Initial SEGS Plants

Larger SEGS Plants

O&M Cost Reduction at SEGS Plants

– political, economic, and financial issues– market needs and acceptance

Impact of 1-2¢ adderImpact of 1 2¢ adderfor green power

Conventional Technologyfor Peaking or Intermediate Power

(IEA market assumptions)

Page 7: Manuel Romero_Pequeños Sist. para Centrales Solares Termoeléctricas

Limitations of first-generation CSP

Commercial projects use technologies of parabolic troughs with low concentration in two dimensions and linear focus, or systems of central tower and heliostat fields, operating with thermal fluids at relatively modest temperatures, below 400 ºC .

Th i di f h i d iThe most immediate consequences of these conservative designs are:

the use of systems with efficiencies below 20% nominal in the conversion of direct solar radiation to electricity, y,the tight limitation in the use of efficient energy storage systems, the high water consumption and land extension due to the

Extresol 1 and 2 (ACS/Cobra)

inefficiency of the integration with the power block, the lack of rational schemes for their integration in distributed generation architectures and the limitation to reach the temperatures needed for thethe limitation to reach the temperatures needed for the generation processes following thermochemical routes of solar fuels like hydrogen.

PS10 and PS20 (Abengoa Solar)

Page 8: Manuel Romero_Pequeños Sist. para Centrales Solares Termoeléctricas

Impact of innovation on cost reduction

100ScalingScaling upup

90

ScalingScaling upup15%15%

80

70

R+DR+D60%60%

60

MarketMarket

40

50MarketMarketseriesseries25%25%

40

2005 2010 2015 2020 2025 Year

Page 9: Manuel Romero_Pequeños Sist. para Centrales Solares Termoeléctricas

Concentrating Solar Power:

Applications and Features

Distributed Power Dispatchable Power• distributed, on-grid (e.g., line support)• stand-alone, off-grid (e.g., water

pumping, village electrification)

p• utility peak and intermediate• high-value, green markets

kW's to MW’s 10's to 100’s of MW's

• hybrid gas combined cyclecoal fuel oil or gas

Dispatchability:

l hybridization with gas or liquid fuels for extended Stirling or B i i

l thermal storage for peaking, load following, or extended operationl coal, fuel oil, or gas

steam cycleBrayton engine operation operation

Manufacturing:

Relatively conventional technology (glass steel gears heat engines etc ) allows l Relatively conventional technology (glass, steel, gears, heat engines, etc.) allows rapid manufacturing scale-up, low risk, conventional maintenance

Page 10: Manuel Romero_Pequeños Sist. para Centrales Solares Termoeléctricas

Aprovechamiento Térmico de la Energía Solar de manera Gestionable, Eficiente y Modular en Sistemas de Alta ConcentraciónConcentración

Page 11: Manuel Romero_Pequeños Sist. para Centrales Solares Termoeléctricas

SOLGEMAC

TODAYConservative first-generation schemes

• Ciclo Brayton• Calentamiento aire

• Combustibles y química• Ciclo Brayton• Calentamiento aire

1500

ºC

SOLGEMACEfficiency (high-temperature/high-flux)Dispatchability (storage/hybrid)M d l it ( ll i )

Receptores cerámicos

Baja presión

Receptores cerámicos

Alta presión Alta temperatura Receptores

Partículas sólidas

• Calentamiento aire

00 ºC

Modularity (small size)Environmental impact (water)Solar fuels

Tem

pera

tura

Receptores metálicos aire

Motores Stirling solarizados

Baja presión Alta temperatura

• Ciclo Brayton• Precalentamiento aire

• Disco Stirling

100

Receptores

Receptores Sodio

Receptores Sales nitrosas

metálicos aire

Calentamiento aire

Precalentamiento aire

500 º

C

Receptores Aceite

ReceptoresAgua/vapor

Actualidad• Calentamiento de vapor

• Ciclo Rankine• Calentamiento de vapor

• Calentamiento aire• Ciclo Rankine• Calentamiento de vapor

Conceptos tecnológicos ACTUALES Conceptos tecnológicos AVANZADOS

Calentamiento de vapor

Page 12: Manuel Romero_Pequeños Sist. para Centrales Solares Termoeléctricas

SOLGEMAC(Imdea Energía Coord.)(Imdea Energía Coord.)

A.3. ENERGY STORAGE FOR DISTRIBUTED

MODULARITY DISPATCHABILITYEFFICIENCY

GENERATION CONCENTRATING SOLAR SYSTEMS.

A.3.1.Hydrogen production with thermochemical cyclesA.3.2. Hydrogen storage with MOF-type materiales.A.3.3. Electrochemical storageA.3.4. End-use of hydrogen in microturbines

A.1. MODULAR CONCENTRATING SYSTEMS

A.1.1. Systemas dish/StirlingA.1.2. Multitower Modular Arrays

A.2. SOLAR RECEIVERS/REACTORS FOR HIGH FLUX/HIGH TEMPERATURES.

A.2.1. Volumetric receivers with metallic absorbersA.2.2. Volumetric receivers with ceramic

URJC (Coord.)CIEMAT-DQCIEMAT SSC

A.1.3. Solarization of gas microturbines absorbersA.2.3. Particle receiversA.2.4. Materials

CIEMAT SSC (C d ) CIEMAT-SSCImdea EnergíaUAMINTAHynergreen

Imdea Energía (Coord.)INTACIEMAT-SSCTORRESOL

CIEMAT-SSC (Coord.)Imdea EnergíaURJCTORRESOLHynergreeny g

A4. INTEGRATIONA.4.1. Comparison of technologiesA.4.2. Integration schemes

INTA (Coord.)URJC, Imdea Energía, CIEMAT-SSC, CIEMAT-DQ, INTEGRATION

A.4.2. Integration schemesA.4.3. LCA and impact TORRESOL, Hynergreen

Page 13: Manuel Romero_Pequeños Sist. para Centrales Solares Termoeléctricas

STEPS TO SCALINGSTEPS TO SCALING--UP SOLAR CSP & CSFCUP SOLAR CSP & CSFC

1-5 kWSolar Simulator

30-50 kWSolar Furnace

Solar Simulator

1-100 MW Central Receiver System

100-500 kWMini-tower

Page 14: Manuel Romero_Pequeños Sist. para Centrales Solares Termoeléctricas

Discos parabólicos

Motor solar de Motor solar de AugustinAugustinMouchotMouchot en la exposición de en la exposición de Discos-Stirling Eurodish en la

Pl t f S l d Al íParis de 1861 ParisParis de 1861 Paris Plataforma Solar de Almería

Page 15: Manuel Romero_Pequeños Sist. para Centrales Solares Termoeléctricas

Discos Parabólicos con generador Stirling:

Estado de la Tecnologíag

Varios diseños de disco y de receptor han demostrado la alta eficiencia necesaria para sistemas comercialescomercialesLa durabilidad del receptor aún necesita mejorarseEl coste del disco colector/concentrador es crítico para dar paso a las primeras producciones comerciales.

M t Sti li

STMSolo

Motores Stirlingavanzados están mostrando altas eficiencias y durabilidadesy durabilidades

Page 16: Manuel Romero_Pequeños Sist. para Centrales Solares Termoeléctricas

Expectations for Cost Degression

225

200

225

150

175

n k€

125

150

men

t cos

t in

Transport, AssemblyConcentrator

75

100

Inve

stm Concentrator

DrivesStirlingmotorControlTurntable

50

75 TurntableFoundation

0

25

PrototypeStuttgart

1989

DISTAL 11991

DISTAL 21995

EuroDish2000/2001

100/Year 1000/Year 3000/Year 10000/Year

0

Page 17: Manuel Romero_Pequeños Sist. para Centrales Solares Termoeléctricas

Pequeños sistemas de receptor central

Configuraciones multitorrePequeños campos con pequeños helióstatos

Multitower arrays

Page 18: Manuel Romero_Pequeños Sist. para Centrales Solares Termoeléctricas

Mini-campos con mini-helióstatos agrupados: Recordando al Prof. Francia

• Planta construida en Italia y• Planta construida en Italia ymontada en los EEUU en elaño 1977 en el InstitutoTecnológico de Georgia(Advanced Component Test

montada en los EEUU en elaño 1977 en el InstitutoTecnológico de Georgia(Advanced Component Test(Advanced Component TestFacility)

•550 helióstatos•Potencia térmica 400 kW

(Advanced Component TestFacility)

•550 helióstatos•Potencia térmica 400 kW•Potencia térmica 400 kW.•Campo octogonal y torrecentral (22,8 m)F t l d 2 44

•Potencia térmica 400 kW.•Campo octogonal y torrecentral (22,8 m)F t l d 2 44•Foco rectangular de 2,44

m.•Espejos con seguimientopolar y tracking colectivo

•Foco rectangular de 2,44m.•Espejos con seguimientopolar y tracking colectivo

ACTF de Georgia

polar y tracking colectivo.polar y tracking colectivo.

Page 19: Manuel Romero_Pequeños Sist. para Centrales Solares Termoeléctricas

Sistemas modulares multitorre

Comparison of Solar Power Technologies with respect to Integration in the Urban Environment

P S h k D R Mill d W LP. Schramek, D.R. Mills and W. Lang

Page 20: Manuel Romero_Pequeños Sist. para Centrales Solares Termoeléctricas

Advantages of the MIUS concept

• Origin: In 1972 by US HUD. Related to Total Energy Systems, Power Islands, District Heating, Energy Cascade and Cogeneration, g, gy g

• Distributed Utility structure for large residential, commercial or institutional building complexes.

• Typical size: 300-1,000 dwelling unitsyp g• Reduction of transmission and distribution costs• Modular track of demand and spread construction costs over time• Maximum utilization about 4,500 hours ,• Use of single-cycle high efficiency gas turbines plus waste heat

applications like district heating, cooling, desalination or water treatment

• Increment of solar share to 50 %

The keys for CRS i MIUS

•Find a niche of size (a few MWe)•Find modular small CRS designCRS in MIUS •Find modular small CRS design•Competitive investment cost•Perform with high efficiencies

Page 21: Manuel Romero_Pequeños Sist. para Centrales Solares Termoeléctricas

INTEGRATION OF CRS INTO MIUS STRUCTURE

Auxiliary boiler

Water

Exhaust gases 13,280 GJ7,965 GJ

Hot water

Auxiliary boilerFuel Space heating

Water 2,690 GJ14,690 GJ

Fuel Absorption

Hot water

Domestic hot waterSteam

Hot gases

12,000 GJ

22,000 GJ

Wasted4,252 GJ

pchiller

Hot gases

60,526 GJ 5.50 GWheRejected heat22,793 GWh

11,023 GJ

Domestic and auxiliaryl t i it

Compressionair-conditioningAir

5 29 GWhe

0.21 GWhe

electricity

SOLAR TOWER

5.29 GWhe

Example of a 450-unit apartment complex in Spain

Page 22: Manuel Romero_Pequeños Sist. para Centrales Solares Termoeléctricas

MIUS Solar Tower: Application to a shopping center

1400

pp pp g

- Stable demand

1000

1200

We)

OctoberNovemberDecember

Stable demand

- 85 % during day-time

- High consumption at peak periods

600

800

rDem

and

(kW January

FebruaryMarchaprilmay

- Monthly differences between 800-1,300 kW

- Demand increase between June and

200

400Pow

er may

JuneJulyAugustSeptember

October.

- Peaks in July and Christmas

0

200

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

S ( )

Operation strategy:

- Night-time: GridSolar Time (h)

g

- From 6:00 to 20:00 solar hybrid turbine in power island mode

Demand from 6 to 20 h: 4,348 MWe and 18,890 MWth

Page 23: Manuel Romero_Pequeños Sist. para Centrales Solares Termoeléctricas

Proposal of a small-size tower plant

Small tower and heliostats that reduce visual impact andSmall tower and hel ostats that reduce v sual mpact andachieve higher field efficiencies (up to 4% more than largearea heliostats).Air as heat transfer media in a pressurized volumetricAir as heat transfer media in a pressurized volumetricreceiver (3.4 MWth outlet).Use of an efficient (39.5 %) small solar-gas turbine (1.36MW ) ith i t li h t ti d l kiMWe) with intercooling, heat recuperation and low workingtemperature (860 ºC).Waste heat (670 kWth) at 198 ºC for water heating andgspace cooling/heating.Operation in a fuel-saver modeA i th f di h t k th ll t fi ldAs in the case of dish system parks, the small tower fieldsfor distributed power should target maximum unattendedoperation, to minimize O&M costs.

Page 24: Manuel Romero_Pequeños Sist. para Centrales Solares Termoeléctricas

MIUS solar tower technical specifications

Tower optical height (m)Number heliostatsHeliostat surface (m2)

2

2634519.2

Receiver surface (m2)Receiver tilt angle (º)Land (m2)

16.530

38,000

Design point Power Efficiencyg p y

DNI (W/m2)Power onto mirrors area (MWt)Gross power onto receiver (MWt)Power to turbine (MWt)

8755.84.33 4

----100 %74 %80 %Power to turbine (MWt)

Gross electric power (MWe)Total efficiency

3.41.4----

80 %39 %23 %

InvestmentHeliostats 995,765 $HeliostatsLandTowerReceiverInst.&ControlP bl k

995,765 $62,745 $

104,575 $484,750 $107,000 $

1 146 000 $Power blockFixed cost

1,146,000 $65,350 $

Direct capital cost 2.97 M$Installed cost (including turbine set) 2,120 $/kW

Page 25: Manuel Romero_Pequeños Sist. para Centrales Solares Termoeléctricas

Heron H1 Technical Specifications

Electrical power 1,407 kWeThermal power 1,200 kWthThermal power 1,200 kWthFuel consumption 3,280 kWHeat rate 8,392 kJ/kWhElectrical efficiency 42.9 %Thermal efficiency 36.6 %Total efficiency 79 5 %Total efficiency 79.5 %NOx emission <20 g/GJ

Page 26: Manuel Romero_Pequeños Sist. para Centrales Solares Termoeléctricas

Theoretical solarization based on Turbine Heron H-1 and 10 pressurized volumetric receivers

Recuperator8.9 barIntercooler

1.0 bar198 ºC

1.0 bar573 ºC

Recuperator151 ºC

3.0 bar25 ºC

8.9 bar573 ºC

661 ºC 757 ºC740 ºC

3.0 bar137 ºC 3.1 bar

635 ºC

R3R2R1

R6R5R4

R7 R8

R9 R10

1 36

HPC LPC

C2 C3 PT

PR=3 0 PR=2 7

8.9 bar860 ºC

3.1 bar860 ºC

C1

1.36 MWePR=3.0

PR=3.0 PR=2.7

1.0 bar15 ºC

Air filter H fl SOLAR R1 R6 1 95 MWAir filter

1.0 bar15 ºC Air inlet

m=5.15 kg/s

Heatflow SOLAR R1-R6 = 1.95 MWHeatflow SOLAR R7-R10 = 1.49 MW

Total = 3.44 MW

Page 27: Manuel Romero_Pequeños Sist. para Centrales Solares Termoeléctricas

MIUS Solar Tower: Application to a shopping center

Solar electricity production = 2,456 MWhFossil electricity production = 1,892 MWhSolar electricity excess = 428 MWh

Page 28: Manuel Romero_Pequeños Sist. para Centrales Solares Termoeléctricas

MIUS Solar Tower: Application to a shopping center

56 % power demand supplied by solar (683 toe)

Few hours at loads of 20 % during start-ups

Typical solar working load 75 %

Page 29: Manuel Romero_Pequeños Sist. para Centrales Solares Termoeléctricas

MIUS Solar Tower: Application to a shopping center

Solar is contributing to the waste heat produced with 4,374 GJ that represents 49.5% of the heat demand.

Page 30: Manuel Romero_Pequeños Sist. para Centrales Solares Termoeléctricas

CONCLUSIONS

CSP is focusing its growth still on first generationCSP is focusing its growth still on first generationlarge-fieldsThe solar field should be small and modular to accountfor the maximum flexibility in approaching realsystems.U t 60% f t t d ti h ld fUp to 60% future cost reduction should come fromR&D.Solgemac project objectives are modularitySolgemac project objectives are modularity,dispatchability and efficiency by high flux/high T.A potential niche for the application of dish-enginesystems and small solar towers to Modular IntegratedUtility Systems has been identified.