manual completo

442
Rev.0502 •EXTREN ® Standard Structural Shapes and Plate •FIBREBOLT ® Studs and Nuts •DURADEK ® , DURAGRID ® and DURAGRID ® Phenolic Fiberglass Grating •DURASHIELD ® Building Panels •SAFRAIL TM Handrail and Ladders •COMPOSOLITE ® Fiberglass Building Panel System •SAFPLANK ® Fiberglass Plank System •EXTREN DWB ® •Rod and Bar •Special Sections EXTREN ® and Other Proprietary Pultruded Products DESIGN MANUAL

Upload: manuel-rodrigo-cortes-vasquez

Post on 25-Dec-2015

93 views

Category:

Documents


17 download

DESCRIPTION

fibra de vidrio

TRANSCRIPT

Page 1: Manual Completo

Rev.0502

• EXTREN® Standard Structural Shapes and Plate

• FIBREBOLT® Studs and Nuts

• DURADEK®, DURAGRID® and DURAGRID® Phenolic Fiberglass Grating

• DURASHIELD® Building Panels

• SAFRAILTM Handrail and Ladders

• COMPOSOLITE® Fiberglass Building Panel System

• SAFPLANK® Fiberglass Plank System

• EXTREN DWB®

• Rod and Bar

• Special Sections

EXTREN® and Other Proprietary Pultruded Products

DESIGNMANUAL

Page 2: Manual Completo

Copyright © 2013 Strongwell CorporationAll Rights Reserved

The design information in this manual is to be used exclusively with

Strongwell's proprietary products which are described herein.

EXTREN®, DURADEK®, DURAGRID®, DURASHIELD®, FIBREBOLT®, SAFPLATE®, SAFRAILTM, SAFPLANK®, and EXTREN DWB®

are official trademarks of

400 Commonwealth Ave., P.O. Box 580, Bristol, VA 24203-0580(276) 645-8000, FAX (276) 645-8132

www.strongwell.com

© 2007 Strongwell Corporation

Bristol, Virginia

All Rights Reserved

Printed in U.S.A.

Rev.0502

Page 3: Manual Completo

Copyright © 2013 Strongwell CorporationAll Rights Reserved

ATTENTION DESIGNERS!If you are designing with the Strongwell Design Manual, assure that only Strongwell fiberglass products are used on the structure or structures you have designed.

Designing with the Strongwell Design Manual and allowing other products to be used is analogous to designing in one grade of steel and allowing another grade with different properties to be substituted.

Insist that EXTREN® and other Strongwell products be used, especially if your PE stamp is on the design drawings.

To assist engineers, architects and others using the Strongwell Design Manual, Strongwell has implemented a logo identification program to eliminate confusion with other products appearing similar to EXTREN®. Since July 1, 1993, all fiberglass structural shapes and plate have been imprinted with the EXTREN® logo every three feet down the length of the part. Square and round tube have the logo imprinted inside the shape. Small and unobtrusive, the logo assures customers that they are getting EXTREN® when EXTREN® is specified and that the product has all advertised EXTREN® properties backed up by corrosion, mechanical and structural testing as conducted by Strongwell.

Thank you for using the Strongwell Design Manual for FRP structural designs. If you have comments or questions, please call the Customer Service Department at Strongwell (276) 645-8000.

i

It’s all too common! Strongwell gets a call about a problem with EXTREN® structurals. By a site visit or by samples sent in for testing we make an interesting discovery - the shapes are not EXTREN®. Yes, the Strongwell Design Manual was used, and yes, EXTREN® was specified — but the seller or contractor substituted an “equal”— sometimes without the knowledge of the designer or the owner.

Please consider the following questions:

1. All fiberglass structural shapes have the same properties?

True or False

2. All structural shape manufacturers have rigorous quality assurance systems and procedures in place to assure quality?

True or False

3. All structural shape manufacturers test each lot of material and will certify compliance with published properties?

True or False

4. In comparing EXTREN® with a fiberglass structural shape produced by another pultrusion company, in what ways are the

EXTREN® shape and the competitive shape likely to be equal?

a) glass reinforcement percentage b) glass reinforcement location c) glass reinforcement type d) degree of reinforcement wet out e) resin formula f) pull speed g) none of the above

As you might suspect by now, the answers are:

1. False 2. False 3. False 4. g - none of the above

Rev.0502

Page 4: Manual Completo

Copyright © 2013 Strongwell CorporationAll Rights Reserved

1. Salmon, C. G. and Johnson, J. E., Steel Structures, 2nd Edition, Harper and Row, 1980.

2. Structural Plastics Design Manual, American Society of Civil Engineers, 345 East 47th Street, New York, NY, 10017, Volumes 1 and 2, September 1981.

3. The BOCA Basic Building Code, Issued by Building Officials and Code Administrators International, Inc.,19726 So. Halsted Street, Homewood, Illinois 60430.

4. Building Code Requirements for Reinforced Concrete (ACI 318-77), American Concrete Institute, Box 19150 Redford Station, Detroit, Michigan 48219.

5. Gaylord, E. H. and Gaylord, C. N., Editors, Structural Engineering Handbook, 2nd Edition, McGraw-Hill, 1979.

6. AISC Manual of Steel Construction, American Institute of Steel Construction, Inc., 400 North Michigan Avenue, Chicago, IL 60611, 8th Edition, 1980.

7. Timoshenko, S. P. and Gere, J. S., Mechanics of Materials, Van Nostrand, 1972.

8. Tsai, S. W. and Hahn, H. T., Introduction to Composite Materials, Technomic Publishing Co., 1982.

9. Jones, Robert, Mechanics of Composite Materials, McGraw-Hill, New York, 1975.

10. Selection Manual for Structural Plastics, American Society of Civil Engineers, 345 East 47th Street, New York, NY 10017, 1985.

11. Timoshenko, S. and Woinowsky-Krieger, S., Theory of Plates and Shells, 2nd Edition, McGraw-Hill, 1959.

12. Building Code Requirements for Minimum Design Loads in Buildings and Other Structures, American National Standards Institute A58.1, Latest Edition.

13. Engineered Materials Handbook, Vol. 1, "Composites", ASM International, Metal Parks, Ohio 44073, 1987.

LIST OF REFERENCES

iiRev.0502

Page 5: Manual Completo

Copyright © 2013 Strongwell CorporationAll Rights Reserved

CAUTIONStrongwell has assembled this manual as an aid to our customers and has employed available engineering information in connection with the load tables, formulas and other technical data concerning the products covered in the manual. The usefulness of the information contained in the manual may vary depending on the particular application of the product and the environment to which the product is subjected. Accordingly, Strongwell does not warrant the usefulness or the applicability of the information contained herein to any specific application. Moreover, Strongwell cannot assume liability for the accuracy of any data contained in this manual and makes no warranties of any type in connection therewith. The information contained in the manual may be changed without notice. The products manufactured or sold by Strongwell are subject to specific written warranties and exclusions, to which reference should be made.

PREFACE

iii Rev.0404

WARNING!Fiberglass reinforced plastic structural shapes are nonhomogeneous, with strength and behavior dependent upon composite design, processing techniques, and quality standards. Other fiberglass structural shapes with a similar exterior appearance to EXTREN® shapes are likely not equal in any other way, including glass content, glass placement, glass type, wet-out, resin mixture, or pull speed. Do not use the Strongwell Design Manual to design a structure unless you assure that EXTREN® structurals are used.

The Strongwell Design Manual has had various titles since its introduction as the EXTREN® Engineering Manual in 1979. At that time, the EXTREN® Engineering Manual contained information pertaining only to EXTREN® structural shapes and plate.The manual's name changed to the EXTREN® Design Manual in 1989 and was restructured to emulate the format of the American Institute of Steel Construction (AISC) manual used for structural steel designs. The new format made it easy for design engineers to understand the information and helped create greater acceptance of fiber reinforced polymer (FRP) structural shapes and plate. Information relating to pultruded grating, DURASHIELD® foam core panels and SAFRAILTM handrail and ladder systems were added to the manual as well.Strongwell's current manual is entitled the Strongwell Design Manual. EXTREN® structural shapes and plate remain the core of the manual, but the Design Manual now contains information regarding most of Strongwell's pultruded products and can be used as a comprehensive reference guide for the structural engineer.The new Strongwell Design Manual reflects much more than a title change. Strongwell has accumulated a tremendous amount of knowledge through decades of manufacturing experience, application monitoring, and most importantly, through extensive product testing. Strongwell's testing efforts have resulted in more definitive information on product performance and have helped the company develop additional empirical formulas to accurately reflect the performance of its pultruded FRP materials under applied loads. Improved product performance, which is a result of both advancements in the pultrusion process and the quality of raw materials available, is also reflected throughout the new Design Manual.Strongwell continually strives to further improve its products, and as such, will update the information in this manual from time to time. To ensure that you receive the most current information available, please keep Strongwell advised of your current email and mailing addresses. The most current edition is April 2004.

Page 6: Manual Completo

Copyright © 2013 Strongwell CorporationAll Rights Reserved

A Cross-sectional area (in2)Aw Cross-sectional area of web or webs (in2)B Derived constant for use in Eq. B-5C1 Lateral buckling coefficient CW Crosswise (transverse) to the direction of pultrusionD Outside diameter of round tube (in) Diameter of round rod (in) Diameter of round hole in square tube (in)E Modulus of Elasticity (psi)Fa Allowable compressive stress in short column mode (psi)Fa'

Allowable compressive stress in long column mode (psi)Fb Allowable flexural stress (psi)Fb' Allowable flexural stress – laterally unsupported beams (psi)Fu Ultimate compressive stress (psi) Ultimate flexural stress – laterally supported beams (psi)Fu'

Ultimate compressive stress – long column mode (psi) Ultimate flexural stress – laterally unsupported beams (psi)Fv Allowable shear stress (psi)F.S. Factor of SafetyG Shear modulus (psi)I Moment of Inertia (in4)Ix, Iy Moment of inertia about X-X or Y-Y axis (in4)J Torsional constant (in4)K Effective length factor for bucklingKb Coefficient for flexural deflectionKv Coefficient for shear deflectionKx, Ky Effective length factor for buckling about X-X or Y-Y axisL Length of beam or column (center to center of supports) (ft)Lu Unbraced length of beam or column (center to center of lateral braces) (ft)LW Lengthwise (parallel) to the direction of pultrusionM Bending moment from applied loads (lb-in)N Derived constant for use in Eq. B-5P Concentrated load on beam (lbs) Axial load on column (lbs)Pa Allowable axial load on column (lbs)PF Perpendicular to laminate faceR Radius (in) Reaction from applied loads (lbs)Rf Flange toe radius (in)Ri Radius of inside corner (n)Ro Radius of outside corner (in)S Section modulus (in)Sb Section modulus from the bottom of an unsymmetrical section (in3)

GENERAL NOMENCLATURE

ivRev.0502

Page 7: Manual Completo

Copyright © 2013 Strongwell CorporationAll Rights Reserved v

S1 Section modulus from the top of an unsymmetrical section (in3)Sx,Sy Section modulus about X-X or Y-Y axis (in3)V Shear from applied loads (lbs)W Uniform beam load (lbs/ft)Wt Weight of section (lbs)a Long dimension of rectangular plate (in)b Width of section (in) Short dimension of rectangular plate (in) Outside dimension of square tube or bar (in)bf Width of flange (in)bi Width between the flanges in the strut (in) Top width of Hat Section (in)c Concentrated load (lbs/ft of width)d Full depth of section (in)di Outside dimension of flanges in F-section (in)fa Axial stress from applied loads (psi)fb Flexural stress from applied loads (psi)fv Shear stress from applied loads (psi)l Length of beam, column or flat sheet (center to center of supports) (in)lu Unbraced length of beam or column (center to center of lateral braces) (in)r Radius of gyration (in)rx, ry, rz Radius of gyration about X-X, Y-Y or Z-Z axis (in)s Spacing between back to back channels or angles (in)t Thickness of section (in) Wall thickness of tubes (in)tb Thickness of depth dimension (in)td Thickness of depth dimension (in)tf Thickness of flange (in)tw Thickness of web (in)u Uniform load (lbs/ft2)v Poisson's ratiow Uniform beam load (lbs/in)x Distance from the outside of the web to the minor axis (Y-Y) of a channel section or other similar unsymmetrical sections (in) Subscript relating symbol to strong axis (X-X)y Distance from the neutral X-X axis to the outermost fibers of the cross section (in) Distance from the back of flange to the major axis (X-X) of a tee section or other similar unsymmetrical sections (in) Subscript relating symbol to weak axis (Y-Y)∆ Deflection (in)∆c Deflection due to concentrated load (in)∆u Deflection due to uniform load (in)v Poisson's ratio

GENERAL NOMENCLATURE

Rev.0502

Page 8: Manual Completo

1-1

Section 1The Basics

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev. 0109

SECTION 1

THE BASICS

Look for this blue line in the left margin of the Design Manual documents. This line shows you where the latest update has been made.

Page 9: Manual Completo

1-2

Section 1The Basics

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev. 0109

THE BASICSWHAT IS FIBERGLASS REINFORCED POLYMER?

Fiberglass reinforced polymer (FRP) is most often referred to simply as “fiberglass” in practice (as in fiberglass tanks, fiberglass grating, fiberglass structural shapes, fiberglass boats, etc.). Used in this context, “fiberglass” is a composite consisting of a polymer resin matrix reinforced by embedded glass fibers. The strength of a fiberglass part is determined primarily by the type, orientation, quantity, and location of the glass fibers within the part.

The resin binds the reinforcing glass together and this resin/glass bond aids in developing stiffness in the part. The type of resin used determines corrosion resistance, flame retardance, and maximum operating temperature as well as contributing significantly to certain strength characteristics including resistance to impact and fatigue.

WHAT IS PULTRUSION?

Pultrusion is a manufacturing process for producing continuous lengths of FRP structural shapes. Raw materials include a liquid resin mixture (containing resin, fillers and specialized additives) and reinforcing fibers. The process involves pulling these raw materials (rather than pushing as is the case in extrusion) through a heated steel forming die using a continuous pulling device. The reinforcement materials are in continuous forms such as rolls of fiberglass mat or doffs of fiberglass roving. As the reinforcements are saturated with the resin mixture (“wet-out”) in the resin impregnator and pulled through the die, the gelation (or hardening) of the resin is initiated by the heat from the die and a rigid, cured profile is formed that corresponds to the shape of the die.

While pultrusion machine design varies with part geometry, the basic pultrusion process concept is described in the following schematic.

CUT-OFF SAW

CATERPILLAR- TYPE PULL

PULL BLOCKS

FORMING AND CURING DIE

PREFORMER

SURFACINGMATERIAL

SURFACINGMATERIAL

GUIDE

RESINIMPREGNATOR

MAT CREELS

ROVING CREELS

CONTINUOUS PULTRUSION

The creels position the reinforcements for subsequent feeding into the guides. The reinforcement must be located properly within the composite and controlled by the reinforcement guides.

The resin impregnator saturates (wets out) the reinforcement with a solution containing the resin, fillers, pigment, and catalyst plus any other additives required. The interior of the resin impregnator is carefully designed to optimize the “wet-out” (complete saturation) of the reinforcements.

On exiting the resin impregnator, the reinforcements are organized and positioned for the eventual placement within the cross section form by the preformer. The preformer is an array of tooling which squeezes away excess resin as the product is moving forward and gently shapes the materials prior to entering the die. In the die the thermosetting reaction is heat activated (energy is primarily supplied electrically) and the composite is cured (hardened).

Page 10: Manual Completo

1-3

Section 1The Basics

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev. 0109

On exiting the die, the cured profile is pulled to the saw for cutting to length. It is necessary to cool the hot part before it is gripped by the pull block (made of durable urethane foam) to prevent cracking and/or deformation by the pull blocks. Strongwell uses two distinct pulling systems, one that is a caterpillar counter-rotating type and the other a hand-over-hand reciprocating type.

In certain applications an RF (radio frequency wave generator) unit is used to preheat the composite before entering the die. When in use, the RF heater is positioned between the resin impregnator and the preformer.

Page 11: Manual Completo

1-4

Section 1The Basics

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev. 0109

COMMONLY ASKED QUESTIONS BY CUSTOMERS

WHAT IS EXTREN®?

EXTREN® is a pultruded composite of fiberglass continuous strand mat, fiberglass rovings, a synthetic surfacing veil and a thermoset resin system. The three series of EXTREN® are similar in the reinforcement composition but vary in the resin matrix.

S-500 Isophthalic Polyester Resin No flame retardant, UV inhibitor added, standard color is olive green

S-525 Isophthalic Polyester Resin Flame retardant, UV inhibitor added, standard color is slate gray

S-625 Premium Vinyl Ester ResinFlame retardant, UV inhibitor added, standard color is beige

The synthetic surfacing veil aids in weathering and corrosion resistance.

HOW DO I DESCRIBE PULTRUSION?

This is a process in which the reinforcement materials are placed at the back of the pultruder and pulled through a bath of the selected resin, then through a heated die for shaping and curing. The placement of the fiberglass is controlled by a guidance system which ensures consistent positioning throughout the cross-section.

Pultrusion is a continuous process. Length is determined by customers’ needs and the ability to transport. Stock lengths are normally 20 feet long. A part must have a constant cross-section to be a candidate for pultrusion.

(For a more detailed explanation, refer to page 1-1 of the EXTREN® Design Manual).

HOW IS COLOR ACHIEVED?

The color of the pultrusion is the result of pigment added to the resin mixture. Therefore, color is not just on the surface but throughout the laminate.

Pigments can be obtained to meet special color requirements of the customer. Cost will be

Page 12: Manual Completo

1-5

Section 1The Basics

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev. 0109

incurred if none of the in-house colors can be utilized. The more stringent the requirement as to closeness of match will determine the end cost and lead time for customizing the color. Absolute exact matches are not achievable due to variables in the raw materials and process parameters.

Close approximations can be achieved by working with the pigment supplier and fine-tuning the process parameters. Ball park color approximations do not incorporate process controls and the range of color variation is wide. Stability of color and color retention is somewhat related to the color. Yellow, beige and orange are much more stable than gray. Colors vary from profile to profile, formula to formula, batch to batch, and set-up to set-up. Variation will occur in all prod-uct lines.

WHAT IS THE DIFFERENCE BETWEEN THERMOPLASTIC AND THERMOSET RESINS?

THERMOPLASTIC - Resins which have a defined melting point after initial cooling which means they can be heated and reshaped and this shape is retained when re-cooled; however, thermo-plastics can deform (creep) under loads, even at moderate temperature.

THERMOSET - Resins which have no defined melting point, therefore cannot be heated and formed again. Once these resins have been processed with chemical cross-linking of the resin occurring, they take the shape of the die and harden upon cooling. EXTREN® is produced with thermoset resins. As the EXTREN® pultruded part is exposed to increasing temperatures, the laminate mechanical properties will fall off (maximum recommended continuous use tempera-ture for EXTREN® Series 500 and 525 is 150°F and EXTREN® Series 625 is 200°F). When sub-jected to extreme heating, thermoset composites will degrade.

ARE PHENOLIC RESINS AN AVAILABLE OPTION?

Phenolic resin systems are currently available for some EXTREN® structural shapes. Phenol-formaldehyde resins are the oldest of all plastics, yet relatively new in composites/pultrusions. Phenolic composites are an option when superior fire resistance and minimum smoke emissions are required. Phenolic shapes can have “E-Glass” or carbon reinforcements; however, the higher reinforcement level makes carbon an expensive alternative. Transverse strength, pigmentation, and aesthetics are areas where phenolic profiles are not equal to standard EXTREN® shapes.

WHAT OTHER REINFORCEMENTS ARE AVAILABLE IN PLASTICS?

CARBON FIBERS (GRAPHITE) -Carbon fibers are selected to achieve a high modulus (stiffer) composite. The carbon also makes the part electrically conductive. Strongwell regularly produces composites with carbon fibers in both vinyl ester and epoxy resins. Carbon fiber reinforcements are 10 to 100 times as expensive as standard glass reinforcements depending on the grade used.

Page 13: Manual Completo

1-6

Section 1The Basics

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev. 0109

POLYESTER FIBERS -Low modulus synthetic fiber to produce a flexible composite. Useful in high bending/low strength applications.

KEVLAR -Aramid fibers that offer high strength and have achieved recognition as being bullet-proof. These reinforcements have been successfully processed at Strongwell in pultrusion, but are difficult to process and expensive.

WHAT IF CUSTOMER NEEDS PROPERTIES DIFFERENT FROM THOSE PUBLISHED?

Variations in physical and mechanical properties can be achieved by altering the composite of the standard product. A change in reinforcement selection can produce higher or lower longitudinal or transverse strengths. A change in the resin can affect the strength and/or performance of the part (Ex: epoxy resins give better flexural fatigue performance). Additives to the resin, such as fillers, can affect the part appearance, pultrudeability, etc.

HOW DOES EXTREN® COMPARE TO TRADITIONAL MATERIALS?

When EXTREN® is being considered as an alternate to “traditional” materials, the significant product features are: lightweight, corrosion resistance and thermal/electrical non-conductivity.

In comparing EXTREN® versus structural timber, aluminum and steel, be very careful about gen-eralizations. The design using a particular material has its own unique set of parameters. With these cautions in mind, the following general rules of thumb apply:

A shape in EXTREN® would require a thickness three times that of steel to achieve the same tensile strength, rigidity and flexural strength.

The same shape in comparison to aluminum would require one to one-half times the thick-ness.

EXTREN® is stronger and more rigid than structural timber.

EXTREN® weighs 80% less than steel.

Page 14: Manual Completo

1-7

Section 1The Basics

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev. 0109

HOW DOES EXTREN® PRICING COMPARE WITH STEEL

Generally speaking the price of EXTREN® is 2 to 3 times higher than steel. However, EXTREN® offers special benefits such as:

• Corrosion Resistance• Non-Conductive - thermally and electrically• Lightweight - weighs 80% less than steel• High Strength• Dimensional Stability• Low Maintenance• Custom Colors

The price of EXTREN® is generally less than the price of stainless steel.

WHAT ARE THE CAUTIONS FOR EXTREN® IN ELECTRICAL APPLICATIONS?

It is the electrical non-conductivity which allows EXTREN® to compete in the electrical market. The composite of resin and glass assures that an electrical current will meet the level of resis-tance as stated in our literature. However, moisture absorption from unsealed ends could provide a possible area for electrical failure. It is therefore recommended that all cut ends and holes be coated with resin of equal quality to the resin in the part.

WHAT DATA SHOULD I COLLECT FOR DECISIONS ON CORROSION ENVIRONMENTS?

When discussing corrosion problems with your customer you need to find out the chemicals, their concentration on contact with EXTREN®, the loads that EXTREN® will see, and the operating temperature. Strongwell’s CORROSION RESISTANCE GUIDE will answer most of your questions utilizing the above information.

Should you have an environment not listed in our guide, call Strongwell. We will ask the above questions as well as the type of maintenance program the application most likely will receive, and how existing materials withstand the environment.

HOW LONG WILL EXTREN® LAST IN THE OUTDOORS WITHOUT PROTECTION?

There is no definite answer on how long the composite will last because that depends on its location; South Florida is more severe than Minnesota.

Page 15: Manual Completo

1-8

Section 1The Basics

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev. 0109

All EXTREN® products have a synthetic surfacing veil. This prevents the phenomena of “Fiber Blooming” which is the eruption of the glass fibers through the surface. NOTE: Rod and bar are all roving parts and have different properties from EXTREN® products. Rod and bar do not have a synthetic surfacing veil.

The exposure to ultraviolet rays causes a noticeable fading or washing out of color. This is not a degradation of the physical integrity of the section.

It is recommended that all parts which will experience long-term exposure be coated with a poly-urethane or epoxy paint. This can prolong the life of a part for many years.

WHAT AGENCIES HAVE APPROVED EXTREN® MATERIALS?

EXTREN® will not meet the strict requirements of the agencies (USDA) protecting the public for consumable contact because of pigments and/or flame retardants in EXTREN®.

We have received USDA approval for a limited selection of raw material components for use in incidental food contact without sacrificing the structural integrity of our products. You may spe-cial order this product (produced only in white) priced on mill run quantities. A broader approval is being pursued.

FDA approval has not been sought for our finished products but we can supply parts made from materials that are approved by the FDA.

EXTREN® Series 500 structural shapes and plate have passed the necessary requirements for listing under NSF (National Sanitation Foundation) Standard 61 for drinking water components. The NSF International Official Listing certifies the EXTREN® Series 500 shapes to a maximum water contact surface area of 250 sq. in./L. This allows EXTREN® Series 500 to be sold into po-table water applications in the USA. The certification does not include other EXTREN® series.

The NSF mark/logo will be applied to all EXTREN® Series 500 products produced for drinking water applications. Due to special manufacturing and labeling requirements, orders for NSF product must be produced as custom orders.

NEMA - While EXTREN® has been used in numerous applications where GPO-1, GPO-2, GPO-3 and GPO-10 were called for, EXTREN® does not meet all the specification requirements for these grades. GPO applications should be referred to Customer Service for review.

Page 16: Manual Completo

1-9

Section 1The Basics

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev. 0109

WHAT MILITARY SPECIFICATIONS APPLY TO EXTREN®?

There is no single military specification written that is exclusively designed for fiberglass rein-forced pultruded structural shapes. There are several commonly referenced specifications which EXTREN® represents.

MIL R 7575 - The resin Series 500 and Series 525 conform to this specification. The requirement specifies a polyester resin.

MIL P 25421 (This specification has been superseded by NAVSEA Dwg. 803-5000903 Rev. C) Strongwell manufactures no product which meets this military specification. It is for a glass cloth reinforced epoxy round tube. We can certify to some of the mechanical properties of this specification, and this has been acceptable to several of the Naval Shipyards. The product has a special glass orientation; therefore, is a custom, not a shelf item.

NAVSEA Dwg. 803-5000903, Rev. C (Replaces MIL P 25421) - Is a specification for specially reinforced round tubes with higher crosswise properties and a higher full section modulus than standard EXTREN®. Certifications can be provided. Sizes offered are 1-1/2”, 1-3/4”, 2” and 2-1/2” round tubes with 1/4” wall. Contact the Customer Service Department for more information.

MIL P 17549C, GRADE 3 - This is a specification for flat sheet that EXTREN® does not meet. EXTREN® meets the mechanical properties of Table 1, in the lengthwise direction, but not in the crosswise direction; therefore, we cannot certify.

IN WHAT APPLICATIONS IS EXTREN® MOST COMMONLY USED?

• Platforms, Stairways and Walkways near chemical manufacturing/storage facilities • Water/Wastewater Treatment Facilities • Chemical Manufacturing/Storage Plants - structural components • Pulp and Paper Plants • RFI/EMI Compliance Buildings - structural components • Greenhouses - High humidity areas • Circuit Board Plating Facilities - Computer Industry • Trade Show Booths - especially multi-level • Electrical Switch Gear • Flue Gas Desulferization and Cooling Tower Components • Offshore Platforms - structural and miscellaneous components • RF Transparency Applications (Ex: Sun Bank Building) • Airport Instrument Landing System (ILS) components • Structural and miscellaneous components near salt water • Applications of structurals functioning in water; both salt and fresh water • Electrical Equipment Housing • Cable Tray Components

Page 17: Manual Completo

1-10

Section 1The Basics

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev. 0109

HOW EASY IS EXTREN® TO FABRICATE?

Fabricating EXTREN® is very similar to fabricating structural timber. Standard woodworking saws and drills can be used. Carbide tipped or diamond coated blades and bits are an essential in saws. Connections can be made with fasteners such as stainless steel bolts and rivets or FIBREBOLT®. An epoxy used in combination with the fasteners will produce the strongest connections. Fasteners alone can be used if later disassembly is required. Refer to Strongwell’s Fabrication and Repair Manual for details on how to fabricate EXTREN®.

WHY DO THE SQUARE AND ROUND TUBES NOT TELESCOPE?

The tolerances to which EXTREN® is produced and inspected can allow overlapping. The sizes advertised are nominal dimensions and not controllable to the point that telescoping can be guaranteed.

There is one exception in the 2 x 1/8” square tube and 1-3/4 x 1/4” square tube. These will telescope, upon request.

Other products can be made to telescope with the customer purchasing a mandrel for the outer tube with dimensions allowing sufficient clearance.

HOW DO I SELL EXTREN® VS. OTHER FIBERGLASS SHAPES?

Strongwell and its distributors compete with numerous smaller companies that offer some of our shapes. Some of these companies attempt to identify their product with EXTREN® by using series numbers similar to EXTREN® in order to get their product used when EXTREN® is specified.

We suggest selling on the following basis which has enabled Strongwell to establish team relationships with the nation’s best fabricators and distributors:

• QUALITY

Strongwell is widely recognized for consistently high quality parts. Reliable quality is assured by a strong ongoing statistical process control program which covers the entire range of EXTREN® shapes. Additionally, a series of physical property tests (First Article Testing) is performed on each production run of every item.

• SERVICE

Strongwell has a commitment to provide superior, unmatched service. Supporting this commitment are three plants with pultrusion operations covering over 600,000 square

Page 18: Manual Completo

1-11

Section 1The Basics

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev. 0109

feet of manufacturing space, and an EXTREN® inventory of nearly $2,000,000 from which shipments can be made within 24 to 48 hours.

• SIZE AND AVAILABILITY

EXTREN® is now available in nearly 150 standard shapes with many of these available from stock for immediate shipment. Strongwell offers the most comprehensive range of shapes and the largest sizes available in the industry. In addition, Strongwell is continually expanding the size range and the number of different profiles in various EXTREN® shapes to keep pace with the expanding market demand.

• PRODUCT DEVELOPMENT

Strongwell is widely considered the world’s leader in pultrusion technology and is constantly investigating and evaluating new raw materials and potential process improvements. The resulting product improvements are incorporated into EXTREN® well in advance of competitive products.

• EXTREN® DESIGN MANUAL

Strongwell offers the most comprehensive, up-to-date Design Manual for use with EXTREN® shapes. This Design Manual, widely recognized as the “Bible” for designing with EXTREN® fiberglass shapes, has been developed from theoretical computations made by Strongwell’s licensed engineers and from empirical data generated from extensive testing of the latest EXTREN® composites. Data from this Design Manual should be used only in conjunction with EXTREN® shapes.

GLOSSARY - COMMON TERMS IN THE PLASTICS INDUSTRY

BLISTER - A rounded elevation of the pultruded surface with boundaries that may be more or less sharply defined.

BOW - A conditional longitudinal curvature in pultruded parts.

CRACK - A visual separation that occurs internally or penetrates down from the pultruded surface to the equivalent of one full ply or more of reinforcement.

CRAZE, HAIRLINE - Multiple fine pultrusion surface separation cracks that exceed ¼” in length and do not penetrate in depth to the equivalent of a full ply of reinforcement.

CRAZE, RESIN - Multiple fine separation cracks at the pultruded surface not penetrating into the reinforcement.

Page 19: Manual Completo

1-12

Section 1The Basics

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev. 0109

DELAMINATION - The separation of two or more layers or plies of reinforcing material within a pultrusion.

DIE-PARTING LINE - A lengthwise flash or depression on the surface of a pultruded plastic part. It is only at the surface and does not weaken the part.

FIBER PROMINENCE - A visible and measurable pattern of the reinforcing material on the surface of a pultruded plastic part.

FIBER BLOOMING - A pultrusion surface condition exhibiting a fiber prominence or fiber show that usually has a white or bleached color and a sparkling appearance. This condition usually is the result of surface degradation by ‘UV’ on a pultruded part where a synthetic surfacing veil was not used.

FRP - Fiberglass Reinforced Plastic

GROOVING - Long, narrow grooves or depressions in a surface of a pultrusion parallel to its length.

INCLUSION - Any foreign matter of particles that are either encapsulated or imbedded in the pultrusion.

INSUFFICIENT CURE - A pultrusion abnormality created by lack of, or incomplete, cross-linking of the resin.

POROSITY - The presence of numerous pits or pin holes beneath or on the surface of a pultruded surface.

RESIN - Polymer, generally dissolved in styrene, which embodies the chemical, temperature and fatigue properties of the composite.

SAW BURN - Blackening or carbonization of a cut surface of a pultruded section. Fiberglass parts do not dissipate heat as quickly as metal, so the speed of cutting fiberglass must be controlled to prevent saw burns.

SCALE - A condition wherein unreinforced, cured resin particles exit the die on the surface of the part.

TWIST - A condition of longitudinal progressive rotation found in pultruded parts.

Page 20: Manual Completo

2-1

Section 2Introduction to EXTREN®

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.0313

SECTION 2

INTRODUCTION TO EXTREN®

Look for this blue line in the left margin of the Design Manual documents. This line shows you where the latest update has been made.

Page 21: Manual Completo

2-2

Section 2Introduction to EXTREN®

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.0313

(This page left blank intentionally)

Page 22: Manual Completo

2-3

Section 2Introduction to EXTREN®

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.0313

INTRODUCTION TO EXTREN®

WHAT IS EXTREN®?

EXTREN® is the registered trade name for a proprietary line of standard pultruded fiberglass structural shapes produced by Strongwell. The EXTREN® line consists of more than 100 different fiberglass shapes, each with a very specific, proprietary composite design.

Types of glass reinforcements used in EXTREN®

Continuous strand mat: Long glass fibers intertwined and bound with a small amount of resin called a binder. The mat provides multi-directional strength properties.

Continuous strand roving: Each strand contains 800-4,000 fiber filaments. Many strands are used in each pultruded profile. The rovings provide strength in the longitudinal (pultruded) direction.

Resins used in EXTREN®

Isophthalic polyester: A general duty resin which provides excellent corrosion resistance in many applications.

Vinyl ester: A premium grade resin which has higher strength properties, retains strength better at elevated temperatures, and provides a wider range of corrosion resistance than isophthalic polyester.

Surfacing VeilAll EXTREN® has a surfacing veil of polyester non-woven fabric which encases the glass reinforcement and adds a layer of resin to the surface. This combination of fabric and resin provides greater protection against corrosives and also eliminates “fiber blooming” (the occurrence of glass fibers on the surface) which was prevalent in early pultruded shapes in outdoor applications.

THE FEATURES OF EXTREN®

EXTREN® structural shapes have numerous features that engineers might use individually or in combination to solve structural problems.

• HIGH STRENGTH — Stronger than structural steel on a pound-for-pound basis (in the 0o direction), EXTREN® has been used to form the superstructures of multi-story buildings, walkways, sub-floors and platforms.

• LIGHTWEIGHT — Weighing 80% less than steel, and 30% less than aluminum, EXTREN® structural shapes are easily transported, handled and lifted into place. Total structures can often be preassembled and shipped to the job site ready for installation.

• CORROSION RESISTANT — EXTREN® will not rot and is impervious to a broad range of corrosive environments. This feature makes it a natural selection for indoor or outdoor structures in pulp and paper mills, chemical plants, water and sewage treatment plants, or other corrosive environments.

• NON-CONDUCTIVE — An excellent insulator, EXTREN® has low thermal conductivity and is electrically non-conductive.

• ELECTRO-MAGNETIC TRANSPARENCY — EXTREN® is transparent to radio waves, microwaves, and other electromagnetic frequencies.

• DIMENSIONAL STABILITY — The coefficient of thermal expansion of EXTREN® shapes is slightly less than steel in the 0o direction and significantly less than aluminum.

(This page left blank intentionally)

Page 23: Manual Completo

2-4

Section 2Introduction to EXTREN®

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.0313

THE THREE EXTREN® SERIES

EXTREN® shapes are produced in three standard resin systems which comprise the three series of EXTREN®.

EXTREN® SERIES 500 Resin — Isophthalic Polyester Standard Color — Olive Green UV Inhibitor — Yes Purpose – General Use

EXTREN® SERIES 525 Resin — Isophthalic Polyester with Flame Retardant Additive Standard Color — Slate Gray UV Inhibitor — Yes Purpose — General Use when flame retardancy is required

EXTREN® SERIES 625 Resin — Vinyl Ester with Flame Retardant Additive Standard Color — Beige UV Inhibitor — Yes Purpose — Structures where the environment is highly corrosive

E23Any Series 500, 525 and 625 EXTREN® product can be manufactured upon request to meet the mechanical and physical properties, as well as the dimensional and visual requirements of BS EN 13706 (E23) European standards.

Flame retardant properties of Series 525 and 625 can be found in Section 3 — PROPERTIES OF EXTREN®.

If the service environment is corrosive, refer to Section 23— CORROSION RESISTANCE GUIDE to EXTREN®. If the applicable corrosives are not listed, consult with Strongwell.

NOTE:In addition to EXTREN® products, Strongwell manufactures custom pultrusions. These pultrusions vary from EXTREN® in either shape, resin type, or reinforcement (type, amount, location and/or orientation). Designers may choose to vary one or all of these parameters to improve strength, temperature resistance, corrosion resistance, machinability or some other characteristic. See Section 18 — CUSTOM PULTRUSIONS. Consult Strongwell with specific needs or questions.

Page 24: Manual Completo

2-5

Section 2Introduction to EXTREN®

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.0313

EXTREN® VS. CONVENTIONAL MATERIALS

Designing with EXTREN® using this manual is not much different than designing with other materials. The designer should, however, keep the following primary differences in mind:

Relatively Low Modulus of Elasticity The modulus of elasticity of EXTREN® is approximately one-tenth that of steel. As a result,

deflection is often a controlling design factor.

Anisotropic Pultruded composites are not homogeneous or isotropic; therefore, the mechanical

properties of EXTREN® are directional. When designing with EXTREN®, it is important to consider stresses in both the transverse and longitudinal directions.

Relatively Low Shear Modulus The shear modulus of pultruded fiberglass shapes is low compared to metals. Accordingly,

the designer should be aware that shear stresses add deflection to loaded beams above the classical flexural deflection. Refer to Section 8 — FLEXURAL MEMBERS for more detailed information and design examples.

The Effect of Temperature EXTREN® structural shapes are more susceptible to property degradation at high

temperatures than are metals. The designer should keep this in mind where the design temperature is above 150o F for polyester and 200o F for vinyl ester. Contrary to intuitive thinking, EXTREN® shapes become stiffer in cold temperatures. See “Temperature Effects” in Section 3 — PROPERTIES OF EXTREN® for expanded discussion of the effects of temperature.

Corrosion Resistance EXTREN® shapes are often placed in corrosive environments. Generally EXTREN® shapes

offer superior corrosion resistance when compared to conventional building materials. See Section 23 — CORROSION RESISTANCE GUIDE to EXTREN® for guidance.

EXTREN® Structural Tube is Not Pipe EXTREN® tubes have been designed for structural applications such as columns and

handrails and not as fluid carrying pipe. EXTREN® may be used to carry fluids if there is no internal pressure. The end-user should consult Section 23 — CORROSION RESISTANCE GUIDE to EXTREN® to confirm the suitability of the resin to handle the fluid being considered and should also test the EXTREN® tube to confirm its ability to carry the fluid without leaking.

EXTREN® VS. OTHER PULTRUDED PRODUCTS

Referring to the previous discussion of “What is Fiberglass Reinforced Polymer”, the designer should be aware that two pultruded shapes with identical external dimensions can vary dramatically in physical properties depending on the resin formulation and the amount and type of reinforcement. This manual should not be used for fiberglass shapes other than EXTREN®.

The key word in describing EXTREN® is “standard”. EXTREN® is a product line of standard shapes with standard mechanical properties. If the pultruded product is not EXTREN®, we refer to it as a “custom pultrusion”, as described in the next section.

Page 25: Manual Completo

2-6

Section 2Introduction to EXTREN®

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.0313

EXTREN® VS. TRADITIONAL MATERIALS (PROPERTY COMPARISON)

EXTREN THERMAL CARBON 316 HASTELLOY 500/525 EXTREN 625 CURE ROD & STEEL STAINLESS C-276 SHAPES SHAPES BAR (M1020) STEEL (ANNLD.)

MECHANICAL

Tensile Strength LW 30 30 100 60 80 100(x103 psi) CW 7 7 — 60 80 100

Tensile Modulus LW 2.5 2.6 6 30 28 26(x106 psi) CW .8 .8 — 30 28 26

Flexural Strength LW 30 30 100 60 80 100(x103 psi) CW 10 10 – 60 80 —

Flexural Modulus LW 1.6 1.6 6 30 28 26(x106 psi) CW .8 .8 — 30 28 26

Izod Impact LW 25 25 40 N/A 8.5-11 —(ft-lb/in) CW 4 4 — N/A — —

Specific Gravity 1.7 1.7 2 7.8 7.92 8.96

PHYSICAL

Density (lbs/in3) .062-.07 .062-.07 .072-.076 .284 .29 .324

Thermal Conductivity 4 4 5 260-460 96-185 71(BTU/SF/HR/Fo/in)

Coefficient of ThermalExpansion 7 7 5 6-8 9-10(10-6 in/in/oF) Values Are Minimum Ultimate Properties From Coupons.

FIBERGLASS PULTRUSION THICKNESS RELATIVE TO STEEL, ALUMINUM OR WOOD

*STEEL FIBERGLASS PULTRUSION CONSTRUCTION Tensile Rigidity Flexural Strength Strength 50% Mat & Roving (EXTREN®) 2.5 2.15 1.82

70% Roving only 1.0 1.71 1.12 (Thermal Cure Rod & Bar)

* Copied from Engineered Materials Handbook, Vol. 1, “Composites”, pg. 541

As an example, a 50% mat & roving fiberglass pultrusion would need to be 1.16 times as thick as an aluminum part to achieve the same 'flexural strength'.

Values refer to non-plate EXTREN® profiles.

Page 26: Manual Completo

2-7

Section 2Introduction to EXTREN®

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.0313

EXTREN® VS. TRADITIONAL MATERIALS (PROPERTY COMPARISON)

FIBERGLASS ALUMINUM PONDEROSA RIGID PVC COMPRESSION SPRAY-UP 6061-T61 T651 PINE RIGID PVC 10% GLASS MOLDING (SMC) (30-50% GLASS)

MECHANICAL

Tensile Strength LW 45 .42 6.2 7.8 8-20 9-18(x103 psi) CW 45 – 6.2 7.8 8-20 9-18

Tensile Modulus LW 10 – .39 .47 1.6-2.5 .8-1.8(x106 psi) CW 10 – .39 .47 1.6-2.5 .8-1.8

Flexural Strength LW 45 15.4 11 11.7 18-30 16-28(x103 psi) CW 45 9.4 11 11.7 18-30 16-28

Flexural Modulus LW 10 1 .35 .45 1.3-1.8 1-1.2(x106 psi) CW 10 – .35 .45 1.3-1.8 1-1.2

Izod Impact LW – – 1.6 1.6 10-20 4-12(ft-lb/in) CW – – 1.6 1.6 10-20 4-12

Specific Gravity 2.5 .52 1.38 1.39 1.5-1.7 1.4-1.6

PHYSICAL

Density (lbs/in3) .092 .019 .052 .052 .054-.061 .05-.059

Thermal Conductivity 1200 .08 1.3 – 1.3-1.7 1.2-1.6(BTU/SF/HR/Fo/in)

Coefficient of ThermalExpansion 13.5 1.7 37 23 10-18 12-20(10-6 in/in/oF)

FIBERGLASS PULTRUSION THICKNESS RELATIVE TO STEEL, ALUMINUM OR WOOD

*ALUMINUM *WOOD➁ FIBERGLASS PULTRUSION CONSTRUCTION Tensile Flexural Tensile Flexural Strength Rigidity Strength Strength Rigidity Strength

50% Mat & Roving (EXTREN®) 1.0 1.49 1.16 .25 .79 .45

70% Roving only .4 1.19 .71 .10 .63 .27(Thermal Cure Rod & Bar)

* Copied from Engineered Materials Handbook, Vol. 1, “Composites”, pg. 541

As an example, a 50% mat & roving fiberglass pultrusion would need to be 1.16 times as thick as an aluminum part to achieve the same 'flexural strength'.

Values refer to non-plate EXTREN® profiles.

Page 27: Manual Completo

3-1

Section 3Properties of EXTREN®

Copyright © 2014 Strongwell CorporationAll Rights Reserved Rev.1014

SECTION 3

PROPERTIES OF EXTREN®

Look for this blue line in the left margin of the Design Manual documents. This line shows you where the latest update has been made.

Page 28: Manual Completo

3-2

Section 3Properties of EXTREN®

Copyright © 2014 Strongwell CorporationAll Rights ReservedRev.1014

PROPERTIES OF EXTREN®

INTRODUCTIONThe properties in this manual are for product as produced by Strongwell and the data sheets in this section present the minimum ultimate values from testing in conformance to ASTM procedures. These values are obtained from coupons machined from EXTREN® structural shapes and function as a proof test for the EXTREN® composite. Descriptions of the ASTM test procedures are found at the end of this section.

Strongwell verifies the full section bending Modulus of Elasticity using a simple beam concept at the start of each production run. The empirically determined EXTREN® structural design equations presented in later sections will be a function of the Modulus of Elasticity.

The designer must consider environmental factors in designing for the actual application. These factors include elevated temperature and corrosive chemicals.

TEMPERATURE EFFECTSThe approximate retention of mechanical properties at elevated temperatures are:

EXTREN®

Series 500/525 Series 625 100oF 85% 90% 125oF 70% 85%Ultimate Stress 150oF 50% 80% 175oF not recommended 75% 200oF not recommended 50% >200oF not recommended not recommended

100oF 100% 100% 125oF 90% 95%Modulus of Elasticity 150oF 85% 90% 175oF not recommended 88% 200oF not recommended 85% >200oF not recommended not recommended

These recommendations are based on the normal EXTREN® proprietary resin system. Strongwell routinely processes other resin systems to achieve higher temperature ratings for specific applications.

CORROSION EFFECTSAs a general rule, the isophthalic polyester resin used in EXTREN® Series 500/525 is resistant to most acidic attacks while the vinyl ester resin in EXTREN® Series 625 is resistant to acids and bases. The effect of corrosive chemicals is temperature dependent with elevated temperature increasing the corrosion activity. A corrosion guide has been included in this manual and a Strongwell salesperson can respond to chemicals not listed in this guide.

Strongwell incorporates a synthetic veil on the surface of all EXTREN® structural shapes which causes a resin rich layer which enhances corrosion protection.

UV (ULTRAVIOLET RADIATION) EFFECTSUV is a sunlight produced environmental attack on FRP composites. The synthetic surfacing veil also aids in protecting the composite from UV degradation, the effect of which is sometimes referred to as "fiber blooming". EXTREN® also contains a UV inhibitor.

There is a large variation in the degree of fading from UV degradation based on the color selected. It should be noted that the surfacing veil, while not preventing color fading, serves to protect the composite from any mechanical property degradation potentially caused by UV. Coating with materials such as UV stabilized polyurethane based paints are very effective in maintaining the color and offer the optimum long-term protection from UV attack.

Page 29: Manual Completo

3-3

Section 3Properties of EXTREN®

Copyright © 2014 Strongwell CorporationAll Rights Reserved Rev.1014

SERIES 500/525/625 STRUCTURAL SHAPESULTIMATE COUPON PROPERTIES

Below are the test results for the minimum ultimate coupon properties of EXTREN® structural shapes as per the referenced ASTM procedures. The properties of plate as well as thermal cure rod and bar are found elsewhere in this section. Designers should refer to Section 8 — FLEXURAL MEMBERS and Section 9 — COMPRESSION MEMBERS for the recommended design equations for EXTREN®. The actual geometry and application of the structural shape will determine its ultimate usability. Additionally, WF / I-Beam ASTM properties may vary due to location in the part but the modulus of elasticity will not be affected.

ASTM SERIES SERIESPROPERTY TEST UNITS 500/525 625

MECHANICAL

Tensile Stress, LW D638 psi 30,000 30,000Tensile Stress, CW D638 psi 7,000 7,000Tensile Modulus, LW D638 106 psi 2.5 2.6Tensile Modulus, CW D638 106 psi 0.8 0.8

Compressive Stress, LW D695 psi 30,000 30,000Compressive Stress, CW D695 psi 15,000 16,000Compressive Modulus, LW D695 106 psi 2.5 2.6Compressive Modulus CW D695 106 psi 0.8 0.8

Flexural Stress, LW D790 psi 30,000 30,000Flexural Stress, CW D790 psi 10,000 10,000Flexural Modulus, LW D790 106 psi 1.6 1.6Flexural Modulus, CW D790 106 psi 0.8 0.8

Modulus of Elasticity full section 106 psi 2.6 2.8Modulus of Elasticity full section 106 psi 2.5 2.5 (W and I Shapes > 4")

Shear Modulus, LW m — 106 psi 0.425 0.425Short Beam Shear, LW D2344 psi 4,500 4,500Ultimate Bearing Stress, LW D953 psi 30,000 30,000Poisson's Ratio, LW D3039 in/in 0.33 0.33Notched Izod Impact, LW D256 ft-lbs/in 25 25Notched Izod Impact, CW D256 ft-lbs/in 4 4

PHYSICALBarcol Hardness D2583 — 45 4524 hr Water Absorption D570 % Max 0.6 0.6Density D792 lbs/in3 .062-.070 .062-.070Coefficient of Thermal Expansion, LW D696 10-6 in/in/oF 7 7 Thermal Conductivity C177 BTU-in/ft2/hr/oF 4 4

ELECTRICALArc Resistance, LW D495 seconds 120 120Dielectric Strength, LW D149 KV/in 35 35Dielectric Strength, PF D149 volts/mil 200 200

Page 30: Manual Completo

3-4

Section 3Properties of EXTREN®

Copyright © 2014 Strongwell CorporationAll Rights ReservedRev.1014

PROPERTY TEST VALUE

FLAMMABILITY(Only Series 525 and 625)Flammability Classification (1/8") UL 94 VOTunnel Test ASTM E84 25 MaxNBS Smoke Chamber ASTM E662 650-700 (Typical)Flammability ASTM D635 Self ExtinguishingUL Thermal Index Generic 130oCBritish Fire Test BS 476-7 Class 1

LW — lengthwiseCW — crosswisePF — perpendicular to laminate face

NOTES: Refer to Section 9 — COMPRESSION MEMBERS for the recommended allowable

stresses for EXTREN® columns.

Refer to Section 8 — FLEXURAL MEMBERS for the recommended allowable stresses for EXTREN® beams. LW results are for the flange only.

This value is determined from full section simple beam bending of EXTREN® structural shapes and will be used in Sections 8 and 9 for design.

m The Shear Modulus value has been determined from tests with full sections of EXTREN® structural shapes. Less precise values are occasionally estimated for pultrusion by using an equation for isotropic materials, G=E/[2(1 + v)]. For example, if EXTREN® pultrusions are assumed to be isotropic with a Poisson's Ratio (v) of 0.33 and a Modulus of Elasticity of 2.6 x 106 psi, then G = 977,000 psi, which exceeds the listed tested value. EXTREN® shapes are mat/roving composites and anisotropic.

Strongwell incorporates a synthetic surfacing veil routinely on the surface of all EXTREN® structural shapes. This has the effect of lowering the measured Barcol Hardness and does not reflect an absence of cure. Other additives incorporated into the composite for corrosion protection and surface improvements may also reduce Barcol Hardness to a typical value of 45. A surface unprotected by a surfacing veil without additives would have a minimum value of 50.

Measured as a percentage maximum by weight.

Span to depth ratio of 3:1; EXTREN® angles will have a minimum value of 4000 psi and the I/W shapes are tested in the web.

Typical values.

This is a typical value which varies with composite thickness.

Page 31: Manual Completo

3-5

Section 3Properties of EXTREN®

Copyright © 2014 Strongwell CorporationAll Rights Reserved Rev.1014

THERMAL CURE ROD AND BARULTIMATE COUPON PROPERTIES

Below are the test results for the minimum ultimate coupon properties of thermal cure rod and bar as per the referenced ASTM procedures. Rod and bar stock contain longitudinal reinforcements only – no mat. Coupon testing provides a proof test for the composite, but the actual geometry and application of the structural shape will determine its ultimate usability.

THERMAL ASTM CUREPROPERTY TEST UNITS CLEAR

MECHANICAL

Tensile Stress, LW D3916 psi 100,000Tensile Modulus, LW D3916 106 psi 6.0Compressive Stress, Axial, LW D695 psi 60,000Flexural Stress, LW D790 psi 100,000Flexural Modulus, LW D790 106 psi 6.0Notched Izod Impact, LW D256 ft-lbs/in 40Short Beam Shear, LW D4475 psi 5,500

PHYSICAL

Barcol Hardness D2583 — 5024 hr. Water Absorption D570 % Max 0.25Density D792 lbs/in3 .072-.076Coefficient of Thermal Expansion D696 10-6 in/in/oF 5

ELECTRICAL

Dielectric Strength, LW D149 KV/in 35

LW — lengthwise or parallel to the roving

NOTE: All thermal cure rod and bar are not normally produced with a fire retardant resin. Thermal cure rod and bar were not designed to be machined. Machining may cause splintering or other issues due to the lack fo off-axis reinforcements.

Measured as a percentage maximum by weight.Typical values.

Page 32: Manual Completo

3-6

Section 3Properties of EXTREN®

Copyright © 2014 Strongwell CorporationAll Rights ReservedRev.1014

SERIES 500/525 PLATEULTIMATE COUPON PROPERTIES

Below are the test results for the minimum ultimate coupon properties of EXTREN® Series 500/525 plate as per the referenced ASTM procedures. Designers should refer to Section 10 — PLATE for the recommended design equations for EXTREN®. The actual geometry and application of the plate will determine its ultimate usability.

ASTM THICKNESSPROPERTY TEST UNITS 1/8" 3/16"-3/8" 1/2"-1"

MECHANICAL

Tensile Stress, LW D638 psi 20,000 20,000 20,000Tensile Stress, CW D638 psi 7,500 10,000 10,000Tensile Modulus, LW D638 106 psi 1.8 1.8 1.8Tensile Modulus, CW D638 106 psi 0.7 0.9 1.0

Compressive Stress, Edgewise, LW D695 psi 24,000 24,000 24,000Compressive Stress, Edgewise, CW D695 psi 15,500 16,500 20,000Compressive Modulus, Edgewise, LW D695 106 psi 1.8 1.8 1.8Compressive Modulus, Edgewise, CW D695 106 psi 0.7 0.9 1.0

Flexural Stress, Flatwise, LW D790 psi 24,000 24,000 24,000Flexural Stress, Flatwise, CW D790 psi 10,000 13,000 17,000Flexural Modulus, Flatwise, LW D790 106 psi 1.1 1.1 1.4Flexural Modulus, Flatwise, CW D790 106 psi 0.8 0.8 1.3

Ultimate Bearing Stress, LW D953 psi 32,000 32,000 32,000

Poisson's Ratio, LW D3039 in/in 0.31 0.31 0.31Poisson's Ratio, CW D3039 in/in 0.29 0.29 0.29

Notched Izod Impact, LW D256 ft-lbs/in 15 10 10Notched Izod Impact, CW D256 ft-lbs/in 5 5 5

PHYSICAL

Barcol Hardness D2583 — 40 40 4024 hr. Water Absorption

D570 % Max 0.6 0.6 0.6Density D792 lbs/in3 .060-.068 .060-.068 .060-.068Coefficient of Thermal Expansion D696 10-6in/in/oF 8 8 8

ELECTRICAL

Dielectric Strength, LW D149 KV/in 35 35 35Dielectric Strength, PF

D149 volts/mil 200 N.T. N.T.

LW — lengthwiseCW — crosswisePF — perpendicular to the laminate faceN.T. — not tested

NOTES: Measured as a percentage maximum by weight.

This is a typical value which varies with composite thickness.

Page 33: Manual Completo

3-7

Section 3Properties of EXTREN®

Copyright © 2014 Strongwell CorporationAll Rights Reserved Rev.1014

SERIES 625 PLATEULTIMATE COUPON PROPERTIES

Below are the test results for the minimum ultimate coupon properties of EXTREN® Series 625 plate as per the referenced ASTM procedures. Designers should refer to Section 10 — PLATE for the recommended design equations for EXTREN®. The actual geometry and application of the plate will determine its ultimate usability.

ASTM THICKNESSPROPERTY TEST UNITS 1/8" 3/16"-1/4" 3/8"-1"MECHANICAL

Tensile Stress, LW D638 psi 20,000 20,000 20,000Tensile Stress, CW D638 psi 7,500 10,000 10,000Tensile Modulus, LW D638 106 psi 1.8 1.8 1.8Tensile Modulus, CW D638 106 psi 1.0 1.0 1.0

Compressive Stress, Edgewise, LW D695 psi 24,000 24,000 24,000Compressive Stress, Edgewise, CW D695 psi 16,500 17,500 17,500Compressive Modulus, Edgewise, LW D695 106 psi 1.8 1.8 1.8Compressive Modulus, Edgewise, CW D695 106 psi 1.0 1.0 1.0

Flexural Stress, Flatwise, LW D790 psi 24,000 24,000 24,000Flexural Stress, Flatwise, CW D790 psi 10,000 13,000 17,000Flexural Modulus, Flatwise, LW D790 106 psi 1.1 1.1 1.4Flexural Modulus, Flatwise, CW D790 106 psi 0.8 0.9 1.3

Ultimate Bearing Stress, LW D953 psi 32,000 32,000 32,000

Poisson's Ratio, LW D3039 in/in 0.32 0.32 0.32Poisson's Ratio, CW D3039 in/in 0.24 0.24 0.24

Notched Izod Impact, LW D256 ft-lbs/in 15 10 10Notched Izod Impact, CW D256 ft-lbs/in 5 5 5

PHYSICALBarcol Hardness D2583 — 40 40 4024 hr. Water Absorption

D570 % Max 0.6 0.6 0.6Density D792 lbs/in3 .060-.068 .060-.068 .060-.068Coefficient of Thermal Expansion D696 10-6in/in/oF 8 8 8

ELECTRICALDielectric Strength, LW D149 KV/in 35 35 35Dielectric Strength, PF

D149 volts/mil 250 N.T. N.T.

LW — lengthwiseCW — crosswisePF — perpendicular to the laminate faceN.T. — not tested

NOTES: Measured as a percentage maximum by weight.

This is a typical value which varies with composite thickness.

Page 34: Manual Completo

3-8

Section 3Properties of EXTREN®

Copyright © 2014 Strongwell CorporationAll Rights ReservedRev.1014

DESCRIPTION

The tensile strength is determined by pulling ends of a test specimen until failure. The tensile modulus can be calculated by measuring the ratio of stress and strain. When the tensile strength is measured in the longitudinal direction, as a first approximation, it is an indication of relative roving content. For example, an all roving thermal cure rod has a higher tensile strength than the EXTREN® structural shapes which are a combination of roving and continuous strand mat.

The flexural strength is determined by placing a test specimen between two supports and applying a load to the center. ASTM D790 specifies required span to depth ratios for the test specimen. Flexural tests on coupon samples are often used to determine the effects of environmental conditions such as temperature and corrosive agents.

The ultimate compressive strength of a composite is a force required to rupture the composite when a load is applied such that the specimen is crushed. The compressive test is an excellent indication of the resin matrix to reinforcement bond and has been adopted by the ANSI A14.5 specification for fiberglass rail as the primary physical property audit.

The Izod impact is determined by subjecting a specimen to a pendulum-type collision; the specimen can be notched or unnotched. The energy required to rupture the specimen due to the collision caused by the swinging pendulum is used to calculate the Izod impact strength.

This test specimen consists of a flat strip with a hole machined in one end as specified by the ASTM procedure. The testing consists of clamping the end without the hole and attempting to tear or rupture the hole in the specimen. The load required to rupture the hole is used to determine the bearing stress.

This parameter is determined by loading a prescribed length of the full shape (not a coupon) with a support at each end and applying a center load. From the measured deflection and the known load and span, the bending modulus of elasticity can be determined once the shear deflection effects are identified. This is a more reliable estimate of the field performance in beam bending situation than the coupon properties.

TEST

TENSILE STRENGTH(ASTM D638)

FLEXURAL PROPERTIES(ASTM D790)

COMPRESSIVE STRENGTH (ASTM D695)

IZOD IMPACT(ASTM D256)

BEARING STRESS(ASTM D953)

MODULUS OF ELASTICITY

DESCRIPTION OF TESTS FOR EXTREN®

Page 35: Manual Completo

3-9

Section 3Properties of EXTREN®

Copyright © 2014 Strongwell CorporationAll Rights Reserved Rev.1014

The barcol hardness is a measure of the resistance of the surface of a test specimen to penetration by a needle probe which is spring driven. The barcol hardness value is generally an average of multiple measurements on the same part and is an approximate measure of the composite's completeness of cure.

In this test, the specimens are immersed in water for a period of 24 hours and the change in weight is measured. This test has utility in electrical and corrosive applications.

The density is the ratio of the mass (weight) of a specimen to the volume of the specimen. This parameter is important in determining the ultimate weight of the finished product.

The ratio of the density of a composite to the density of water.

This test is performed by placing two probes on a test specimen at a distance of 1/4". A high voltage, low current, arc is passed between the probes with a specified on/off cycle for this arc. The time taken for the arc to completely burn a path through the composite is measured.

In this electrical test, the sample is placed between electrodes with the electrodes and the sample immersed in non-conducting oil to prevent a false failure signal. Failure occurs when the voltage is sufficient to cause the current to discharge through the composite. This test is occasionally performed after conditioning the test specimen with water at elevated temperatures.

The QUV Weatherometer applies alternating cycles of water, high temperature, humidity and ultraviolet exposure to measure the weatherability of a given composite and/or additive. This test is primarily comparative in nature between composites and/or formulations. The geographic location of the composite will determine its actual weatherability.

EXTREN® Series 525 and Series 625 conform to UL 94 testing with a VO Rating. In the UL 94 test, a vertically clamped sample is subjected to a fame from a Bunsen burner.

In the 25 foot tunnel test, a smoke generation value and the rate of flame spread are determined. This test has been the standard for years in measuring flammability and smoke generation.

This test requires a much smaller test specimen and essentially places this specimen in the bottom of a chamber and measures the smoke that is generated to an optical detector at the top of the chamber.

This is a less severe flammability test in which the specimen is held horizontally with one end subjected to a flame for 30 seconds.

BARCOL HARDNESS(ASTM D2583)

WATER ABSORPTION(ASTM D570)

DENSITY(ASTM D792)

SPECIFIC GRAVITY(ASTM D792)

ARC RESISTANCE(ASTM D495)

DIELECTRIC STRENGTH(ASTM D149)

WEATHERING QUV WEATHEROMETER (ASTM G53)

UL 94

TUNNEL TEST (ASTM E84)

NBS SMOKE CHAMBER (ASTM E662)

FLAMMABILITY (ASTM D635)

DESCRIPTION OF TESTS FOR EXTREN®

Page 36: Manual Completo

3-10

Section 3Properties of EXTREN®

Copyright © 2014 Strongwell CorporationAll Rights ReservedRev.1014

SPECIFICATION FOREXTREN® FIBERGLASS REINFORCED POLYMER (FRP)

SCOPE

This specification covers EXTREN® fiberglass reinforced polymer (FRP) wide flange shapes,I-shapes, channels, angles, tubing, rod, bar, flat sheet and special shapes produced by Strongwell, Bristol, Virginia, and its divisions.

PRODUCT DESCRIPTION

All structural shapes shall be EXTREN® FRP Series (select one: 500, 525 or 625) produced using the pultrusion process.

All rod and bar shall be Strongwell FRP thermal cure rod and bar produced using the pultrusion process.

DESIGN

Selection of structural shapes for use under compressive or flexural load to be in accordance with load tables provided in the Strongwell Design Manual.

TOLERANCES

The tolerance for a structural shape supplied to this specification shall be within the limits given in Section 5 - TOLERANCES of the Strongwell Design Manual.

FABRICATION AND HANDLING1) Cut edges and holes can be sealed with a resin compatible with the resin matrix used in

the structural shape if there is concern about the environment in which the shape will be used.

2) The fabricator and contractor shall exercise precautions necessary to protect the fiberglass pultruded structural shapes from abuse to prevent breakage, nicks, gouges, etc. during fabrication, handling and installation.

3) Structural shapes shall be fabricated and assembled as indicated on the design drawings and in accordance with Strongwell's EXTREN® Fabrication & Repair Manual.

NOTE:See Section 20 — Specifications for Fiberglass Reinforced Polymer Products and Fabrications.

Page 37: Manual Completo

JANUARY 1, 2015

AVAILABILITY LIST

EXTREN® Structural Shapes and Plate ........................................................2

Special Composite Shapes .........................................................................4

DURADEK® and DURAGRID® Pultruded Grating .........................................6

DURAGRATE® Molded Grating ....................................................................8

DURATREADTM Molded Stair Tread Covers .................................................9

SAFRAILTM Industrial Handrail Systems ......................................................9

CUSTOM Handrail Systems ......................................................................10

Baffle Wall Panels .....................................................................................11

COMPOSOLITE® Building Panel System ...................................................11

DURASHIELD® Foam Core Building Panel System ...................................11

DURASHIELD HC® Hollow Core Building Panel System ...........................11

SAFPLANK® Interlocking Decking System ................................................12

SAFDECK® Overlapping Decking System ..................................................12

STRONGDEKTM Architectural Decking System ..........................................12

FIBREBOLT® Studs and Nuts ....................................................................12

HS ARMOR PANEL Balllistic Panel ...........................................................13

General Information ..................................................................................14

Page 38: Manual Completo

- 2 -

NOTE: Inventory of nonstocked items may be available due to overruns.

FIBERGLASS STRUCTURAL SHAPES & PLATE

EQUAL LEG ANGLES CHANNELS

I-BEAMS

Sizes in InchesSeries

500Series

525Series

625Lbs. Per Lin. Ft.

1 x 1/8 STOCKED STOCKED STOCKED 0.18 1-1/4 x 1/8 NS NS NS 0.22 1-1/4 x 3/16 STOCKED STOCKED NS 0.35 1-1/2 x 1/8 NS STOCKED NS 0.28 1-1/2 x 3/16 NS NS NS 0.41 1-1/2 x 1/4 STOCKED STOCKED STOCKED 0.50 2 x 1/8 NS NS NS 0.37 2 x 3/16 STOCKED STOCKED NS 0.56 2 x 1/4 STOCKED STOCKED STOCKED 0.73 3 x 1/4 STOCKED STOCKED STOCKED 1.08 3 x 3/8 STOCKED STOCKED STOCKED 1.66 4 x 1/4 STOCKED STOCKED STOCKED 1.50 4 x 3/8 STOCKED STOCKED STOCKED 2.08 4 x 1/2 NS STOCKED STOCKED 2.86 5 x 1/2 NS NS NS 3.80 6 x 1/4 NS STOCKED NS 2.29 6 x 3/8 NS NS NS 3.56 6 x 1/2 STOCKED STOCKED STOCKED 4.41

Sizes in InchesSeries

500Series

525Series

625Lbs. Per Lin. Ft.

1-1/2 x 1 x 3/16 NS NS NS 0.46 1-1/2 x 1-1/2 x 1/4 NS STOCKED NS 0.74 2 x 9/16 x 1/8 STOCKED STOCKED NS 0.28 2 x 7/8 x 1/4 NS NS NS 0.76 2-5/8 x 1/8 x 1-1/4 x 3/16 NS NS NS 0.59 3 x 1 x 3/16 NS NS NS 0.68 3 x 7/8 x 1/4 STOCKED STOCKED STOCKED 0.77 3 x 1-1/2 x 1/4 NS NS NS 1.06 3-1/2 x 1-1/2 x 3/16 NS STOCKED NS 0.90 4 x 1-1/16 x 1/8 NS NS NS 0.53 4 x 1-3/8 x 3/16 STOCKED STOCKED NS 0.87 4 x 1-1/8 x 1/4 STOCKED STOCKED NS 1.07 5 x 1-3/8 x 1/4 NS NS NS 1.35 5-1/2 x 1-1/2 x 3/16 NS STOCKED NS 1.19 5-1/2 x 1-1/2 x 1/4 NS STOCKED NS 1.55 6 x 1-5/8 x 1/4 STOCKED STOCKED STOCKED 1.68 6 x 1-11/16 x 3/8 NS STOCKED NS 2.38 8 x 2-3/16 x 1/4 NS STOCKED NS 2.24 8 x 2-3/16 x 3/8 STOCKED STOCKED STOCKED 3.41 10 x 2-3/4 x 1/2 NS STOCKED STOCKED 5.50 12 x 3 x 1/2 NS NS NS 6.50 14 x 3-1/2 x 3/4 NS NS NS 10.73 18 x 2-3/16 x 3/16 NS NS NS 3.88 24 x 3 x .260 NS NS NS 6.16

Sizes in InchesSeries

500Series

525Series

625Lbs. Per Lin. Ft.

2 x 1 x 1/8 NS NS NS 0.37 3 x 1-1/2 x 1/4 NS NS NS 1.11 4 x 2 x 1/4 STOCKED STOCKED STOCKED 1.48 5-1/2 x 2-1/2 x 1/4 NS STOCKED NS 2.00 6 x 3 x 1/4 NS STOCKED NS 2.31 6 x 3 x 3/8 NS NS NS 3.39 6 x 4 x 1/4 NS NS NS 3.20 8 x 4 x 3/8 STOCKED STOCKED NS 4.40 8 x 4 x 1/2 NS NS NS 5.96 10 x 5 x 3/8 NS NS NS 5.55 10 x 5 x 1/2 NS NS NS 7.81 12 x 6 x 1/2 NS STOCKED STOCKED 9.07 18 x 3/8 x 4-1/2 x 1/2 NS NS NS 8.52 24 x 3/8 x 7-1/2 x 3/4 NS NS NS 15.77

WIDE FLANGE BEAMS

Sizes in InchesSeries

500Series

525Series

625Lbs. Per Lin. Ft.

2 x 1/8 NS NS NS 0.58 3 x 1/4 STOCKED STOCKED NS 1.69 4 x 1/4 STOCKED STOCKED STOCKED 2.35 6 x 1/4 STOCKED STOCKED STOCKED 3.39 6 x 3/8 STOCKED STOCKED STOCKED 5.19 8 x 3/8 NS STOCKED STOCKED 6.97 8 x 1/2 NS NS STOCKED 9.37 10 x 1/2 NS NS NS 8.78 10 x 3/8 NS NS NS 12.06 12 x 1/2 NS NS NS 13.98

Items are non-stocked itemsSeries 500 - Polyester resin, olive greenSeries 525 - Polyester resin, flame retardant, slate graySeries 625 - Vinyl Ester resin, flame retardant, beige

All items are stocked in 20 foot lengths unless otherwise noted

Page 39: Manual Completo

- 3 -

NOTE: Inventory of nonstocked items may be available due to overruns.

ROUND TUBE SQUARE TUBE

Sizes in InchesSeries

500Series

525Series

625Lbs. Per Lin. Ft.

1 x 1/8 STOCKED STOCKED NS 0.35 1-1/4 x 1/8 NS NS NS 0.41 1-1/2 x 1/8 STOCKED STOCKED NS 0.56 1-1/2 x 1/4 NS NS NS 0.98 1-3/4 x 1/8 NS NS NS 0.64 1-3/4 x 1/4 NS NS NS 1.19 2 x 1/8 NS STOCKED NS 0.72 2 x 1/4* STOCKED STOCKED STOCKED 1.37 2-1/2 x 1/4 NS NS NS 1.73 3 x 1/8 NS NS NS 1.16 3 x 1/4 STOCKED STOCKED STOCKED 2.26 3 x 3/8 NS NS NS 3.20 3-1/2 x 1/4 NS STOCKED NS 2.81 4 x 1/4 STOCKED STOCKED STOCKED 2.99 4 x 3/8 NS NS NS 4.24 6 x 3/8 NS STOCKED NS 6.62

Sizes in InchesSeries

500Series

525Series

625Lbs. Per Lin. Ft.

1 x 1/8 NS NS NS 0.25 1-1/4 x 1/8 NS NS NS 0.32 1-1/2 x 1/8 NS NS NS 0.45 1-1/2 x 1/4 NS NS NS 0.79 1-3/4 x 1/8 NS NS NS 0.52 1-3/4 x 1/4 NS NS NS 0.94 2 x 1/8 NS NS NS 0.60 2 x 1/4 STOCKED STOCKED NS 1.12 2-1/2 x 1/4 STOCKED STOCKED NS 1.43 3 x 1/4 NS NS NS 1.70 3-1/2 x .140 NS NS NS 1.21 4 x 1/4 NS NS NS 2.36 5 x 1/4 NS NS NS 3.08 6 x 1/8 NS NS NS 1.92 6 x 1/4 NS NS NS 3.76

RECTANGULAR TUBE

Sizes in Inches Series 500 Series 525 Series 625 Lbs. Per Lin. Ft.

2-1/2 x 1-5/8 x 1/8 NS NS NS 0.75 4 x 1/8 x 2 x 1/4 STOCKED STOCKED NS 1.52 3-1/2 x 5-1/2 x 1/4 NS STOCKED NS 3.42 6-1/2 x 1/4 x 2 x 1/2 NS NS NS 3.86 7 x 4 x 1/4 NS NS NS 4.09 9 x 6 x 5/16 NS NS NS 6.80 9 x 6 x 7/16 NS NS NS 9.72

PLATEEXTREN® pultruded plate is stocked in six thicknesses - see below. EXTREN® plate is a stocked item and is usually available on short notice. Stock size is 48" x 96". 60" wide plate is also available, non-stocked. Other sizes are available and will be quoted upon request.

Thickness in Inches Series 500 Series 525 Series 625 Weight

Lbs. Per Sq. Foot

1/8 STOCKED STOCKED STOCKED 1.20 3/16 STOCKED NS NS 1.71 1/4 STOCKED STOCKED STOCKED 2.34 3/8 STOCKED STOCKED NS 3.54 1/2 STOCKED STOCKED STOCKED 4.82 5/8 NS NS NS 5.79 3/4 STOCKED STOCKED STOCKED 7.24 1 NS STOCKED STOCKED 8.50

Items are non-stocked items*

Series 500 - Polyester resin, olive greenSeries 525 - Polyester resin, flame retardant, slate graySeries 625 - Vinyl Ester resin, flame retardant, beige

All items are stocked in 20 foot lengths unless otherwise notedAlso stocked in Series 525 yellow

Page 40: Manual Completo

- 4 -

Tooling is available for the following special nonstocked items PE PE/FR VE/FR Lbs. Per

Lin. Foot

TOP RAIL

2 x 1/4 Modified Rd Tube NS NS NS 1.29

FLIGHT CHANNEL

5-1/4 x 1/8 x 2-1/2 x 3/16 NS 1.33 7-1/8 x 1/8 x 2-1/2 x 3/16 NS 1.60

CHANNEL

3-1/2 x 2 x 7/32 NS NS NS 1.20 1.875 x .125 x 1.125 x .188** NS 0.48 3.290 x .128 x 1.180 x .190** NS 0.65 3.310 x .135 x 1.187 x .210** NS 0.69 4.000 x .125 x 1.750 x .187** NS 0.94

STRUT

1-5/8 x 1-5/8 x 5/32 NS NS NS 0.65

SQUARE TUBE/ROUND HOLE

1" Sq. with 3/4" Rd. Hole NS NS NS 0.49

Items are non-stocked itemsAll items are stocked in 20 foot lengths unless otherwise noted Special Composite Design - Not EXTREN® Composite*

ROD AND BAR

Sizes in Inches Thermal Cure Lbs. Per

Lin. Ft.

1/4 STOCKED 0.04 5/16 STOCKED 0.07 3/8 STOCKED 0.10 1/2 STOCKED 0.17 5/8 STOCKED 0.27 3/4 STOCKED 0.39 13/16 NS 0.45 7/8 NS 0.53 1 STOCKED 0.69 1-1/8 NS 0.87 1-1/4 NS 1.03 1-1/2 NS 1.52 2 NS 2.78

THERMAL CURE ROD AND BAR is produced using all longitudinal reinforcements with low speed and high temperature, which provides a rich surface appearance. It has no surfacing veil, no pigment and is not fire retardant. On request, Strongwell can quote special formulations including resin type, fire retardant properties, etc. Because it maintains high electrical standards, thermal cure rod is most commonly specified for electrical applications. Normally stocked for prompt delivery. Thermal cure rod and bar was not designed to be machined.

ROUND ROD* SQUARE BAR*Sizes in Inches Thermal Cure Lbs. Per

Lin. Ft.

1/2 STOCKED 0.22 5/8 STOCKED 0.34 3/4 NS 0.49 1 STOCKED 0.87 1-1/4 NS 1.35 1-1/2 STOCKED 1.83

SPECIAL COMPOSITE SHAPES (Special Composite Design — Not EXTREN® Composite)

All Special Composite Shapes are Nonstocked items unless otherwise noted.

Sizes 3/4" diameter and smaller will be stocked in Chatfield, MN

Nonstocked item; standard color - orange**

Page 41: Manual Completo

- 5 -

Tooling is available for the following special nonstocked items PE PE/FR VE/FR Lbs. Per

Lin. Foot

SLIDE GUIDE

2-1/2 x 2-1/4 x 1/4 NS 1.24

UNEQUAL LEG ANGLE

1-3/4 x 1-1/4 x 1/4 NS NS NS 0.51

FLAT STRIP

2 x 3/16* NS STOCKED STOCKED 0.32 2 x 1/4 NS NS NS 0.39 3 x 3/16 NS NS NS 0.41 3 x 1/4 NS STOCKED NS 0.59 3 x 3/8 NS NS NS 0.88 3 x 1/2 NS STOCKED NS 1.12 3-1/2 x 1/2 NS NS NS 1.314 x 1/2 NS NS NS 1.49 6 x 1/8 NS NS NS 0.576 x 1/4 NS NS NS 1.24

FLUTED TUBE

1-1/4** STOCKED 0.40

F-SECTION

5-1/2 x 1 x 1/4*** NS NS NS 1.58 6 x 1-1/2 x 1/4 NS NS NS 1.69

Z-SECTION

1-1/4 x 2-1/2 x 1/8 NS NS NS 0.48

CORNER POST

3-1/4 X 1/4 NS NS NS 2.35

SPECIAL COMPOSITE SHAPES (Special Composite Design — Not EXTREN® Composite)

Items are non-stocked itemsAll items are stocked in 20 foot lengths unless otherwise noted Stocked item in yellow in 24' lengths*

Stocked item in yellow in 242" lengthsStocked in Chatfield, MN

*****

Page 42: Manual Completo

- 6 -

PULTRUDED FIBERGLASS GRATING & STAIR TREADS

Colors: Yellow or GrayResins: Fire Retardant Polyester - Standard Fire Retardant Vinyl Ester - Optional

UV Protection: UV Inhibited with a Veil; Total UV Coating OptionalTop Surface: Epoxy Bonded Grit CoatingCross Rods: 6" o.c.

STANDARD SIZE STAIR TREADS

Panel Size(Width x Length)

PE I-6000 - 1" VE I-6000 - 1"

PE I-6000 - 1-1/2" VE I-6000 - 1-1/2"

PE T-5000 - 2" VE T-5000 - 2"

wt. (lbs.)

wt. (lbs.)

wt. (lbs.)

3' x 8' 63 77 803' x 10' 78 96 993' x 12' 94 116 1193' x 20' 156 192 1984' x 8' 84 103 1064' x 10' 104 128 1324' x 12' 125 154 1594' x 20' 208 256 2645' x 8' 104 128 1325' x 10' 130 160 1655' x 12' 156 192 1985' x 20' 260 320 330

Stair Treads(Width x Length)

PE I-6000 - 1" VE I-6000 - 1"

PE I-6000 - 1-1/2" VE I-6000 - 1-1/2"

PE T-5000 - 2" VE T-5000 - 2"

wt. (lbs.)

wt. (lbs.)

wt. (lbs.)

11" x 144" 32 39 —12" x 144" — — 40

STANDARD SIZE PANELS

STOCKING LEVELS OF GRATING MAY VARY. CALL FOR AVAILABILITY.

Page 43: Manual Completo

- 7 -

PANEL HOLD DOWNS (Price Does Not Include Nuts, Bolts & Washers)

PANEL CONNECTORS ASSEMBLY (Assembly includes Hold Down(s), Bolt(s) and Bottom Bar)

FIBERGLASS CURB ANGLE

Color: Gray UV Inhibited with a Veil Resin: Fire Retardant, Vinyl Ester Stock Length: 20 feet

MISCELLANEOUS

ACCESSORY ITEMSALL ITEMS GENERALLY ARE IN INVENTORY FOR IMMEDIATE SHIPMENT

(No Broken Packages) Pounds Approx.(25 per Package)

S.S. Insert Hold Down, all series (Specify I-6000 or T-5000) 1.00S.S. Saddle Clip Only, I-6000 - 1" 2.00S.S. Saddle Clip Only, I-6000 - 1-1/2" 2.25S.S. Saddle Clip Only, T-5000 - 2" 3.251/4" - 20 x 1-1/4" S.S. Socket Head Cap Screw with Nut & Washer(For use with Hold Downs)

0.75

PoundsApprox.

S.S. Insert Panel Connector, all series 0.40S.S. Saddle Clip Panel Connector, I-6000 - 1" 0.29S.S. Saddle Clip Panel Connector, I-6000 - 1-1/2" 0.30S.S. Saddle Clip Panel Connector, T-5000 - 2" 0.30

Pounds Approx.(ln. ft.)

1" x 1-1/2" STOCKED 0.831-1/2" x 1-1/2" STOCKED 0.932" x 1-1/2" STOCKED 1.034" x 2-1/4" x 1/4" (Slate Gray) NS 5.33

PoundsApprox.

Sealing Kit - 1 pint 1.647" Tungston Carbide Tip Circular Blade 0.64Tungston Carbide Tip Saber Saw Blade 0.03

PULTRUDED FIBERGLASS GRATING & STAIR TREADS

Page 44: Manual Completo

- 8 -

MOLDED FIBERGLASS GRATING

*NOTE: Nosing is gritted and same color as stair tread.

GP — GENERAL POLYESTER RESIN SYSTEMPP — PREMIUM POLYESTER RESIN SYSTEM

VE — VINYL ESTER RESIN SYSTEMFF — FOOD GRADE RESIN SYSTEM

RESINS OPTIONS:

Thickness Mesh PanelSize

EstimatedWeight (lbs.)

1" 1" x 4" 3' x 10' 841" 1" x 4" 4' x 8' 901" 1" x 4" 4' x 12' 1351" 1-1/2" x 1-1/2" 3' x 10' 781" 1-1/2" x 1-1/2" 4' x 8' 831" 1-1/2" x 1-1/2" 4' x 12' 1251-1/2" 3/4" x 3/4" 4' x 12' 2091-1/2" 1-1/2" x 1-1/2" 3' x 10' 1141-1/2" 1-1/2" x 1-1/2" 4' x 8' 1221-1/2" 1-1/2" x 1-1/2" 4' x 12' 1831-1/2" 1-1/2" x 1-1/2" 5' x 10' 1901-1/2" 1-1/2" x 6" 4' x 12' 1682" 2" x 2" 4' x 12' 192

STAIR TREAD*1-1/2" 1-1/2" x 6" 22-1/2" x 10' 60

M Clip

J Clip

C Clip

Item(No Broken Packages)Type M Clip for 1" x 1" x 4" Rectangular Mesh Type M Clip for 1" x 1-1/2" Square Mesh Type M Clip for 1-1/2" x 1-1/2" Square Mesh nType M Clip Deep for 1-1/2" x 1-1/2" Square Mesh or 1-1/2" x 6" Rectangular Mesh Type M Clip for 2" x 2" Square Mesh o

Type J Clip for 1" Type J Clip for 1-1/2" Type J Clip for 2"

Type C Clip Assembly for 1"Type C Clip Assembly for 1-1/2"Type C Clip Assembly for 2"

(ALL CLIPS AND BOLTS S.S. 316)

• Other resins, colors and accessories available on special orders. Call factory for details.

ACCESSORY ITEMS

Typical bolts to use for Clips:1/4" x 1" Hex Head Cap Screw with Nut and Washer1/4" x 1-1/2" Hex Head Cap Screw with Nut and Washer1/4" x 1-3/4" Hex Head Cap Screw with Nut and Washer1/4" x 1-1/4" Socket Head Cap Screw with Nut and Washern1/4" x 2" Hex Head Cap Screw with Nut and Washero1/4" x 2-1/2" Hex Head Cap Screw with Nut and Washer

STOCKING LEVELS OF GRATING MAY VARY. CALL FOR PRICING, COLOR OPTIONS AND AVAILABILITY.

Page 45: Manual Completo

- 9 -

GP — GENERAL POLYESTER RESIN SYSTEMPP — PREMIUM POLYESTER RESIN SYSTEM

VE — VINYL ESTER RESIN SYSTEMFF — FOOD GRADE RESIN SYSTEM

RESINS OPTIONS:

Tread (inches) Thickness 1/8" Weight (.lbs) Thickness 1/4" Weight (.lbs)

8 16 319 18 3410 19 3711 21 4012 23 44

MOLDED FIBERGLASS STAIR TREAD COVERS

*All covers are 12' long. • No minimum on black with yellow nose covers. • The mininum order quantity for all other colors is 5 pieces.

STOCKING LEVELS MAY VARY. CALL FOR PRICING, COLOR OPTIONS AND AVAILABILITY.

FIBERGLASS HANDRAIL SYSTEMS ALL ITEMS GENERALLY ARE IN INVENTORY FOR IMMEDIATE SHIPMENT

SQUARE HANDRAIL SYSTEM COMPONENTS

ComponentWeight(lbs.)

2" x 2" x .156" Square Tube, Yellow Polyester Fire Retardant UV Inhibited @ 240" 0.95 / ft.2-3/8" x 2-3/8" x 3/16" Square Tube, Yellow Polyester Fire Retardant UV Inhibited @ 240" 1.36 / ft.4" Kickplate Yellow Polyester Fire Retardant UV Inhibited @ 240" 0.65 / ft.6" Kickplate Yellow Polyester Fire Retardant UV Inhibited @ 240" (1,200 ft. mill run) 0.73 / ft.Black End Caps 0.03 ea.Adjustable Corner Assembly (Total Assembly) 0.36 ea.90o Corner Plug 0.35 ea.Kickplate Splice 0.11 ea.Kickplate 90o Splice 0.15 ea.Split Tube 8" Length (for square handrail) 0.35 ea.Split Tube 4" Length (for square handrail) 0.18 ea.Split Tube 144" Length (for square handrail) 6.12 ea.6" Square Plug 0.76 ea.Square Plug 144" Length 18.24 ea.1/8" x 1-1/2" Tension Pins .04 / 10 pcs.Epoxy Kits - 1 Pint Clear 1.64 ea.FRP Base Plate with Post - Total Height 40" (Polyester) 5.50 ea.Alternate Handrail Post, 2-3/8" x 2-3/8" x 50", Routed Out, No Bottom Plugs 5.70 ea.90o Corner Sample 1.30 ea.Tee Sample 0.90 ea.

NOTE: UV Coating is recommended for exterior applications and is available at an additional cost.

Page 46: Manual Completo

- 10 -

CUSTOM FABRICATED HANDRAIL

Handrail may be ordered in custom colors and/or resins and may also be pre-fabricated. Prices and ship dates for custom fabricated handrail may be obtained by calling Strongwell Customer Service.

CUSTOM FIBERGLASS HANDRAIL SYSTEMS

CHANNEL TOP HANDRAIL SYSTEM COMPONENTSFor more information on the Channel Top option, please refer to the SAFRAIL™ brochure.

ComponentWeight(lbs.)

1" Diameter Mid Rail, Yellow Polyester Fire Retardant, UV Coated (5,000 linear feet min. run)Channel Top Handrail, Yellow Polyester Fire Retardant, UV Coated (5,000 linear feet min. run)2" x 2" x .156" Tube (for post), Yellow Polyester Fire Retardant, UV Coated 4" Kick Plate, Yellow Polyester Fire Retardant, UV Coated

NOTE: UV Coating is recommended for exterior applications and is available at an additional cost.

ROUND HANDRAIL SYSTEM COMPONENTS

ComponentWeight(lbs.)

1.9" OD x 1.5" ID Yellow Polyester Fire Retardant UV Inhibited 0.88 / ft.4" Kickplate Yellow Polyester Fire Retardant UV Inhibited @ 240" 0.65 / ft.Black End Caps 0.05 ea.Adjustable Corner Assembly (Total Assembly) 0.36 ea.90o Corner Assembly 0.35 ea.Intermediate Connectors 0.05 ea.Kickplate Splice 0.11 ea.Kickplate 90o Splice 0.15 ea.Split Tube, 1.5 x 4" (for round handrail) 0.15 ea.Split Tube, 1.5 x 8" (for round handrail) 0.30 ea.Round Connector, 1.5 x 8" 0.53 ea.1/8" x 1-1/2" Tension Pins 0.04 / 10 pcs.FRP Base Plate with Post, Total Height 39-9/16" (YFRPE) 5.50 / pc.Stainless Steel Kickplate Bracket 0.12 ea.1/4" x 1" Stainless Steel Bolt Assembly .05 ea.

FIBERGLASS HANDRAIL SYSTEMS ALL ITEMS GENERALLY ARE IN INVENTORY FOR IMMEDIATE SHIPMENT

Page 47: Manual Completo

- 11 -

FIBERGLASS BAFFLE WALL PANELS PANELS

Width in Inches PE Lbs. Per Lin. Ft.

12" NS 3.7024* NS 6.50

®

FIBERGLASS BUILDING PANEL SYSTEM

PANEL SYSTEM COMPONENTS

Components PE PE/FR VE/FR Lbs. Per Lin. Ft.

Panel** NS STOCKED NS 7.52Toggle NS STOCKED NS 0.333-Way Connector NS STOCKED NS 1.70Hangar NS NS NS 1.5545o Connector NS NS NS 1.753.42" x 1.3" x .125" Cap Channel *** NS STOCKED NS 0.603.665" x 2" x 1/4" Structural Cap Channel NS NS NS 1.30

FIBERGLASS FOAM CORE BUILDING PANEL SYSTEM

PANELS

Thickness in Inches PE PE/FR VE/FR Lbs. Per Lin. Ft.

1" NS NS NS 2.203" NS NS NS 7.85

®

FIBERGLASS HOLLOW CORE BUILDING PANEL SYSTEM

PANELS

Thickness in Inches PE PE/FR VE/FR Lbs. Per Lin. Ft.

1" NS NS NS 3.27

* Stocked in 24' length** Stocked in 20' and 24' lengths*** Also stocked in series 525 yellow, 20' lengths

Page 48: Manual Completo

- 12 -

FIBERGLASS DECKING PRODUCTS

FIBERGLASS INTERLOCKING DECKING SYSTEM

FIBERGLASS OVERLAPPING DECKING SYSTEM

FIBERGLASS ARCHITECTURAL DECKING SYSTEM

DECKING PANELS

Panel PE PE/FR VE/FR Lbs. Per Lin. Ft.

12" SAFPLANK® * NS STOCKED NS 2.5024" SAFPLANK® * NS STOCKED NS 5.00SAFDECK® ** NS STOCKED NS 3.75STRONGDEKTM ** NS NS NS 2.58

DECKING ACCESSORIES

Sizes in Inches PE PE/FR VE/FR Lbs. Per Lin. Ft.

2.2" x 1.063" x .563" x .080" Cap Channel NS NS NS 0.24STRONGDEKTM Starter Channel NS NS NS

FIBERGLASS STUDS AND NUTS

STUDS HEX NUTS

Sizes in InchesStuds Per Package

Package Weight (lbs.)

3/8 15 4.51/2 10 5.05/8 10 7.53/4 6 7.01 4 8.5

Sizes in InchesNuts Per Package

Package Weight (lbs.)

3/8 100 1.51/2 100 2.05/8 100 3.83/4 25 3.01 25 3.0

* Stocked in 20' and 24' lengths** Stocked in 24' lengths

Page 49: Manual Completo

- 13 -

FIBERGLASS BALLISTIC PANEL

UL LEVEL 1 (OFF WHITE)

UL LEVEL 2 (OFF WHITE)

UL LEVEL 3 (OFF WHITE)

Panel Lbs. Per Lin. Ft.

1/4" x 36" x 96" STOCKED 8.141/4" x 48" x 96" STOCKED 11.001/4" x 36" x 120" STOCKED 8.141/4" x 48" x 120" STOCKED 11.00

Panel Lbs. Per Lin. Ft.

.35" x 36" x 96" STOCKED 11.06

.35" x 48" x 96" STOCKED 14.32

.35" x 36" x 120" STOCKED 11.06

.35" x 48" x 120" STOCKED 14.32

Panel Lbs. Per Lin. Ft.

1/2" x 36" x 96" - Color: Off-white STOCKED 15.701/2" x 48" x 96" - Color: Off-white STOCKED 21.701/2" x 36" x 120" - Color: Off-white STOCKED 15.701/2" x 48" x 120" - Color: Off-white STOCKED 21.70

HS ARMOR PANELS

Page 50: Manual Completo

www.strongwell.com

CHATFIELD LOCATION1610 Highway 52 South, Chatfield, MN 55923-9799 USA

(507)867-3479 FAX (507)867-4031

CORPORATE OFFICES AND BRISTOL LOCATION400 Commonwealth Ave., P.O. Box 580, Bristol, VA 24201-3820 USA

(276)645-8000 FAX (276)645-8132

ISO-9001:2008 Quality Certified and ISO-14001:2004 Environmentally Certified Manufacturing Plants

®

ST0115© 2015 Strongwell

STOCKED ITEMSCarried in inventory, no minimum quantity required.

LENGTHS CUT FROM STOCK: Special lengths can be cut from stock shapes and rods. Plate can be cut to size desired from 48" x 96" stock. A fabrication cutting charge will be applied.

NONSTOCKED ITEMS Tooling available. Check for possible availability. SMALL QUANTITIES OF NONSTOCKED ITEMS: These are occasionally available because of overruns. Purchaser having a requirement for small quantities of nonstocked items should inquire about current inventory status. Such items are subject to prior sale, so delivery cannot be guaranteed.

MILL RUNSPECIAL MILL RUN VARIANCE: The pultrusion process does not lend itself to producing exact quantities. Mill runs may vary 10% on small orders, and as much as 3-5% on large orders. If minimum quantities are required, orders should be placed considering these variances.

GENERAL INFORMATION

EXTREN® SERIES 500

An all-purpose series utilizing an isophthalic polyester resin system with a UV inhibitor.

Color: olive green

EXTREN® SERIES 525

An all-purpose series utilizing a fire retardant isophthalic polyester resin system with a UV inhibitor.

Color: slate gray (plus certain handrail and fixed ladder components in yellow)

EXTREN® SERIES 625

A premium series — both fire retardant and highly corrosion resistant — utilizing a vinyl ester resin system with a UV inhibitor.

Color: beige

MINIMUM ORDER VALUEMinimum order value is $250.

COLORSSpecial colors are available for shapes and plate. Extra cost will vary, depending on cost, amount of pigment required, and standards of acceptability. Minimum quantities may apply.

SPECIAL RESINS AND FORMULAESpecial resins and resin mixes will be quoted specifically after resin mix has been tested for adaptability to the production process involved.

PACKAGINGIf other than standard packaging is required, contact Customer Service for additional costs.

TERMSAll products are manufactured in accordance to tolerance properties as published in Strongwell's Design Manual.

Strongwell's Standard Terms and Condition of Sale apply.

F.O.B./Ex Works dispatch location.

Note 1: Any Series 500, 525 and 625 EXTREN® product can be manufactured upon request to meet the mechanical and physical properties, as well as the dimensional and visual requirements of BS EN 13706 (E23) European standards. All standard EXTREN® products meet and/or exceed the structural requirements of E17 European standards.

Note 2: All EXTREN® Series 500 products can be produced to meet NSF potable water standards. Minimum quantities may apply. Only products bearing the NSF logo are certified.

METRIC SIZESMetric sizes of DURADEK® are available upon request. Contact Customer Service.

Page 51: Manual Completo

5-1

Section 5Tolerances

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.0410

SECTION 5

TOLERANCES

Page 52: Manual Completo

5-2

Section 5Tolerances

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.0410

INTRODUCTION

Strongwell utilizes ASTM D3917, Dimensional Tolerance of Thermosetting Glass-Reinforced Plastic Pultruded Shapes, for a definition of the dimensions to be toleranced for EXTREN®. Confusion can easily exist when the terms being discussed are only loosely defined. For example, ASTM D3917 makes a clear distinction between straightness, camber and flatness. Strongwell will work with the customer to define the particular dimensional requirements.

Another excellent source for terms utilized in the pultrusion industry is ASTM D3918, Standard Definition of Terms Relating to Reinforced Plastic Pultruded Products. Strongwell was extremely active in formulating both of these ASTM specifications and maintains a continued active working relationship on ASTM Committees.

For reference, classifying EXTREN® per ASTM D3647, Classifying Reinforced Plastic Pultruded Shapes According to Composition, yields the following:

EXTREN® Series 500/525 = GCPFEXTREN® Series 625 = GCVF

INSPECTIONStrongwell verifies the adherence to dimensional tolerances and visual standards for the initial part from all EXTREN® production runs. At Strongwell, this initial sample is known as the First Article. The Modulus of Elasticity is also verified by a simple beam deflection test which is performed on the production floor.

Strongwell’s production operators are an integral part of the Strongwell Quality Assurance program. The operators have been trained to inspect the product as it is produced with the quality assurance inspectors functioning as auditors and trainers.

TOLERANCESThe tolerances presented govern EXTREN® structural shapes and may not be arbitrarily applied to other pultruded profiles. Strongwell maintains an extremely active custom pultrusion business and these profiles place different demands on the composite design and dimensional tolerance. For example, EXTREN® structural shapes are balanced composites while custom composites, because of their special application, are not necessarily geometrically balanced.

In the tolerance section, some mathematical symbols will be used. These symbols are defined below:

> "greater than" with the tip of the arrow pointing to the smaller number. For example, if it is stated that "b > 2", this means that dimension "b" is greater than "2". Conversely, "b < 2" states that dimension "b" is less than 2".

≥ "greater than or equal to" with the tip of the arrow still pointing towards the smaller number. However, "b ≥ 2" now is interpreted as "b" is greater than or equal to "2".

NOTE:Standard tolerances will be assumed as the target specifications for custom shapes in the absence of any customer supplied specifications.

Strongwell straightness tolerances are based on straightness as defined in this section. Camber is a special custom requirement (also defined in this section for plate).

TOLERANCES

Page 53: Manual Completo

5-3

Section 5Tolerances

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.0410

STANDARD TOLERANCESOPEN SHAPES

NOTES:

For example, a 1/8" thickness would have a tolerance minimum of .125" - 10% = .112". An angle with a flange thickness of .090" would have a tolerance of .090" - .010" that is, a minimum tolerance of .080".

Regardless of the flange width, a tolerance of no greater than ± .094" is permit-ted. This maximum tolerance is to be used when 4% of "b" or "bf” exceeds 3/32”.

MAXIMUM OR SHAPE DIMENSION TOLERANCE MINIMUM (% of nominal) TOLERANCES

t = thickness -10% -.010” minimum b = flange width ± 4% ±.094" maximum

t = thickness -10% -.010" minimum CHANNELS bf = flange width ± 4% ±.094” maximum d = depth ± 4% ±.094" maximum

t = thickness -10% -.010" minimum W AND I SHAPES bf = flange width ± 4% ±.094” maximum d = depth ± 4% ±.094" maximum

ANGLES

tt

dd

t

b

b bfbf

Page 54: Manual Completo

5-4

Section 5Tolerances

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.0410

STRAIGHTNESS

As per ASTM D3917, straightness is the upward deviation of the structural shape when resting on a flat surface in such a manner that the weight of the pultruded shape minimizes the deviation.

LENGTH ALLOWABLE DEVIATION (in) All length in feet x .050” *

*Tested on a minimum length of 16 feet or the run length.

NOTE: Strongwell straightness tolerances are based on straightness as defined above. Camber, as defined in this section, is a special custom requirement.

TWIST

As per ASTM D3917 and ASTM D3918, twist describes the condition of a progressive rotation in the structural shape and is measured in such a manner that the weight of the pultruded shape minimizes the twist.

LARGEST ALLOWABLE DIMENSION-WIDTH OR DEPTH TWIST 1.5” or less 1o times length in feet

1.5” to 2.99” 0.5o times length in feet

3” and over 0.5o times length in feet

STANDARD TOLERANCESOPEN SHAPES

L

Page 55: Manual Completo

5-5

Section 5Tolerances

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.0410

ANGULARITY

As per ASTM D3917, angularity is the adherence of the angles in the pultruded shape to a specified value.

SPECIFIED ANGLE TOLERANCE

ALL ± 2o

FLATNESS (FLAT SURFACES)

As per ASTM D3917, flatness is the deviation from straight across the width of the dimension. Flatness can be contrasted with straightness, which specifies deviations along the length of the part.

WIDTH, b TOLERANCE

.008” per inch ALL of width .008” minimum

STANDARD TOLERANCESOPEN SHAPES

Page 56: Manual Completo

5-6

Section 5Tolerances

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.0410

STANDARD TOLERANCESTUBES

OUTSIDE DIMENSION SHAPE DIMENSION TOLERANCE CONDITIONS

t = thickness - 20% D < 2” - 15% D > 2” ROUND TUBE D = outside ± .020” D < 2” diameter ± 1% 2 < D < 4” ± 1.5% D > 4”

t = thickness - 20% b < 2” - 15% b > 2”

SQUARE TUBE b = outside ±.020” b < 2” dimension ± 1% 2 < b < 4” ± 1.5% b > 4”

tb or td = thickness - 20% b < 2” - 15% b > 2” RECTANGULAR TUBE d or b = outside ±.020” (d or b) < 2” dimension ±1% 2 < (d or b) < 4” ±1.5% (d or b) > 4”

NOTE:Tolerances of 1-3/4 x 1/8 and 1-3/4 x 1/4 vary from standard to provide telescoping of these sections.

b

tD

t

b

tdd

tb

Page 57: Manual Completo

5-7

Section 5Tolerances

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.0410

STANDARD TOLERANCESTUBES

STRAIGHTNESS

As per ASTM D3917, straightness is the upward deviation of the pultruded shape when resting on a flat surface in such a manner that the weight of the pultrusion minimizes the deviation.

SPECIFIED OUTSIDE DIMENSION ALLOWABLE DEVIATION (in)

2” or less .020” per foot of length > 2” .030” per foot of length

NOTE: Strongwell straightness tolerances are based on straightness as defined above. Camber, as defined in this section, is a special custom requirement.

TWIST

As per ASTM D3917 and ASTM D3918, twist describes the condition of a progressive rotation in the pultruded shape and is measured in such a manner that the weight of the pultruded shape minimizes the deviation.

LARGEST ALLOWABLE MAXIMUM OUTSIDE DIMENSION TWIST TWIST

1.5” or less 1o per foot 7o

of length

> 1-1/2” 1/2o per foot 5o

of length

ANGULARITY

As per ASTM D3917, angularity is the adherence of the angles in the pultruded shape to a specified value.

SPECIFIED ANGLE TOLERANCE

ALL 2o

FLATNESS (FLAT SURFACES)

As per ASTM D3917, flatness is the deviation from straightness across the width of the dimension. Flatness can be contrasted with straightness which specifies deviations along the length of the part.

WIDTH, b TOLERANCE

.008” per inch of ALL outside dimension

.008” minimum

twist

specified angle

b

Page 58: Manual Completo

5-8

Section 5Tolerances

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.0410

b

bD

twist

b

STANDARD TOLERANCESROUND AND SQUARE BAR

STRAIGHTNESS

As per ASTM D3917, straightness is the upward deviation of a pultruded shape when resting on a flat surface in such a manner that the weight of the pultrusion (or pultruded shape) minimizes the deviation.

TWIST (BAR ONLY)

As per ASTM D3917, and ASTM D3918, twist describes a condition of a progressive rotation on the pultruded shape and is measured in such a manner that the weight of the pultruded shape minimizes the deviation.

FLATNESS (FLAT SURFACES)

As per ASTM D3917, flatness is the deviation from straight across the width of the part.

NOTE: Strongwell straightness tolerances are based on straightness as defined above. Camber, as defined in this section, is a special custom requirement.

SHAPE DIMENSION TOLERANCE CONSTRAINTS

ROUND ROD outside diameter (D) ±.020” D < 3”

SQUARE BAR outside diameter (b) ±.020” b < 3”

OUTSIDE DIMENSION TOLERANCE (in)

< 1” .020” per foot of length

> 1” .030” per foot of length

LARGEST OUTSIDE ALLOWABLE DIMENSION TWIST

b < 1” 1° per foot of length b > 1” 0.5° per foot of length

WIDTH, b ALLOWABLE TOLERANCE

.008” per inch of All outside dimension

.008” minimum

Page 59: Manual Completo

5-9

Section 5Tolerances

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.0410

CAMBER

As per ASTM D3917, camber is the allowable deviation of the side from a straight line.

THICKNESS ALLOWABLE TOLERANCE (in)

ALL .025” times the length in feet

b

t

STANDARD TOLERANCESPLATE

NOMINAL PLATE WIDTH DIMENSION TOLERANCE

ALLOWABLE TOLERANCE

48”t = thickness -10% of thickness - .040” maximumb = width ±3% of the width ±.094” maximum

60” b = width - 3/16”, + 0” 59-13/16” - 60”

Page 60: Manual Completo

5-10

Section 5Tolerances

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.0410

STANDARD TOLERANCESMISCELLANEOUS

CUT LENGTHS

SPECIFIED LENGTHS (ft) ALLOWABLE TOLERANCE*

to 8’ -0”, + 0.250” > 8’ - 20’ -0”, + 0.375” > 20’ - 24’ -0”, + 0.500” > 24’ -0”, + 3.000”

*Applies only to structural shapes and plate.

SQUARENESS OF END CUT

SHAPE ALLOWABLE TOLERANCE

PLATE ± 1o

OTHER EXTREN® SHAPES ± 1o

Page 61: Manual Completo

SECTION 6 - ELEMENTS OF SECTIONS

Table of Contents

Symbols for Elements of Sections ..................................... 6-2

Introduction ....................................................................... 6-3

Large EXTREN® Structural Shapes ................................... 6-3

Double Web Beams ........................................................... 6-3

EXTREN® W-Shapes ......................................................... 6-4

EXTREN® I-Shapes ........................................................... 6-5

EXTREN® Channels .......................................................... 6-6

EXTREN® Equal Leg Angles ............................................. 6-7

Structural Tees (Cut from EXTREN® W & I-Shapes) ......... 6-8

Double EXTREN® Channels .............................................. 6-9

Double Angles / EXTREN® Equal Leg Angles ................. 6-10

EXTREN® Round Tubes .................................................. 6-11

EXTREN® Square Tubes ................................................. 6-12

EXTREN® Rectangular Shapes ....................................... 6-13

Square Bars ..................................................................... 6-14

Round Rod ...................................................................... 6-14

EXTREN® Construction Grade Plate ............................... 6-15

Flat Strips ........................................................................ 6-16

TablesF Section ......................................................................... 6-17

Unequal Leg Angle .......................................................... 6-17

Struts ............................................................................... 6-18

Kick Plate ......................................................................... 6-18

Square Tube / Round Hole .............................................. 6-18

Z-Section ......................................................................... 6-19

Slide Guide ...................................................................... 6-19

Flight Channel ................................................................. 6-20

Curb Angles ..................................................................... 6-21

SAFRAILTM Post or Rail Section ...................................... 6-21

SAFRAILTM Round Handrail Post or Rail Section ............ 6-22

Half Round Rail Section .................................................. 6-22

Page 62: Manual Completo

6-1

Section 6Elements of Sections

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.1013

SECTION 6

ELEMENTS OF SECTIONS

Look for this blue line in the left margin of the Design Manual documents. This line shows you where the latest update has been made.

Page 63: Manual Completo

6-2

Section 6Elements of Sections

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.1013

A Cross-sectional area (in2)

Aw Cross-sectional area of web or webs (in2)

D Outside diameter of round tube (in) Diameter of round rod (in) Diameter of round hole in square tube (in)

I Moment of Inertia (in4)

J Torsional constant (in4)

R Radius (in)

Rf Flange toe radius (in)

Ri Radius of inside corner (in)

Ro Radius of outside corner (in)

S Section modulus (in3)

Sb Section modulus from the bottom of an unsymmetrical section (in3)

St Section modulus from the top of an unsymmetrical section (in3)

Wt Weight of section (lbs)

b Width of section (in) Outside dimension of square tube or bar (in)

bf Width of flange (in)

b1 Width between flange section in strut (in) Top width of hat section (in)

d Full depth of section (in)

d1 Outer depth of shape in F section (in)

r Radius of gyration (in)

s Spacing between back to back channels or angles (in)

t Thickness of section (in) Wall thickness of tubes (in)

tb Thickness of width dimension (in)

td Thickness of depth dimension (in)

tf Thickness of flange (in)

tw Thickness of web (in)

x Distance from the outside of the web to the minor (Y-Y) axis of a channel section or other similar unsymmetrical sections (in)

y Distance from neutral X-X axis to the outer-most fibers of a cross section (in) Distance from the back of the flange to the major (X-X) axis of a tee section or other similar unsymmetrical sections (in)

SYMBOLS FOR ELEMENTS OF SECTIONS

Page 64: Manual Completo

6-3

Section 6Elements of Sections

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.1013

INTRODUCTION

The values shown in the following tables have been computed from the nominal dimensions of the shapes.

The tables are arranged in ascending order of sizes with values tabulated for quick reference when selecting members for design requirements. Note that section properties are given for both “strong” (X-X), and “weak” (Y-Y) axis for the nonsymmetrical shapes.

Some shapes may not be stocked at all times as regular inventory items so the designer should consult the Availability List before selecting a specific size for an application.

LARGE EXTREN® STRUCTURAL SHAPES

18” AND 24” EXTREN® FIBERGLASS I-SHAPES

The 18” and 24” EXTREN® I-Shapes are the largest standard structural shapes pultruded. Their design properties will allow the engineer to design larger all-composite structures, spanning greater distances than were ever possible with standard pultruded fiberglass structural shapes.

As can be seen from the ELEMENTS OF SECTION tables, the EXTREN® 24” I-beam has a moment of inertia of 1903 in4, more than four times as stiff as the EXTREN® 12” x 12” x 1/2” W-shape. This means that for the longer spans when shear deflections are negligible, the I-24 will carry the same load as the W-12 at any given span and produce about 1/4 the deflection. Or stated another way, when shear deflection is negligible, the I-24 can carry four times the load of the W-12 and produce about the same deflection.

The EXTREN® 18” and 24” I-shapes, with their unique thick flange construction, assure the engineer that stress will not normally control the design when the compression flange is adequately laterally supported. Other sections in this chapter offer suggestions for effective lateral bracing systems.

The designer is also cautioned that, at points of concentrated loads and at supports, it may be necessary to add stiffeners between the flanges. This is referenced in Section 8 — FLEXURAL MEMBERS (BEAMS) of the Strongwell Design Manual.

ELEMENTS OF SECTIONS

DOUBLE WEB BEAMS

8” AND 36” EXTREN DWB®

Strongwell presently produces two different sizes of double web I-beams, an 8” x 6” DWB and the 36” x 18” DWB. They are offered in both “all glass” and “hybrid” forms.

The carbon/glass hybrid (hybrid refers to the combination of the dual carbon and glass reinforcements) beam has a flexural modulus of elasticity that is approximately 6.0 x 106 psi, compared to that of a standard EXTREN® wide flange which ranges between 2.6 to 2.8 x 106 psi.

Additionally, the double web shape has significantly improved the torsional stability of the beam under load. This increased stability is very significant and reduces the beams need for lateral bracing.

Section 17 — EXTREN DWB® DESIGN GUIDE is devoted to design information from the 8” x 6” shape and the 36” x 18” shape.

Page 65: Manual Completo

6-4

Section 6Elements of Sections

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.1013

2 2 1/8 1/8 0.72 0.52 1/16 0.50 0.50 0.83 0.17 0.17 0.48 16.00 0.22 0.004 3 3 1/4 1/4 2.13 1.69 1/8 3.17 2.11 1.22 1.13 0.75 0.73 12.00 0.63 0.044 4 4 1/4 1/4 2.89 2.22 1/8 7.94 3.97 1.66 2.67 1.34 0.97 16.00 0.88 0.060 6 6 1/4 1/4 4.39 3.52 1/8 28.28 9.43 2.54 9.00 3.00 1.44 24.00 1.38 0.091 6 6 3/8 3/8 6.48 5.13 3/16 40.17 13.40 2.50 13.52 4.50 1.45 16.00 1.97 0.303 8 8 3/8 3/8 8.73 6.97 3/16 99.18 24.80 3.38 32.03 8.01 1.92 21.33 2.72 0.409 8 8 1/2 1/2 11.51 9.23 1/4 127.06 31.76 3.33 42.74 10.69 1.93 16.00 3.50 0.958 10 10 3/8 3/8 10.98 8.78 1/4 198.82 39.70 4.26 62.54 12.50 2.39 26.67 3.47 0.514 10 10 1/2 1/2 14.55 11.64 1/4 256.20 51.20 4.22 83.42 16.65 2.40 20.00 4.50 1.208 12 12 1/2 1/2 17.51 13.98 1/4 452.70 75.50 5.07 144.10 24.00 2.88 24.00 5.50 1.458

PHYSICAL PROPERTIES SECTION PROPERTIES DESIGN PROPERTIES SIZE AXIS X—X AXIS Y—Y

d bf tw tf I S r I S r

in in in in in2 lbs in in4 in3 in in4 in3 in in2 in4

A RfNOM. Wt/ft

Aw Jbf

tf

EXTREN® W-SHAPES

X X

Y

Y

Rf

bf

tw

tf

d

Page 66: Manual Completo

6-5

Section 6Elements of Sections

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.1013

2 1 1/8 1/8 0.47 0.34 1/16 0.28 0.28 0.77 0.02 0.04 0.21 8.00 0.22 0.002 3 1-1/2 1/4 1/4 1.38 1.11 1/8 1.75 1.17 1.13 0.14 0.19 0.32 6.00 0.63 0.029 4 2 1/4 1/4 1.89 1.48 1/8 4.40 2.20 1.54 0.34 0.34 0.43 8.00 0.88 0.039 5-1/2 2-1/2 1/4 1/4 2.48 1.95 1/8 11.12 4.04 2.12 0.62 0.50 0.50 10.00 1.25 0.055 6 3 1/4 1/4 2.88 2.31 1/8 15.92 5.32 2.36 1.13 0.76 0.63 12.00 1.38 0.060 6 3 3/8 3/8 4.23 3.39 3/16 22.30 7.43 2.31 1.71 1.14 0.64 8.00 1.97 0.198 8 4 3/8 3/8 5.73 4.61 3/16 55.45 13.85 3.12 4.03 2.02 0.84 10.67 2.72 0.268 8 4 1/2 1/2 7.51 6.03 1/4 70.62 17.65 3.08 5.41 2.71 0.85 8.00 3.50 0.625 10 5 3/8 3/8 7.23 5.78 3/16 111.67 22.33 3.93 7.85 3.14 1.04 13.33 3.47 0.338 10 5 1/2 1/2 9.51 7.58 1/4 143.48 28.70 3.90 10.51 4.22 1.06 10.00 4.50 0.788 12 6 1/2 1/2 11.51 9.24 1/4 254.10 42.30 4.70 18.11 6.05 1.26 12.00 5.50 0.958 18 4-1/2 3/8 1/2 11.09 8.34 1/2 513.30 57.00 6.80 7.67 3.41 0.83 9.00 6.38 0.674 24 7-1/2 3/8 3/4 19.90 16.10 1/2 1903.40 158.60 9.80 52.83 14.09 1.63 10.00 8.43 2.510

PHYSICAL PROPERTIES SECTION PROPERTIES DESIGN PROPERTIES SIZE AXIS X—X AXIS Y—Y

d bf tw tf I S r I S r

in in in in in2 lbs in in4 in3 in in4 in3 in in2 in4

A RfNOM. Wt/ft

Aw Jbf

tf

EXTREN® I-SHAPES

X X

Y

Y

Rf

bf

tw

tf

d

Page 67: Manual Completo

6-6

Section 6Elements of Sections

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.1013

PHYSICAL PROPERTIES SECTION PROPERTIES DESIGN PROPERTIES SIZE AXIS X—X AXIS Y—Y

d bf tw tf I S r I S r x

in in in in in2 lbs in in in4 in3 in in4 in3 in in in2 in4

A Ri Ro

NOM. Wt/ft Aw Jbf

tf

EXTREN® CHANNELS

X X

Y

Y

Ri

bf

tw

tf

d

Ro x

R = tf/2

1-1/2 1 3/16 3/16 0.59 0.46 1/8 5/16 0.18 0.24 0.56 0.04 0.06 0.26 0.35 5.33 0.21 0.010 1-1/2 1-1/2 1/4 1/4 1.00 0.75 1/8 3/8 0.32 0.42 0.56 0.22 0.24 0.38 0.59 6.00 0.25 0.020 2 9/16 1/8 1/8 0.34 0.26 1/16 3/16 0.18 0.18 0.71 0.01 0.02 0.15 0.15 4.50 0.22 0.001 2 7/8 1/4 1/4 0.80 0.65 1/8 1/8 0.40 0.40 0.70 0.03 0.13 0.21 0.26 3.50 0.38 0.016 2-5/8 1-1/4 1/8 3/16 0.75 0.62 1/8 3/16 0.82 0.62 1.04 0.12 0.14 0.40 0.42 6.67 0.28 0.007 3 7/8 1/4 1/4 1.00 0.77 1/8 3/8 1.15 0.77 1.04 0.06 0.09 0.23 0.25 3.50 0.62 0.020 3 1 3/16 3/16 0.87 0.68 1/8 5/16 1.03 0.68 1.09 0.07 0.09 0.28 0.27 5.33 0.49 0.010 3 1-1/2 1/4 1/4 1.31 1.05 1/8 3/8 1.81 1.21 1.18 0.25 0.53 0.44 0.47 6.00 0.63 0.027 3-1/2 1-1/2 3/16 3/16 1.11 0.88 1/8 5/16 1.91 1.09 1.31 0.19 0.18 0.41 0.42 8.00 0.59 0.013 4 1-1/16 1/8 1/8 0.71 0.58 1/8 1/4 1.55 0.78 1.45 0.06 0.08 0.29 0.23 8.50 0.47 0.004 4 1-1/8 1/4 1/4 1.38 1.11 1/8 3/8 2.87 1.43 1.41 0.13 0.15 0.30 0.30 4.50 0.88 0.030 4 1-3/8 3/16 3/16 1.16 0.94 1/8 5/16 2.62 1.31 1.48 0.19 0.18 0.40 0.35 7.33 0.68 0.014 5 1-3/8 1/4 1/4 1.76 1.40 1/8 3/8 5.78 2.31 1.79 0.25 0.24 0.37 0.34 5.50 1.12 0.040 5-1/2 1-1/2 3/16 3/16 1.49 1.19 1/8 5/16 5.80 2.11 1.98 0.22 0.19 0.38 0.34 8.00 0.96 0.018 5-1/2 1-1/2 1/4 1/4 2.00 1.55 1/8 5/16 7.78 2.83 1.97 0.33 0.29 0.41 0.36 6.00 1.25 0.042 6 1-5/8 1/4 1/4 2.13 1.68 1/8 3/8 10.22 3.41 2.16 0.43 0.35 0.44 0.38 6.50 1.38 0.050 6 1-11/16 3/8 3/8 3.23 2.46 3/16 9/16 14.55 4.85 2.12 0.54 0.44 0.41 0.44 4.50 1.97 0.150 8 2-3/16 1/4 1/4 2.97 2.32 1/8 3/8 25.22 6.31 2.91 1.10 0.65 0.61 0.49 8.75 1.88 0.060 8 2-3/16 3/8 3/8 4.36 3.41 3/16 9/16 35.75 8.94 2.87 1.42 0.86 0.57 0.53 5.83 2.72 0.200 10 2-3/4 1/2 1/2 7.25 5.50 3/8 3/4 92.46 18.49 3.57 3.99 1.93 0.74 0.68 5.50 4.50 0.600 12 3 1/2 1/2 8.17 6.30 3/8 7/8 142.8 23.8 4.18 5.07 2.20 0.79 0.70 6.00 5.50 0.750 14 3-1/2 3/4 3/4 14.62 11.21 3/8 1-1/8 352.74 50.39 4.91 12.16 4.62 0.91 0.87 4.67 9.38 2.742 18 2-3/16 3/16 3/8 4.14 3.88 1/16 1/4 151.02 16.78 6.04 1.00 0.55 0.53 0.29 11.67 3.31 0.049 24 3 1/4 1/4 7.60 5.85 3/8 1/8 484.33 40.36 7.98 3.56 1.34 0.68 0.35 11.54 6.10 0.173

Page 68: Manual Completo

6-7

Section 6Elements of Sections

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.1013

PHYSICAL PROPERTIES SECTION PROPERTIES DESIGN PROPERTIES SIZE AXIS X—X or Y—Y AXIS Z–Z

b t I S r x or y I r

in in in2 lbs in4 in3 in in in4 in in4

A NOM. Wt/ft J

EXTREN® EQUAL LEG ANGLES

b

t

X X

Y

Y

R=1/8

b

t

b

R = t/2

y

Z

45˚ x

Z

1 1/8 0.22 0.17 0.02 0.03 0.30 0.29 0.01 0.19 8.00 0.001 1-1/4 1/8 0.29 0.22 0.04 0.05 0.37 0.35 0.02 0.24 10.00 0.002 1-1/4 3/16 0.42 0.35 0.06 0.07 0.37 0.37 0.03 0.24 6.67 0.005 1-1/2 1/8 0.35 0.28 0.07 0.07 0.45 0.41 0.03 0.29 12.00 0.002 1-1/2 3/16 0.51 0.41 0.11 0.10 0.45 0.44 0.04 0.29 8.00 0.006 1-1/2 1/4 0.67 0.50 0.13 0.13 0.44 0.46 0.06 0.29 6.00 0.007 2 1/8 0.48 0.37 0.19 0.13 0.63 0.55 0.08 0.46 16.00 0.002 2 3/16 0.70 0.56 0.27 0.19 0.61 0.56 0.11 0.39 10.67 0.008 2 1/4 0.92 0.73 0.34 0.24 0.60 0.58 0.14 0.39 8.00 0.020 3 1/4 1.42 1.13 1.18 0.54 0.91 0.82 0.49 0.58 12.00 0.030 3 3/8 2.09 1.66 1.70 0.80 0.90 0.87 0.70 0.58 8.00 0.090 4 1/4 1.92 1.54 2.94 1.00 1.23 1.07 1.21 0.79 16.00 0.040 4 3/8 2.84 2.31 4.26 1.48 1.22 1.12 1.75 0.78 10.67 0.134 4 1/2 3.75 2.86 5.56 1.97 1.22 1.18 2.29 0.78 8.00 0.312 5 1/2 4.71 3.68 11.34 3.35 1.55 1.61 4.87 1.02 10.00 0.390 6 1/4 2.94 2.35 10.70 2.43 1.91 1.59 4.36 1.22 24.00 0.061 6 3/8 4.34 3.44 14.85 3.38 1.85 1.60 6.07 1.18 16.00 0.204 6 1/2 5.72 4.64 19.38 4.46 1.84 1.66 7.92 1.17 12.00 0.480

Page 69: Manual Completo

6-8

Section 6Elements of Sections

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.1013

X X

Y

Y

Rf

bf

tw

tf

d

y

1-1/2 3 1/4 1/4 1.06 0.85 1/4 0.17 0.48 0.15 0.40 0.35 0.56 0.37 0.73 12.00 0.31 0.021 2 4 1/4 1/4 1.44 1.11 1/4 0.42 0.98 0.27 0.54 0.43 1.34 0.67 0.96 16.00 0.44 0.029 3 6 1/4 1/4 2.19 1.76 1/4 1.50 7.50 0.62 0.83 0.60 4.50 1.50 1.43 24.00 0.69 0.044 3 6 3/8 3/8 3.24 2.57 3/8 2.13 3.33 0.90 0.81 0.64 6.76 2.25 1.44 16.00 0.98 0.145 4 8 3/8 3/8 4.36 3.49 3/8 5.27 6.50 1.65 1.10 0.81 16.01 4.00 1.92 21.33 1.36 0.198 4 8 1/2 1/2 5.76 4.62 1/2 6.74 7.84 2.14 1.08 0.86 21.37 5.34 1.93 16.00 1.75 0.459 5 10 3/8 3/8 5.48 4.39 3/8 10.55 10.76 2.62 1.39 0.98 31.27 6.25 2.39 26.67 1.73 0.251 5 10 1/2 1/2 7.28 5.82 1/2 13.60 13.33 3.42 1.39 1.02 41.71 8.34 2.39 20.00 2.25 0.584 6 12 1/2 1/2 8.76 6.99 1/2 24.03 20.19 5.00 1.66 1.19 72.05 12.01 2.87 24.00 2.75 0.709

3 3 1/4 1/4 1.44 1.16 1/4 1.24 1.48 0.57 0.93 0.84 0.57 0.38 0.63 12.00 0.69 0.029 3 3 3/8 3/8 2.11 1.70 3/8 1.76 1.98 0.83 0.91 0.89 0.86 0.57 0.64 8.00 0.98 0.093 4 4 3/8 3/8 2.86 2.31 3/8 4.36 3.82 1.52 1.23 1.14 2.02 1.01 0.86 10.67 1.36 0.128 4 4 1/2 1/2 3.75 3.02 1/2 5.56 4.71 1.97 1.22 1.18 2.70 1.35 0.85 8.00 1.75 0.293 5 5 3/8 3/8 3.61 2.89 3/8 8.74 6.29 2.42 1.55 1.39 3.93 1.57 1.04 13.33 1.73 0.163 5 5 1/2 1/2 4.75 3.79 1/2 11.25 7.87 3.16 1.54 1.43 5.26 2.10 1.05 10.00 2.25 0.376 6 6 1/2 1/2 5.75 4.62 1/2 19.91 11.85 4.61 1.86 1.68 9.06 3.02 1.26 12.00 2.75 0.456

PHYSICAL PROPERTIES SECTION PROPERTIES DESIGN PROPERTIES SIZE AXIS X—X AXIS Y—Y

d bf tw tf I St Sb r y I S r in in in in in2 lbs in in4 in3 in3 in in in4 in3 in in2 in4

A Rf

NOM. Wt/ft Aw Jbf

tf

STRUCTURAL TEES

CUT FROM EXTREN® I-SHAPES

CUT FROM EXTREN® W-SHAPES

Page 70: Manual Completo

6-9

Section 6Elements of Sections

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.1013

1-1/2 1-1/2 1/4 1/4 2.00 1.50 0.64 0.85 0.56 0.75 0.70 0.81 0.92 3 1 3/16 3/16 1.74 1.36 2.06 1.37 1.09 1.50 0.39 0.48 0.59 3 7/8 1/4 1/4 2.01 1.54 2.31 1.54 1.04 1.50 0.35 0.46 0.56 4 1-3/8 3/16 3/16 2.32 1.88 5.25 2.62 1.43 2.00 0.53 0.62 0.72 4 1-1/8 1/4 1/4 2.76 2.22 5.74 2.87 1.48 2.00 0.42 0.52 0.63 5 1-3/8 1/4 1/4 3.52 2.80 11.56 4.62 1.79 2.50 0.50 0.59 0.70 6 1-5/8 1/4 1/4 4.26 3.36 20.44 6.82 2.16 3.00 0.59 0.68 0.79 6 1-11/16 3/8 3/8 6.47 4.92 29.10 9.70 2.12 3.00 0.63 0.73 0.83 8 2-3/16 1/4 1/4 5.94 4.64 50.44 12.62 2.91 4.00 0.80 0.87 0.96 8 2-3/16 3/8 3/8 8.72 6.82 71.50 17.88 2.87 4.00 0.78 0.87 0.97 10 2-3/4 1/2 1/2 14.50 11.00 184.92 36.99 3.57 5.00 1.00 1.09 1.19 14 3-1/2 3/4 3/4 29.25 22.42 705.48 100.78 4.91 7.00 1.26 1.35 1.44 18 2-3/16 3/16 3/16 8.27 7.76 302.03 33.56 6.04 9.00 0.58 0.65 0.74

PHYSICAL PROPERTIES SECTION PROPERTIES SIZE AXIS X—X RADII OF GYRATION AXIS Y-Y

d bf tw tf 2 chan 2 chan I S r y s, BACK TO BACK OF CHANNELS - IN.

in in in in in2 lbs in4 in3 in in 0 1/4 1/2

A NOM. Wt/ft

DOUBLE EXTREN® CHANNELS

XX

Y

Y

s

y

Page 71: Manual Completo

6-10

Section 6Elements of Sections

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.1013

PHYSICAL PROPERTIES SECTION PROPERTIES SIZE AXIS X—X RADII OF GYRATION AXIS Y-Y

b t 2 angles 2 angles I S r y s, BACK TO BACK OF ANGLES - IN. in in in2 lbs in4 in3 in in 0 1/4 1/2 1-1/2 1/4 1.34 1.00 0.26 0.26 0.44 0.46 0.64 0.73 0.84 2 1/4 1.84 1.46 0.68 0.48 0.60 0.58 0.85 0.94 1.04 3 1/4 2.84 2.26 2.36 1.08 0.91 0.82 1.25 1.34 1.43 3 3/8 4.18 3.32 3.40 1.60 0.90 0.87 1.27 1.36 1.46 4 1/4 3.84 3.08 5.88 2.00 1.23 1.07 1.66 1.74 1.83 4 3/8 5.68 4.62 8.52 2.96 1.22 1.12 1.68 1.77 1.86 4 1/2 7.50 5.72 11.12 3.94 1.22 1.18 1.70 1.78 1.88 6 1/4 5.88 4.70 21.40 4.88 1.91 1.59 2.50 2.58 2.67 6 3/8 8.68 6.88 29.70 6.76 1.85 1.60 2.49 2.58 2.66 6 1/2 11.44 9.28 38.76 8.92 1.84 1.66 2.51 2.59 2.65

A NOM. Wt/ft

DOUBLE ANGLESEXTREN® EQUAL LEG ANGLESEXEQ

X X

Y

Y

s

y

Page 72: Manual Completo

6-11

Section 6Elements of Sections

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.1013

1 1/8 0.34 0.25 0.034 0.07 0.31 8.00 0.07 1-1/4 1/8 0.44 0.32 0.07 0.11 0.40 10.00 0.14 1-1/2 1/8 0.54 0.45 0.13 0.17 0.49 12.00 0.26 1-1/2 1/4 0.98 0.79 0.20 0.27 0.45 6.00 0.40 1-3/4 1/8 0.64 0.47 0.21 0.24 0.58 14.00 0.42 1-3/4 1/4 1.18 0.94 0.34 0.39 0.54 7.00 0.68 2 1/8 0.74 0.60 0.32 0.32 0.66 16.00 0.65 2 1/4 1.37 1.12 0.54 0.54 0.62 8.00 1.07 2-1/2 1/4 1.77 1.43 1.13 0.91 0.80 10.00 2.26 2-3/4 1/4 1.96 1.47 1.55 1.13 0.89 11.00 3.10 2-3/4 3/8 2.80 2.19 2.02 1.47 0.85 7.33 4.04 3 1/4 2.16 1.70 2.06 1.37 0.98 12.00 4.12 3-1/2 .140 1.48 1.21 2.09 1.19 1.19 25.00 4.18 3-1/2 1/2 4.71 3.79 5.45 3.11 1.08 7.00 10.90 4 1/4 2.94 2.36 5.20 2.60 1.33 16.00 10.40 5 1/4 3.73 3.08 10.55 4.22 1.68 20.00 21.10 6 1/8 2.31 1.92 9.96 3.32 2.08 48.00 19.92 6 1/4 4.52 3.76 18.70 6.23 2.04 24.00 37.40

EXTREN® ROUND TUBES PHYSICAL PROPERTIES SECTION PROPERTIES DESIGN PROPERTIES SIZE

D t

in in in2 lbs in4 in3 in in4

A I S r JNOM. Wt/ft D

t

Dt

Page 73: Manual Completo

6-12

Section 6Elements of Sections

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.1013

bt

X

Y

b

X

Y

Ri

Ro

1 1/8 0.43 0.32 5/32 1/32 0.06 0.11 0.36 0.19 8.00 0.060 1-1/4 1/8 0.56 0.41 5/32 1/32 0.12 0.19 0.46 0.25 10.00 0.178 1-1/2 1/8 0.68 0.50 5/32 1/32 0.22 0.29 0.56 0.31 12.00 0.325 1-1/2 1/4 1.24 0.98 5/32 1/32 0.34 0.45 0.52 0.50 6.00 0.488 1-3/4 1/8 0.81 0.64 5/32 1/32 0.36 0.41 0.67 0.38 14.00 0.536 1-3/4 1/4 1.49 1.19 5/32 1/32 0.58 0.66 0.62 0.63 7.00 0.844 2 1/8 0.93 0.74 5/32 1/8 0.55 0.55 0.77 0.44 16.00 0.824 2 1/4 1.74 1.40 5/32 1/8 0.91 0.91 0.73 0.75 8.00 1.339 2-1/2 1/4 2.25 1.79 5/32 1/32 1.92 1.54 0.92 1.00 10.00 2.848 3 1/8 1.43 1.16 5/32 1/32 1.98 1.32 1.18 0.69 24.00 2.970 3 1/4 2.74 2.20 5/32 1/32 3.50 2.33 1.13 1.25 12.00 5.199 3 3/8 3.90 3.09 5/32 1/8 4.53 3.02 1.08 1.69 8.00 6.780 3-1/2 1/4 3.25 2.57 5/32 1/8 5.86 3.35 1.34 1.50 14.00 8.582 4 1/4 3.74 3.08 5/32 1/32 8.82 4.41 1.53 1.75 16.00 13.183 4 3/8 5.48 4.28 5/32 1/8 11.90 5.95 1.48 2.44 10.67 17.860 6 3/8 8.16 6.46 5/8 1/4 42.41 14.14 2.28 3.94 16.00 66.740

EXTREN® SQUARE TUBES

PHYSICAL PROPERTIES SECTION PROPERTIES DESIGN PROPERTIES SIZE

b t

in in in2 lbs in in in4 in3 in in2 in4

NOM. Wt/ft b

t

Aw2

Webs A Ro Ri I S r J

RADII

NOTE: Telescoping of square tubes cannot be guaranteed due to thickness tolerances.

Page 74: Manual Completo

6-13

Section 6Elements of Sections

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.1013

222 Webs

EXTREN® RECTANGULAR SHAPES

2-1/2 1-5/8 1/8 1/8 0.97 0.75 1/8 1/4 0.81 0.65 0.91 0.41 0.50 0.71 0.56 0.34 13.00 20.00 0.82 4 2 1/8 1/4 1.88 1.52 .094 1/16 4.41 2.21 1.53 1.10 1.10 0.77 0.94 0.75 8.00 32.00 2.64 5-1/2 3-1/2 1/4 1/4 4.14 3.25 3/8 1/8 16.50 6.00 1.99 8.10 4.63 1.40 2.50 1.50 14.00 22.00 17.12 6-1/2 2 1/4 1/2 4.75 3.77 1/16 1/16 24.97 7.68 2.29 2.79 2.79 0.77 2.75 1.50 4.00 26.00 8.02 7 4 1/4 1/4 5.25 4.10 1/4 1/4 34.14 9.75 2.55 14.06 7.03 1.64 3.25 1.75 16.00 28.00 30.50 9 6 5/16 5/16 8.76 6.99 9/16 1/4 101.38 22.53 3.40 53.61 17.87 2.47 5.29 3.42 19.20 28.80 106.00 9 6 7/16 7/16 12.10 9.70 9/16 1/8 130.40 29.00 3.28 68.70 22.90 2.38 7.10 4.48 13.70 20.60 140.00

PHYSICAL PROPERTIES SECTION PROPERTIES DESIGN PROPERTIES

SIZE RADII AXIS X-X AXIS Y-Y Aw 2 Webs

d b td tb Ro Ri I S r I S r x—x y—y in in in in in2 lbs in in in4 in3 in in4 in3 in in2 in2 in4

ANOM. Wt/ft Jd

td

b

tb

Page 75: Manual Completo

6-14

Section 6Elements of Sections

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.1013

SQUARE BARS

1/2 0.24 0.22 0.005 0.021 0.144 0.009 5/8 0.39 0.34 0.013 0.041 0.180 0.022 3/4 0.56 0.49 0.026 0.070 0.216 0.045 1 0.99 0.87 0.083 0.167 0.289 0.141 1-1/4 1.56 1.31 0.203 0.326 0.361 0.344 1-1/2 2.24 1.91 0.422 0.562 0.433 0.714

PHYSICAL PROPERTIES SECTION PROPERTIES

b A I S r J in in2 lbs in4 in3 in in4

NOM. Wt/ft

DESIGN PROPERTIES

PHYSICAL PROPERTIES SECTION PROPERTIES

D A I S r J in in2 lbs in4 in3 in in4

NOM. Wt/ft

DESIGN PROPERTIES

1/4 0.05 0.04 <0.001 0.002 0.063 <0.001 5/16 0.08 0.07 <0.001 0.003 0.078 <0.001 3/8 0.11 0.10 0.001 0.005 0.094 0.002 1/2 0.20 0.17 0.003 0.012 0.125 0.006 5/8 0.31 0.27 0.007 0.024 0.156 0.015 3/4 0.44 0.39 0.016 0.041 0.188 0.031 13/16 0.52 0.45 0.021 0.053 0.203 0.043 7/8 0.60 0.53 0.029 0.066 0.219 0.058 1 0.79 0.69 0.049 0.098 0.250 0.098 1-1/8 0.94 0.85 0.079 0.140 0.281 0.157 1-1/4 1.24 1.10 0.120 0.192 0.312 0.240 1-1/2 1.77 1.52 0.248 0.331 0.375 0.497 2 3.14 2.69 0.785 0.785 0.500 1.571

ROUND ROD

b

b

D

Page 76: Manual Completo

6-15

Section 6Elements of Sections

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.1013

PHYSICAL PROPERTIES

SIZE AXIS X—X

b t I S r in in in2 lbs in4 in3 in

NOM. Wt/ft2

SECTION PROPERTIESPER FOOT OF WIDTH

12 1/8 1.50 1.14 0.002 0.031 0.036 12 3/16 2.25 1.71 0.007 0.070 0.054 12 1/4 3.00 2.34 0.016 0.125 0.072 12 3/8 4.50 3.54 0.053 0.281 0.108 12 1/2 6.00 4.68 0.125 0.500 0.144 12 5/8 7.50 5.79 0.244 0.781 0.180 12 3/4 9.00 6.94 0.422 1.125 0.217 12 1 12.00 9.27 1.000 2.000 0.289

NOTE: PROPERTIES BASED ON A 12” WIDE STRIP OF MATERIAL. STANDARD PLATE SIZE IS 48” x 96”.

A perft. ofwidth

EXTREN® CONSTRUCTION GRADE PLATE

tX

Y

b

X

Y

tX

Y

b

X

Y

Page 77: Manual Completo

6-16

Section 6Elements of Sections

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.1013

tX

Y

b

X

Y

2 0.188 0.38 0.27 0.0011 0.0117 0.0542 0.1250 0.1250 0.577 2 0.250 0.50 0.39 0.0026 0.0208 0.0721 0.1667 0.1667 0.578 3 0.188 0.56 0.41 0.0016 0.0176 0.0542 0.4220 0.2810 0.866 3 0.250 0.75 0.58 0.0039 0.0313 0.0720 0.5625 0.3750 0.866 3 0.375 1.13 0.87 0.0132 0.0703 0.1080 0.8438 0.5625 0.864 3 0.500 1.50 1.17 0.0312 0.1250 0.1442 1.1250 0.7500 0.866 4 0.500 2.00 1.54 0.0417 0.1667 0.1440 2.6670 1.3330 1.155 6 0.250 1.50 1.15 0.0078 0.0625 0.0720 4.5000 1.5000 1.732

PHYSICAL PROPERTIES SECTION PROPERTIES SIZE AXIS X-X AXIS Y-Y

b t I S r I S r in in in2 lbs in4 in3 in in4 in3 in

NOM. Wt/ft

FLAT STRIPS

A

Page 78: Manual Completo

6-17

Section 6Elements of Sections

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.1013

AXIS X—X AXIS Y—Y

I S r y I S r x r

in in in lbs in2 in4 in3 in in in4 in3 in in in

1-3/4 1-1/4 1/4 0.51 .688 .205 .179 .546 .602 .085 .095 .352 .352 .268

d d1 b t ANOM.Wt/ft

F SECTION

d b t A

PHYSICAL PROPERTIES SECTION PROPERTIES

AXIS Z-Z

UNEQUAL LEG ANGLE

NOM.Wt/ft

Y

Y

XX

ty

d

x

b

d1

X X

Y

Yb

t

y

x

d

PHYSICAL PROPERTIES SECTION PROPERTIES AXIS X—X AXIS Y—Y

I St Sb r y I S r x

in in in in lbs in2 in4 in3 in3 in in in4 in3 in in

5-1/2 1-1/2 1-1/2 1/4 1.58 2.00 5.43 2.56 1.61 1.65 3.375 .342 .866 .401 .359

6 2 1-1/2 1/4 1.68 2.13 6.75 2.92 2.80 1.80 3.662 .337 .974 .367 .346

Page 79: Manual Completo

6-18

Section 6Elements of Sections

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.1013

X X

t

y

d

b

b1

bD

X X

Y

Y

b

t

x

d

1

2

1

9/32

3/83/8

SECTION PROPERTIES b D A I S r

in in lbs in2 in4 in3 in 1 3/4 .49 .558 .068 .136 .348

PHYSICAL PROPERTIES

SQUARE TUBE/ROUND HOLE

NOM. Wt/ft

SECTION PROPERTIES DESIGN AXIS X—X PROPERTIES

d b b1 t A I St Sb r y J

in in in in lbs in2 in4 in3 in3 in in in4

1-5/8 1-5/8 7/8 5/32 0.65 .680 .232 .258 .322 .584 .722 .004

STRUTS

PHYSICAL PROPERTIES

NOM. Wt/ft

PHYSICAL PROPERTIES SECTION PROPERTIES AXIS X—X AXIS Y—Y

A I S r I S r x in in in lbs in2 in4 in3 in in4 in3 in in

4 1/2 3/16 .78 .984 1.57 .784 1.285 .024 .105 .142 .228

KICK PLATE

d b t NOM. Wt/ft

Page 80: Manual Completo

6-19

Section 6Elements of Sections

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.1013

X X

ty

d

b

b1

Y

Y

3/4 1-3/4 3/4

X X

Y

Y

b

t

d

b

bY 1-1/41/4

d X X

Y1/4 1/4

3/8

7/8

y

1/16 R

1/16 R1/8 R

1/8 R

PHYSICAL PROPERTIES SECTION PROPERTIES AXIS X—X AXIS Y—Y

I St Sb r y I S r

in in in lbs in2 in4 in3 in3 in in in4 in3 in 2-1/2 2-1/4 1/4 1.13 1.625 .823 1.01 .574 .712 1.43 .428 .343 .513

b d t A

SLIDE GUIDE

NOM. Wt/ft

Z SECTION

PHYSICAL PROPERTIES SECTION PROPERTIES AXIS X—X AXIS Y—Y

I S r I S r J

in in in lbs in2 in4 in3 in in4 in3 in in4

1-1/4 2-1/2 1/8 .47 .594 .559 0.45 0.97 0.139 0.117 0.48 0.003

NOM. Wt/ft

DESIGNPROPERTIES

b d t A

X X

ty

d

b

b1

Y

Y

3/4 1-3/4 3/4

X X

Y

Y

b

t

d

b

bY 1-1/41/4

d X X

Y1/4 1/4

3/8

7/8

y

1/16 R

1/16 R1/8 R

1/8 R

Page 81: Manual Completo

6-20

Section 6Elements of Sections

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.1013

Y

4.76

d

y

X

R=5/16

X

Y

h

5/16

td

tb

b R=tb/2

90˚ TYP

xx

b

Y

d

X X

Y

t

y

R=1/2t

R=1/2tt

R=1/2t

d1t

PHYSICAL PROPERTIES SECTION PROPERTIES

AXIS X-X AXIS Y-Y

I St Sb r y I SI Sr r x

in in in in in lbs in2 in4 in3 in3 in in in4 in3 in3 in in

5-1/4 5-9/16 2-1/2 1/8 3/16 1.33 1.58 7.05 2.40 2.69 2.11 2.62 1.06 1.38 0.61 0.82 0.77

7-1/8 7-7/16 2-1/2 1/8 3/16 1.58 1.95 15.10 3.88 4.25 2.78 3.89 1.93 1.51 0.69 0.92 0.64

h d b td tb A

FLIGHT CHANNEL

NOM.Wt/ft

Page 82: Manual Completo

6-21

Section 6Elements of Sections

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.1013

PHYSICAL PROPERTIES SECTION PROPERTIES

AXIS X—X AXIS Y—Y

I St Sb Y rx I St Sb X rx

in lbs in2 in4 in3 in3 in in in4 in3 in3 in in 1 .83 1.02 .275 .230 .288 1.01 .520 .548 .352 .573 .957 .733 1-1/2 .93 1.22 .512 .331 .443 1.16 .665 .559 .356 .592 .946 .676 2 1.31 1.36 .889 .473 .670 1.33 .809 .561 .473 .597 .941 .414

b A

CURB ANGLES

NOM. Wt/ft

PHYSICAL SECTION DESIGN PROPERTIES PROPERTIES PROPERTIES A I S r J

in2 lbs in4 in3 in in2 in4

1.151 0.95 0.657 0.657 0.760 0.525 12.9 0.978

SAFRAILTM POST OR RAIL SECTION

NOM. Wt/ft

AwZ

Websbt

Page 83: Manual Completo

6-22

Section 6Elements of Sections

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.1013

PHYSICAL SECTION PROPERTIES PROPERTIES A I S

in2 lbs in4 in3

1.05 0.86 0.385 0.405

SAFRAILTM ROUND HANDRAIL POST OR RAIL SECTION

NOM. Wt/ft

HALF ROUND RAIL SECTION PHYSICAL PROPERTIES SECTION PROPERTIES AXIS X—X AXIS Y—Y

I St Sb r Aw I S r Aw

in in in in2 lbs in in4 in3 in3 in in2 in4 in3 in in2

2 2 .25 1.51 1.23 .80 .76 .95 .63 .70 .63 .82 .82 .73 1.06

b d t A yNOM. Wt/ft

Page 84: Manual Completo

7-1

Section 7Safety Factors

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.0404

SECTION 7

SAFETY FACTORS

Page 85: Manual Completo

7-2

Section 7Safety Factors

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.0404

SAFETY FACTORSSafety factors are defined as the ratio of the ultimate stress to the working or allowable stress.

ULTIMATE STRESS (U.S.) ALLOWABLE STRESS (A.S.) U.S. S.F.Safety factors compensate for:

- allowable tolerances of the part - uncertainty of the anticipated loading (magnitude, type or placement) - assumptions in methods of analysis - fabrication tolerances (squareness of cuts, normal tolerances, etc.)

In Section 3 - PROPERTIES OF EXTREN®, Strongwell lists the minimum ultimate values for stresses obtained from coupon or full section testing. Typical property values are generally 20% -25% higher than those listed. Even though these are minimum ultimate stresses, these values should not be utilized for design purposes before dividing them by the appropriate safety factor.

The safety factors used in the various design tables were chosen to prevent first deformation of the part. First deformation is defined as the first visible deformation including local flange or web buckling, twisting, crushing, etc. The recommended safety factors used for design are:

RECOMMENDED SAFETY FACTORS Flexural members, beams 2.5 Compression members, columns 3.0 Shear 3.0 Connections 4.0 Modulus of Elasticity 1.0 Shear Modulus 1.0

NOTES:

The safety factors given are for static load conditions only. Safety factors for impact loads and dynamic loads are typically two times the static load safety factor, see Mechanics of Materials, Reference 7. Long term service loads which result in creep deformations will require higher safety factors to insure satisfactory performance. For creep effects, see Structural Plastics Design Manual, Reference 2.

Strongwell has developed empirical equations which calculate the allowable stresses for EXTREN® when used as compression members (columns) and as flexural members (beams). These equations, used to generate the allowable load tables found in this design manual, are the result of full section testing. This testing more accurately reflects the performance of the column or beam and should be used instead of coupon properties. The designer should use the allowable load found in the appropriate table, which includes a safety factor of 3.0 for columns and 2.5 for beams.

It must be noted that these equations are applicable only for EXTREN® and are a function of the proprietary resins and glass placement in the EXTREN® composite plus the size and shape of the part. The use of these empirical equations for pultruded products other than EXTREN® is not recommended and could result in a structural failure.

SAFETY FACTOR (S.F.) =

therefore, A.S. =

Page 86: Manual Completo

7-3

Section 7Safety Factors

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.0404

The moduli reported in Section 3 - PROPERTIES OF EXTREN® is the minimum value obtained from tests of full size sections of EXTREN® structural shapes which allows a safety factor of 1.0. CAUTION: If deflections are critical and unexpected temperature variations occur, problems may arise due to loss of stiffness. Refer to "Temperature Effects" in Section 3 for safety factors for the moduli at elevated temperatures.

These recommended safety factors, as well as the safety factors used in the generation of allowable load tables for beams and columns, are not the only safety factors that may be used in design. The designer may choose to adjust the safety factors based on particular applications and considerations including margin of safety, costs, confidence of loads or materials, etc.

Ultimately, the final selection of a safety factor is the designer's privilege as well as responsibility.

SAFETY FACTORS

Page 87: Manual Completo

SECTION 8 - FLEXURAL MEMBERS (BEAMS)

Table of ContentsSymbols for Flexural Members (Beams) ........................... 8-2

Introduction ........................................................................ 8-3

Beam Equations ................................................................ 8-4

Lateral Buckling ................................................................. 8-6

Coefficients Kb - For Flexural Deflection ........................... 8-7

Examples of How To Use Tables ...................................... 8-8

Introduction to Flexural Member (Beam) Load Tables .... 8-10

W-Shapes:

3 x 3 x 1/4; Series 500 & 525 .......................................... 8-11

4 x 4 x 1/4; Series 500 & 525 .......................................... 8-11

3 x 3 x 1/4; Series 625 ..................................................... 8-12

4 x 4 x 1/4; Series 625 ..................................................... 8-12

6 x 6 x 1/4; Series 500, 525 & 625 .................................. 8-13

6 x 6 x 3/8; Series 500, 525 & 625 .................................. 8-13

8 x 8 x 3/8; Series 500, 525 & 625 .................................. 8-14

8 x 8 x 1/2; Series 500, 525 & 625 .................................. 8-14

10 x 10 x 3/8; Series 500, 525 & 625 .............................. 8-15

10 x 10 x 1/2; Series 500, 525 & 625 .............................. 8-16

12 x 12 x 1/2; Series 500, 525 & 625 .............................. 8-17

I-Shapes

3 x 1-1/2 x 1/4; Series 500 & 525 .................................... 8-18

4 x 2 x 1/4; Series 500 & 525 .......................................... 8-18

3 x 1-1/2 x 1/4; Series 625 ............................................... 8-19

4 x 2 x 1/4; Series 625 ..................................................... 8-19

5-1/2 x 2-1/2 x 1/4; Series 500, 525 & 625 ...................... 8-20

6 x 3 x 1/4; Series 500, 525 & 625 .................................. 8-21

6 x 3 x 3/8; Series 500, 525 & 625 .................................. 8-21

8 x 4 x 3/8; Series 500, 525 & 625 .................................. 8-22

8 x 4 x 1/2; Series 500, 525 & 625 .................................. 8-22

10 x 5 x 3/8; Series 500, 525 & 625 ................................ 8-23

10 x 5 x 1/2; Series 500, 525 & 625 ................................ 8-24

12 x 6 x 1/2; Series 500, 525 & 625 ................................ 8-25

18 x 3/8 x 4-1/2 x 1/2; Series 500, 525 & 625 ................. 8-26

24 x 3/8 x 7-1/2 x 3/4; Series 500, 525 & 625 ................. 8-27

Channels:

3 x 7/8 x 1/4; Series 500 & 525 ....................................... 8-28

3 x 1 x 3/16; Series 500 & 525 ........................................ 8-28

3-1/2 x 1-1/2 x 3/16; Series 500 & 525 ............................ 8-28

3 x 7/8 x 1/4; Series 625 .................................................. 8-29

3 x 1 x 3/16; Series 625 ................................................... 8-29

3-1/2 x 1-1/2 x 3/16; Series 625 ...................................... 8-29

4 x 1-1/16 x 1/8; Series 500 & 525 .................................. 8-30

4 x 1-1/8 x 1/4; Series 500 & 525 .................................... 8-30

4 x 1-3/8 x 3/16; Series 500 & 525 .................................. 8-30

4 x 1-1/16 x 1/8; Series 625 ............................................. 8-31

4 x 1-1/8 x 1/4; Series 625 ............................................... 8-31

4 x 1-3/8 x 3/16; Series 625 ............................................. 8-31

5 x 1-3/8 x 1/4; Series 500 & 525 .................................... 8-32

5-1/2 x 1-1/2 x 3/16; Series 500 & 525 ............................ 8-32

5 x 1-3/8 x 1/4; Series 625 ............................................... 8-33

5-1/2 x 1-1/2 x 3/16; Series 625 ...................................... 8-33

5-1/2 x 1-1/2 x 1/4; Series 500 & 525 .............................. 8-34

5-1/2 x 1-1/2 x 1/4; Series 625 ........................................ 8-35

6 x 1-5/8 x 1/4; Series 500 & 525 .................................... 8-36

6 x 1-11/16 x 3/8; Series 500 & 525 ................................ 8-36

6 x 1-5/8 x 1/4; Series 625 ............................................... 8-37

6 x 1-11/16 x 3/8; Series 625 ........................................... 8-37

8 x 2-3/16 x 1/4; Series 500 & 525 .................................. 8-38

8 x 2-3/16 x 3/8; Series 500 & 525 .................................. 8-38

8 x 2-3/16 x 1/4; Series 625 ............................................. 8-39

8 x 2-3/16 x 3/8; Series 625 ............................................. 8-39

10 x 2-3/4 x 1/2; Series 500 & 525 .................................. 8-40

10 x 2-3/4 x 1/2; Series 625 ............................................. 8-41

12 x 3 x 1/2; Series 500 & 525 ........................................ 8-42

12 x 3 x 1/2; Series 625 ................................................... 8-43

Square Tubes:

3 x 3 x 1/4; Series 500 & 525 .......................................... 8-44

3-1/2 x 3-1/2 x 1/4; Series 500 & 525 .............................. 8-44

4 x 4 x 1/4; Series 500 & 525 .......................................... 8-44

3 x 3 x 1/4; Series 625 ..................................................... 8-45

3-1/2 x 3-1/2 x 1/4; Series 625 ........................................ 8-45

4 x 4 x 1/4; Series 625 ..................................................... 8-45

3 x 3 x 3/8; Series 500 & 525 .......................................... 8-46

4 x 4 x 3/8; Series 500 & 525 .......................................... 8-46

3 x 3 x 3/8; Series 625 ..................................................... 8-47

4 x 4 x 3/8; Series 625 ..................................................... 8-47

6 x 6 x 3/8; Series 500 & 525 .......................................... 8-48

6 x 6 x 3/8; Series 625 ..................................................... 8-49

Rectangular Tubes:

4 x 1/8 x 2 x 1/4; Series 500 & 525 .................................. 8-50

6-1/2 x 1/4 x 2 x 1/2; Series 500 & 525 ........................... 8-50

4 x 1/8 x 2 x 1/4; Series 625 ............................................ 8-51

6-1/2 x 1/4 x 2 x 1/2; Series 625 ...................................... 8-51

7 x 4 x 1/4; Series 500 & 525 .......................................... 8-52

4 x 7 x 1/4; Series 500 & 525 .......................................... 8-52

7 x 4 x 1/4; Series 625 ..................................................... 8-53

4 x 7 x 1/4; Series 625 ..................................................... 8-53

Beam Diagrams and Formulas ........................................ 8-54

Page 88: Manual Completo

8-1

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

SECTION 8

FLEXURAL MEMBERS (BEAMS)

Look for this blue line in the left margin of the Design Manual documents. This line shows you where the latest update has been made.

Page 89: Manual Completo

8-2

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

Aw Cross-sectional area of web or webs (in2)

B Derived constant for use in Eq. B-5

C1 Lateral buckling coefficient from Table B-1

E Modulus of Elasticity about X-X or Y-Y axis (psi)

Fb Allowable flexural stress (psi)

Fb′ Allowable flexural stess-laterally unsupported beams (psi)

Fu Ultimate flexural stress-laterally supported beams (psi)

Fu′ Ultimate flexural stress-laterally unsupported beams (psi)

Fv Allowable shear stress (psi)

G Shear modulus (psi)

Ix Iy Moment of inertia about X-X or Y-Y axis (in4)

J Torsional constant (in4)

Kx Ky Effective length factor for buckling about X-X or Y-Y axis

Kb Coefficient for flexural deflection

Kv Coefficient for shear deflection

L Length of beam (center to center of supports) (ft)

Lu Unbraced length of beam (center to center of lateral braces) (ft)

M Bending moment from applied loads (lb-in)

N Derived constant for use in Eq. B-5

P Concentrated load on beam (lbs)

Sx Section Modulus about X-X axis (in3)

V Shear from applied load (lbs)

W Uniform beam load (lbs/ft)

Wt Weight of section (lbs)

b Outside dimension of square tube (in)

bf Width of flange (in)

d Full depth of section (in)

fb Flexural stress from applied loads (psi)

fv Shear stress from applied loads (psi)

l Length of beam (center to center of supports) (in)

lu Unbraced length of beam (center to center of lateral braces) (in)t Thickness of section (in) Wall thickness of tubes (in)

tf Thickness of flange (in)

w Uniform beam load (lb/in)

∆ Deflection (in)

SYMBOLS FOR FLEXURAL MEMBERS (BEAMS)

Page 90: Manual Completo

8-3

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

INTRODUCTIONThe load carrying capability of EXTREN® beams may be limited by considerations of strength, stability or deflection. The strength capacity is characterized by an allowable working stress; the stability of the beam is characterized by its resistance to twisting or buckling laterally; and the deflection of the beam is usually limited by architectural or functional requirements.

STRENGTHFor beams sufficiently supported laterally to prevent lateral buckling, beam selection for a given work load will depend upon the flexural stress fb, the shear stress fv, or the amount of deflection resulting from the load.

The allowable flexural stress, Fb for W and I shapes, is usually governed by local buckling of the outstanding flange. Equation B-3, developed from extensive product testing, provides values for the ultimate flexural stress Fu,

for open shapes. The ALLOWABLE LOAD tables are generated with a factor of safety of 2.5. Loads controlled by bending stresses are indicated with asterisks (*).At points of concentrated loads and at supports, it may be necessary to insert stiffeners between the flanges of open structural shapes. If stiffeners are not provided, the compression flange of the beam will buckle at a lower stress than that predicted by Equation B-3. The designer is referred to Structural Plastics Design Manual — Reference 2 for further information relative to the flange buckling and web crippling effects.Loads on beams of relatively short span may be limited to the allowable shear stress, Fv. For EXTREN® 500, 525 and 625 beams, Fv = 1500 psi. The ALLOWABLE LOAD tables designate which loads are limited by shear stress. This represents a factor of safety of 3.0 against the ultimate short beam shear stress as listed in Section 3 — PROPERTIES OF EXTREN®.

STABILITYA beam which is not restrained laterally may deflect and/or twist out of the plane of the load at considerably less load than the same member would carry with adequate lateral support. The degree of lateral support for some beams may be obvious in many cases. In some cases, however, it is difficult to accurately assess the restraint to lateral displacement of a beam provided by adjacent members of bracing. Generally, if the compression flange of a beam is attached at frequent points along its length to a floor or roof system, it may be considered to be laterally supported (this section contains a more complete discussion of lateral bracing).The ALLOWABLE LOAD tables list the uniformly distributed loads (in pounds per foot) at the given unsupported lengths. Generally, the W shapes and rectangular shapes will carry the same load whether laterally supported or unsupported. I shapes will carry reduced loads if laterally unsupported. Equation B-6 can be used to determine the allowable flexural stress for laterally unsupported open symmetrical shapes.It is strongly recommended that only EXTREN® beams with geometrical symmetry in the plane of the load be used in a laterally unsupported condition. Before nonsymmetrical shapes are used, the designer should consult Steel Structures — Reference 1 or Structural Plastics Design Manual — Reference 2.

DEFLECTIONThe deflection of EXTREN® beams results from both flexural and shear stresses. In long beams, deflections are primarily due to flexural stresses, but in short beams, the shear stresses may account for a significant portion of the total deflection. For typical applications of EXTREN® products as beams, Equations B-13 & B-14 will predict the deflections of EXTREN® beams to acceptable values. For unusual applications in which beam deflections are a critical factor, the designer is referred to Mechanics of Materials — Reference 7 or any contemporary mechanics book.The load tables at the end of this section were based on the LIMITING stress for the particular structural shape, span and deflection requirements. The designer is CAUTIONED that when the equations are used in lieu of the tables, one should confirm the lateral support characteristics of a beam.

Page 91: Manual Completo

8-4

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

STRESSES FROM APPLIED LOADSFlexural stress: M Sx (B-1)

Shear stress: V Aw (B-2)

ULTIMATE AND ALLOWABLE FLEXURAL STRESSESLaterally Supported EXTREN® W & I Shapes 30,000 psi (EXTREN® 500/525) Ultimate: Fu =

30,000 psi (EXTREN® 625 > 4") (B-3) 33,000 psi (EXTREN® 625 ≤ 4")

Allowable: Fb= (B-4)

Laterally Unsupported EXTREN® W & I Shapes

Ultimate: Fu′= N2+ Fu (B-5) Where: N = E IyGJ

And: B =

Allowable: Fb = (B-6)

Ky and C1 are taken from Table B-1 and reflect the beam end conditions in the Y-Y Axis and loading on the beam.

Laterally Supported or Laterally Unsupported EXTREN® Square and Rectangular Tubing:

30,000 psi (EXTREN® 500/525) Ultimate: Fu = ≤ 33,000 psi (EXTREN® 625)

(B-7)

Allowable: Fb = (B-8)

BEAM EQUATIONS FOR LOADS APPLIEDIN THE PLANE OF THE WEB

fb =

fv =

.5E

(bf / tf)1.5

Fu

2.5

C1 d2B2

Sx 4

π

Kylu

π2 E Iy

(Kylu)2

Fu

2.5

E

16(b/t)0.85

Fu

2.5

<_

<_

' '

Page 92: Manual Completo

8-5

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

Laterally Supported EXTREN® Channels Ultimate: Fu = <

Allowable: Fb =

It must be stressed that a non-symmetrical shape such as a channel should only be used when the flanges are adequately laterally supported. Current industry experience has shown that satisfactory performance from channels has been achieved when the compression flange was laterally supported with connecting members at the following spacings: — 24" maximum for 3" and 4" channels — 36" maximum for 5" and 6" channels — 48" maximum for 8" channels and larger

ALLOWABLE SHEAR STRESSES

EXTREN® structural shapes:

Fv = = 1500 psi (B-11)

EXTREN® large rectangular shapes: Fv = = 1333 psi (B-12)

DEFLECTIONS

EXTREN® structural shapes with uniform loads, w:

∆ = Kb + Kv (B-13)

EXTREN® structural shapes with concentrated loads, P: ∆ = Kb + Kv (B-14)

Kb is taken from Table B-2 and reflects the beam end conditions.

Kv = 0.35. This value actually varies slightly depending on load distribution, end constraints and Poisson's Ratio, but the given value will be adequate for most cases with supports at both ends of the beam.

Kv = 1.2 for cantilever beams.

For additional information, see Mechanics of Materials by Timoshenko & Gere.

′′′

4500

3.0

4000

3.0

wl4 wl2

EIx AwG

Pl3 PlEIx AwG

BEAM EQUATIONS FOR LOADS APPLIEDIN THE PLANE OF THE WEB

E 30,000 psi (EXTREN® 500 & 525)

27(bf / tf).95 33,000 psi (EXTREN® 625) (B-9)

Fu

2.5 (B-10)

Page 93: Manual Completo

8-6

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

TABLE B-1

LATERAL BUCKLING COEFFICIENTS FOR BEAMS WITH VARIOUSLOAD AND SUPPORT ARRANGEMENTS

Loading and Bending Moment End Restraintend restraint * diagram about Y-axis Ky C1*about X-axis

None 1.0 1.0

None 1.0 1.13 Full 0.5 0.97

None 1.0 1.30** Full 0.5 0.86**

None 1.0 1.35 Full 0.5 1.07

None 1.0 1.70 Full 0.5 1.04

None 1.0 1.04

* All beams are restrained at each end against rotation about the X-axis and displacement in the Y and Z directions. Loads applied at beam centroidal axis.

** Critical Stress based on center moment (wl2/24).

Table taken from Structural Plastics Design Manual - Reference 2.

y w

y w

Page 94: Manual Completo

8-7

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

TABLE B-2

COEFFICIENTS Kb - FOR FLEXURAL DEFLECTION

END SUPPORT TYPE OF LOADING DEFLECTION AT: Kb

Midspan 0.013

Simple Support Midspan 0.021@ Both Ends

Midspan 0.029 Quarter Pts. 0.021

Midspan 0.003

Fixed Support@ Both Ends

Midspan 0.005

Free End 0.125

Cantilever

Free End 0.333

2 2

Page 95: Manual Completo

8-8

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

PROBLEM #1Select an EXTREN® 525 W-shape for a clear span of 18'-0", capable of supporting 250 pounds per foot of load (including beam weight) with a maximum deflection not to exceed l/150. The beam is laterally supported and is simply supported at each end.

From the applicable ALLOWABLE LOAD table shown in this section, it can be seen that a 10 x 10 x 3/8 W-shape will support a load of 254 pounds per foot (which is greater than 250 pounds per foot required) and produce a maximum deflection of l/150.

Use a 10 x 10 x 3/8 EXTREN® 525 W-Shape

PROBLEM #2An EXTREN® 625 I-shape must be used to carry 1450 pounds per foot of load over a clear span of 7'-0" and not produce a deflection greater than l/150. Again, the beam will be laterally supported and is simply supported.

From the applicable table shown in this section, a 10 x 5 x 3/8 I-shape, for a 7'-0" span, lists no value. This indicates that the load required to produce a deflection of l/150 is theoretically greater than the maximum allowable uniform load, in this case 1487 pounds per foot, shown to be controlled by Fv (shear). Therefore, the I-shape will support 1450 pounds per foot load and meet the deflection criteria. (From Eq. B-13, it can be shown that the maximum deflection is about 1/2" which is an l/170 ratio.)

Use a 10 x 5 x 3/8 EXTREN® 625 I Shape PROBLEM #3A laterally unsupported EXTREN® 525 W-shape, spanning 10'-0", is required to carry 250 pounds per foot of load. Deflection must be kept to a maximum of l/360 for architectural reasons. Choose a W-shape adequate for this application. The beam will be simply supported.

Although the applicable table shows that a 6 x 6 x 3/8 W-shape will support 266 pound per foot for a 10'-0" laterally unsupported span, the deflection column shows that a 122 pound per foot load will produce a deflection of l/360. A 8 x 8 x 3/8 W-shape in the laterally unsupported condition will support a load of 724 pounds per foot and requires a 263 pound per foot load (greater than 250 pound per foot service load) to produce a deflection of l/360.

Use an 8 x 8 x 3/8 EXTREN® 525 W-Shape

PROBLEM #4A simply supported EXTREN® 625 W-shape, spanning 20'-0", is required to carry 130 pounds per foot, including beam weight. The beam will be laterally supported only at the ends and at the middle. What W-shape will work if the maximum deflection allowed is l/100?

The allowable load table for the 8 x 8 x 3/8 W-shape shows that a laterally supported beam, 20'-0" long, is capable of carrying 150 pounds per foot and meet the deflection criteria. The beam is laterally supported at 10'-0". Therefore, the actual flexural stress fb′ must be checked against the allowable flexural stress, Fb′ at Lu = 10'-0".

From TABLE B-1 wl2 (130/12)(20 x 12)2

8 8

EXAMPLES OF BEAM SELECTION USING THE TABLES

M = = = 78,000 lb-in

Page 96: Manual Completo

8-9

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

Using Eq. B-5: Fu′ = N2 + < Fu

N = EIyGJ

B = = = 54,883 lbs

= (2.5 x 106) x 32.03 x (0.425 x 106) x 0.409

Therefore, fb = 78,000/Sx = 78,000/24.80 = 3145 psi (Eq. B-1)

From the ALLOWABLE LOAD table, the allowable stress for the 8 x 8 x 3/8 W-shape when laterally unsupported at 10'-0" is 4379 psi. Since 4379 psi allowable > 3145 psi actual, the W-shape is adequate.

Using the equations, the procedure yields the same results, but is slightly more involved!

C1 d2B2

Sx 4

with E = 2.5 x 106 psi, G = 0.425 x 106 psi (Section 3—PROPERTIES OF EXTREN®)

d = 8 in, Sx = 24.80 in3, Iy = 32.03 in4, J = 0.409 in4 (Section 6—ELEMENTS OF SECTIONS)

Ky=1.0, C1=1.13 (TABLE B-1)

π2 E Iy π2 (2.5 x 106) 32.03

(Kylu)2 [1.0 x (10 x 12)]2

and

π Kylu

π 1.0 x (10 x 12)

= 97,673 lb-in

Therefore:

1.13 82 (54,883)2

24.80 4

and from Eq. B-6: Fb′ = = = 4379 psi

Again, since 4379 psi allowable > 3145 psi actual, the 8 x 8 x 3/8 W-shape is adequate.

Use an 8 x 8 x 3/8 EXTREN® 625 W-Shape

Fu′ = 97,6732 + = 10,948psi

Fu′ 10,948

2.5 2.5

Page 97: Manual Completo

8-10

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

The following are the allowable load tables for EXTREN® W and I shapes, EXTREN® channels, and EXTREN® square, rectangular and large rectangular tubes when used as flexural members (beams).

These allowable load tables are based upon:

1. Ambient temperature 2. A safety factor of 2.5 for flexural stresses 3. A safety factor of 3.0 for shear stresses 4. Beams uniformly loaded in the plane of their webs and simply supported at each end.

Controlling values for the LATERALLY SUPPORTED condition governed by stress are limited by flexural stress, Fb, when preceded with an asterisk (*) or limited by shear stress, Fv, without an asterisk.

For W and I shapes, the LATERALLY UNSUPPORTED allowable uniform load value is generated using the controlling allowable stress as predicted by Eq. B-6 or B-4 and B-11.

The LATERALLY UNSUPPORTED stresses listed are the allowable stresses for the respective length as predicted by Eq. B-6. The use of this column to the designer is illustrated in Example Problem #4.

NOTE: All load table data is based on single (simple) span calculations. The effect on strength of notches, copes or other stress concentrations must be considered.

INTRODUCTION TO FLEXURAL MEMBER (BEAM) LOAD TABLES

Page 98: Manual Completo

8-11

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

X X

Y

Y

BEAMS

W-SHAPES — EXTREN® 500 & 525E = 2.6 x 106 psi

Allowable Uniform Loads in Pounds Per Foot

SPAN IN FEET

LATERALLY

UNSUPPORTED

LATERALLY SUPPORTED--GOVERNED BY:

Stress Deflection

Fb′(psi) W

*Fb or Fv l/100 l/150 l/180 l/240 l/360

3 x 3 x 1/4w = 1.69 lb/ft 3 8,419 630 630 — — 553 414 276

bf/tf = 12.0 4 5,211 458 473 — 337 281 211 141

Fb = 12,000 psi 5 3,689 208 378 286 191 159 119 80

Aw = 0.63 sq. in. 6 2,834 111 315 176 117 98 73 49

Ix = 3.17 in.4 7 2,296 66 270 115 77 64 48 32

Sx = 2.11 in.3 8 1,929 42 236 79 53 44 33 22

Iy = 1.13 in.4 9 1,665 29 *208 56 38 31 23 16

J = 0.044 in.4 10 1,465 21 *169 42 28 23 17 12

4 x 4 x 1/4w = 2.22 lb/ft 3 8,125 880 880 — — — 793 529

bf/tf = 16.0 4 7,462 660 660 — — 582 436 291

Fb = 8,125 psi 5 5,007 528 528 — 416 347 260 173

Aw = 0.88 sq. in. 6 3,664 269 440 397 265 220 165 110

Ix = 7.94 in.4 7 2,846 154 377 266 177 148 111 74

Sx = 3.97 in.3 8 2,307 95 330 185 124 103 77 52

Iy = 2.67 in.4 9 1,932 63 *265 134 89 75 56 37

J = 0.060 in.4 10 1,657 44 *215 100 67 56 42 28

11 1,450 32 *178 76 51 42 32 21

12 1,288 24 *149 60 40 33 25 17

Page 99: Manual Completo

8-12

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

BEAMS

SPAN IN FEET

LATERALLY

UNSUPPORTED

LATERALLY SUPPORTED--GOVERNED BY:

Stress Deflection

Fb′(psi)

W *Fb or Fv l/100 l/150 l/180 l/240 l/360

3 x 3 x 1/4w = 1.69 lb/ft 3 8,979 630 630 — — 578 433 289

bf/tf = 12.0 4 5,532 473 473 — 356 297 222 148

Fb = 13,200 psi 5 3,900 219 378 304 203 169 127 84

Aw = 0.63 sq. in. 6 2,986 117 315 187 125 104 78 52

Ix = 3.17 in.4 7 2,412 69 270 123 82 68 51 34

Sx = 2.11 in.3 8 2,023 44 236 84 56 47 35 23

Iy = 1.13 in.4 9 1,743 30 210 60 40 34 25 17

J = 0.044 in.4 10 1,532 22 *186 45 30 25 19 12

4 x 4 x 1/4w = 2.22 lb/ft 3 8,750 880 880 — — — 820 547

bf/tf = 16.0 4 7,985 660 660 — — 608 456 304

Fb = 8,750 psi 5 5,344 528 528 — 438 365 274 183

Aw = 0.88 sq. in. 6 3,900 287 440 420 280 233 175 117

Ix = 7.94 in.4 7 3,021 163 377 282 188 157 118 78

Sx = 3.97 in.3 8 2,443 101 330 198 132 110 82 55

Iy = 2.67 in.4 9 2,041 67 *286 143 96 80 60 40

J = 0.060 in.4 10 1,748 46 *232 107 71 59 45 30

11 1,526 33 *191 82 54 45 34 23

12 1,354 25 *161 64 43 35 27 18

W-SHAPES — EXTREN® 625E = 2.8 x 106 psi

Allowable Uniform Loads in Pounds Per FootX X

Y

Y

Page 100: Manual Completo

8-13

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

BEAMS

W-SHAPES — EXTREN® 500, 525 & 625E = 2.5 x 106 psi

Allowable Uniform Loads in Pounds Per FootX X

Y

Y

SPAN IN FEET

LATERALLY

UNSUPPORTED

LATERALLY SUPPORTED--GOVERNED BY:

Stress Deflection

Fb′(psi)

W*Fb or

Fv l/100 l/150 l/180 l/240 l/360

6 x 6 x 1/4w = 3.52 lb/ft 5 4,253 828 828 — — — 662 441

bf/tf = 24.0 6 4,253 690 690 — — 597 448 299

Fb = 4,253 psi 7 4,253 546 *546 — 503 419 314 209

Aw = 1.38 sq. in. 8 3,761 369 *418 — 364 303 227 152

Ix = 28.28 in.4 9 3,031 235 *330 — 270 225 169 113

Sx = 9.43 in.3 10 2,508 158 *267 — 205 171 128 86

Iy = 9.00 in.4 11 2,119 110 *221 — 159 133 100 66

J = 0.091 in.4 12 1,823 80 *186 — 126 105 79 52

13 1,591 59 *158 152 101 84 63 42

14 1,407 45 *136 123 82 69 51 34

15 1,257 35 *119 102 68 57 42 28

6 x 6 x 3/8w = 5.13 lb/ft 5 7,813 1,182 1,182 — — — 943 628

bf/tf = 16.0 6 7,200 985 985 — — 850 638 425

Fb = 7,813 psi 7 5,460 844 844 — 715 596 447 298

Aw = 1.97 sq. in. 8 4,327 604 739 — 517 431 323 216

Ix = 40.17 in.4 9 3,545 391 657 576 384 320 240 160

Sx = 13.40 in.3 10 2,982 266 591 438 292 243 183 122

Iy = 13.52 in.4 11 2,561 189 537 340 227 189 142 94

J = 0.303 in.4 12 2,238 139 *485 269 179 149 112 75

13 1,983 105 *413 216 144 120 90 60

14 1,778 81 *356 175 117 97 73 49

15 1,611 64 *310 145 96 80 60 40

Page 101: Manual Completo

8-14

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

BEAMS

W-SHAPES — EXTREN® 500, 525 & 625E = 2.5 x 106 psi

Allowable Uniform Loads in Pounds Per Foot

SPAN IN FEETLATERALLY

UNSUPPORTED

LATERALLY SUPPORTED--GOVERNED BY:

Stress Deflection

Fb′(psi)

W *Fb or Fv l/100 l/150 l/180 l/240 l/360

8 x 8 x 3/8w = 6.97 lb/ft 6 5,076 1,360 1,360 — — — 1,209 806

bf/tf = 21.3 7 5,076 1,166 1,166 — — — 885 590Fb = 5,076 psi 8 5,076 1,020 1,020 — — 884 663 442Aw = 2.72 sq. in. 9 5,076 907 907 — 810 675 506 338Ix = 99.18 in.4 10 4,379 724 816 — 630 525 394 263

Sx = 24.80 in.3 11 3,681 503 *694 — 498 415 311 208Iy = 32.03 in.4 12 3,150 362 *583 — 400 333 250 167J = 0.409 in.4 13 2,735 268 *497 487 325 271 203 135

14 2,405 203 *428 401 267 223 167 11115 2,138 157 *373 333 222 185 139 9316 1,919 124 *328 280 186 155 116 7817 1,736 99 *290 237 158 132 99 6618 1,582 81 *259 202 135 112 84 5619 1,451 66 *232 174 116 97 72 4820 1,339 55 *210 150 100 84 63 4221 1,242 47 *190 131 87 73 55 3622 1,157 40 *173 115 77 64 48 3223 1,082 34 *159 101 67 56 42 2824 1,016 29 *146 90 60 50 37 25

** 8 x 8 x 1/2w = 9.23 lb/ft 6 7,813 1,750 1,750 — — — 1,552 1,035

bf/tf = 16.0 7 7,813 1,500 1,500 — — — 1,136 757Fb = 7,813 psi 8 7,202 1,313 1,313 — — 1,134 850 567Aw = 3.5 sq. in. 9 5,826 1,167 1,167 — 1,039 866 650 433Ix = 127.06 in.4 10 4,839 1,025 1,050 — 808 674 505 337

Sx = 31.76 in.3 11 4,106 719 955 — 639 533 399 266Iy = 42.74 in.4 12 3,546 521 875 769 513 427 320 214J = 0.958 in.4 13 3,108 389 808 625 417 347 260 174

14 2,758 298 750 514 342 285 214 14315 2,473 233 700 427 285 237 178 11916 2,239 185 *646 358 239 199 149 10017 2,042 150 *572 303 202 169 126 8418 1,876 123 *511 259 173 144 108 7219 1,734 102 *458 223 149 124 93 6220 1,611 85 *414 193 129 107 80 5421 1,504 72 *375 168 112 93 70 4722 1,411 62 *342 147 98 82 61 4123 1,328 53 *313 130 86 72 54 3624 1,254 46 *287 115 77 64 48 32

X X

Y

Y

** Non-stock size subject to mill run requirements.

Page 102: Manual Completo

8-15

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

W-SHAPES — EXTREN® 500, 525 & 625E = 2.5 x 106 psi

Allowable Uniform Loads in Pounds Per Foot

BEAMS

X X

Y

Y

SPAN IN FEET

LATERALLY

UNSUPPORTED

LATERALLY SUPPORTED--GOVERNED BY:

Stress Deflection

Fb′(psi) W

*Fb or Fv l/100 l/150 l/180 l/240 l/360

10 x 10 x 3/8w = 8.78 lb/ft 6 3,630 1,735 1,735 — — — — 1,241

bf/tf = 26.7 7 3,630 1,487 1,487 — — — 1,411 941

Fb = 3,630 psi 8 3,630 1,301 1,301 — — — 1,089 726

Aw = 3.47 sq. in. 9 3,630 1,157 1,157 — — 1,138 854 569

Ix = 198.82 in.4 10 3,630 961 *961 — — 905 679 452

Sx = 39.70 in.3 11 3,630 794 *794 — — 729 547 364

Iy = 62.54 in.4 12 3,630 667 *667 — — 594 445 297

J = 0.514 in.4 13 3,630 569 *569 — — 489 367 245

14 3,352 453 *490 — 488 407 305 203

15 2,950 347 *427 — 410 341 256 171

16 2,620 271 *375 — 347 289 217 144

17 2,346 215 *332 — 296 246 185 123

18 2,117 173 *297 — 254 212 159 106

19 1,923 141 *266 — 220 183 137 92

20 1,756 116 *240 — 191 159 119 80

21 1,613 97 *218 — 167 139 105 70

22 1,488 81 *199 — 147 123 92 61

23 1,380 69 *182 — 130 108 81 54

24 1,284 59 *167 — 115 96 72 48

25 1,199 51 *154 — 103 86 64 43

26 1,124 44 *142 138 92 77 58 38

27 1,057 38 *132 124 83 69 52 34

28 996 34 *123 112 75 62 47 31

29 942 30 *114 101 68 56 42 28

30 893 26 *107 92 61 51 38 26

Page 103: Manual Completo

8-16

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

BEAMS

W-SHAPES — EXTREN® 500, 525 & 625E = 2.5 x 106 psi

Allowable Uniform Loads in Pounds Per Foot

** Non-stock size subject to mill run requirements.

X X

Y

Y

SPAN IN FEET

LATERALLY

UNSUPPORTED

LATERALLY SUPPORTED--GOVERNED BY:

Stress Deflection

Fb′(psi) W

*Fb or Fv l/100 l/150 l/180 l/240 l/360

** 10 x 10 x 1/2w = 11.64 lb/ft 6 5,590 2,250 2,250 — — — — 1,606

bf/tf = 20.0 7 5,590 1,929 1,929 — — — 1,825 1,216

Fb = 5,590 psi 8 5,590 1,688 1,688 — — — 1,407 938

Aw = 4.5 sq. in. 9 5,590 1,500 1,500 — — 1,471 1,103 735

Ix = 256.2 in.4 10 5,590 1,350 1,350 — — 1,169 877 584

Sx = 51.20 in.3 11 5,590 1,227 1,227 — 1,129 941 706 471

Iy = 83.42 in.4 12 4,813 1,125 1,125 — 920 767 575 383

J = 1.208 in.4 13 4,162 841 1,038 — 758 631 473 316

14 3,644 635 964 945 630 525 394 262

15 3,226 489 *848 793 529 441 330 220

16 2,882 384 *745 671 447 373 280 186

17 2,597 307 *660 572 382 318 238 159

18 2,357 248 *589 492 328 273 205 137

19 2,154 204 *529 425 283 236 177 118

20 1,979 169 *477 370 247 205 154 103

21 1,829 142 *433 324 216 180 135 90

22 1,697 120 *394 285 190 158 119 79

23 1,582 102 *361 251 168 140 105 70

24 1,481 88 *331 223 149 124 93 62

25 1,391 76 *305 199 133 111 83 55

26 1,310 66 *282 178 119 99 74 49

27 1,238 58 *262 160 107 89 67 44

28 1,174 51 *243 144 96 80 60 40

29 1,115 45 *227 131 87 73 54 36

30 1,062 40 *212 118 79 66 49 33

Page 104: Manual Completo

8-17

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

BEAMS

W-SHAPES — EXTREN® 500, 525 & 625E = 2.5 x 106 psi

Allowable Uniform Loads in Pounds Per FootX X

Y

Y

SPAN IN FEET

LATERALLY

UNSUPPORTED

LATERALLY SUPPORTED--GOVERNED BY:

Stress Deflection

Fb′(psi) W

*Fb or Fv l/100 l/150 l/180 l/240 l/360

** 12 x 12 x 1/2

w = 13.98 lb/ft 6 4,253 2,750 2,750 — — — — 2,212bf/tf = 24.0 7 4,253 2,357 2,357 — — — — 1,719Fb = 4,253 psi 8 4,253 2,063 2,063 — — — 2,038 1,358Aw = 5.5 sq. in. 9 4,253 1,833 1,833 — — — 1,632 1,088Ix = 452.7 in.4 10 4,253 1,650 1,650 — — — 1,322 881

Sx = 75.50 in.3 11 4,253 1,500 1,500 — — 1,444 1,083 722Iy = 144.10 in.4 12 4,253 1,375 1,375 — — 1,193 895 597J = 1.458 in.4 13 4,253 1,267 *1,267 — 1,195 996 747 498

14 4,253 1,092 *1,092 — 1,005 837 628 41915 4,240 948 *951 — 852 710 532 35516 3,761 739 *836 — 727 606 454 30317 3,364 586 *741 — 625 521 390 26018 3,031 471 *661 — 540 450 338 22519 2,749 383 *593 — 470 392 294 19620 2,507 316 *535 — 411 342 257 17121 2,300 262 *485 — 361 301 226 15022 2,119 220 *442 — 319 266 199 13323 1,962 187 *405 — 283 236 177 11824 1,823 159 *372 — 252 210 157 10525 1,700 137 *342 338 225 188 141 9426 1,591 118 *317 303 202 169 126 8427 1,494 103 *294 273 182 152 114 7628 1,407 90 *273 247 165 137 103 6929 1,328 79 *255 224 149 124 93 6230 1,257 70 *238 203 136 113 85 5731 1,193 62 *223 185 124 103 77 5232 1,134 56 *209 170 113 94 71 4733 1,080 50 *197 155 104 86 65 4334 1,031 45 *185 143 95 79 59 4035 986 41 *175 131 88 73 55 3636 944 37 *165 121 81 67 50 3437 906 33 *156 112 75 62 47 3138 870 30 *148 104 69 58 43 2939 837 28 *141 96 64 53 40 2740 806 25 *134 89 60 50 37 25

** Non-stock size subject to mill run requirements.

Page 105: Manual Completo

8-18

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

BEAMS

I-SHAPES — EXTREN® 500 & 525E = 2.6 x 106 psi

Allowable Uniform Loads in Pounds Per Foot

X X

Y

Y

SPAN IN FEET

LATERALLY

UNSUPPORTED

LATERALLY SUPPORTED--GOVERNED BY:

Stress Deflection

Fb′(psi)

W *Fb or Fv l/100 l/150 l/180 l/240 l/360

3 x 1-1/2 x 1/4w = 1.11 lb/ft 3 2,771 240 630 — 444 370 277 185

bf/tf = 6.0 4 1,920 94 473 317 211 176 132 88

Fb = 12,000 psi 5 1,473 46 *374 173 115 96 72 48

Aw = 0.63 sq. in. 6 1,198 26 *260 103 69 57 43 29

Ix = 1.75 in.4 7 1,012 16 *191 67 44 37 28 18

Sx = 1.17 in.3 8 876 11 *146 45 30 25 19 13

Iy = 0.14 in.4 9 774 7 *116 32 21 18 13 9

J = 0.029 in.4 10 693 5 *94 24 16 13 10 7

4 x 2 x 1/4w = 1.48 lb/ft 3 3,516 573 880 — — 769 577 384

bf/tf = 8.0 4 2,252 206 660 — 469 391 293 195

Fb = 12,000 psi 5 1,639 96 528 398 265 221 166 111

Aw = 0.88 sq. in. 6 1,287 52 440 244 163 136 102 68

Ix = 4.4 in.4 7 1,060 32 *359 160 106 89 66 44

Sx = 2.20 in.3 8 902 21 *275 110 73 61 46 30

Iy = 0.34 in.4 9 786 14 *217 78 52 44 33 22

J = 0.039 in.4 10 697 10 *176 58 39 32 24 16

11 627 8 *145 44 29 24 18 12

12 569 6 *122 34 23 19 14 9

Page 106: Manual Completo

8-19

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

BEAMS

I-SHAPES — EXTREN® 625E = 2.8 x 106 psi

Allowable Uniform Loads in Pounds Per FootX X

Y

Y

SPAN IN FEET

LATERALLY

UNSUPPORTED

LATERALLY SUPPORTED--GOVERNED BY:

Stress Deflection

Fb′(psi)

W*Fb or

Fv l/100 l/150 l/180 l/240 l/360

3 x 1-1/2 x 1/4w = 1.11 lb/ft 3 2,913 252 630 — 468 390 293 195

bf/tf = 6.0 4 2,009 98 473 337 225 187 140 94

Fb = 13,200 psi 5 1,538 48 378 184 123 102 77 51

Aw = 0.63 sq. in. 6 1,249 27 *286 111 74 61 46 31

Ix = 1.75 in.4 7 1,053 17 *210 71 48 40 30 20

Sx = 1.17 in.3 8 912 11 *161 49 32 27 20 13

Iy = 0.14 in.4 9 804 8 *127 34 23 19 14 10

J = 0.029 in.4 10 720 6 *103 25 17 14 11 7

4 x 2 x 1/4w = 1.48 lb/ft 3 3,735 609 880 — — 804 603 402

bf/tf = 8.0 4 2,379 218 660 — 495 413 309 206

Fb = 13,200 psi 5 1,725 101 528 422 282 235 176 117

Aw = 0.88 sq. in. 6 1,350 55 440 260 173 145 108 72

Ix = 4.4 in.4 7 1,110 33 377 170 114 95 71 47

Sx = 2.20 in.3 8 943 22 *303 117 78 65 49 33

Iy = 0.34 in.4 9 820 15 *239 84 56 47 35 23

J = 0.039 in.4 10 727 11 *194 62 41 34 26 17

11 653 8 *160 47 31 26 20 13

12 593 6 *134 37 24 20 15 10

Page 107: Manual Completo

8-20

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

BEAMS

I-SHAPES — EXTREN® 500, 525 & 625E = 2.5 x 106 psi

Allowable Uniform Loads in Pounds Per FootX X

Y

Y

SPAN IN FEET

LATERALLY

UNSUPPORTED

LATERALLY SUPPORTED--GOVERNED BY:

Stress Deflection

Fb′(psi) W

*Fb or Fv l/100 l/150 l/180 l/240 l/360

5-1/2 x 2-1/2 x 1/4w = 1.95 lb/ft 3 4,080 1,221 1,250 — — — 1,098 732

bf/tf = 10.0 4 2,473 416 938 — — 800 600 400

Fb = 12,000 psi 5 1,718 185 750 — 569 474 356 237

Aw = 1.25 sq. in. 6 1,299 97 625 541 360 300 225 150

Ix = 11.12 in.4 7 1,039 57 536 361 241 200 150 100

Sx = 4.04 in.3 8 864 36 469 252 168 140 105 70

Iy = 0.62 in.4 9 739 25 *399 182 121 101 76 50

Sy = 0.50 in.3 10 646 17 *323 135 90 75 56 38

J = 0.055 in.4 11 574 13 *267 103 69 57 43 29

12 517 10 *224 80 54 45 34 2213 470 7 *191 64 43 35 27 18

14 432 6 *165 52 34 29 21 14

15 399 5 *144 42 28 23 18 12

Page 108: Manual Completo

8-21

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

BEAMS

I-SHAPES — EXTREN® 500, 525 & 625E = 2.5 x 106 psi

Allowable Uniform Loads in Pounds Per Foot

** Non-stock size subject to mill run requirements.

X X

Y

Y

SPAN IN FEET

LATERALLY

UNSUPPORTED

LATERALLY SUPPORTED--GOVERNED BY:

Stress Deflection

Fb′(psi)

W *Fb or Fv l/100 l/150 l/180 l/240 l/360

** 6 x 3 x 1/4w = 2.31 lb/ft 5 2,307 327 828 — 752 627 470 313

bf/tf = 12.0 6 1,694 167 690 — 485 404 303 202

Fb = 12,000 psi 7 1,320 96 591 492 328 274 205 137

Aw = 1.38 sq. in. 8 1,073 59 518 347 231 193 144 96

Ix = 15.92 in.4 9 901 39 460 252 168 140 105 70

Sx = 5.32 in.3 10 775 27 414 189 126 105 79 52

Iy = 1.13 in.4 11 679 20 *352 145 96 80 60 40

J = 0.060 in.4 12 604 15 *296 113 75 63 47 31

13 544 11 *252 90 60 50 38 25

14 495 9 *217 73 49 40 30 20

15 454 7 *189 60 40 33 25 17

** 6 x 3 x 3/8w = 3.39 lb/ft 5 2,868 568 1,182 — 1,060 884 663 442

bf/tf = 8.0 6 2,177 300 985 — 683 569 427 285

Fb = 12,000 psi 7 1,747 177 844 692 462 385 288 192

Aw = 1.97 sq. in. 8 1,457 113 739 487 325 271 203 135

Ix = 22.3 in.4 9 1,250 76 657 354 236 197 148 98

Sx = 7.43 in.3 10 1,095 54 591 265 177 147 110 74

Iy = 1.71 in.4 11 974 40 *491 203 135 113 85 56

J = 0.198 in.4 12 878 30 *413 159 106 88 66 44

13 800 23 *352 126 84 70 53 35

14 735 19 *303 102 68 57 43 28

15 680 15 *264 84 56 46 35 23

Page 109: Manual Completo

8-22

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

BEAMS

I-SHAPES — EXTREN® 500, 525 & 625E = 2.5 x 106 psi

Allowable Uniform Loads in Pounds Per Foot

** Non-stock size subject to mill run requirements.

X X

Y

Y

SPAN IN FEET

LATERALLY

UNSUPPORTED

LATERALLY SUPPORTED--GOVERNED BY:

Stress Deflection

Fb′(psi)

W *Fb or Fv l/100 l/150 l/180 l/240 l/360

8 x 4 x 3/8w = 4.61 lb/ft 6 2,932 752 1,360 — — 1,174 880 587

bf/tf = 10.7 7 2,257 425 1,166 — 987 823 617 411

Fb = 12,000 psi 8 1,815 262 1,020 — 714 595 446 298

Aw = 2.72 sq. in. 9 1,508 172 907 796 530 442 331 221

Ix = 55.45 in.4 10 1,285 119 816 605 403 336 252 168

Sx = 13.85 in.3 11 1,117 85 742 469 313 261 196 130

Iy = 4.03 in.4 12 987 63 680 371 247 206 155 103

J = 0.268 in.4 13 883 48 628 298 198 165 124 8314 799 38 *565 242 161 135 101 6715 730 30 *492 200 133 111 83 5516 672 24 *433 166 111 92 69 4617 622 20 *383 140 93 78 58 3918 580 17 *342 119 79 66 49 3319 543 14 *307 102 68 56 42 2820 510 12 *277 88 58 49 37 24

** 8 x 4 x 1/2

w = 6.03 lb/ft 6 3,383 1,106 1,750 — — 1,501 1,125 750

bf/tf = 8.0 7 2,655 638 1,500 — 1,262 1,051 789 526

Fb = 12,000 psi 8 2,174 400 1,313 — 912 760 570 380

Aw = 3.5 sq. in. 9 1,835 267 1,167 1,015 677 564 423 282

Ix = 70.62 in.4 10 1,586 187 1,050 772 515 429 322 214

Sx = 17.65 in.3 11 1,397 136 955 599 399 333 249 166

Iy = 5.41 in.4 12 1,248 102 875 473 315 263 197 131

J = 0.625 in.4 13 1,127 79 808 379 253 211 158 10514 1,029 62 *720 309 206 172 129 8615 946 49 *628 254 170 141 106 7116 877 40 *552 212 141 118 88 5917 817 33 *489 178 119 99 74 5018 764 28 *436 151 101 84 63 4219 719 23 *391 130 86 72 54 3620 678 20 *353 112 74 62 47 31

Page 110: Manual Completo

8-23

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

SPAN IN FEET

LATERALLY

UNSUPPORTED

LATERALLY SUPPORTED--GOVERNED BY:

Stress Deflection

Fb′(psi)

W*Fb or

Fv l/100 l/150 l/180 l/240 l/360

** 10 x 5 x 3/8w = 5.78 lb/ft 6 4,062 1,680 1,735 — — — 1,451 967

bf/tf = 13.3 7 3,055 928 1,487 — — 1,402 1,052 701

Fb = 10,274 psi 8 2,400 558 1,301 — 1,250 1,042 781 521

Aw = 3.47 sq. in. 9 1,950 358 1,157 — 949 791 593 395

Ix = 111.67 in.4 10 1,626 242 1,041 — 734 612 459 306

Sx = 22.33 in.3 11 1,386 170 946 867 578 482 361 241

Iy = 7.85 in.4 12 1,201 124 868 693 462 385 289 192

J = 0.338 in.4 13 1,057 93 801 561 374 312 234 156

14 941 72 744 460 307 256 192 128

15 847 56 *680 382 255 212 159 106

16 769 45 *597 320 213 178 133 89

17 704 36 *529 270 180 150 113 75

18 649 30 *472 231 154 128 96 64

19 601 25 *424 198 132 110 83 55

20 560 21 *382 171 114 95 71 48

21 524 18 *347 149 99 83 62 41

22 493 15 *316 131 87 73 54 36

23 465 13 *289 115 77 64 48 32

24 440 11 *266 102 68 56 42 28

25 417 10 *245 90 60 50 38 25

BEAMS

I-SHAPES — EXTREN® 500, 525 & 625E = 2.5 x 106 psi

Allowable Uniform Loads in Pounds Per Foot

** Non-stock size subject to mill run requirements.

X X

Y

Y

Page 111: Manual Completo

8-24

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

SPAN IN FEET

LATERALLY

UNSUPPORTED

LATERALLY SUPPORTED--GOVERNED BY:

Stress Deflection

Fb′(psi)

W*Fb or

Fv l/100 l/150 l/180 l/240 l/360

** 10 x 5 x 1/2w = 7.58 lb/ft 6 4,435 2,250 2,250 — — — 1,872 1,248

bf/tf = 10.0 7 3,381 1,320 1,929 — — 1,809 1,357 904

Fb = 12,000 psi 8 2,692 805 1,688 — 1,612 1,343 1,007 672

Aw = 4.5 sq. in. 9 2,216 524 1,500 — 1,223 1,019 764 510

Ix = 143.48 in.4 10 1,873 358 1,350 — 946 788 591 394

Sx = 28.70 in.3 11 1,615 255 1,227 1,116 744 620 465 310

Iy = 10.51 in.4 12 1,417 188 1,125 892 594 495 372 248

J = 0.788 in.4 13 1,261 143 1,038 722 482 401 301 201

14 1,134 111 964 592 395 329 247 165

15 1,031 88 900 491 327 273 205 136

16 944 71 844 411 274 229 171 114

17 871 58 794 348 232 193 145 97

18 808 48 *709 296 198 165 124 82

19 754 40 *636 255 170 141 106 71

20 707 34 *574 220 147 122 92 61

21 665 29 *521 192 128 106 80 53

22 628 25 *474 168 112 93 70 47

23 596 22 *434 148 98 82 62 41

24 566 19 *399 131 87 73 54 36

25 539 17 *367 116 77 65 48 32

BEAMS

I-SHAPES — EXTREN® 500, 525 & 625E = 2.5 x 106 psi

Allowable Uniform Loads in Pounds Per Foot

** Non-stock size subject to mill run requirements.

X X

Y

Y

Page 112: Manual Completo

8-25

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

BEAMS

I-SHAPES — EXTREN® 500, 525 & 625E = 2.5 x 106 psi

Allowable Uniform Loads in Pounds Per FootX X

Y

Y

SPAN IN FEET

LATERALLY

UNSUPPORTED

LATERALLY SUPPORTED--GOVERNED BY:

Stress Deflection

Fb′(psi) W

*Fb or Fv l/100 l/150 l/180 l/240 l/360

** 12 x 6 x 1/2w = 9.24 lb/ft 6 5,878 2,750 2,750 — — — 2,715 1,810

bf/tf = 12.0 7 4,408 2,357 2,357 — — — 2,024 1,349

Fb = 12,000 psi 8 3,452 1,521 2,063 — — 2,053 1,539 1,026

Aw = 5.5 sq. in. 9 2,795 973 1,833 — — 1,589 1,192 795

Ix = 254.1 in.4 10 2,324 655 1,650 — 1,500 1,250 938 625

Sx = 42.30 in.3 11 1,974 460 1,500 — 1,197 998 748 499

Iy = 18.11 in.4 12 1,706 334 1,375 — 968 806 605 403

J = 0.958 in.4 13 1,496 250 1,269 1,188 792 660 495 330

14 1,329 191 1,179 982 655 546 409 273

15 1,193 150 1,100 820 547 456 342 228

16 1,080 119 1,031 691 461 384 288 192

17 986 96 971 587 392 326 245 163

18 907 79 917 503 335 279 210 140

19 839 66 868 434 289 241 181 120

20 780 55 825 376 251 209 157 105

21 728 47 *767 329 219 183 137 91

22 683 40 *699 288 192 160 120 80

23 644 34 *640 254 170 141 106 71

24 608 30 *588 226 150 125 94 63

25 576 26 *541 201 134 112 84 56

26 548 23 *501 180 120 100 75 50

27 522 20 *464 161 107 90 67 45

28 498 18 *432 145 97 81 60 40

29 477 16 *402 131 87 73 55 36

30 457 14 *376 119 79 66 50 33

31 439 13 *352 108 72 60 45 30

32 423 12 *330 99 66 55 41 27

33 407 11 *311 90 60 50 38 25

34 393 10 *293 83 55 46 34 23

35 - - *276 76 51 42 32 21

36 - - *261 70 47 39 29 19

37 - - *247 65 43 36 27 18

38 - - *234 60 40 33 25 17

39 - - *222 55 37 31 23 15

40 - - *212 51 34 29 21 14

** Non-stock size subject to mill run requirements.

Page 113: Manual Completo

8-26

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

BEAMS

I-SHAPES — EXTREN® 500, 525 & 625E = 2.5 x 106 psi

Allowable Uniform Loads in Pounds Per FootX X

Y

Y

SPAN IN FEET

LATERALLY

UNSUPPORTED

LATERALLY SUPPORTED--GOVERNED BY:

Stress Deflection

Fb′(psi)

W *Fb or Fv l/100 l/150 l/180 l/240 l/360

** 18 x 3/8 x 4-1/2 x 1/2w = 8.34 lb/ft 5 3,874 3,825 3,825 — — — — 3,354

bf/tf = 9.0 6 2,727 2,880 3,188 — — — — 2,548

Fb = 12,000 psi 7 2,035 1,579 2,732 — — — — 1,978

Aw = 6.375 sq. in. 8 1,586 942 2,391 — — — 2,340 1,560

Ix = 513.25 in.4 9 1,277 600 2,125 — — — 1,872 1,248

Sx = 57.03 in.3 10 1,056 402 1,913 — — — 1,515 1,010

Iy = 7.67 in.4 11 892 280 1,739 — — 1,652 1,239 826

J = 0.674 in.4 12 767 202 1,594 — — 1,365 1,023 682

13 669 151 1,471 — 1,365 1,137 853 569

14 591 115 1,366 — 1,147 956 717 478

15 528 89 1,275 — 972 810 607 405

16 476 71 1,195 — 829 691 518 345

17 432 57 1,125 1,068 712 593 445 297

18 396 46 1,063 923 615 513 385 256

19 365 38 1,007 802 535 446 334 223

20 338 32 956 702 468 390 292 195

21 314 27 911 616 411 342 257 171

22 294 23 869 544 363 302 227 151

23 276 20 832 483 322 268 201 134

24 260 17 *792 430 287 239 179 119

25 246 15 *730 384 256 213 160 107

26 233 13 *675 345 230 192 144 96

27 221 12 *626 311 207 173 129 86

28 211 10 *582 281 187 156 117 78

29 201 - *542 254 170 141 106 71

30 193 - *507 231 154 128 96 64

31 185 - *475 211 140 117 88 59

32 177 - *446 193 128 107 80 53

33 171 - *419 176 118 98 73 49

34 164 - *395 162 108 90 67 45

35 159 - *372 149 99 83 62 41

36 153 - *352 138 92 76 57 38

37 148 - *333 127 85 71 53 35

38 143 - *316 118 78 65 49 33

39 139 - *300 109 73 61 45 30

40 135 - *285 101 68 56 42 28

** Non-stock size subject to mill run requirements.

Page 114: Manual Completo

8-27

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

BEAMS

I-SHAPES — EXTREN® 500, 525 & 625E = 2.5 x 106 psi

Allowable Uniform Loads in Pounds Per FootX X

Y

Y

SPAN IN FEET

LATERALLY

UNSUPPORTED

LATERALLY SUPPORTED--GOVERNED BY:

Stress Deflection

Fb′(psi)

W *Fb or Fv l/100 l/150 l/180 l/240 l/360

** 24 x 3/8 x 7-1/2 x 3/4w = 16.1 lb/ft 5 12,000 5,058 5,058 — — — — —

bf/tf = 10.0 6 8,724 4,215 4,215 — — — — 4,139Fb = 12,000 psi 7 6,443 3,613 3,613 — — — — 3,393Aw = 8.43 sq. in. 8 4,962 3,161 3,161 — — — — 2,826Ix = 1903.44 in.4 9 3,946 2,810 2,810 — — — — 2,382

Sx = 158.62 in.3 10 3,220 2,529 2,529 — — — — 2,027Iy = 52.83 in.4 11 2,682 2,299 2,299 — — — — 1,738J = 2.510 in.4 12 2,273 1,669 2,108 — — — — 1,500

13 1,954 1,223 1,945 — — — — 1,30214 1,701 918 1,806 — — — 1,703 1,13515 1,497 704 1,686 — — — 1,492 99516 1,330 549 1,581 — — — 1,313 87517 1,191 436 1,488 — — — 1,160 77318 1,075 351 1,405 — — 1,371 1,028 68519 976 286 1,331 — — 1,220 915 61020 892 236 1,265 — — 1,089 817 54521 819 196 1,204 — 1,171 976 732 48822 756 165 1,150 — 1,052 877 657 43823 700 140 1,100 — 948 790 592 39524 652 120 1,054 — 857 714 535 35725 609 103 1,012 — 776 647 485 32326 571 89 973 — 705 588 441 29427 537 78 937 — 642 535 401 26828 506 68 903 879 586 489 366 24429 478 60 872 805 536 447 335 22430 453 53 843 738 492 410 307 20531 431 47 816 678 452 377 283 18832 410 42 790 624 416 347 260 17333 391 38 766 576 384 320 240 16034 374 34 744 532 355 296 222 14835 358 31 723 493 329 274 205 13736 343 28 703 457 305 254 191 12737 329 25 684 425 283 236 177 11838 317 23 666 395 264 220 165 11039 305 21 648 368 246 205 153 10240 294 19 632 344 229 191 143 9641 284 18 617 321 214 179 134 8942 274 - 602 301 201 167 125 8443 265 - 588 282 188 157 117 7844 257 - 575 264 176 147 110 7345 249 - 562 248 166 138 104 6946 242 - 550 234 156 130 97 6547 235 - 538 220 147 122 92 6148 228 - 527 207 138 115 86 5849 222 - 516 196 131 109 82 5450 216 - 506 185 123 103 77 51

8-27Copyright © 2013 Strongwell Corporation

All Rights ReservedRev.1013

** Non-stock size subject to mill run requirements. *** Using Fb, Fb′ or Fv

Page 115: Manual Completo

8-28

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

SPAN IN FEET

LATERALLY SUPPORTED--GOVERNED BY:

Stress Deflection

*Fb or Fv l/100 l/150 l/180 l/240 l/360

** 3 x 7/8 x 1/4w = 0.77 lb/ft 3 620 479 319 266 199 133

bf/tf = 3.5 4 *376 220 147 122 92 61

Fb = 11,717 psi 5 *241 118 79 65 49 33

Aw = 0.62 in.2 6 *167 70 47 39 29 19

Ix = 1.15 in.4 7 *123 45 30 25 19 12

Sx = 0.77 in.3 8 *94 30 20 17 13 8

Iy = 0.06 in.4 9 *74 21 14 12 9 6

J = 0.020 in.4

** 3 x 1 x 3/16

w = 0.68 lb/ft 3 *396 — 279 232 174 116

bf/tf = 5.3 4 *223 194 130 108 81 54

Fb = 7857 psi 5 *142 104 70 58 44 29

Aw = 0.49 in.2 6 *99 62 41 34 26 17

Ix = 1.03 in.4 7 *73 40 27 22 17 11

Sx = 0.68 in.3 8 *56 27 18 15 11 7

Iy = 0.07 in.4 9 *44 19 13 11 8 5

J = 0.010 in.4

** 3-1/2 x 1-1/2 x 3/16w = 0.88 lb/ft 3 *431 — — 386 289 193

bf/tf = 8.0 4 *243 — 224 187 140 93

Fb = 5,342 psi 5 *155 — 123 103 77 51

Aw = 0.586 in.2 6 *108 — 74 62 46 31

Ix = 1.91 in.4 7 *79 72 48 40 30 20

Sx = 1.09 in.3 8 *61 49 33 27 20 14

Iy = 0.19 in.4 9 *48 35 23 19 14 10J = 0.013 in.4 10 *39 26 17 14 11 7

CHANNELS — EXTREN® 500 & 525E = 2.6 x 106 psi

Allowable Uniform Loads in Pounds Per Foot

BEAMS

** Non-stock size subject to mill run requirements.

X X

Y

Y

Page 116: Manual Completo

8-29

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

BEAMS

CHANNELS — EXTREN® 625E = 2.8 x 106 psi

Allowable Uniform Loads in Pounds Per Foot

** Non-stock size subject to mill run requirements.

X X

Y

Y

SPAN IN FEET

LATERALLY SUPPORTED--GOVERNED BY:

Stress Deflection

*Fb or Fv l/100 l/150 l/180 l/240 l/360

3 x 7/8 x 1/4w = 0.77 lb/ft 3 620 508 339 282 212 141

bf/tf = 3.5 4 *405 235 157 131 98 65

Fb = 12,618 psi 5 *259 126 84 70 53 35

Aw = 0.62 in.2 6 *180 75 50 42 31 21

Ix = 1.15 in.4 7 *132 48 32 27 20 13

Sx = 0.77 in.3 8 *101 32 22 18 14 9

Iy = 0.06 in.4 9 *80 23 15 13 10 6

J = 0.020 in.4

** 3 x 1 x 3/16

w = 0.68 lb/ft 3 *426 — 295 246 185 123

bf/tf = 5.3 4 *240 207 138 115 86 58

Fb = 8,462 psi 5 *153 112 74 62 47 31

Aw = 0.49 in.2 6 *107 67 44 37 28 18

Ix = 1.03 in.4 7 *78 43 28 24 18 12

Sx = 0.68 in.3 8 *60 29 19 16 12 8

Iy = 0.07 in.4 9 *47 20 14 11 9 6

J = 0.010 in.4

** 3-1/2 x 1-1/2 x 3/16w = 0.88 lb/ft 3 *465 — — 406 305 203

bf/tf = 8.0 4 *261 — 238 198 149 99

Fb = 5,753 psi 5 *167 — 131 109 82 55

Aw = 0.586 in.2 6 *116 — 79 66 50 33

Ix = 1.91 in.4 7 *85 77 51 43 32 21

Sx = 1.09 in.3 8 *65 53 35 29 22 15

Iy = 0.19 in.4 9 *52 37 25 21 16 10J = 0.013 in.4 10 *42 27 18 15 11 8

Page 117: Manual Completo

8-30

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

SPAN IN FEET

LATERALLY SUPPORTED--GOVERNED BY:

Stress Deflection

*Fb or Fv l/100 l/150 l/180 l/240 l/360

** 4 x 1-1/16 x 1/8w = 0.58 lb/ft 3 *291 — — — 234 156

bf/tf = 8.5 4 *164 — — 151 113 76

Fb = 5,043 psi 5 *105 — 100 83 62 42

Aw = 0.47 in.2 6 *73 — 60 50 38 25

Ix = 1.55 in.4 7 *54 — 39 32 24 16

Sx = 0.78 in.3 8 *41 40 26 22 17 11

Iy = 0.06 in.4 9 *32 28 19 16 12 8

J = 0.004 in.4 10 *26 21 14 12 9 6

4 x 1-1/8 x 1/4w = 1.11 lb/ft 3 880 — 696 580 435 290

bf/tf = 4.5 4 *550 505 337 281 210 140

Fb = 9,228 psi 5 *352 277 185 154 116 77

Aw = 0.88 in.2 6 *244 167 111 93 70 46

Ix = 2.87 in.4 7 *180 108 72 60 45 30

Sx = 1.43 in.3 8 *137 74 49 41 31 20

Iy = 0.13 in.4 9 *109 52 35 29 22 15

J = 0.030 in.4 10 *88 38 26 21 16 11

4 x 1-3/8 x 3/16w = 0.94 lb/ft 3 *563 — — 503 377 251

bf/tf = 7.3 4 *317 — 297 248 186 124

Fb = 5,805 psi 5 *203 — 165 137 103 69

Aw = 0.68 in.2 6 *141 — 100 83 63 42

Ix = 2.62 in.4 7 *103 97 65 54 41 27

Sx = 1.31 in.3 8 *79 66 44 37 28 18

Iy = 0.19 in.4 9 *63 47 32 26 20 13

J = 0.014 in.4 10 *51 35 23 19 15 10

BEAMS

CHANNELS — EXTREN® 500 & 525E = 2.6 x 106 psi

Allowable Uniform Loads in Pounds Per FootX X

Y

Y

** Non-stock size subject to mill run requirements.

Page 118: Manual Completo

8-31

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

BEAMS

CHANNELS — EXTREN® 625E = 2.8 x 106 psi

Allowable Uniform Loads in Pounds Per FootX X

Y

Y

SPAN IN FEET

LATERALLY SUPPORTED--GOVERNED BY:

Stress Deflection

*Fb or Fv l/100 l/150 l/180 l/240 l/360

** 4 x 1-1/16 x 1/8w = 0.58 lb/ft 3 *314 — — — 247 164

bf/tf = 8.5 4 *177 — — 160 120 80

Fb = 5,431 psi 5 *113 — 106 89 66 44

Aw = 0.47 in.2 6 *78 — 64 54 40 27

Ix = 1.55 in.4 7 *58 — 42 35 26 17

Sx = 0.78 in.3 8 *44 43 28 24 18 12

Iy = 0.06 in.4 9 *35 30 20 17 13 8

J = 0.004 in.4 10 *28 22 15 12 9 6

4 x 1-1/8 x 1/4w = 1.11 lb/ft 3 880 — 733 611 458 305

bf/tf = 4.5 4 *592 536 357 298 223 149

Fb = 9,938 psi 5 *379 296 197 164 123 82

Aw = 0.88 in.2 6 *263 179 119 99 74 50

Ix = 2.87 in.4 7 *193 116 77 64 48 32

Sx = 1.43 in.3 8 *148 79 53 44 33 22

Iy = 0.13 in.4 9 *117 56 37 31 23 16

J = 0.030 in.4 10 *95 41 28 23 17 11

4 x 1-3/8 x 3/16w = 0.94 lb/ft 3 *607 — — 528 396 264

bf/tf = 7.3 4 *341 — 315 262 197 131

Fb = 6,252 psi 5 *218 — 176 146 110 73

Aw = 0.68 in.2 6 *152 — 107 89 67 45

Ix = 2.62 in.4 7 *111 104 69 58 43 29

Sx = 1.31 in.3 8 *85 71 48 40 30 20

Iy = 0.19 in.4 9 *67 51 34 28 21 14

J = 0.014 in.4 10 *55 37 25 21 16 10

** Non-stock size subject to mill run requirements.

Page 119: Manual Completo

8-32

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

BEAMS

CHANNELS — EXTREN® 500 & 525E = 2.6 x 106 psi

Allowable Uniform Loads in Pounds Per Foot

** Non-stock size subject to mill run requirements.

X X

Y

Y

SPAN IN FEET

LATERALLY SUPPORTED--GOVERNED BY:

Stress Deflection

*Fb or Fv l/100 l/150 l/180 l/240 l/360

5 x 1-3/8 x 1/4w = 1.4 lb/ft 5 *470 — 346 289 216 144

bf/tf = 5.5 6 *326 319 213 177 133 89

Fb = 7,626 psi 7 *240 209 139 116 87 58

Aw = 1.12 in.2 8 *184 144 96 80 60 40

Ix = 5.78 in.4 9 *145 103 68 57 43 29

Sx = 2.31 in.3 10 *117 76 51 42 32 21

Iy = 0.25 in.4 11 *97 58 38 32 24 16

J = 0.040 in.4 12 *82 45 30 25 19 12

13 *69 35 24 20 15 10

14 *60 28 19 16 12 8

15 *52 23 15 13 10 6

** 5-1/2 x 1-1/2 x 3/16w = 1.19 lb/ft 3 *835 — — — 703 469

bf/tf = 8.0 4 *470 — — — 366 244

Fb = 5,342 psi 5 *301 — — 280 210 140

Aw = 0.96 in.2 6 *209 — 209 174 130 87

Ix = 5.8 in.4 7 *153 — 137 114 86 57

Sx = 2.11 in.3 8 *117 — 95 79 59 39

Iy = 0.22 in.4 9 *93 — 68 57 42 28

J = 0.018 in.4 10 *75 — 50 42 31 21

11 *62 57 38 32 24 16

12 *52 44 30 25 19 12

13 *44 35 23 20 15 10

14 *38 28 19 16 12 8

15 *33 23 15 13 10 6

Page 120: Manual Completo

8-33

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

BEAMS

CHANNELS — EXTREN® 625E = 2.8 x 106 psi

Allowable Uniform Loads in Pounds Per Foot

** Non-stock size subject to mill run requirements.

X X

Y

Y

SPAN IN FEET

LATERALLY SUPPORTED--GOVERNED BY:

Stress Deflection

*Fb or Fv l/100 l/150 l/180 l/240 l/360

** 5 x 1-3/8 x 1/4w = 1.4 lb/ft 5 *506 — 368 306 230 153

bf/tf = 5.5 6 *351 340 227 189 142 94

Fb = 8,213 psi 7 *258 223 149 124 93 62

Aw = 1.12 in.2 8 *198 154 102 85 64 43

Ix = 5.78 in.4 9 *156 110 73 61 46 31

Sx = 2.31 in.3 10 *126 81 54 45 34 23

Iy = 0.25 in.4 11 *105 62 41 34 26 17

J = 0.040 in.4 12 *88 48 32 27 20 13

13 *75 38 25 21 16 11

14 *65 31 20 17 13 8

15 *56 25 17 14 10 7

** 5-1/2 x 1-1/2 x 3/16w = 1.19 lb/ft 3 *899 — — — 733 489

bf/tf = 8.0 4 *506 — — — 385 257

Fb = 5,753 psi 5 *324 — — 297 223 149

Aw = 0.96 in.2 6 *225 — 222 185 139 92

Ix = 5.8 in.4 7 *165 — 146 122 91 61

Sx = 2.11 in.3 8 *126 — 101 84 63 42

Iy = 0.22 in.4 9 *100 — 73 61 45 30

J = 0.018 in.4 10 *81 81 54 45 34 22

11 *67 61 41 34 26 17

12 *56 48 32 27 20 13

13 *48 38 25 21 16 11

14 *41 30 20 17 13 8

15 *36 25 17 14 10 7

Page 121: Manual Completo

8-34

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

BEAMS

CHANNELS — EXTREN® 500 & 525E = 2.6 x 106 psi

Allowable Uniform Loads in Newtons Per Meter

** Non-stock size subject to mill run requirements.

X X

Y

Y

SPAN IN FEET

LATERALLY SUPPORTED--GOVERNED BY:

Stress Deflection

*Fb or Fv l/100 l/150 l/180 l/240 l/360

5-1/2 x 1-1/2 x 1/4w = 1.55 lb/ft 3 1,250 — — 1,241 931 621

bf/tf = 6.0 4 *828 — 779 649 487 325

Fb = 7,021 psi 5 *530 — 449 374 280 187

Aw = 1.25 in.2 6 *368 — 278 232 174 116

Ix = 7.78 in.4 7 *270 — 183 153 115 76

Sx = 2.83 in.3 8 *207 190 127 106 79 53

Iy = 0.33 in.4 9 *164 136 91 76 57 38

J = 0.042 in.4 10 *132 101 67 56 42 28

11 *109 77 51 43 32 21

12 *92 60 40 33 25 17

13 *78 47 31 26 20 13

14 *68 38 25 21 16 11

15 *59 31 21 17 13 9

Page 122: Manual Completo

8-35

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

BEAMS

CHANNELS — EXTREN® 625E = 2.8 x 106 psi

Allowable Uniform Loads in Newtons Per Meter

** Non-stock size subject to mill run requirements.

X X

Y

Y

SPAN IN FEET

LATERALLY SUPPORTED--GOVERNED BY:

Stress Deflection

*Fb or Fv l/100 l/150 l/180 l/240 l/360

5-1/2 x 1-1/2 x 1/4w = 1.55 lb/ft 3 1,250 — — — 970 646

bf/tf = 6.0 4 *892 — 819 683 512 341

Fb = 7,562 psi 5 *571 — 475 396 297 198

Aw = 1.25 in.2 6 *396 — 296 247 185 123

Ix = 7.78 in.4 7 *291 — 196 163 122 81

Sx = 2.83 in.3 8 *223 203 135 113 85 56

Iy = 0.33 in.4 9 *176 146 97 81 61 41

J = 0.042 in.4 10 *143 108 72 60 45 30

11 *118 82 55 46 34 23

12 *99 64 43 36 27 18

13 *84 51 34 28 21 14

14 *73 41 27 23 17 11

15 *63 33 22 19 14 9

Page 123: Manual Completo

8-36

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

BEAMS

CHANNELS — EXTREN® 500 & 525E = 2.6 x 106 psi

Allowable Uniform Loads in Pounds Per Foot

** Non-stock size subject to mill run requirements.

X X

Y

Y

SPAN IN FEET

LATERALLY SUPPORTED--GOVERNED BY:

Stress Deflection

*Fb or Fv l/100 l/150 l/180 l/240 l/360

6 x 1-5/8 x 1/4w = 1.68 lb/ft 5 *592 — 565 471 353 236

bf/tf = 6.5 6 *411 — 355 296 222 148

Fb = 6,507 psi 7 *302 — 235 196 147 98

Aw = 1.38 in.2 8 *231 — 163 136 102 68

Ix = 10.22 in.4 9 *183 176 118 98 73 49

Sx = 3.41 in.3 10 *148 131 87 73 55 36

Iy = 0.43 in.4 11 *122 100 66 55 42 28

J = 0.050 in.4 12 *103 78 52 43 32 22

13 *88 62 41 34 26 17

14 *75 50 33 28 21 14

15 *66 41 27 23 17 11

** 6 x 1-11/16 x 3/8w = 2.46 lb/ft 5 1,182 — 806 671 503 336

bf/tf = 4.5 6 *829 758 505 421 316 210

Fb = 9,228 psi 7 *609 503 335 279 209 140

Aw = 1.97 in.2 8 *466 349 232 194 145 97

Ix = 14.55 in.4 9 *368 251 167 139 105 70

Sx = 4.85 in.3 10 *298 186 124 104 78 52

Iy = 0.54 in.4 11 *247 142 95 79 59 39

J = 0.150 in.4 12 *207 110 74 61 46 31

13 *177 88 58 49 37 24

14 *152 71 47 39 29 20

15 *133 58 38 32 24 16

Page 124: Manual Completo

8-37

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

BEAMS

CHANNELS — EXTREN® 625E = 2.8 x 106 psi

Allowable Uniform Loads in Pounds Per Foot

** Non-stock size subject to mill run requirements.

X X

Y

Y

SPAN IN FEET

LATERALLY SUPPORTED--GOVERNED BY:

Stress Deflection

*Fb or Fv l/100 l/150 l/180 l/240 l/360

6 x 1-5/8 x 1/4w = 1.68 lb/ft 5 *637 — 597 498 373 249

bf/tf = 6.5 6 *443 — 376 314 235 157

Fb = 7,008 psi 7 *325 — 250 209 157 104

Aw = 1.38 in.2 8 *249 — 174 145 109 73

Ix = 10.22 in.4 9 *197 188 126 105 79 52

Sx = 3.41 in.3 10 *159 140 93 78 58 39

Iy = 0.43 in.4 11 *132 107 71 59 44 30

J = 0.050 in.4 12 *111 83 55 46 35 23

13 *94 66 44 37 28 18

14 *81 53 35 30 22 15

15 *71 44 29 24 18 12

** 6 x 1-11/16 x 3/8w = 2.46 lb/ft 5 1,182 — 851 709 532 355

bf/tf = 4.5 6 *893 804 536 447 335 223

Fb = 9,938 psi 7 *656 535 357 297 223 149

Aw = 1.97 in.2 8 *502 372 248 207 155 103

Ix = 14.55 in.4 9 *397 268 179 149 112 75

Sx = 4.85 in.3 10 *321 199 133 111 83 55

Iy = 0.54 in.4 11 *266 152 101 84 63 42

J = 0.150 in.4 12 *223 118 79 66 49 33

13 *190 94 63 52 39 26

14 *164 76 51 42 32 2115 *143 62 41 34 26 17

Page 125: Manual Completo

8-38

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

BEAMS

CHANNELS — EXTREN® 500 & 525E = 2.6 x 106 psi

Allowable Uniform Loads in Pounds Per Foot

** Non-stock size subject to mill run requirements.

X X

Y

Y

SPAN IN FEET

LATERALLY SUPPORTED--GOVERNED BY:

Stress Deflection

*Fb or Fv l/100 l/150 l/180 l/240 l/360

** 8 x 2-3/16 x 1/4Wt/ft. = 2.32 lb/ft 6 *573 — — — 474 316

bf/tf = 8.8 7 *421 — — — 324 216Fb = 4,906 psi 8 *322 — — 307 230 153Aw = 1.88 in.2 9 *255 — — 224 168 112Ix = 25.22 in.4 10 *206 — 202 169 127 84

Sx = 6.31 in.3 11 *171 — 156 130 97 65Iy = 1.10 in.4 12 *143 — 122 102 76 51J = 0.060 in.4 13 *122 — 97 81 61 41

14 *105 — 79 66 49 3315 *92 — 65 54 40 2716 *81 — 54 45 34 2217 *71 68 45 38 28 1918 *64 57 38 32 24 1619 *57 49 33 27 20 1420 *52 42 28 23 18 12

8 x 2-3/16 x 3/8w = 3.41 lb/ft 6 *1,195 — 1,081 901 676 450

bf/tf = 5.8 7 *878 — 738 615 462 308Fb = 7,216 psi 8 *672 — 524 436 327 218Aw = 2.72 in.2 9 *531 — 383 319 239 160Ix = 35.75 in.4 10 *430 — 288 240 180 120

Sx = 8.94 in.3 11 *355 332 221 184 138 92Iy = 1.42 in.4 12 *299 260 173 145 108 72J = 0.200 in.4 13 *254 208 138 115 86 58

14 *219 168 112 93 70 4715 *191 138 92 77 57 3816 *168 114 76 64 48 3217 *149 96 64 53 40 2718 *133 81 54 45 34 2319 *119 69 46 39 29 1920 *108 60 40 33 25 17

Page 126: Manual Completo

8-39

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

BEAMS

CHANNELS — EXTREN® 625E = 2.8 x 106 psi

Allowable Uniform Loads in Pounds Per Foot

** Non-stock size subject to mill run requirements.

X X

Y

Y

SPAN IN FEET

LATERALLY SUPPORTED--GOVERNED BY:

Stress Deflection

*Fb or Fv l/100 l/150 l/180 l/240 l/360

** 8 x 2-3/16 x 1/4w = 2.32 lb/ft 6 *617 — — — 499 332

bf/tf = 8.8 7 *454 — — — 343 228Fb = 5,284 psi 8 *347 — — 325 244 163Aw = 1.88 in.2 9 *274 — — 239 179 119Ix = 25.22 in.4 10 *222 — 216 180 135 90

Sx = 6.31 in.3 11 *184 — 166 139 104 69Iy = 1.10 in.4 12 *154 — 131 109 82 54J = 0.060 in.4 13 *132 — 104 87 65 43

14 *113 — 85 70 53 3515 *99 — 69 58 43 2916 *87 87 58 48 36 2417 *77 73 48 40 30 2018 *69 62 41 34 26 1719 *62 53 35 29 22 1520 *56 45 30 25 19 13

8 x 2-3/16 x 3/8w = 3.41 lb/ft 6 *1,287 — 1,138 949 712 474

bf/tf = 5.8 7 *945 — 781 651 488 325Fb = 7,771 psi 8 *724 — 556 463 347 232Aw = 2.72 in.2 9 *572 — 408 340 255 170Ix = 35.75 in.4 10 *463 460 307 256 192 128

Sx = 8.94 in.3 11 *383 354 236 197 148 98Iy = 1.42 in.4 12 *322 278 185 155 116 77J = 0.200 in.4 13 *274 222 148 123 93 62

14 *236 180 120 100 75 5015 *206 148 99 82 62 4116 *181 123 82 68 51 3417 *160 103 69 57 43 2918 *143 87 58 49 36 2419 *128 75 50 41 31 2120 *116 64 43 36 27 18

Page 127: Manual Completo

8-40

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

BEAMS

CHANNELS — EXTREN® 500 & 525E = 2.6 x 106 psi

Allowable Uniform Loads in Pounds Per FootX X

Y

Y

SPAN IN FEET

LATERALLY SUPPORTED--GOVERNED BY:

Stress Deflection

*Fb or Fv l/100 l/150 l/180 l/240 l/360

10 x 2-3/4 x 1/2w = 5.5 lb/ft 6 2,250 — — 1,998 1,499 999

bf/tf = 5.5 7 *1,919 — 1,687 1,406 1,054 703

Fb = 7,626 psi 8 *1,469 — 1,223 1,019 764 510

Aw = 4.5 in.2 9 *1,161 — 910 759 569 379

Ix = 92.46 in.4 10 *940 — 693 578 433 289

Sx = 18.49 in.3 11 *777 — 539 449 337 224

Iy = 3.99 in.4 12 *653 639 426 355 266 177

J = 0.600 in.4 13 *556 513 342 285 214 143

14 *480 418 279 232 174 116

15 *418 345 230 191 144 96

16 *367 287 191 160 120 80

17 *325 242 161 134 101 67

18 *290 205 137 114 86 57

19 *260 176 117 98 73 49

20 *235 152 101 84 63 42

21 *213 132 88 73 55 37

22 *194 115 77 64 48 32

23 *178 101 67 56 42 28

24 *163 89 60 50 37 25

25 *150 79 53 44 33 22

Page 128: Manual Completo

8-41

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

BEAMS

CHANNELS — EXTREN® 625E = 2.8 x 106 psi

Allowable Uniform Loads in Pounds Per FootX X

Y

Y

SPAN IN FEET

LATERALLY SUPPORTED--GOVERNED BY:

Stress Deflection

*Fb or Fv l/100 l/150 l/180 l/240 l/360

10 x 2-3/4 x 1/2w = 5.5 lb/ft 6 2,250 — — 2,089 1,566 1,044

bf/tf = 5.5 7 1,929 — 1,772 1,477 1,108 739

Fb = 8,213 psi 8 *1,582 — 1,290 1,075 807 538

Aw = 4.5 in.2 9 *1,250 — 964 803 602 402

Ix = 92.46 in.4 10 *1,012 — 736 613 460 307

Sx = 18.49 in.3 11 *837 — 573 477 358 239Iy = 3.99 in.4 12 *703 681 454 378 284 189

J = 0.600 in.4 13 *599 547 365 304 228 152

14 *517 446 298 248 186 124

15 *450 368 246 205 153 102

16 *395 307 205 171 128 85

17 *350 259 173 144 108 72

18 *312 220 147 122 92 61

19 *280 188 126 105 79 52

20 *253 163 108 90 68 45

21 *230 141 94 78 59 39

22 *209 123 82 69 51 34

23 *191 108 72 60 45 30

24 *176 96 64 53 40 27

25 *162 85 57 47 35 24

Page 129: Manual Completo

8-42

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

BEAMS

CHANNELS — EXTREN® 500 & 525E = 2.6 x 106 psi

Allowable Uniform Loads in Pounds Per FootX X

Y

Y

SPAN IN FEET

LATERALLY SUPPORTED--GOVERNED BY:

Stress Deflection

*Fb or Fv l/100 l/150 l/180 l/240 l/360

12 x 3 x 1/2w = 6.3 lb/ft 6 2,750 — — — 2,096 1,398

bf/tf = 6.0 7 *2,274 — — 2,000 1,500 1,000

Fb = 7,021 psi 8 *1,741 — — 1,470 1,102 735

Aw = 5.5 in.2 9 *1,375 — 1,327 1,106 829 553

Ix = 142.8 in.4 10 *1,114 — 1,019 850 637 425

Sx = 23.80 in.3 11 *921 — 798 665 499 332

Iy = 5.07 in.4 12 *774 — 634 529 396 264

Sy = 2.20 in.3 13 *659 — 512 427 320 213

J = 0.750 in.4 14 *568 — 418 349 262 174

15 *495 — 346 288 216 144

16 *435 434 289 241 181 121

17 *385 366 244 203 153 102

18 *344 312 208 173 130 87

19 *309 267 178 148 111 74

20 *279 231 154 128 96 64

21 *253 201 134 111 84 56

22 *230 175 117 97 73 49

23 *211 154 103 86 64 43

24 *193 136 91 76 57 38

25 *178 121 81 67 50 34

26 *165 108 72 60 45 30

27 *153 97 65 54 40 27

28 *142 87 58 48 36 24

29 *132 79 52 44 33 22

30 *124 71 47 40 30 20

Page 130: Manual Completo

8-43

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

BEAMS

CHANNELS — EXTREN® 625E = 2.8 x 106 psi

Allowable Uniform Loads in Pounds Per FootX X

Y

Y

SPAN IN FEET

LATERALLY SUPPORTED--GOVERNED BY:

Stress Deflection

*Fb or Fv l/100 l/150 l/180 l/240 l/360

12 x 3 x 1/2w = 6.3 lb/ft 6 2,750 — — — 2,182 1,455

bf/tf = 6.0 7 2,357 — — 2,093 1,570 1,047

Fb = 7,562 psi 8 *1,875 — 1,854 1,545 1,159 773

Aw = 5.5 in.2 9 *1,481 — 1,400 1,167 875 583

Ix = 142.8 in.4 10 *1,200 — 1,079 899 674 450

Sx = 23.80 in.3 11 *992 — 846 705 529 353Iy = 5.07 in.4 12 *833 — 674 562 421 281

Sy = 2.20 in.3 13 *710 — 545 454 341 227

J = 0.750 in.4 14 *612 — 446 372 279 186

15 *533 — 369 308 231 154

16 *469 464 309 258 193 129

17 *415 391 261 217 163 109

18 *370 333 222 185 139 93

19 *332 286 191 159 119 79

20 *300 247 165 137 103 69

21 *272 215 143 119 90 60

22 *248 188 125 105 78 52

23 *227 166 110 92 69 46

24 *208 146 98 81 61 41

25 *192 130 87 72 54 36

26 *177 116 77 64 48 32

27 *165 104 69 58 43 29

28 *153 93 62 52 39 26

29 *143 84 56 47 35 23

30 *133 76 51 42 32 21

Page 131: Manual Completo

8-44

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

BEAMS

SQUARE TUBES — EXTREN® 500 & 525E = 2.6 x 106 psi

Allowable Uniform Loads in Pounds Per FootX

Y

X

Y

** Non-stock size subject to mill requirements.

SPAN IN FEET

LATERALLY SUPPORTED--GOVERNED BY:

Stress Deflection

*Fb or Fv l/100 l/150 l/180 l/240 l/360

3 x 3 x 1/4w = 2.2 lb/ft 3 1,250 — 885 738 553 369

bf/tf = 12.0 4 *763 633 422 352 264 176

Fb = 7,863 psi 5 *489 345 230 192 144 96

Aw = 1.25 sq. in. 6 *339 207 138 115 86 57

I = 3.5 in.4 7 *249 133 89 74 55 37

Sx = 2.33 in.3 8 *191 90 60 50 38 25

J = 5.913 in.4 9 *151 64 43 36 27 18

10 *122 47 31 26 20 13

** 3-1/2 x 3-1/2 x 1/4w = 2.57 lb/ft 3 1,500 — 1,343 1,119 839 560

bf/tf = 14.0 4 *963 — 663 552 414 276

Fb = 6,898 psi 5 *616 552 368 307 230 153

Aw = 1.5 sq. in. 6 *428 335 223 186 140 93

I = 5.86 in.4 7 *314 217 145 121 91 60

Sx = 3.35 in.3 8 *241 149 99 83 62 41

J = 8.582 in.4 9 *190 106 71 59 44 29

10 *154 78 52 43 32 22

4 x 4 x 1/4w = 3.08 lb/ft 5 *724 — 531 442 332 221

bf/tf = 16.0 6 *503 489 326 272 204 136

Fb = 6,158 psi 7 *369 320 213 178 133 89

Aw = 1.75 sq. in. 8 *283 219 146 122 91 61

I = 8.82 in.4 9 *223 157 105 87 65 44

Sx = 4.41 in.3 10 *181 116 77 64 48 32

J = 14.937 in.4 11 *150 88 59 49 37 24

12 *126 68 45 38 28 19

13 *107 54 36 30 22 15

Page 132: Manual Completo

8-45

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

BEAMS

SQUARE TUBES — EXTREN® 625E = 2.8 x 106 psi

Allowable Uniform Loads in Pounds Per Foot

** Non-stock size subject to mill run requirements.

X

Y

X

Y

SPAN IN FEET

LATERALLY SUPPORTED--GOVERNED BY:

Stress Deflection

*Fb or Fv l/100 l/150 l/180 l/240 l/360

3 x 3 x 1/4w = 2.2 lb/ft 3 1,250 — 934 779 584 389

bf/tf = 12.0 4 *822 673 449 374 280 187

Fb = 8,468 psi 5 *526 368 245 204 153 102

Aw = 1.25 sq. in. 6 *365 221 147 123 92 61

I = 3.5 in.4 7 *268 143 95 79 59 40

Sx = 2.33 in.3 8 *206 97 65 54 40 27

J = 5.913 in.4 9 *162 69 46 38 29 19

10 *132 51 34 28 21 14

** 3-1/2 x 3-1/2 x 1/4w = 2.57 lb/ft 3 1,500 — 1,410 1,175 881 588

bf/tf = 14.0 4 *1,037 — 702 585 439 292

Fb = 7,428 psi 5 *664 588 392 327 245 163

Aw = 1.5 sq. in. 6 *461 358 239 199 149 99

I = 5.86 in.4 7 *339 233 155 129 97 65

Sx = 3.35 in.3 8 *259 159 106 88 66 44

J = 8.582 in.4 9 *205 113 76 63 47 32

10 *166 84 56 46 35 23

4 x 4 x 1/4w = 3.08 lb/ft 5 *780 — 564 470 352 235

bf/tf = 16.0 6 *542 521 347 289 217 145

Fb = 6,631 psi 7 *398 341 228 190 142 95

Aw = 1.75 sq. in. 8 *305 235 157 130 98 65

I = 8.82 in.4 9 *241 168 112 93 70 47

Sx = 4.41 in.3 10 *195 124 83 69 52 35

J = 14.937 in.4 11 *161 94 63 52 39 26

12 *135 73 49 41 30 20

13 *115 58 39 32 24 16

Page 133: Manual Completo

8-46

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

BEAMS

SQUARE TUBES — EXTREN® 500 & 525E = 2.6 x 106 psi

Allowable Uniform Loads in Pounds Per FootX

Y

X

Y

SPAN IN FEET

LATERALLY SUPPORTED--GOVERNED BY:

Stress Deflection

*Fb or Fv l/100 l/150 l/180 l/240 l/360

3 x 3 x 3/8w = 3.09 lb/ft 3 1,690 — 1,159 966 724 483

bf/tf = 8.0 4 1,268 825 550 458 344 229Fb = 11,099 psi 5 *894 448 299 249 187 125Aw = 1.69 sq. in. 6 *621 268 179 149 112 75

I = 4.53 in.4 7 *456 173 115 96 72 48Sx = 3.02 in.3 8 *349 117 78 65 49 33J = 6.780 in.4 9 *276 83 55 46 35 23

10 *223 61 41 34 25 1711 *185 46 31 26 19 1312 *155 36 24 20 15 1013 *132 28 19 16 12 8

4 x 4 x 3/8w = 4.28 lb/ft 3 2,440 — — 2,099 1,575 1,050

bf/tf = 10.7 4 1,830 — 1,277 1,064 798 532Fb = 8,689 psi 5 *1,379 1,081 721 601 450 300Aw = 2.44 sq. in. 6 *957 663 442 368 276 184

I = 11.9 in.4 7 *703 433 288 240 180 120Sx = 5.95 in.3 8 *539 297 198 165 124 82J = 17.860 in.4 9 *426 212 141 118 88 59

10 *345 157 104 87 65 4311 *285 119 79 66 49 3312 *239 92 61 51 38 2613 *204 73 49 40 30 2014 *176 59 39 33 24 1615 *153 48 32 27 20 1316 *135 39 26 22 16 1117 *119 33 22 18 14 918 *106 28 19 15 12 819 *95 24 16 13 10 720 *86 20 14 11 8 6

Page 134: Manual Completo

8-47

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

BEAMS

SQUARE TUBES — EXTREN® 625E = 2.8 x 106 psi

Allowable Uniform Loads in Pounds Per FootX

Y

X

Y

SPAN IN FEET

LATERALLY SUPPORTED--GOVERNED BY:

Stress Deflection

*Fb or Fv l/100 l/150 l/180 l/240 l/360

3 x 3 x 3/8w = 3.09 lb/ft 3 1,690 — 1,224 1,020 765 510

bf/tf = 8.0 4 1,268 878 585 488 366 244Fb = 11,953 psi 5 *963 479 319 266 200 133Aw = 1.69 sq. in. 6 *668 287 192 160 120 80

I = 4.53 in.4 7 *491 185 123 103 77 51Sx = 3.02 in.3 8 *376 126 84 70 52 35J = 6.780 in.4 9 *297 89 60 50 37 25

10 *241 66 44 36 27 1811 *199 50 33 28 21 1412 *167 38 26 21 16 1113 *142 30 20 17 13 8

4 x 4 x 3/8w = 4.28 lb/ft 3 2,440 — — 2,196 1,647 1,098

bf/tf = 10.7 4 1,830 — 1,348 1,123 842 562Fb = 9,357 psi 5 1,464 1,148 765 638 478 319Aw = 2.44 sq. in. 6 *1,031 706 471 392 294 196

I = 11.9 in.4 7 *758 462 308 257 193 128Sx = 5.95 in.3 8 *580 318 212 177 132 88J = 17.860 in.4 9 *458 227 152 126 95 63

10 *371 168 112 93 70 4711 *307 127 85 71 53 3512 *258 99 66 55 41 2713 *220 78 52 43 33 2214 *189 63 42 35 26 1715 *165 51 34 29 21 1416 *145 42 28 24 18 1217 *128 35 24 20 15 1018 *115 30 20 17 12 819 *103 26 17 14 11 720 *93 22 15 12 9 6

Page 135: Manual Completo

8-48

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

BEAMS

SQUARE TUBES — EXTREN® 500 & 525E = 2.6 x 106 psi

Allowable Uniform Loads in Pounds Per FootX

Y

X

Y

SPAN IN FEET

LATERALLY SUPPORTED--GOVERNED BY:

Stress Deflection

*Fb or Fv l/100 l/150 l/180 l/240 l/360

6 x 6 x 3/8w = 6.46 lb/ft 2 5,910 — — — — 5,015

bf/tf = 16.0 3 3,940 — — — 3,839 2,559Fb = 6,158 psi 4 2,955 — — 2,890 2,167 1,445Aw = 3.94 sq. in. 5 *2,322 — 2,105 1,754 1,316 877

I = 42.41 in.4 6 *1,612 — 1,355 1,129 847 564Sx = 14.14 in.3 7 *1,185 — 915 762 572 381J = 66.740 in.4 8 *907 — 643 536 402 268

9 *717 701 468 390 292 19510 *580 524 350 291 219 14611 *480 402 268 223 167 11212 *403 314 209 174 131 8713 *343 250 167 139 104 6914 *296 202 135 112 84 5615 *258 165 110 92 69 4616 *227 137 91 76 57 3817 *201 115 77 64 48 3218 *179 97 65 54 41 2719 *161 83 55 46 35 2320 *145 71 48 40 30 20

Page 136: Manual Completo

8-49

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

BEAMS

SQUARE TUBES — EXTREN® 625E = 2.8 x 106 psi

Allowable Uniform Loads in Pounds Per FootX

Y

X

Y

** Non-stock size subject to mill run requirements.

SPAN IN FEET

LATERALLY SUPPORTED--GOVERNED BY:

Stress Deflection

*Fb or Fv l/100 l/150 l/180 l/240 l/360

** 6 x 6 x 3/8w = 6.46 lb/ft 2 5,910 — — — — 5,105

bf/tf = 16.0 3 3,940 — — — — 2,639Fb = 6,631 psi 4 2,955 — — — 2,258 1,506Aw = 3.94 sq. in. 5 2,364 — 2,211 1,842 1,382 921

I = 42.41 in.4 6 *1,736 — 1,431 1,192 894 596Sx = 14.14 in.3 7 *1,276 — 970 809 606 404J = 66.740 in.4 8 *977 — 684 570 428 285

9 *772 748 498 415 312 20810 *625 560 373 311 233 15611 *517 430 286 239 179 11912 *434 336 224 187 140 9313 *370 268 178 149 112 7414 *319 217 144 120 90 6015 *278 177 118 99 74 4916 *244 147 98 82 61 4117 *216 123 82 69 51 3418 *193 104 70 58 44 2919 *173 89 59 50 37 2520 *156 77 51 43 32 21

Page 137: Manual Completo

8-50

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

BEAMS

RECTANGULAR TUBES — EXTREN® 500 & 525E = 2.6 x 106 psi

Allowable Uniform Loads in Pounds Per Foot

** Non-stock size subject to mill run requirements.

X

Y

X

Y

SPAN IN FEET

LATERALLY SUPPORTED--GOVERNED BY:

Stress Deflection

*Fb or Fv l/100 l/150 l/180 l/240 l/360

4 x 1/8 x 2 x 1/4w = 1.52 lb/ft 5 564 403 269 224 168 112

bf/tf = 8.0 6 *454 247 165 137 103 69

Fb = 11,099 psi 7 *334 161 107 89 67 45

Aw = 0.94 sq. in. 8 *256 110 74 61 46 31

Ix = 4.41 in.4 9 *202 79 53 44 33 22

Sx = 2.21 in.3 10 *164 58 39 32 24 16

Iy = 1.10 in.4 11 *135 44 29 24 18 12

J = 2.640 in.4 12 *114 34 23 19 14 9

** 6-1/2 x 1/4 x 2 x 1/2w = 3.77 lb/ft 5 1,650 — 1,307 1,089 817 544

bf/tf = 4.0 6 1,375 1,246 831 692 519 346

Fb = 12,000 psi 7 1,179 834 556 463 348 232

Aw = 2.75 sq. in. 8 *960 583 389 324 243 162

Ix = 24.97 in.4 9 *759 422 281 234 176 117

Sx = 7.68 in.3 10 *614 314 209 175 131 87

Iy = 2.79 in.4 11 *508 240 160 133 100 67

J = 8.020 in.4 12 *427 187 125 104 78 52

13 *364 149 99 83 62 41

14 *313 120 80 67 50 33

15 *273 98 65 55 41 27

Page 138: Manual Completo

8-51

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

BEAMS

RECTANGULAR TUBES — EXTREN® 625E = 2.8 x 106 psi

Allowable Uniform Loads in Pounds Per Foot

** Non-stock size subject to mill run requirements.

X

Y

X

Y

SPAN IN FEET

LATERALLY SUPPORTED--GOVERNED BY:

Stress Deflection

*Fb or Fv l/100 l/150 l/180 l/240 l/360

4 x 1/8 x 2 x 1/4w = 1.52 lb/ft 5 564 429 286 238 179 119

bf/tf = 8.0 6 470 263 175 146 110 73

Fb = 11,953 psi 7 *359 172 115 96 72 48

Aw = 0.94 sq. in. 8 *275 118 79 66 49 33

Ix = 4.41 in.4 9 *217 84 56 47 35 23

Sx = 2.21 in.3 10 *176 62 42 35 26 17

Iy = 1.10 in.4 11 *146 47 32 26 20 13

J = 2.640 in.4 12 *122 37 24 20 15 10

** 6-1/2 x 1/4 x 2 x 1/2w = 3.77 lb/ft 5 1,650 — 1,376 1,147 860 573

bf/tf = 4.0 6 1,375 1,319 879 733 550 366

Fb = 13,200 psi 7 1,179 887 591 493 369 246

Aw = 2.75 sq. in. 8 1,031 621 414 345 259 172

Ix = 24.97 in.4 9 *834 450 300 250 188 125

Sx = 7.68 in.3 10 *676 336 224 187 140 93

Iy = 2.79 in.4 11 *559 257 171 143 107 71

J = 8.020 in.4 12 *469 201 134 111 84 56

13 *400 159 106 89 66 44

14 *345 129 86 72 54 36

15 *300 105 70 59 44 29

Page 139: Manual Completo

8-52

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

RECTANGULAR TUBES — EXTREN® 500 & 525E = 2.6 x 106 psi

Allowable Uniform Loads in Pounds Per Foot

BEAMS

X

Y

X

Y

SPAN IN FEET

LATERALLY SUPPORTED--GOVERNED BY:

Stress Deflection

*Fb or Fv l/100 l/150 l/180 l/240 l/360

7 x 4 x 1/4

w = 4.1 lb/ft 3 3,250 — — — 3,134 2,089bf/tf = 16.0 4 2,438 — — 2,351 1,763 1,175Fb = 6,158 psi 5 *1,601 — — 1,423 1,068 712

Aw(x-x) = 3.25 sq. in. 6 *1,112 — 1,097 914 686 457Ix = 34.14 in.4 7 *817 — 740 617 463 308

Sx = 9.75 in.3 8 *625 — 520 433 325 217J = 30.500 in.4 9 *494 — 378 315 236 157

10 *400 — 282 235 176 11811 *331 324 216 180 135 9012 *278 253 169 141 106 7013 *237 201 134 112 84 5614 *204 163 109 90 68 4515 *178 133 89 74 56 3716 *156 111 74 61 46 3117 *138 93 62 51 39 2618 *124 78 52 44 33 2219 *111 67 45 37 28 1920 *100 58 38 32 24 16

4 x 7 x 1/4

w = 4.1 lb/ft 3 1,750 — — — 1,491 994bf/tf = 28.0 4 *1,121 — — 1,077 808 538Fb = 3,827 psi 5 *717 — — 635 476 317

Aw(y-y) = 1.75 sq. in. 6 *498 — 480 400 300 200Iy = 14.06 in.4 7 *366 — 320 266 200 133

Sy = 7.03 in.3 8 *280 — 222 185 139 939 *221 — 160 134 100 67

10 *179 179 119 99 75 5011 *148 136 91 76 57 3812 *125 106 71 59 44 30

Page 140: Manual Completo

8-53

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

RECTANGULAR TUBES — EXTREN® 625E = 2.8 x 106 psi

Allowable Uniform Loads in Pounds Per Foot

BEAMS

X

Y

X

Y

SPAN IN FEET

LATERALLY SUPPORTED--GOVERNED BY:

Stress Deflection

*Fb or Fv l/100 l/150 l/180 l/240 l/360

7 x 4 x 1/4

w = 4.1 lb/ft 3 3,250 3,233 2,155bf/tf = 16.0 4 2,438 1,838 1,225Fb = 6,631 psi 5 *1,724 1,495 1,122 748

Aw(x-x) = 3.25 sq. in. 6 *1,197 1,159 966 725 483Ix = 34.14 in.4 7 *880 785 654 491 327

Sx = 9.75 in.3 8 *673 553 461 346 230J = 30.500 in.4 9 *532 403 336 252 168

10 *431 301 251 188 12611 *356 347 231 193 144 9612 *299 271 181 151 113 7513 *255 216 144 120 90 6014 *220 175 116 97 73 4815 *192 143 95 79 60 4016 *168 119 79 66 49 3317 *149 99 66 55 41 2818 *133 84 56 47 35 2319 *119 72 48 40 30 2020 *108 62 41 34 26 17

4 x 7 x 1/4

w = 4.1 lb/ft 3 1,750 — — — 1,546 1,030bf/tf = 28.0 4 *1,207 — — 1,128 846 564Fb = 4,121 psi 5 *773 — — 670 502 335

Aw(y-y) = 1.75 sq. in. 6 *537 — 509 424 318 212Iy = 14.06 in.4 7 *394 — 340 283 213 142

Sy = 7.03 in.3 8 *302 — 237 198 148 999 *238 — 171 143 107 71

10 *193 191 128 106 80 5311 *160 146 97 81 61 4112 *134 114 76 63 47 32

Page 141: Manual Completo

8-54

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

BEAM DIAGRAMS AND FORMULAS

The beam diagrams and formulas that follow represent frequently occurring beam loadings and beam end conditions found in civil/structural applications. They are included herein for the convenience of those engineering and designers who have relatively infrequent use for such formulas and hence may find them necessary.

Though formulas for ∆max, ∆a, ∆x, and ∆x1 are shown, the engineer and designer of fiberglass flexural members is reminded that it represents only maximum flexural deflection. To obtain the true total deflection, the effects of shear deflection must be added. Please refer to equations B-13 and B-14 as applicable to your particular loading condition.

EFFECTIVE LATERAL BRACING SYSTEMS

Lateral support must be effective in preventing lateral deflection of the beam compression flange and must limit the laterally unsupported length of the beam to obtain the required level of stress.

Two common methods for the lateral support of the compression flange are shown below.

TYPE 1 supports the compression flange by a lateral bracing system that prevents significant lateral deflection. Each lateral support should be designed for two percent (2%) of the total compression force at that brace point in the laterally braced beam.

TYPE 2 prevents twisting of the entire cross section at the brace points. Rigid diaphragms are provided between two parallel beams. Each diaphragm should be designed for 2% of the total compression flange force at the brace points. Note that this system produces small upward and downward loads on the adjacent beams.

For additional discussion on lateral buckling and lateral bracing systems, the designer is referred to the ASCE Structural Plastics Design Manual.

Type 1 Type 2 Top Chord Braced Against Bracing Prevents Lateral Bending Rotation at Brace Points

Page 142: Manual Completo

8-55

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

NOMENCLATURE

E Modulus of Elasticity of steel at 29,000 ksi

I Moment of Inertia of beam (in.4)

L Total length of beam between reaction points (ft.)

Mmax Maximum moment (kip in.)

M1 Maximum moment in left section of beam (kip in.)

M2 Maximum movement in right section of beam (kip in.)

M3 Maximum positive moment in beam with combined end moment conditions (kip in.)

Mx Moment at distance x from end of beam (kip in.)

P Concentrated load (kips)

P1 Concentrated load nearest left reaction (kips)

P2 Concentrated load nearest right reaction, and of different magnitude than P1 (kips)

R End beam reaction for any condition of symmetrical loading (kips)

R1 Left end beam reaction (kips)

R2 Right end or intermediate beam reaction (kips)

R3 Right end beam reaction (kips)

V Maximum vertical shear for any condition of symmetrical loading (kips)

V1 Maximum vertical shear in left section of beam (kips)

V2 Vertical shear at right reaction point, or to left of intermediate reaction point of beam (kips)

V3 Vertical shear at right reaction point, or to right of intermediate reaction point of beam (kips)

Vx Vertical shear at distance x from end of beam (kips)

W Total load on beam (kips)

a Measured distance along beam (in.)

b Measured distance along beam which may be greater or less than "a" (in.)

l Total length of beam between reaction points (in.)

w Uniformally distributed load per unit of length (kips per in.)

w1 Uniformly distributed load per unit of length nearest left reaction (kips per in.)

w2 Uniformly distributed load per unit of length nearest right reaction and of different magnitude than w1 (kips per in.)

x Any distance measured along beam from left reaction (in.)

x1 Any distance measured along overhang section of beam from nearest reaction point (in.)

∆max Maximum deflection (in.)

∆a Deflection at point of load (in.)

∆x Deflection at any point x distance from left reaction (in.)

∆x1 Deflection of overhang section of beam at any distance from nearest reaction point (in.)

BEAM DIAGRAMS AND FORMULAS

Reprinted with permission of American Institute of Steel Construction

Page 143: Manual Completo

8-56

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

( )

Reprinted with permission of American Institute of Steel Construction

FREQUENTLY USED FORMULASThe formulas given below are frequently required in structural designing. They are included herein for the convenience of those engineers who have infrequent use for such formulas and hence may find reference necessary.

BEAMS Flexural stress at extreme fiber: f = Mc/I = M/S

Flexural stress at any fiber: f = My/I y = distance from neutral axis to fiber.

Average vertical shear (for maximum see below): v = V/A = V/dt (for beams and girders)

Horizontal shearing stress at any section A-A: v = VQ/I b Q = statical moment about the neutral axis of the entire section of

that portion of the cross section lying outside of Section A-A, b = width at Section A-A

(Intensity of vertical shear is equal to that of horizontal shear acting normal to it at the same point and both are usually a maximum at mid-height of beam.)

Slope and deflection at any point:

EI = M x and y are abscissa and ordinate respectively of a point on the neutral axis, referred to axes of rectangular coordinates through a selected point of support.

(First integration gives slopes; second integration gives deflections. Constants of inte-gration must be determined.)

CONTINUOUS BEAMS (THE THEOREM OF THREE MOMENTS)

Uniform load: Ma + 2Mb + + Mc = – + Concentrated loads:

Ma + 2Mb + + Mc = – 1 + – 1 +

Considering any two consecutive spans in any continuous structure:Ma, Mb, Mc = moments at left, center and right supports respectively, of any pair of

adjacent spans.l1 and l2 = length of left and right spans respectively, of the pair.I1 and I2 = moment of inertia of left and right spans respectively.w1 and w2 = load per unit of length on left and right spans respectively.P1 and P2 = concentrated loads on left and right spans respectively.a1 and a2 = distance of concentrated loads from left support in left and right spans

respectively.b1 and b2 = distance of concentrated loads from right support in left and right spans

respectively.

The above equations are for beams with moment of inertia constant in each span but differing in different spans, continuous over three or more supports. By writing such an equation for each successive pair of spans and introducing the known values (usually zero) of end moments, all other moments can be found.

BEAM DIAGRAMS AND FORMULAS

( )( ) 1 w1l1 3 w2l2

3

4 I1 I2

l1 l2I1 I2

l2I2

l1 I1

l1 I1

l1 l2I1 I2

l2I2

P1a1b1

I1

a1 l1

P2a2b2

I2

ba l2( ) ( )

d2y

dx2

Page 144: Manual Completo

8-57

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

Reprinted with permission of American Institute of Steel Construction

Table of Concentrated Load Equivalents Beam Fixed One Beam Fixed Simple Beam End Supported Both Ends n Loading Coeff. at Other

a 0.1250 0.0703 0.0417 b – 0.1250 0.0833 c 0.5000 0.3750 – 4 d – 0.6250 0.5000 e 0.0130 0.0054 0.0026 f 1.0000 1.0000 0.6667 g 1.0000 0.4151 0.3000

a 0.2500 0.1563 0.1250 b – 0.1875 0.1250 c 0.5000 0.3125 – 2 d – 0.6875 0.5000 e 0.0208 0.0093 0.0052 f 2.0000 1.5000 1.0000 g 0.8000 0.4770 0.4000

a 0.3333 0.2222 0.1111 b – 0.3333 0.2222 c 1.0000 0.6667 – 3 d – 1.3333 1.0000 e 0.0355 0.0152 0.0077 f 2.6667 2.6667 1.7778 g 1.0222 0.4381 0.3333

a 0.5000 0.2656 0.1875 b – 0.4688 0.3125 c 1.5000 1.0313 – 4 d – 1.9688 1.5000 e 0.0495 0.0209 0.0104 f 4.0000 3.7500 2.5000 g 0.9500 0.4281 0.3200

a 0.6000 0.3600 0.2000 b – 0.6000 0.4000 c 2.0000 1.4000 – 5 d – 2.6000 2.0000 e 0.0630 0.0265 0.0130 f 4.8000 4.8000 3.2000 g 1.0080 0.4238 0.3120 Maximum positive moment (kip-ft.): Equivalent simple span uniform load (kips): a x P x L f x P Maximum negative moment (kip-ft.): Deflection coeff. for equivalent simple span b x P x L uniform load: g Pinned end reaction (kips): c x P Number of equal load spaces: n Fixed end reaction (kips): d x P Span of beam (ft.) : L Maximum deflection (in.): e x PL3/EI

BEAM DIAGRAMS AND FORMULAS

P P P

PPPP

P

PP

P

Page 145: Manual Completo

8-58

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

Reprinted with permission of American Institute of Steel Construction

BEAM DIAGRAMS AND FORMULASFOR VARIOUS STATIC LOADING CONDITIONS

1. SIMPLE BEAM — UNIFORMLY DISTRIBUTED LOAD

Total Equiv. Uniform Load = wl

R = V = Vx = w ( – x)

M max.( at center ) = Mx = ( l–x ) ∆max.( at center ) =

∆x = ( l3–2lx2+x3 )

2. SIMPLE BEAM — LOAD INCREASING UNIFORMLY TO ONE END

Total Equiv. Uniform Load = = 1.0264W

R1 = V1 =

R2 = V2 max. =

Vx = –

M max. ( at x = = .5774l) = = .1283 Wl

Mx = (l2–x2)

∆max. (at x =l 1 – = .5193l) = .01304

∆x = ( 3x4 –10l2x2+7l4 )

3. SIMPLE BEAM — LOAD INCREASING UNIFORMLY TO CENTER

Total Equiv. Uniform Load =

R = V =

Vx (when x < 2 ) = (l2 – 4x2) M max. ( at center) =

Mx (when x < 2 ) = Wx ( – ) ∆max. ( at center) =

∆x (when x < 2 ) = ( 5l2 – 4x2 )2

4W 3W 2W2l2

Wl 6

wl 2 8wx 2 5wl4384EI wx 24EI

16W 9 √ 3W 32W 3W Wx2

3 l2 2Wl 9 √ 3

l√3

Wx3l2

Wl 3 EI

815

Wx180EI l2

Wl360EI Wx480 EI l2

1 2x2

2 3l2

l2

wl 2

l

l

l

Page 146: Manual Completo

8-59

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

Reprinted with permission of American Institute of Steel Construction

4. SIMPLE BEAM — UNIFORM LOAD PARTIALLY DISTRIBUTED

R1 = V1 ( max. when a < c ) = (2c + b)

R2 = V2 ( max. when a > c ) = (2a + b)

VX ( when x > a and < ( a + b )) = R1 – w ( x – a )

M max. ( at x = a + ) = R1 ( a + )

Mx ( when x < a ) = R1x

Mx ( when x > a and < ( a + b)) = R1x – ( x – a )2

Mx ( when x > ( a + b)) = R2 ( l – x) 5. SIMPLE BEAM — UNIFORM LOAD PARTIALLY DISTRIBUED AT ONE END

R1 = V1 max. = ( 2l – a )

R2 = V2 =

Vx ( when x < a ) = R1 – wx

M max. ( at x = ) = Mx ( when x < a ) = R1x –

Mx ( when x > a ) = R2 (l – x) ∆x ( when x < a ) = (a2 (2l–a)2–2ax2(2l–a)+lx3) ∆x ( when x > a ) = (4xl – 2x2 –a2) 6. SIMPLE BEAM — UNIFORM LOAD PARTIALLY DISTRIBUTED AT EACH END R1 = V1 =

R2 = V2 =

Vx ( when x < a ) = R1 – w1x

Vx ( when x > a and < (a + b) ) = R1 – w1a

Vx ( when x > (a + b) ) = R2 – w2 ( l– x )

M max. ( at x = when R1 < w1a) =

M max. ( at x =l – when R2<w2c) =

Mx ( when x < a) = R1x –

Mx ( when x > a and < ( a + b) ) = R1x – ( 2x – a )

Mx ( when x > ( a + b) ) = R2 ( l – x) –

wb2lwb2l

R12w

w2

wa2lwa2

2l

R2w2

R12

2w

wx 24EIlwa2 (l – x) 24EIl

w2c(2l – c) + w1a2

2l

R12

2w1

R22

2w2

w1a 2

w1x2

2

w1a(2l – a) + w2c2

2l

R1w1

w2 ( l – x )2

2

BEAM DIAGRAMS AND FORMULASFOR VARIOUS STATIC LOADING CONDITIONS

R1w

R1w

wx2

2

Page 147: Manual Completo

8-60

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

Reprinted with permission of American Institute of Steel Construction

7. SIMPLE BEAM — CONCENTRATED LOAD AT CENTER

Total Equiv. Uniform Load = 2P

R = V =

M max. ( at point of load ) =

Mx (when x < 2 ) = ∆max. ( at point of load ) =

∆x ( when x < 2 ) = ( 3l2 – 4x2 )

8. SIMPLE BEAM — CONCENTRATED LOAD AT ANY POINT

Total Equiv. Uniform Load =

R1 = V1 ( max. when a < b ) =

R2 = V2 ( max. when a > b ) =

M max.( at point of load) =

Mx ( when x < a ) = ∆max.( at x = when a > b) = ∆a( at point of load ) = ∆x ( when x < a ) = ( l 2 – b2 – x2)

9. SIMPLE BEAM — TWO EQUAL CONCENTRATED LOADS SYMMETRICALLY PLACED

Total Equiv. Uniform Load =

R = V = P

M max. ( between loads ) = Pa

Mx ( when x < a ) = Px

∆max.( at center ) = ( 3l2 – 4a2)

∆x ( when x < a ) = ( 3la – 3a2 –x2)

∆x ( when x > a and < ( l – a) ) = ( 3lx – 3x2 –a2)

P2Pl 4

8 Pa l

Px 2 Pl348EI Px48EI

Pbx l

8Pab l2

Pa lPab l

Pb l

a (a + 2b) 3

Pa2b 2

3EI l Pbx6EI l

Pa24EI Px6EI Pa6EI

BEAM DIAGRAMS AND FORMULASFOR VARIOUS STATIC LOADING CONDITIONS

l

l

Pab (a + 2b) 3a(a + 2b)27 EI l

Page 148: Manual Completo

8-61

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

Reprinted with permission of American Institute of Steel Construction

10. SIMPLE BEAM — TWO EQUAL CONCENTRATED LOADS UNSYMMETRICALLY PLACED

R1 = V1(max. when a < b) = ( l – a + b )

R2 = V2 (max. when a >b) = ( l – b + a ) Vx (when x > a and < ( l –b)) = ( b – a )

M1 ( max. when a > b) = R1a

M2 (max. when a < b) = R2b

Mx (when x < a) = R1x Mx(when x > a and < ( l – b) ) = R1x – P (x – a)

11. SIMPLE BEAM — TWO UNEQUAL CONCENTRATED LOADS UNSYMMETRICALLY PLACED R1 = V1 = R2 = V2 =

Vx (when x > a and < ( l – b) ) = R1 – P1

M1 (max. when R1 < P1) = R1 a M2 (max. when R2 <P2 ) = R2b

Mx (when x < a) = R1x Mx (when x > a and < ( l – b) ) = R1x – P1 (x – a)

12. BEAM FIXED AT ONE END, SUPPORTED AT OTHER — UNIFORMLY DISTRIBUTED LOAD Total Equiv. Uniform Load = wl R1 = V1 =

R2 = V2 max. =

Vx = R1 – wx

M max. =

M1 (at x = 3/8 l) = wl2

Mx = R1x –

∆max. (at x = (1+ 33) =.4215l =

∆x = ( l3 – 3lx2 + 2x3)

Pl

3wl 8

P1 (l – a) +P2b lP1 a + P2 (l – b) l

wl2 8 9128

wx2

2 wl4185EI wx48EI

Pl

5wl 8

BEAM DIAGRAMS AND FORMULASFOR VARIOUS STATIC LOADING CONDITIONS

Pl

l16

Page 149: Manual Completo

8-62

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

Reprinted with permission of American Institute of Steel Construction

13. BEAM FIXED AT ONE END, SUPPORTED AT OTHER — CONCENTRATED LOAD AT CENTER

Total Equiv. Uniform Load =

R1 = V1 =

R2 = V2 max. =

M max. (at fixed end) = M1 (at point of load) =

Mx (when x < ) = Mx (when x > ) = P ( – ) ∆max. (at x = l = .4472l) = = .009317

∆x ( at point of load ) =

∆x ( when x < 2 ) = ( 3l2 – 5x2)

∆x ( when x > 2 ) = ( x–l)2 (11x – 2l)

14. BEAM FIXED AT ONE END, SUPPORTED AT OTHER — CONCENTRATED LOAD AT ANY POINT R1 = V1 = (a + 2l )

R2 = V2 = (3l 2 – a2) M1 ( at point of load ) = R1a

M2 ( at fixed end ) = (a + l) Mx (when x <a ) = R1x

Mx (when x >a ) = R1x – P (x – a)

∆max. ( when a<.414l at x = l ) =

∆max. ( when a > .414l at x = l ) =

∆a ( at point of load ) =

∆x ( when x < a ) = (3al2–2lx2–ax2 )

∆x ( when x > a ) = (l–x)2(3l2x–a2x–2a2l)

l2 +a2

3l2 –a2

a2l+a

3P 25P16

3Pl 16

11P 16

5Pl 325Px 16

l 11x2 16

P l3 48EI 5

P l3 EI

7P l3 768EI

Pb2

2l 3

Pab 2l 2

Px 96EI

Pa3EI

Pa2b3

12EIl 3

Pab2

6EI

Pb2x12EIl 3 Pa12EIl 3

P 96EI

BEAM DIAGRAMS AND FORMULASFOR VARIOUS STATIC LOADING CONDITIONS

l2l2

15

Pa2l 3

( l2 – a2 ) 3

( 3l2 – a2 ) 2

a2l+a

l

l

(3l + a)

Page 150: Manual Completo

8-63

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

Reprinted with permission of American Institute of Steel Construction

15. BEAM FIXED AT BOTH ENDS — UNIFORMLY DISTRIBUTED LOADS

Total Equiv. Uniform Load =

R = V =

Vx = w ( – x )

M max. ( at ends ) =

M1 (at center) = Mx = ( 6lx – l2 – 6x2 ) ∆max. (at center) =

∆x = (l – x)2

16. BEAM FIXED AT BOTH ENDS — CONCENTRATED LOAD AT CENTER

Total Equiv. Uniform Load = P

R = V =

M max. (at center and ends) = Mx (when x <l/2) = ( 4x – l )

∆max. (at center) = ∆x (when x < l/2) = ( 3l – 4x )

17. BEAM FIXED AT BOTH ENDS — CONCENTRATED LOAD AT ANY POINT

R1 = V1 (max. when a < b) = ( 3a + b )

R2 = V2 (max. when a > b) = ( a + 3b )

M1 (max. when a < b) =

M2 (max. when a > b) =

Ma (at point of load) =

Mx (when x < a) = R1x –

∆max. (when a > b at x = ) =

∆a (at point of load) =

∆x (when x < a) = ( 3al – 3ax – bx )

2al3a +b

2wl 3

w12

Pl 8

P 2

wl224

P8

wx2

24EI

wl4384EI

wl2 12

Pb2

l 3Pa2

l 3Pab2

l 2

Pl3192EI

wl 2

Pa2 b l22Pa2b2

l3 Pab2

l2

2Pa3b2

3EI (3a + b)2

Pa3b3

3EIl3

Px2 48EI

l2

BEAM DIAGRAMS AND FORMULASFOR VARIOUS STATIC LOADING CONDITIONS

Pb2x2

6EIl3

Page 151: Manual Completo

8-64

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

Reprinted with permission of American Institute of Steel Construction

18. CANTILEVER BEAM — LOAD INCREASING UNIFORMLY TO FIXED END

Total Equiv. Uniform Load = W

R = V = W Vx = W

M max. (at fixed end) = Mx = ∆max. (at free end) =

∆x = ( x5 – 5l4 x + 4l5 )

19. CANTILEVER BEAM —UNIFORMLY DISTRIBUTED LOAD

Total Equiv. Uniform Load = 4wl

R = V = wl

Vx = wx

M max.(at fixed end) = Mx =

∆max.(at free end) =

∆x = ( x4– 4 l3 x + 3l4 ) 20. BEAM FIXED AT ONE END, FREE TO DEFLECT VERTICALLY BUT NOT ROTATE AT OTHER UNIFORMLY DISTRIBUTED LOAD

Total Equiv. Uniform Load = wl

R = V = wl

Vx = wx

M max. (at fixed end) = M1 (at deflected end) = Mx = (l2 – 3x2)

∆ max. (at deflected end) =

∆x =

83

Wx3 3l2

wl2 2

W60EI l 2

x2

l2

W l3 15EI

Wl 3

wx2

2 wl4 8EI W24EI

83

wl2 3

w ( l2 - x2 )2

24EI

wl2 6w6 wl424EI

BEAM DIAGRAMS AND FORMULASFOR VARIOUS STATIC LOADING CONDITIONS

Page 152: Manual Completo

8-65

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

Reprinted with permission of American Institute of Steel Construction

21. CANTILEVER BEAM — CONCENTRATED LOAD AT ANY POINT

Total Equiv. Uniform Load =

R = V = P

M max. ( at fixed end ) = Pb

Mx ( when x > a ) = P ( x – a )

∆max. ( at free end ) = ( 3l – b )

∆a ( at point of load ) =

∆x ( when x < a ) = (3l – 3x – b)

∆x ( when x > a ) = ( 3b – l + x)

22. CANTILEVER BEAM — CONCENTRATED LOAD AT FREE END

Total Equiv. Uniform Load = 8P

R = V = P

M max. ( at fixed end ) = Pl

Mx = Px ∆max. (at free end) = ∆x = ( 2l3 – 3l2x + x3 )

23. BEAM FIXED AT ONE END, FREE TO DEFLECT VERTICALLY BUT NOT ROTATE AT OTHER CONCENTRATED LOAD AT DEFLECTED END

Total Equiv. Uniform Load = 4P

R = V = P

M max. ( at both ends) = Mx = P ( – x )

∆max. (at deflected end) =

∆x = (l + 2x)

Pl33EI P6EI

8Pb l

Pb3

3EI

Pb2

6EI

Pb2

6EIP ( l – x)2

6EI

Pl 2

l2

Pl312EIP (l –x)2

12EI

BEAM DIAGRAMS AND FORMULASFOR VARIOUS STATIC LOADING CONDITIONS

Page 153: Manual Completo

8-66

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

Reprinted with permission of American Institute of Steel Construction

24. BEAM OVERHANGING ONE SUPPORT — UNIFORMLY DISTRIBUTED LOAD

R1 = V1 = (l 2 – a2)

R2 = V2 + V3 = (l + a)2

V2 = wa V3 = (l 2 + a2)

Vx ( between supports ) = R1 – wx

Vx1 ( for overhang ) = w (a – x1)

M1 ( at x = [ 1– ] ) = (l + a)2 (l – a)2

M2 ( at R2 ) = Mx ( between supports ) = (l 2 – a2 –xl )

Mx1 ( for overhang ) = (a – x1)2

∆x ( between supports ) = ( l 4-2l2x2 +lx3-2a2l 2+ 2a2x2)

∆x1 ( for overhang ) = (4a2l -l3+6a2x1-4ax12+x1

3 ) 25. BEAM OVERHANGING ONE SUPPORT —UNIFORMLY DISTRIBUTED LOAD ON OVERHANG R1 = V1 =

R2 = V1 + V2 = ( 2l + a )

V2 = wa

Vx1 ( for overhang ) = w ( a – x1 ) M max. ( at R2 ) = Mx ( between supports ) =

Mx1 ( for overhang ) = ( a – x1 )2

∆max.(between supports at x = )= = .03208 ∆max.( for overhang at x1 = a ) = (4l + 3a) ∆x ( between supports ) = (l2 – x2)

∆x1 ( for overhang ) = (4a2l+6a2x1–4ax12+x1

3 )

l a2

2 l2

w2l

w2l

w2l

w8l 2wa2

2

w2 wx24EIl wx124EI

wa2l

wa2x 2l

wa2

2

wa2

2l

w2 wa2l 218 3EI

wa2l2 EI

wa3

24EI wa2x12EI l wx124EI

BEAM DIAGRAMS AND FORMULASFOR VARIOUS STATIC LOADING CONDITIONS

wx2l

l 3

Page 154: Manual Completo

8-67

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

26. BEAM OVERHANGING ONE SUPPORT — CONCENTRATED LOAD AT END OF OVERHANG

R1 = V1 =

R2 = V1 + V2 = ( l + a)

V2 = P

M max. ( at R2 ) = Pa

Mx ( between supports ) =

Mx1 ( for overhang ) = P (a – x1)

∆max. ( between supports at x = ) = = .06415

∆max. ( for overhang at x1 = a ) = ( l + a )

∆x ( between supports ) = ( l2 – x2 )

∆x1 ( for overhang ) = ( 2al+3ax1–x12)

27. BEAM OVERHANGING ONE SUPPORT — UNIFORMLY DISTRIBUTED LOAD BETWEEN SUPPORTS Total Equiv. Uniform Load = wl R = V =

Vx = w ( – x )

M max. ( at center ) =

Mx = ( l – x )

∆max. ( at center ) =

∆x = ( l3 – 2lx2 + x3 )

∆x1 =

28. BEAM OVERHANGING ONE SUPPORT — CONCENTRATED LOAD AT ANY POINT BETWEEN SUPPORTS

Total Equiv. Uniform Load =

R1 = V1 (max. when a < b) =

R2 = V2 (max. when a > b) =

M max. (at point of load) =

Mx ( when x < a ) =

∆max. (at x = when a > b) =

∆a (at point of load) =

∆x (when x < a) = ( l2 – b2 – x2)

∆x (when x > a) = ( 2lx – x2 – a2)

∆x1 = ( l + a) Reprinted with permission of American Institute of Steel Construction

Pa lPl

Pax l

wl 2

l 2

wl2 8wx2

5wl4 384EI

wx24EI wl3 x1 24EI

8 Pabl2

Pb l Pa lPab

lPbx

l Pab(a + 2b) 3a(a+2b)

27EIl Pa2b2

3EIl

Pa( l – x) 6EIl

BEAM DIAGRAMS AND FORMULASFOR VARIOUS STATIC LOADING CONDITIONS

Pabx16EI l

Pa2

3EI

Pa l 2 EI

Pax6EI l

l 3

Px16EI

Pa l 29 3EI

a(a + 2b) 3

Pbx 6EIl

Page 155: Manual Completo

8-68

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

29. CONTINUOUS BEAM — TWO EQUAL SPANS — UNIFORM LOAD ON ONE SPAN

Total Equiv. Uniform Load = wl

R1 = V1 = wl

R2 = V2 + V3 = wl

R3 = V3 = – wl

V2 = wl

M max. ( at x = l ) = wl2

M1 ( at support R2 ) = wl2

Mx ( when x < l ) = (7l – 8x) ∆max. ( 0.472 l from R1 ) = 0.0092 wl4/EI

30. CONTINUOUS BEAM—TWO EQUAL SPANS—CONCENTRATED LOAD AT CENTER OF ONE SPAN

Total Equiv. Uniform Load = P

R1 = V1 = P

R2 = V2 + V3 = P

R3 = V3 = – P

V2 = P

M max. (at point of load) = Pl M1 (at support R2) = Pl ∆max. ( 0.480 l from R1 ) = 0.015 Pl 3/EI

31. CONTINUOUS BEAM — TWO EQUAL SPANS — CONCENTRATED LOAD AT ANY POINT

R1 = V1 = ( 4l 2 – a ( l + a ) )

R2 = V2 + V3 = ( 2l 2 + b ( l + a ) )

R3 = V3 = – ( l + a )

V2 = ( 4l 2 + b ( l + a ) )

M max. ( at point of load ) = ( 4l 2 – a ( l + a ) ) M1 ( at support R2 ) = ( l + a )

Reprinted with permission of American Institute of Steel Construction

716

4964 71658 116 91649512 116

13 813321116 33219321364 332

Pb4l3Pa2l3Pab4l 3Pa4l3

Pab4l 2

Pab4l3

BEAM DIAGRAMS AND FORMULASFOR VARIOUS STATIC LOADING CONDITIONS

wx16

Page 156: Manual Completo

8-69

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

P M1 – M22 l

Reprinted with permission of American Institute of Steel Construction

32. BEAM — UNIFORMLY DISTRIBUTED LOAD AND VARIABLE END MOMENTS

R1 = V1 = +

R2 = V2 = –

Vx = w ( – x ) +

M3 ( at x = + ) = – +

Mx = (l – x) +( ) x – M1

b (To locate inflection points) = – ( ) + ( )2

∆x = [ x3 – ( 2l + – ) x2 + x + l 3 – – ]

33. BEAM — CONCENTRATED LOAD AT CENTER AND VARIABLE END MOMENTS

R1 = V1 = +

R2 = V2 = –

M3.( at center ) = – Mx ( when x < ) = ( + ) x – M1

Mx ( when x > ) = ( l– x ) + – M1

∆x (When x < ) = ( 3l2 – 4x2 – [ M1 (2l – x) + M2 (l + x) ] )

wl M1 – M2

2 l

l2

M1 – M2

l12

M1 – M2

w l( M1 – M2 )

2

2w l2

M1 + M2

2 w l

2

8wx 2

M1 – M2

l

M1 + M2

wM1 – M2

w l l

2

4

wx 24E I

4M1 wl

4M2 wl

8M1l w

4M2l w

P M1 – M22 lP M1 – M22 lPl M1 + M2 4 2

l2

P ( M1 – M2 ) x2 l

l2

Px48EI

8 (l – x) Pl

BEAM DIAGRAMS AND FORMULASFOR VARIOUS STATIC LOADING CONDITIONS

wl M1 – M2

2 l

l2

12M1 w

Page 157: Manual Completo

8-70

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

Reprinted with permission of American Institute of Steel Construction

34. CONTINUOUS BEAM — THREE EQUAL SPANS — ONE END SPAN UNLOADED

35. CONTINUOUS BEAM — THREE EQUAL SPANS —END SPANS LOADED

36. CONTINUOUS BEAM — THREE EQUAL SPANS —ALL SPANS LOADED

∆ Max. (0.430 l from A) = 0.0059 wl4 /EI

∆ Max. (0.446 l from A or D) = 0.0069 wl4 /EI

∆ Max. (0.479 l from A or D) = 0.0099 wl4 /EI

BEAM DIAGRAMS AND DEFLECTIONSFOR VARIOUS STATIC LOADING CONDITIONS

Page 158: Manual Completo

8-71

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

Reprinted with permission of American Institute of Steel Construction

BEAM DIAGRAMS AND DEFLECTIONSFOR VARIOUS STATIC LOADING CONDITIONS

37. CONTINUOUS BEAM — FOUR EQUAL SPANS — THIRD SPAN UNLOADED

38. CONTINUOUS BEAM — FOUR EQUAL SPANS — LOAD FIRST AND THIRD SPANS

39. CONTINUOUS BEAM — FOUR EQUAL SPANS — ALL SPANS LOADED

∆ Max. (0.475 l from E) = 0.0094 wl4 /EI

∆ Max. (0.440 l from A and E) = 0.0065 wl4 /EI

∆ Max. (0.477 l from A) = 0.0097 wl4 /EI

Page 159: Manual Completo

8-72

Section 8Flexural Members (Beams)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1113

Reprinted with permission of American Institute of Steel Construction

BEAM DIAGRAMS AND FORMULASFOR VARIOUS CONCENTRATED MOVING LOADS

40. SIMPLE BEAM — ONE CONCENTRATED MOVING LOAD

41. SIMPLE BEAM — TWO EQUAL CONCENTRATED MOVING LOADS

42. SIMPLE BEAM — TWO UNEQUAL CONCENTRATED MOVING LOADS

GENERAL RULES FOR SIMPLE BEAMS CARRYING MOVING CONCENTRATED LOADS

The maximum shear due to moving concentrated loads occurs at one support when one of the loads is at that support. With several moving loads, the location that will produce maximum shear must be determined by trial.

The maximum bending moment produced by moving concentrated loads occurs under one of the loads when that load is as far from one support as the center of gravity of all the moving loads on the beam is from the other support.

In the accompanying diagram, the maximum bending moment occurs under load P1 when x=b. It should also be noted that this condition occurs when the center line of the span is midway between the center of gravity of loads and the nearest concentrated load.

R1 max. = V1 max. ( at x = o ) ....................... = P

M max. ( at point of load, when x = ) ........ =l Pl2 4

R1 max. = V1 max. ( at x = o ) ....................... = P ( 2 – )

M max.

R1 max. = V1 max. ( at x = o ) ......................... = P1 + P2

M max.

al

when a < ( 2– 2 ) l = .586lunder load 1 at x = ( l – ) = ( l – ) 2

when a > ( 2– 2 ) l = .586lwith one load at center of span =(case 40)

′′′

′′′

′′′′

′′′

′′′′

Pl 4

1 a2 2

P a 2l 2

under P1, at x = ( l – ) = ( P1 + P2 )

M max. may occur with largerload at center of span and =other load off span (case 40)

′′′

′′

′′′′

′′′′

1 P2 a x2

2 P1 +P2 l

′′

P1l 4

l - a l

The values given in these formulas do not include impact which varies according to the requirements of each case.

Page 160: Manual Completo

SECTION 9 - COMPRESSION MEMBERS (COLUMNS)

Table of Contents

Symbols for Compression Members (Columns) ................ 9-2

Introduction ........................................................................ 9-3

Column Equations for Concentric Loads ........................... 9-5

Theoretical Effective Length Coefficients .......................... 9-6

Examples of How To Use Tables ...................................... 9-7

Introduction to Compression Member (Column)

Load Tables ................................................................. 9-9

Long Column-Allowable Compression Stresses

W / I-Shapes:

E=2.5 x 106 psi ................................................................ 9-10

E=2.6 x 106 psi ................................................................ 9-11

E=2.8 x 106 psi ................................................................ 9-12

Equal Leg Angles, EXTREN® 500/525:

E=2.6 x 106 psi ................................................................ 9-13

Equal Leg Angles, EXTREN® 625:

E=2.8 x 106 psi ................................................................ 9-14

Round/Square Tubes, EXTREN® 500/525:

E=2.6 x 106 psi ................................................................ 9-15

Round/Square Tubes, EXTREN® 625:

E=2.8 x 106 psi ................................................................ 9-16

W Shapes:

3 x 3 x 1/4 ........................................................................ 9-17

4 x 4 x 1/4 ........................................................................ 9-18

6 x 6 x 1/4 ........................................................................ 9-19

6 x 6 x 3/8 ........................................................................ 9-20

8 x 8 x 3/8 ........................................................................ 9-21

8 x 8 x 1/2 ........................................................................ 9-22

10 x 10 x 3/8 .................................................................... 9-23

10 x 10 x 1/2 .................................................................... 9-24

12 x 12 x 1/2 .................................................................... 9-25

I-Shapes:

3 x 1-1/2 x 1/4 .................................................................. 9-26

4 x 2 x 1/4 ........................................................................ 9-27

5-1/2 x 2-1/2 x 1/4 ............................................................ 9-28

6 x 3 x 1/4 ........................................................................ 9-29

6 x 3 x 3/8 ........................................................................ 9-30

8 x 4 x 3/8 ........................................................................ 9-31

8 x 4 x 1/2 ........................................................................ 9-32

10 x 5 x 3/8 ...................................................................... 9-33

10 x 5 x 1/2 ...................................................................... 9-34

12 x 6 x 1/2 ...................................................................... 9-35

Equal Leg Angles:

2 x 2 x 1/4 ........................................................................ 9-36

3 x 3 x 1/4 ........................................................................ 9-37

3 x 3 x 3/8 ........................................................................ 9-38

4 x 4 x 1/4 ........................................................................ 9-39

4 x 4 x 3/8 ........................................................................ 9-40

4 x 4 x 1/2 ........................................................................ 9-41

5 x 5 x 1/2 ........................................................................ 9-42

6 x 6 x 3/8 ........................................................................ 9-43

6 x 6 x 1/2 ........................................................................ 9-44

Round Tubes:

1-1/2 x 1/4 ........................................................................ 9-45

1-3/4 x 1/4 ........................................................................ 9-46

2 x 1/4 .............................................................................. 9-47

2-1/2 x 1/4 ........................................................................ 9-48

2-3/4 x 1/4 ........................................................................ 9-49

2-3/4 x 3/8 ........................................................................ 9-50

3 x 1/4 .............................................................................. 9-51

3-1/2 x 1/2 ........................................................................ 9-52

4 x 1/4 .............................................................................. 9-53

5 x 1/4 .............................................................................. 9-54

6 x 1/4 .............................................................................. 9-55

Square Tubes:

1-1/2 x 1/4 ........................................................................ 9-56

1-3/4 x 1/4 ........................................................................ 9-57

2 x 1/4 .............................................................................. 9-58

3 x 1/4 .............................................................................. 9-59

3 x 3 x 3/8 ........................................................................ 9-60

3-1/2 x 1/4 ........................................................................ 9-61

4 x 1/4 .............................................................................. 9-62

4 x 4 x 3/8 ........................................................................ 9-63

6 x 6 x 3/8 ........................................................................ 9-64

Rectangular Tubes:

7 x 4 x 1/4 ........................................................................ 9-65

Page 161: Manual Completo

9-1

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

SECTION 9

COMPRESSION MEMBERS (COLUMNS)

Look for this blue line in the left margin of the Design Manual documents. This line shows you where the latest update has been made.

Page 162: Manual Completo

9-2

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

A Cross Sectional area (in2)

D Outside diameter of round tube (in)

E Modulus of Elasticity (psi)

Fa Allowable compressive stress in short column mode (psi)

Fa' Allowable compressive stress in long column mode (psi)

Fu Ultimate compressive stress in short column mode (psi)

Fu' Ultimate compressive stress in long column mode (psi)

I Moment of inertia (in4)

K Effective length factor for buckling

P Axial load on column (lbs)

Pa Allowable Axial load on column (lbs)

b Width of section (in)

Outside dimension of square tube (in)

bf Width of flange (in)

fa Axial stress from applied loads (psi)

l Length of column (center to center of supports) (in)

r Radius of gyration (in)

ry Radius of gyration about Y-Y axis (in)

t Wall thickness of tubes (in)

Thickness of section (in)

tf Thickness of flange (in)

SYMBOLS FOR COMPRESSION MEMBERS (COLUMNS)

Page 163: Manual Completo

9-3

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

INTRODUCTIONColumns must be designed for both strength (resistance to fracture) and for stability (resistance to deformation). From a behavioral perspective, columns can be classified as "short" or "long". Both of these behavioral modes will exhibit distinct failure mechanisms.

The short column mode exhibits local buckling of the web or flanges (or other outstanding legs of the shape). Figure No. 1 is a photograph of a test in the Strongwell laboratory of the 6 x 6 x 1/4 W-shape exhibiting the local flange buckling. Typically, the ultimate stress is limited by the ratio of the dimension of the outstanding element to the thickness of the element. The long column mode is buckling of the whole shape about the axis exhibiting the largest value of Kl/r.

For design purposes, Strongwell has developed empirical relationships for the structural shapes from testing similar to that displayed in Figure No. 1. These relationships are based upon the proprietary EXTREN® composite/resin system and should not be utilized for other pultruded products. The ultimate load was measured as the actual failure (not buckling) of the structural member. Strongwell's test had one end rotating on a ball/socket joint and the other end resting on a flat surface. Although the original test set-up as well as most actual applications may not have a K=1, the tables shown in this section are established using K (effective length coefficient for buckling) = 1.0. Engineers are cautioned to consider the end conditions (Figure No. 2) in their specific designs.

NOTE:

For proper application of these relationships, the designer must establish whether the short or long column mode will limit the application. This is accomplished by calculating the allowable stress with both the short and long column equations at the desired slenderness ratio (Kl /r) and utilizing the lower value for design. An example of this will be discussed in a later section. The Allowable Load Tables were generated with a safety factor of 3.

Page 164: Manual Completo

9-4

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

FIGURE 1

Page 165: Manual Completo

9-5

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

fa =

Fu = ≤

Fu' =

Fu = ≤

Fu' =

Fu = ≤

Fu' =

Fu = ≤

Fu' =

Fa =

Fa' = ≤ Fa

Pa =

STRESSES FROM APPLIED LOADSCompressive stress: P (C-1)

A

ULTIMATE COMPRESSIVE STRESSES

EXTREN® W and I Shapes — Short Column Mode: 30,000 psi EXTREN® 500/525

30,000 psi EXTREN® 625 (>4") (C-2)

33,000 psi EXTREN® 625 (≤4")

EXTREN® W and I Shapes — Long Column Mode: 4.9E (Kl/r) 1.7 (C-3)

EXTREN® Equal Leg Angles — Short Column Mode: E 30,000 psi EXTREN® 500/525

27 (b/t) .95 33,000 psi EXTREN® 625 (C-4)

EXTREN® Equal Leg Angles — Long Column Mode: E

56(Kl/r) .55 (C-5)

EXTREN® Round Tubes — Short Column Mode: E 30,000 psi EXTREN® 500/525

16(D/t).85 33,000 psi EXTREN® 625 (C-6)

EXTREN® Round Tubes — Long Column Mode: 1.3E

(Kl/r) 1.3 (C-7)

EXTREN® Square Tubes — Short Column Mode: E 30,000 psi EXTREN® 500/525

16 (b/t) .85 33,000 psi EXTREN® 625 (C-8)

EXTREN® Square Tubes — Long Column Mode: 1.3E

(Kl/r) 1.3 (C-9)

ALLOWABLE COMPRESSIVE STRESSES AND LOADS Short Column Mode: Fu

3.0 (C-10) Long Column Mode: Fu' 3.0 (C-11)ALLOWABLE LOADS: FaA or (C-12) Fa'A

COLUMN EQUATIONS FOR CONCENTRIC LOADS

0.5E

(bf/tf)1.5

Page 166: Manual Completo

9-6

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

Theoretical Effective Length Coefficients

TheoreticalEnd Condition "K" Value* Mode of Buckling (Dashed)

1. Both ends pinned 1.00

2. Both ends fixed 0.65

3. One end pinned, 0.80 One end fixed

4. One end fixed, 2.10 One end free

5. One end fixed 1.20 One end translated

6. One end pinned 2.00 One end translated

* Values obtained from Reference 1, p. 278.

FIGURE 2

3.

2.

1.

4.

5.

6.

Page 167: Manual Completo

9-7

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

EXAMPLE OF COLUMN SELECTION USING THE TABLES

Fu =

Fu = = 10,631 psi < 30,000 psi

Fa =

Fa = = 3,544 psi

= = 83.3

Fu' =

Fu' = = 6653 psi

Fa' =

Fa' = = 2217.6 psi

PROBLEM #1Determine if the EXTREN® Series 500 6 x 6 x 1/4 W-shape will support an axially concentric load of 5,000 lbs. for a column of height equal to 10 feet. For this example, the following assumptions are made:

1) The application is at room temperature.2) There are no corrosive agents present which may damage the composite.3) Both ends of the column are pinned (K = 1 from Figure No. 2) and there are no intermediate

supports.4) The ends of the column are square such that the load is evenly distributed over the entire

cross-section of the structural shape; i.e., there is no eccentricity of load application.

5) The column is straight such that the load is initially entirely axially applied.

There are two approaches to this solution:

APPROACH A

From the Allowable Load Tables for the EXTREN® 6 x 6 x 1/4 W-shape (identified in this section), a load of 9736 lbs. is indicated. This exceeds the service load and the 6 x 6 x 1/4 W-shape is more than adequate.

APPROACH B

This approach will use the empirically determined equations for EXTREN® W and I shapes. For the 6 x 6 x 1/4 W-shape: E = 2.5 x 106 psi (Section 3 — PROPERTIES OF EXTREN®) A = 4.39 in2, rx = 2.54 in, ry = 1.44 in, bf = 6 in, tf = 1/4 in (Section 6 — ELEMENTS OF SECTIONS) for short columns: 0.5E (bf/tf)

1.5 (C-2)

0.5 (2.5 x 106)

(6/.25)1.5

Fu

3.0 (C-10)

10,631

3.0

and for long columns:

Kl (1.0) (10x12)

ry 1.44

4.9E (C-3) (Kl/r)1.7

4.9 (2.5 x 106) (83.3) 1.7

Fu' 3 (C-11)

6653 3.0

The long column mode controls (because it has the lower critical stress) and the allowable load is: Pa= (2217.6) (4.39) = 9735.6 lbs. (C-12)

Page 168: Manual Completo

9-8

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

PROBLEM #2Will the 6 x 6 x 1/4 W-shape be adequate if operated continuously at 150° F? The allowable stress would be reduced to 50% of the original value from the table in Section 3 — PROPERTIES OF EXTREN®.

Fa' (150° F) = 0.50 Fa' (room temperature) = 0.50 (2218) = 1109 psi

This makes the allowable load at 150° F equal to 4868.5 pounds, which is less than the 5000 pound service load. The designer must review the decisions in selecting the service load of 5000 pounds and determine if the 4868.5 pounds is suitable.

PROBLEM #3An assumption in PROBLEM #1 was that both ends were pinned with a K = 1. Another common mode of installation may be one end pinned and one end fixed, illustrated as Condition 3 in Figure No. 2. In this situation, K = 0.8. This change of end condition has the effect of increasing the allowable stress.

NOTE: The installation must develop the assumed end conditions.

At room temperature for K = 0.8:

Kl (0.8) (10 x 12) ry 1.44

instead of the 83.3 slenderness ratio previously calculated.

(4.9)(2.5 x 106)

(66.6) 1.7 (C-3)

9732

3.0 (C-11)

For K = 1, the allowable long column stress was 2218 psi. A 46% increase in the load capacity of the column is obtained simply due to a change in the restraint at one end of the member.

PROBLEM #4The end restraints will be adjusted such that both ends are fixed; K = 0.65 in Figure No. 2, Condition 2.

At room temperature, for K = 0.65

Kl (0.65) (10 x 12)

ry 1.44

(4.9)(2.5 x 106)

(54.17) 1.7 (C-3)

13,828

3.0 (C-11)

This exceeds the short column allowable stress (4,609 psi vs. 3,544 psi) and the application is limited by short column mode. The designer should use 3,544 psi.

= = 66.6

Fu' = = 9,732 psi

Fa' = = 3,244 psi

= = 54.17

Fu' = =13,828 psi

Fa' = = 4,609 psi

Page 169: Manual Completo

9-9

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

The following are the allowable load tables for EXTREN® W and I shapes, EXTREN® equal leg angles, and EXTREN® tubes when used as compressive members (columns).

These tables are based upon:

1) Ambient temperature

2) A safety factor of 3.0

3) A value of K = 1.0

4) No corrosive agents which may damage the composite

5) These tables show Kl/r values to 200 for reference. It is recommended that Kl/r be lim-ited to 110 unless structural analysis indicates otherwise.

INTRODUCTION TOCOMPRESSION MEMBER (COLUMN) LOAD TABLES

Page 170: Manual Completo

9-10

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

45 6318 84 2186 123 1143 46 6086 85 2142 124 1128 47 5867 86 2101 125 1112 48 5661 87 2060 126 1097 49 5466 88 2020 127 1083 50 5282 89 1982 128 1068 51 5108 90 1944 129 1054 52 4940 91 1908 130 1041 53 4784 92 1873 131 1027 54 4634 93 1839 132 1014 55 4492 94 1806 133 1001 56 4356 95 1774 134 988 57 4227 96 1742 135 976 58 4104 97 1712 136 964 59 3986 98 1682 137 952 60 3874 99 1654 138 940 61 3767 100 1625 139 929 62 3664 101 1598 140 917 63 3566 102 1572 141 906 64 3471 103 1546 142 896 65 3381 104 1520 143 885 66 3294 105 1496 144 875 67 3211 106 1472 145 864 68 3131 107 1449 146 854 69 3054 108 1426 147 844 70 2981 109 1404 148 835 71 2910 110 1382 149 825 72 2842 111 1361 150 816 73 2776 112 1341 155 772 74 2712 113 1321 160 731 75 2651 114 1301 165 694 76 2592 115 1282 170 660 77 2535 116 1263 175 628 78 2480 117 1245 180 598 79 2427 118 1227 185 571 80 2376 119 1209 190 546 81 2326 120 1192 195 522 82 2278 121 1176 200 500 83 2231 122 1159

EXTREN® W/ I SHAPES

E = 2.5 x 106 psi

Kl/r Fa (psi) Kl/r Fa (psi) Kl/r Fa (psi)

LONG COLUMN-ALLOWABLE COMPRESSION STRESSES

X X

Y

Y

X X

Y

Y

NOTE: These calculations assume the long column buckling mode for an axially applied load. The transition from the short column mode (limited by bf /tf ) to the long column mode (limited by Kl/r) will vary with the member size.

Page 171: Manual Completo

9-11

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

NOTE: These calculations assume the long column buckling mode for an axially applied load. The transition from the short column mode (limited by bf /tf ) to the long column mode (limited by Kl/r) will vary with the member size.

EXTREN® W/ I SHAPES

E = 2.6 x 106 psi

Kl/r Fa (psi) Kl/r Fa (psi) Kl/r Fa (psi)

LONG COLUMN-ALLOWABLE COMPRESSION STRESSES

X X

Y

Y

X X

Y

Y

45 6571 84 2273 123 1189 46 6329 85 2228 124 1173 47 6102 86 2185 125 1156 48 5887 87 2142 126 1141 49 5684 88 2101 127 1126 50 5493 89 2061 128 1111 51 5312 90 2022 129 1096 52 5138 91 1984 130 1082 53 4975 92 1948 131 1068 54 4819 93 1913 132 1055 55 4672 94 1878 133 1041 56 4530 95 1845 134 1027 57 4396 96 1812 135 1015 58 4268 97 1780 136 1003 59 4145 98 1749 137 990 60 4029 99 1720 138 978 61 3918 100 1690 139 966 62 3810 101 1662 140 954 63 3708 102 1635 141 942 64 3610 103 1608 142 932 65 3516 104 1581 143 920 66 3426 105 1556 144 910 67 3339 106 1531 145 899 68 3256 107 1507 146 888 69 3176 108 1483 147 878 70 3100 109 1460 148 868 71 3026 110 1437 149 858 72 2956 111 1415 150 849 73 2887 112 1395 155 803 74 2820 113 1373 160 760 75 2757 114 1353 165 722 76 2696 115 1333 170 686 77 2636 116 1313 175 653 78 2579 117 1295 180 622 79 2542 118 1272 185 594 80 2471 119 1257 190 568 81 2419 120 1240 195 543 82 2369 121 1223 200 520 83 2320 122 1205

Page 172: Manual Completo

9-12

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

EXTREN® W/ I SHAPES

E = 2.8 x 106 psi

Kl/r Fa (psi) Kl/r Fa (psi) Kl/r Fa (psi)

LONG COLUMN-ALLOWABLE COMPRESSION STRESSES

45 7076 84 2448 123 1280 46 6816 85 2399 124 1263 47 6571 86 2353 125 1245 48 6340 87 2307 126 1229 49 6122 88 2262 127 1213 50 5916 89 2220 128 1196 51 5721 90 2177 129 1180 52 5533 91 2137 130 1166 53 5358 92 2098 131 1150 54 5140 93 2059 132 1136 55 5031 94 2023 133 1121 56 4874 95 1987 134 1106 57 4734 96 1951 135 1093 58 4596 97 1917 136 1080 59 4464 98 1884 137 1066 60 4339 99 1852 138 1053 61 4219 100 1820 139 1040 62 4104 101 1790 140 1027 63 3994 102 1761 141 1015 64 3887 103 1732 142 1003 65 3787 104 1702 143 991 66 3689 105 1675 144 980 67 3596 106 1649 145 966 68 3507 107 1623 146 956 69 3420 108 1597 147 945 70 3339 109 1572 148 935 71 3259 110 1548 149 924 72 3183 111 1524 150 914 73 3109 112 1502 155 865 74 3037 113 1479 160 819 75 2969 114 1457 165 777 76 2903 115 1436 170 739 77 2839 116 1415 175 703 78 2778 117 1394 180 670 79 2718 118 1374 185 639 80 2661 119 1354 190 611 81 2605 120 1335 195 585 82 2551 121 1317 200 560 83 2499 122 1298

NOTE: These calculations assume the long column buckling mode for an axially applied load. The transition from the short column mode (limited by bf /tf ) to the long column mode (limited by Kl/r) will vary with the member size.

X X

Y

Y

X X

Y

Y

Page 173: Manual Completo

9-13

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

NOTE: These calculations assume the long column buckling mode for an axially applied load. The transition from the short column mode (limited by b/t) to the long column mode (limited by Kl/r) will vary with the angle size.

EXTREN® 500/525EQUAL LEG ANGLES

E = 2.6 x 106 psi

Kl/r Fa (psi) Kl/r Fa (psi) Kl/r Fa (psi)

LONG COLUMN-ALLOWABLE COMPRESSION STRESSES

30 2384 74 1451 118 1122 31 2341 75 1440 119 1117 32 2301 76 1430 120 1112 33 2262 77 1419 121 1107 34 2225 78 1409 122 1102 35 2190 79 1399 123 1097 36 2156 80 1390 124 1092 37 2124 81 1380 125 1087 38 2093 82 1371 126 1083 39 2063 83 1362 127 1078 40 2034 84 1353 128 1073 41 2007 85 1344 129 1069 42 1981 86 1336 130 1064 43 1955 87 1327 131 1060 44 1931 88 1319 132 1055 45 1907 89 1311 133 1051 46 1884 90 1303 134 1047 47 1862 91 1295 135 1042 48 1841 92 1287 136 1038 49 1819 93 1279 137 1034 50 1800 94 1272 138 1030 51 1780 95 1264 139 1026 52 1761 96 1257 140 1022 53 1743 97 1250 141 1018 54 1725 98 1243 142 1014 55 1708 99 1236 143 1010 56 1691 100 1229 144 1006 57 1675 101 1223 145 1002 58 1659 102 1216 146 998 59 1643 103 1209 147 995 60 1628 104 1203 148 991 61 1613 105 1197 149 987 62 1599 106 1191 150 984 63 1585 107 1184 155 966 64 1571 108 1178 160 949 65 1558 109 1172 165 933 66 1545 110 1167 170 918 67 1532 111 1161 175 904 68 1520 112 1155 180 890 69 1508 113 1149 185 876 70 1496 114 1144 190 864 71 1484 115 1138 195 851 72 1473 116 1133 200 840 73 1462 117 1128

X X

Y

Y Z

Z

Page 174: Manual Completo

9-14

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

30 2567 74 1563 118 1208 31 2521 75 1551 119 1203 32 2478 76 1540 120 1198 33 2436 77 1528 121 1192 34 2396 78 1517 122 1186 35 2358 79 1507 123 1181 36 2322 80 1497 124 1176 37 2287 81 1486 125 1171 38 2254 82 1476 126 1166 39 2222 83 1467 127 1161 40 2190 84 1457 128 1156 41 2161 85 1447 129 1151 42 2133 86 1439 130 1146 43 2105 87 1429 131 1142 44 2080 88 1420 132 1136 45 2054 89 1412 133 1132 46 2029 90 1403 134 1128 47 2005 91 1395 135 1122 48 1983 92 1386 136 1118 49 1959 93 1377 137 1114 50 1938 94 1370 138 1109 51 1917 95 1361 139 1105 52 1896 96 1354 140 1100 53 1877 97 1346 141 1096 54 1858 98 1339 142 1092 55 1839 99 1331 143 1088 56 1821 100 1324 144 1083 57 1804 101 1317 145 1079 58 1787 102 1310 146 1075 59 1769 103 1302 147 1072 60 1753 104 1296 148 1067 61 1737 105 1289 149 1063 62 1722 106 1283 150 1060 63 1707 107 1275 155 1040 64 1692 108 1269 160 1022 65 1678 109 1262 165 1005 66 1664 110 1257 170 989 67 1650 111 1250 175 974 68 1637 112 1244 180 958 69 1624 113 1237 185 943 70 1611 114 1232 190 930 71 1598 115 1226 195 916 72 1568 116 1220 200 905 73 1574 117 1214

NOTE: These calculations assume the long column buckling mode for an axially applied load. The transition from the short column mode (limited by b/t) to the long column mode (limited by Kl/r) will vary with the angle size.

EXTREN® 625EQUAL LEG ANGLES

E = 2.8 x 106 psi

Kl/r Fa (psi) Kl/r Fa (psi) Kl/r Fa (psi)

LONG COLUMN-ALLOWABLE COMPRESSION STRESSES

X X

Y

Y Z

Z

Page 175: Manual Completo

9-15

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

NOTE: These calculations assume the long column buckling mode for an axially applied load. The transition from the short column mode (limited by b/t -square tubes or D/t -round tubes ) to the long column mode (limited by Kl/r) will vary with the member size.

EXTREN® 500/525ROUND/ SQUARE TUBES

E = 2.6 x 106 psi

Kl/r Fa (psi) Kl/r Fa (psi) Kl/r Fa (psi)

LONG COLUMN-ALLOWABLE COMPRESSION STRESSES

50 6968 87 3392 124 2140 51 6791 88 3342 125 2117 52 6622 89 3293 126 2096 53 6460 90 3245 127 2074 54 6305 91 3199 128 2053 55 6156 92 3154 129 2032 56 6014 93 3110 130 2012 57 5877 94 3067 131 1992 58 5746 95 3025 132 1973 59 5619 96 2984 133 1953 60 5498 97 2944 134 1934 61 5381 98 2905 135 1916 62 5268 99 2867 136 1898 63 5160 100 2830 137 1880 64 5055 101 2794 138 1862 65 4955 102 2758 139 1844 66 4857 103 2723 140 1827 67 4763 104 2689 141 1811 68 4672 105 2656 142 1794 69 4584 106 2624 143 1778 70 4500 107 2592 144 1762 71 4417 108 2561 145 1746 72 4338 109 2530 146 1730 73 4261 110 2500 147 1715 74 4186 111 2471 148 1700 75 4114 112 2442 149 1685 76 4043 113 2414 150 1670 77 3975 114 2387 155 1601 78 3909 115 2360 160 1536 79 3845 116 2333 165 1476 80 3782 117 2308 170 1420 81 3722 118 2282 175 1367 82 3663 119 2257 180 1318 83 3606 120 2233 185 1272 84 3550 121 2209 190 1229 85 3496 122 2185 195 1188 86 3443 123 2162 200 1149

XX X

Y

X

Y

Page 176: Manual Completo

9-16

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

NOTE: These calculations assume the long column buckling mode for an axially applied load. The transition from the short column mode (limited by b/t - square tubes or D/t - round tubes ) to the long column mode (limited by Kl/r) will vary with the member size.

EXTREN® 625ROUND/ SQUARE TUBES

E = 2.8 x 106 psi

Kl/r Fa (psi) Kl/r Fa (psi) Kl/r Fa (psi)

LONG COLUMN-ALLOWABLE COMPRESSION STRESSES

50 7504 87 3653 124 2305 51 7313 88 3599 125 2280 52 7131 89 3546 126 2257 53 6957 90 3495 127 2234 54 6790 91 3445 128 2211 55 6630 92 3397 129 2188 56 6477 93 3349 130 2167 57 6329 94 3303 131 2145 58 6188 95 3258 132 2125 59 6051 96 3214 133 2103 60 5921 97 3170 134 2083 61 5795 98 3128 135 2063 62 5673 99 3088 136 2044 63 5557 100 3048 137 2025 64 5444 101 3009 138 2005 65 5336 102 2970 139 1986 66 5231 103 2932 140 1968 67 5129 104 2896 141 1950 68 5031 105 2860 142 1932 69 4937 106 2826 143 1915 70 4846 107 2791 144 1898 71 4757 108 2758 145 1880 72 4672 109 2725 146 1863 73 4589 110 2692 147 1847 74 4508 111 2661 148 1831 75 4430 112 2630 149 1815 76 4354 113 2600 150 1798 77 4281 114 2571 155 1724 78 4210 115 2542 160 1654 79 4141 116 2512 165 1590 80 4073 117 2486 170 1529 81 4008 118 2458 175 1472 82 3945 119 2431 180 1419 83 3883 120 2405 185 1370 84 3823 121 2379 190 1324 85 3765 122 2353 195 1279 86 3708 123 2328 200 1237

XX X

Y

X

Y

Page 177: Manual Completo

9-17

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

SHORT

COLUMN

W SHAPE

3 x 3 x 1/4

Allowable Axial Stresses and Loads

bf / tf = 12.0 r y= 0.73 in. A = 2.13 in2

EFFECTIVE EXTREN® 500/525 EXTREN® 625

COLUMN LENGTH E = 2.6 x 106 psi E = 2.8 x 106 psi

(ft.) Fa(psi) Pa(lbs) Fa(psi) Pa(lbs)

LONG

0.5 8.2 10000 21300 11000 23430 1.0 16.4 10000 21300 11000 23430 1.5 24.7 10000 21300 11000 23430 2.0 32.9 10000 21300 11000 23430 Fa'(psi) Pa(lbs) Fa'(psi) Pa(lbs) 2.5 41.1 7665 16327 8254 17582 3.0 49.3 5626 11984 6059 12905 3.5 57.5 4331 9226 4664 9935 4.0 65.8 3444 7336 3709 7900 4.5 74.0 2821 6008 3038 6470 5.0 82.2 2359 5025 2541 5412 5.5 90.4 2007 4275 2161 4604 6.0 98.6 1732 3688 1865 3972 6.5 106.8 1512 3220 1628 3468 7.0 115.1 1331 2835 1433 3053 7.5 123.3 1184 2522 1275 2716 8.0 131.5 1061 2261 1143 2435 8.5 139.7 958 2040 1031 2197 9.0 147.9 869 1851 936 1994 9.5 156.2 792 1687 853 1817 10.0 164.4 726 1547 782 1666 10.5 172.6 668 1424 720 1533 11.0 180.8 618 1316 665 1417 11.5 189.0 573 1220 617 1314 12.0 197.3 533 1134 573 1221

Kl r

X X

Y

Y

Page 178: Manual Completo

9-18

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

SHORT

COLUMN

W SHAPE

4 x 4 x 1/4

Allowable Axial Stresses and Loads

bf / tf = 16.0 r y= 0.97 in. A = 2.89 in2

EFFECTIVE EXTREN® 500/525 EXTREN® 625

COLUMN LENGTH E = 2.6 x 106 psi E = 2.8 x 106 psi (ft.) Fa(psi) Pa(lbs) Fa(psi) Pa(lbs)

LONG

0.5 6.2 6771 19568 7292 21073 1.0 12.4 6771 19568 7292 21073 1.5 18.6 6771 19568 7292 21073 2.0 24.7 6771 19568 7292 21073 2.5 30.9 6771 19568 7292 21073 3.0 37.1 6771 19568 7292 21073 3.5 43.3 6771 19568 7292 21073 Fa'(psi) Pa(lbs) Fa'(psi) Pa(lbs)

4.0 49.5 5588 16148 6017 17390 4.5 55.7 4572 13213 4923 14229 5.0 61.9 3821 11043 4115 11892 5.5 68.0 3257 9412 3507 10136 6.0 74.2 2808 8114 3024 8738 6.5 80.4 2450 7080 2638 7624 7.0 86.6 2159 6240 2325 6720 7.5 92.8 1920 5547 2067 5974 8.0 99.0 1720 4970 1852 5352 8.5 105.2 1551 4482 1670 4827 9.0 111.3 1409 4073 1518 4386 9.5 117.5 1285 3714 1384 4000 10.0 123.7 1178 3403 1268 3665 10.5 129.9 1084 3132 1167 3373 11.0 136.1 1001 2893 1078 3116 11.5 142.3 928 2682 999 2888 12.0 148.5 863 2495 930 2686 12.5 154.6 806 2330 868 2509 13.0 160.8 754 2179 812 2347 13.5 167.0 707 2043 761 2200 14.0 173.2 665 1920 716 2068 14.5 179.4 626 1817 674 1948 15.0 185.6 591 1708 636 1839 15.5 191.8 559 1615 602 1739 16.0 197.9 530 1531 571 1650

Kl r

X X

Y

Y

Page 179: Manual Completo

9-19

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

COLUMN

W SHAPE

6 x 6 x 1/4Allowable Axial Stresses and Loads

bf / tf = 24.0 r y= 1.44 in. A = 4.39 in2

EFFECTIVE EXTREN® 500/525/625

COLUMN LENGTH E = 2.5 x 106 psi (ft.) Fa(psi) Pa(lbs)

SHORT

LONG

0.5 4.2 3543 15554 1.0 8.3 3543 15554 1.5 12.5 3543 15554 2.0 16.7 3543 15554 2.5 20.8 3543 15554 3.0 25.0 3543 15554 3.5 29.2 3543 15554 4.0 33.3 3543 15554 4.5 37.5 3543 15554 5.0 41.7 3543 15554

5.5 45.8 3543 15554 6.0 50.0 3543 15554 6.5 54.2 3543 15554 7.0 58.3 3543 15554 7.5 62.5 3543 15554 Fa' (psi) Pa(lbs)

8.0 66.7 3236 14206 8.5 70.8 2924 12836 9.0 75.0 2651 11638 9.5 79.2 2416 10608 10.0 83.3 2218 9736 10.5 87.5 2040 8955 11.0 91.7 1884 8269 11.5 95.8 1749 7678 12.0 100.0 1626 7138 12.5 104.2 1516 6654 13.0 108.3 1420 6233 13.5 112.5 1331 5841 14.0 116.7 1250 5488 14.5 120.8 1179 5176 15.0 125.0 1112 4882 15.5 129.2 1052 4617 16.0 133.3 997 4378 16.5 137.5 946 4153 17.0 141.7 899 3946 17.5 145.8 856 3758 18.0 150.0 816 3582 18.5 154.2 779 3420 19.0 158.3 745 3269 19.5 162.5 712 3126 20.0 166.7 682 2994

X X

Y

Y

Kl r

Page 180: Manual Completo

9-20

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

W SHAPE

6 x 6 x 3/8Allowable Axial Stresses and Loads

bf / tf = 16.0 r y= 1.45 in. A = 6.48 in2

EFFECTIVE EXTREN® 500/525/625

COLUMN LENGTH E = 2.5 x 106 psi

(ft.) Fa(psi) Pa(lbs)

LONG

SHORT 0.5 4.1 6510 42185 1.0 8.3 6510 42185 1.5 12.4 6510 42185 2.0 16.6 6510 42185 2.5 20.7 6510 42185 3.0 24.8 6510 42185 3.5 29.0 6510 42185 4.0 33.1 6510 42185 4.5 37.2 6510 42185 5.0 41.4 6510 42185

Fa'(psi) Pa(lbs)

5.5 45.5 6200 40176 6.0 49.7 5336 34577 6.5 53.8 4663 30218 7.0 57.9 4116 26671 7.5 62.1 3654 23677 8.0 66.2 3278 21239 8.5 70.3 2959 19174 9.0 74.5 2681 17375 9.5 78.6 2448 15862 10.0 82.8 2241 14522 10.5 86.9 2064 13374 11.0 91.0 1908 12366 11.5 95.2 1767 11453 12.0 99.3 1645 10660 12.5 103.4 1536 9952 13.0 107.6 1435 9301 13.5 111.7 1347 8728 14.0 115.9 1265 8199 14.5 120.0 1192 7726 15.0 124.1 1126 7298 15.5 128.3 1064 6896 16.0 132.4 1009 6537 16.5 136.6 957 6199 17.0 140.7 910 5895 17.5 144.8 866 5614 18.0 149.6 825 5348 18.5 153.1 788 5107 19.0 157.2 753 4882 19.5 161.4 720 4668 20.0 165.5 690 4473

Kl r

X X

Y

Y

COLUMN

Page 181: Manual Completo

9-21

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

SHORT

LONG

0.5 3.1 4239 37006 1.0 6.2 4239 37006 1.5 9.4 4239 37006 2.0 12.5 4239 37006 2.5 15.6 4239 37006 3.0 18.8 4239 37006 3.5 21.9 4239 37006 4.0 25.0 4239 37006 4.5 28.1 4239 37006 5.0 31.3 4239 37006 5.5 34.4 4239 37006 6.0 37.5 4239 37006 6.5 40.6 4239 37006 7.0 43.8 4239 37006 7.5 46.9 4239 37006 8.0 50.0 4239 37006 8.5 53.1 4239 37006 9.0 56.2 4239 37006 Fa' (psi) Pa(lbs) 9.5 59.4 3941 34403 10.0 62.5 3614 31550 10.5 65.6 3329 29062 11.0 68.8 3070 26800 11.5 71.9 2848 24863 12.0 75.0 2651 23143 12.5 78.1 2475 21607 13.0 81.2 2316 20220 13.5 84.4 2169 18935 14.0 87.5 2040 17809 14.5 90.6 1923 16788 15.0 93.8 1812 15819 15.5 96.9 1715 14972 16.0 100.0 1626 14192 16.5 103.1 1543 13474 17.0 106.2 1468 12812 17.5 109.4 1395 12178 18.0 112.5 1331 11620 18.5 115.6 1271 11092 19.0 118.8 1213 10589 19.5 121.9 1161 10135 20.0 125.0 1112 9708

X X

Y

Y

Kl r

W SHAPE

8 x 8 x 3/8Allowable Axial Stresses and Loads

bf / tf = 21.3 r y= 1.92 in. A = 8.73 in2

EFFECTIVE EXTREN® 500/525/625

COLUMN LENGTH E = 2.5 x 106 psi

(ft.) Fa(psi) Pa(lbs)

COLUMN

Page 182: Manual Completo

9-22

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

COLUMN

SHORT 0.5 3.1 6510 74930 1.0 6.2 6510 74930 1.5 9.3 6510 74930 2.0 12.4 6510 74930 2.5 15.5 6510 74930 3.0 18.7 6510 74930 3.5 21.8 6510 74930 4.0 24.9 6510 74930 4.5 28.0 6510 74930 5.0 31.1 6510 74930 5.5 34.2 6510 74930 6.0 37.3 6510 74930 6.5 40.4 6510 74930 7.0 43.5 6510 74930 Fa' (psi) Pa (lbs) 7.5 46.6 5953 68519 8.0 49.7 5336 61416 8.5 52.8 4814 55409 9.0 56.0 4356 50138 9.5 59.1 3975 45752 10.0 62.6 3644 41942 10.5 65.3 3355 38616 11.0 68.4 3100 35681 11.5 71.5 2875 33091 12.0 74.6 2675 30789 12.5 77.7 2496 28729 13.0 80.8 2336 26887 13.5 83.9 2191 25218 14.0 87.0 2060 23711 14.5 90.2 1937 22295 15.0 93.3 1829 21052 15.5 96.4 1730 19912 16.0 99.5 1640 18876 16.5 102.6 1556 17909 17.0 105.7 1479 17023 17.5 108.8 1408 16206 18.0 111.9 1343 15458 18.5 115.0 1282 14755 19.0 118.1 1225 14100 19.5 121.2 1172 13489 20.0 124.4 1122 12914

*Non-stock size subject to mill run requirements.

LONG

X X

Y

Y

Kl r

W SHAPE

* 8 x 8 x 1/2Allowable Axial Stresses and Loads

bf / tf = 16.0 r y= 1.93 in. A = 11.51 in2

EFFECTIVE EXTREN® 500/525/625

COLUMN LENGTH E = 2.5 x 106 psi

(ft.) Fa(psi) Pa(lbs)

Page 183: Manual Completo

9-23

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

COLUMN

W SHAPE

10 x 10 x 3/8Allowable Axial Stresses and Loads

bf / tf = 26.7 r y= 2.39 in. A = 10.98 in2

EFFECTIVE EXTREN® 500/525/625

COLUMN LENGTH E = 2.5 x 106 psi (ft.) Fa(psi) Pa(lbs)

LONG

SHORT 0.5 2.5 3020 33160 1.0 5.0 3020 33160 1.5 7.5 3020 33160 2.0 10.0 3020 33160 2.5 12.6 3020 33160 3.0 15.1 3020 33160 3.5 17.6 3020 33160 4.0 20.1 3010 33160 4.5 22.6 3020 33160 5.0 25.1 3020 33160 5.5 27.6 3020 33160 6.0 30.1 3020 33160 6.5 32.6 3020 33160 7.0 35.1 3020 33160 7.5 37.7 3020 33160 8.0 40.2 3020 33160 8.5 42.7 3020 33160 9.0 45.2 3020 33160 9.5 47.7 3020 33160 10.0 50.2 3020 33160 10.5 52.7 3020 33160 11.0 55.2 3020 33160 11.5 57.7 3020 33160 12.0 60.3 3020 33160 12.5 62.8 3020 33160 13.0 65.3 3020 33160 13.5 67.8 3020 33160 Fa' (psi) Pa (lbs)

14.0 70.3 2959 32490 14.5 72.8 2789 30623 15.0 75.3 2633 28910 15.5 77.8 2491 27351 16.0 80.3 2380 26132 16.5 82.8 2241 24606 17.0 85.4 2126 23342 17.5 87.9 2024 22224 18.0 90.4 1930 21190 18.5 92.9 1842 20225 19.0 95.4 1761 19337 19.5 97.9 1685 18501 20.0 100.4 1615 17733

Kl r

X X

Y

Y

Page 184: Manual Completo

9-24

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

COLUMN

W SHAPE

* 10 x 10 x 1/2Allowable Axial Stresses and Loads

bf / tf = 20.0 ry= 2.40 in. A = 14.55 in2

EFFECTIVE EXTREN® 500/525/625

COLUMN LENGTH E = 2.5 x 106 psi (ft.) Fa(psi) Pa(lbs)

SHORT

LONG

0.5 2.5 4658 67774 1.0 5.0 4658 67774 1.5 7.5 4658 67774 2.0 10.0 4658 67774 2.5 12.5 4658 67774 3.0 15.0 4658 67774 3.5 17.5 4658 67774 4.0 20.0 4658 67774 4.5 22.5 4658 67774 5.0 25.0 4658 67774 5.5 27.5 4658 67774 6.0 30.0 4658 67774 6.5 32.5 4658 67774 7.0 35.0 4658 67774 7.5 37.5 4658 67774 8.0 40.0 4658 67774 8.5 42.5 4658 67774 9.0 45.0 4658 67774 9.5 47.5 4658 67774 10.0 50.0 4658 67774 10.5 52.5 4658 67774

Fa' (psi) Pa(lbs)

11.0 55.0 4491 65344 11.5 57.5 4165 60601 12.0 60.0 3874 56366 12.5 62.5 3614 52584 13.0 65.0 3381 49195 13.5 67.5 3171 46138 14.0 70.0 2981 43372 14.5 72.5 2808 40856 15.0 75.0 2651 38572 15.5 77.5 2507 36477 16.0 80.0 2375 34556 16.5 82.5 2254 32796 17.0 85.0 2143 31179 17.5 87.5 2040 29682 18.0 90.0 1944 28285 18.5 92.5 1856 27004 19.0 95.0 1774 25812 19.5 97.5 1697 24691 20.0 100.0 1625 23644

*Non-stock size subject to mill run requirements.

Kl r

X X

Y

Y

Page 185: Manual Completo

9-25

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

*Non-stock size subject to mill run requirements.

COLUMN

W SHAPE

* 12 x 12 x 1/2Allowable Axial Stresses and Loads

bf / tf = 24.0 r y= 2.88 in. A = 17.51 in2

EFFECTIVE EXTREN® 500/525/625

COLUMN LENGTH E = 2.5 x 106 psi (ft.) Fa(psi) Pa(lbs)

LONG

SHORT 0.5 2.1 3544 62055 1.0 4.2 3544 62055 1.5 6.3 3544 62055 2.0 8.3 3544 62055 2.5 10.4 3544 62055 3.0 12.5 3544 62055 3.5 14.6 3544 62055 4.0 16.7 3544 62055 4.5 18.8 3544 62055 5.0 20.8 3544 62055 5.5 22.9 3544 62055 6.0 25.0 3544 62055 6.5 27.1 3544 62055 7.0 29.2 3544 62055 7.5 31.3 3544 62055 8.0 33.3 3544 62055 8.5 35.4 3544 62055 9.0 37.5 3544 62055 9.5 39.6 3544 62055 10.0 41.7 3544 62055 10.5 43.8 3544 62055 11.0 45.8 3544 62055 11.5 47.9 3544 62055 12.0 50.0 3544 62055 12.5 52.1 3544 62055 13.0 54.2 3544 62055 13.5 56.3 3544 62055 14.0 58.3 3544 62055 14.5 60.4 3544 62055 15.0 62.5 3544 62055

Fa' (psi) Pa(lbs)

15.5 64.6 3417 59832 16.0 66.7 3235 56644 16.5 68.8 3069 53758 17.0 70.8 2923 51181 17.5 72.9 2782 48713 18.0 75.0 2651 46419 18.5 77.1 2529 44283 19.0 79.2 2416 42304 19.5 81.3 2311 40466 20.0 83.3 2217 38820

X X

Y

Y

Kl r

Page 186: Manual Completo

9-26

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

SHORT

COLUMN

I SHAPE

3 x 1-1/2 x 1/4

Allowable Axial Stresses and Loads

bf / tf = 6 r y= 0.32 in. A = 1.38 in2

EFFECTIVE EXTREN® 500/525 EXTREN® 625

COLUMN LENGTH E = 2.6 x 106 psi E = 2.8 x 106 psi (ft.) Fa(psi) Pa(lbs) Fa(psi) Pa(lbs)

LONG

0.5 18.8 10000 13800 11000 15180

Fa' (psi) Pa(lbs) Fa' (psi) Pa(lbs)

1.0 37.5 8957 12361 9646 13312 1.5 56.3 4489 6195 4834 6671 2.0 75.0 2757 3805 2969 4097 2.5 93.8 1885 2601 2020 2801 3.0 112.5 1384 1910 1490 2056 3.5 131.3 1064 1468 1150 1581 4.0 150.0 849 1171 914 1261 4.5 168.8 694 958 748 1032 5.0 187.5 581 801 625 863

X X

Y

Y

Kl r

Page 187: Manual Completo

9-27

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

SHORT

COLUMN

I SHAPE

4 x 2 x 1/4

Allowable Axial Stresses and Loads

bf / tf = 8.0 r y= 0.43 in. A = 1.89 in2

EFFECTIVE EXTREN® 500/525 EXTREN® 625

COLUMN LENGTH E = 2.6 x 106 psi E = 2.8 x 106 psi (ft.) Fa(psi) Pa(lbs) Fa(psi) Pa(lbs)

LONG

0.5 14.0 10000 18900 11000 20790 1.0 27.9 10000 18900 11000 20790

Fa' (psi) Pa (lbs) Fa' (psi) Pa (lbs) 1.5 41.9 7418 14020 7988 15098 2.0 55.8 4558 8614 4908 9277 2.5 69.8 3115 5888 3355 6341 3.0 83.7 2288 4324 2464 4656 3.5 97.7 1759 3324 1894 3580 4.0 111.6 1403 2651 1510 2855 4.5 125.6 1148 2169 1236 2336 5.0 139.5 960 1814 1034 1954 5.5 153.5 816 1542 879 1661 6.0 167.4 704 1331 758 1433 6.5 181.4 614 1161 662 1250 7.0 195.3 542 1024 583 1103

X X

Y

Y

Kl r

Page 188: Manual Completo

9-28

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

COLUMN

I SHAPE

5-1/2 x 2-1/2 x 1/4

Allowable Axial Stresses and Loads

bf / tf = 10.0 r y= 0.50 in. A = 2.48 in2

X X

Y

Y

EFFECTIVE COLUMN LENGTH

(ft.)

Klr

EXTREN® 500/525/625

E = 2.5 x 106 psiFa(psi) Pa(lbs)

0.5 12.0 10000 24800 SHORT1.0 24.0 10000 24800

Fa' (psi) Pa(lbs)

1.5 36.0 9232 22895 LONG2.0 48.0 5661 140402.5 60.0 3874 96073.0 72.0 2842 70483.5 84.0 2186 54224.0 96.0 1742 43204.5 108.0 1426 35365.0 120.0 1192 29565.5 132.0 1014 25156.0 144.0 875 21686.5 156.0 763 18927.0 168.0 673 16697.5 180.0 598 14838.0 192.0 536 1329

Page 189: Manual Completo

9-29

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

COLUMN

I SHAPE

*6 x 3 x 1/4Allowable Axial Stresses and Loads

bf / tf = 12.0 r y= 0.63 in. A = 2.88 in2

EFFECTIVE EXTREN® 500/525/625

COLUMN LENGTH E = 2.5 x 106 psi (ft.) Fa(psi) Pa(lbs)

SHORT

LONG

0.5 9.5 10000 28800 1.0 19.0 10000 28800 1.5 28.6 10000 28800 Fa' (psi) Pa(lbs)

2.0 38.1 8384 24145 2.5 47.6 5742 16538 3.0 57.1 4214 12137 3.5 66.7 3236 9319 4.0 76.2 2580 7432 4.5 85.7 2113 6086 5.0 95.2 1767 5090 5.5 104.8 1501 4323

6.0 114.3 1295 3730 6.5 123.8 1131 3257 7.0 133.3 997 2872 7.5 142.9 886 2552 8.0 152.4 794 2287 8.5 161.9 717 2064 9.0 171.4 650 1873 9.5 181.0 593 1707 10.0 190.5 543 1565 10.5 200.0 500 1441

*Non-stock size subject to mill run requirements.

Kl r

X X

Y

Y

Page 190: Manual Completo

9-30

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

COLUMN

I SHAPE

* 6 x 3 x 3/8Allowable Axial Stresses and Loads

bf / tf = 8.0 r y= 0.64 in. A = 4.23in2

EFFECTIVE EXTREN® 500/525/625

COLUMN LENGTH E = 2.5 x 106 psi (ft.) Fa(psi) Pa(lbs)

SHORT

LONG

0.5 9.4 10000 42300 1.0 18.8 10000 42300 1.5 28.1 10000 42300

Fa' (psi) Pa(lbs)

2.0 37.5 8613 36434 2.5 46.9 5889 24909 3.0 56.3 4316 18257 3.5 65.6 3328 14077 4.0 75.0 2651 11214 4.5 84.4 2169 9174 5.0 93.8 1812 7667 5.5 103.1 1543 6529 6.0 112.5 1330 5629 6.5 121.9 1161 4911 7.0 131.3 1023 4328 7.5 140.6 911 3853 8.0 150.0 816 3451 8.5 159.4 736 3113 9.0 168.8 667 2823 9.5 178.1 609 2577 10.0 187.5 558 2361 10.5 196.9 514 2173

*Non-stock size subject to mill run requirements.

Kl r

X X

Y

Y

Page 191: Manual Completo

9-31

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

COLUMN

I SHAPE

8 x 4 x 3/8Allowable Axial Stresses and Loads

bf / tf = 12.0 r y= 0.84 in. A = 5.73 in2

EFFECTIVE EXTREN® 500/525/625

COLUMN LENGTH E = 2.5 x 106 psi (ft.) Fa(psi) Pa(lbs)

SHORT

LONG

0.5 7.1 10000 57300 1.0 14.3 10000 57300 1.5 21.4 10000 57300 2.0 28.6 10000 57300

Fa' (psi) Pa(lbs) 2.5 35.7 9364 53656 3.0 42.9 6853 39267 3.5 50.0 5281 30260 4.0 57.1 4214 24146 4.5 64.3 3444 19734 5.0 71.4 2882 16514 5.5 78.6 2448 14027 6.0 85.7 2113 12107 6.5 92.9 1842 10565 7.0 100.0 1625 9311 7.5 107.1 1446 8289 8.0 114.3 1295 7420 8.5 121.4 1169 6699 9.0 128.6 1060 6074 9.5 135.7 967 5541 10.0 142.9 886 5077 10.5 150.0 816 4675 11.0 157.1 754 4322 11.5 164.3 699 4004 12.0 171.4 650 3727 12.5 178.6 606 3475 13.0 185.7 567 3252 13.5 192.9 532 3049 14.0 200.0 500 2867

X X

Y

Y

Kl r

Page 192: Manual Completo

9-32

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

COLUMN

I SHAPE

*8 x 4 x 1/2Allowable Axial Stresses and Loads

bf / tf = 8.0 r y= 0.85 in. A = 7.51 in2

EFFECTIVE EXTREN® 500/525/625

COLUMN LENGTH E = 2.5 x 106 psi

(ft.) Fa(psi) Pa(lbs) SHORT

LONG

0.5 7.1 10000 75100 1.0 14.1 10000 75100 1.5` 21.2 10000 75100 2.0 28.2 10000 75100

Fa' (psi) Pa(lbs)

2.5 35.3 9545 71683 3.0 42.4 6990 52495 3.5 49.4 5391 40487 4.0 56.5 4291 32223 4.5 63.5 3518 26420 5.0 70.6 2938 22064 5.5 77.6 2501 18782 6.0 84.7 2155 16198 6.5 91.8 1880 14120 7.0 98.8 1659 12459 7.5 105.9 1474 11069 8.0 112.9 1322 9928 8.5 120.0 1192 8952 9.0 127.1 1081 8181 9.5 134.1 987 7412 10.0 141.2 904 6791 10.5 148.2 833 6255 11.0 155.3 769 5776 11.5 162.4 713 5354 12.0 169.4 663 4983 12.5 176.5 618 4647 13.0 183.5 579 4350 13.5 190.6 543 4078 14.0 197.6 510 3835

*Non-stock size subject to mill run requirements.

X X

Y

Y

Kl r

Page 193: Manual Completo

9-33

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

COLUMN

I SHAPE

*10 x 5 x 3/8Allowable Axial Stresses and Loads

bf / tf = 13.3 r y= 1.04 in. A = 7.23in2

EFFECTIVE EXTREN® 500/525/625

COLUMN LENGTH E = 2.5 x 106 psi (ft.) Fa(psi) Pa(lbs)

SHORT

LONG

0.5 5.8 8590 62106 1.0 11.5 8590 62106 1.5 17.3 8590 62106 2.0 23.1 8590 62106 2.5 28.8 8590 62106 3.0 34.6 8590 62106

Fa' (psi) Pa(lbs)

3.5 40.4 7588 54861 4.0 46.2 6041 43676 4.5 51.9 4957 35839 5.0 57.7 4140 29933 5.5 63.5 3518 25435 6.0 69.2 3039 21972 6.5 75.0 2651 19166 7.0 80.8 2335 16882 7.5 86.5 2080 15039 8.0 92.3 1862 13462 8.5 98.1 1679 12139 9.0 103.8 1525 11026 9.5 109.6 1391 10057 10.0 115.4 1274 9211 10.5 121.2 1172 8474 11.0 126.9 1084 7837 11.5 132.7 1005 7266 12.0 138.5 934 6753 12.5 144.2 872 6308 13.0 150.0 816 5899 13.5 155.8 765 5531 14.0 161.5 719 5203 14.5 167.3 677 4895 15.0 177.1 615 4448 15.5 178.8 605 4376 16.0 184.6 573 4143 16.5 190.4 544 3933 17.0 196.2 517 3737

*Non-stock size subject to mill run requirements.

Kl r

X X

Y

Y

Page 194: Manual Completo

9-34

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

COLUMN

I SHAPE

* 10 x 5 x 1/2Allowable Axial Stresses and Loads

bf / tf = 10.0 r y= 1.06 in. A = 9.51 in2

EFFECTIVE EXTREN® 500/525/625

COLUMN LENGTH E = 2.5 x 106 psi

(ft.) Fa(psi) Pa(lbs)

SHORT

LONG

*Non-stock size subject to mill run requirements.

Kl r

X X

Y

Y

0.5 5.7 10000 95100 1.0 11.3 10000 95100 1.5 17.0 10000 95100 2.0 22.6 10000 95100 2.5 28.3 10000 95100 3.0 34.0 10000 95100

Fa' (psi) Pa(lbs) 3.5 39.6 7851 74664 4.0 45.3 6246 59399 4.5 50.9 5123 48719 5.0 56.6 4277 40674 5.5 62.3 3634 34559 6.0 67.9 3139 29851 6.5 73.6 2737 26029 7.0 79.2 2416 22976 7.5 84.9 2147 20418 8.0 90.6 1922 18279 8.5 96.2 1736 16509 9.0 101.9 1574 14969 9.5 107.5 1437 13666 10.0 113.2 1316 12515 10.5 118.9 1211 11518 11.0 124.5 1120 10651 11.5 130.2 1038 9871 12.0 135.8 966 9189 12.5 141.5 901 8569 13.0 147.2 842 8012 13.5 152.8 790 7519 14.0 158.5 743 7066 14.5 164.2 699 6654 15.0 169.8 660 6284 15.5 175.5 624 5942 16.0 181.1 592 5633 16.5 186.8 562 5344 17.0 192.5 534 5078 17.5 198.1 508 4836

Page 195: Manual Completo

9-35

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

COLUMN

I SHAPE

* 12 x 6 x 1/2Allowable Axial Stresses and Loads

bf / tf = 12.0 r y= 1.26 in. A = 11.51 in2

EFFECTIVE EXTREN® 500/525/625

COLUMN LENGTH E = 2.5 x 106 psi (ft.) Fa(psi) Pa(lbs)

SHORT

LONG

0.5 4.8 10000 115100 1.0 9.5 10000 115100 1.5 14.3 10000 115100 2.0 19.0 10000 115100 2.5 23.8 10000 115100 3.0 28.6 10000 115100 3.5 33.3 10000 115100 Fa' (psi) Pa(lbs) 4.0 38.1 8383 96488 4.5 42.9 6852 78866 5.0 47.6 5742 66090 5.5 52.4 4877 56134 6.0 57.1 4214 48503 6.5 61.9 3674 42288 7.0 66.7 3536 37246 7.5 71.4 2882 33172 8.0 76.2 2580 29765 8.5 81.0 2326 26772 9.0 85.7 2113 24321 9.5 90.5 1926 22168 10.0 95.2 1767 20338 10.5 100.0 1625 18704 11.0 104.8 1501 17277 11.5 109.5 1393 16035 12.0 114.3 1295 14908 12.5 119.0 1209 13916 13.0 123.8 1130 13006 13.5 128.6 1060 12201 14.0 133.3 997 11475 14.5 138.1 939 10808 15.0 142.9 886 10198 15.5 147.6 838 9652 16.0 152.4 794 9141 16.5 157.1 754 8681 17.0 161.9 716 8248 17.5 166.7 682 7849 18.0 171.4 650 7484 18.5 176.2 620 7143 19.0 181.0 593 6824 19.5 185.7 567 6533 20.0 190.5 543 6256

*Non-stock size subject to mill run requirements.

X X

Y

Y

Kl r

Page 196: Manual Completo

9-36

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

LONG 0.5 15.4 3440 3165 3704 3407 1.0 30.8 2349 2161 2530 2327 1.5 46.2 1880 1729 2024 1862 2.0 61.5 1606 1478 1730 1591 2.5 76.9 1420 1307 1530 1407 3.0 92.3 1285 1182 1383 1273 3.5 107.7 1180 1086 1271 1169 4.0 123.1 1096 1009 1181 1086 4.5 138.5 1028 945 1107 1018 5.0 153.8 970 893 1045 961 5.5 169.2 920 847 991 912 6.0 184.6 877 807 945 869 6.5 200.0 840 772 904 832

Kl r

X X

Y

Y Z

Z

COLUMN

EQUAL LEG ANGLES

2 x 2 x 1/4

Allowable Axial Stresses and Loads

b/t = 8.0 rz= 0.39 in. A = 0.92 in2

EFFECTIVE EXTREN® 500/525 EXTREN® 625

COLUMN LENGTH E = 2.6 x 106 psi E = 2.8 x 106 psi

(ft.) Fa' (psi) Pa(lbs) Fa' (psi) Pa(lbs)

Page 197: Manual Completo

9-37

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

SHORT

COLUMN

EQUAL LEG ANGLES

3 x 3 x 1/4

Allowable Axial Stresses and Loads

b/t = 12.0 r z= 0.58 in. A = 1.42 in2

EFFECTIVE EXTREN® 500/525 EXTREN® 625

COLUMN LENGTH E = 2.6 x 106 psi E = 2.8 x 106 psi (ft.) Fa(psi) Pa(lbs) Fa(psi) Pa(lbs)

LONG

0.5 10.3 3029 4301 3262 4632

Fa' (psi) Pa(lbs) Fa' (psi) Pa(lbs)

1.0 20.7 2923 4151 3148 4470 1.5 31.0 2341 3324 2521 3580 2.0 41.4 1997 2835 2150 3053 2.5 51.7 1767 2509 1903 2702 3.0 62.1 1598 2269 1720 2443 3.5 72.4 1468 2085 1581 2245 4.0 82.8 1364 1937 1469 2086 4.5 93.1 1279 1816 1377 1955 5.0 103.4 1207 1714 1300 1846 5.5 113.8 1145 1626 1233 1751 6.0 124.1 1092 1550 1176 1669 6.5 134.5 1044 1438 1125 1597 7.0 144.8 1003 1424 1080 1534 7.5 155.2 965 1371 1040 1476 8.0 165.5 932 1323 1003 1425 8.5 176.9 898 1276 967 1374 9.0 186.2 873 1240 940 1335 9.5 196.6 848 1206 913 1296

Kl r

X X

Y

Y Z

Z

Page 198: Manual Completo

9-38

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

COLUMN

EQUAL LEG ANGLES

3 x 3 x 3/8

Allowable Axial Stresses and Loads

b/t = 8.0 r z= 0.58 in. A = 2.09 in2

EFFECTIVE EXTREN® 500/525 EXTREN® 625

COLUMN LENGTH E = 2.6 x 106 psi E = 2.8 x 106 psi (ft.) Fa'(psi) Pa(lbs) Fa'(psi)

LONG 0.5 10.3 4281 8948 4611 9636

1.0 20.7 2923 6109 3148 6579 1.5 31.0 2341 4893 2521 5269 2.0 41.4 1997 4173 2150 4494 2.5 51.7 1767 3693 1903 3977 3.0 62.1 1598 3339 1720 3595 3.5 72.4 1468 3068 1581 3304 4.0 82.8 1364 2851 1469 3070 4.5 93.1 1279 2673 1377 2878 5.0 103.4 1207 2523 1300 2717 5.5 113.8 1145 2393 1233 2577 6.0 124.1 1092 2282 1176 2458 6.5 134.5 1044 2182 1125 2351 7.0 144.8 1003 2096 1080 2257 7.5 155.2 965 2017 1040 2174 8.0 165.5 932 1948 1003 2096 8.5 176.9 898 1877 967 2021 9.0 186.2 873 1825 946 1965 9.5 196.6 848 1772 913 1908

X X

Y

Y Z

Z

Kl r

Pa(lbs)

Page 199: Manual Completo

9-39

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

SHORT

COLUMN

EQUAL LEG ANGLES

4 x 4 x 1/4

Allowable Axial Stresses and Loads

b/t = 16.0 r z= 0.79 in. A = 1.92 in2

EFFECTIVE EXTREN® 500/525 EXTREN® 625

COLUMN LENGTH E = 2.6 x 106 psi E = 2.8 x 106 psi (ft.) Fa(psi) Pa(lbs) Fa(psi) Pa(lbs)

LONG

0.5 7.6 2304 4424 2481 4764 1.0 15.2 2304 4424 2481 4764 1.5 22.8 2304 4424 2481 4764 2.0 30.4 2304 4424 2481 4764

Fa' (psi) Pa(lbs) Fa' (psi) Pa(lbs)

2.5 38.0 2093 4019 2254 4328 3.0 45.6 1893 3635 2039 3914 3.5 53.2 1739 3340 1873 3596 4.0 60.8 1616 3103 1741 3342 4.5 68.4 1515 2909 1631 3132 5.0 75.9 1431 2747 1541 2958 5.5 83.5 1357 2606 1462 2807 6.0 91.1 1294 2484 1393 2675 6.5 98.7 1238 2377 1333 2560 7.0 106.3 1189 2282 1280 2458 7.5 113.9 1144 2197 1232 2366 8.0 121.5 1104 2120 1189 2284 8.5 129.1 1068 2051 1150 2209 9.0 136.7 1035 1987 1115 2140 9.5 144.3 1005 1929 1082 2077 10.0 151.9 977 1875 1052 2020 10.5 159.5 951 1826 1024 1966 11.0 167.1 927 1780 998 1916 11.5 174.7 904 1737 974 1870 12.0 182.3 884 1696 951 1827 12.5 189.9 864 1659 930 1786 13.0 197.5 845 1623 910 1748

X X

Y

Y Z

Z

Kl r

Page 200: Manual Completo

9-40

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

SHORT

COLUMN

EQUAL LEG ANGLES

4 x 4 x 3/8

Allowable Axial Stresses and Loads

b/t = 10.67 r z= 0.78 in. A = 2.84 in2

EFFECTIVE EXTREN® 500/525 EXTREN® 625

COLUMN LENGTH E = 2.6 x 106 psi E = 2.8 x 106 psi (ft.) Fa(psi) Pa(lbs) Fa(psi) Pa(lbs)

LONG

X X

Y

Y Z

Z

Kl r

0.5 7.7 3386 9616 3646 10356 1.0 15.4 3386 9616 3646 10356

Fa' (psi) Pa(lbs) Fa' (psi) Pa(lbs)

1.5 23.1 2752 7816 2964 8417 2.0 30.8 2349 6672 2530 7185 2.5 38.5 2078 5901 2238 6356 3.0 46.2 1880 5339 2024 5749 3.5 53.8 1729 4910 1862 5287 4.0 61.5 1606 4561 1730 4912 4.5 69.2 1505 4275 1621 4604 5.0 76.9 1420 4034 1530 4344 5.5 84.6 1348 3828 1451 4122 6.0 92.3 1285 3649 1383 3929 6.5 100.0 1229 3491 1324 3760 7.0 107.7 1180 3352 1271 3609 7.5 115.4 1136 3227 1224 3475 8.0 123.1 1096 3114 1181 3354 8.5 130.8 1060 3012 1142 3244 9.0 138.5 1028 2919 1107 3143 9.5 146.2 998 2833 1074 3051 10.0 153.8 970 2755 1045 2967 10.5 161.5 944 2682 1017 2888 11.0 169.2 920 2614 991 2815 11.5 176.9 898 2551 967 2747 12.0 184.6 877 2492 945 2684 12.5 192.3 858 2437 924 2624 13.0 200.0 840 2385 904 2568

Page 201: Manual Completo

9-41

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

SHORT

COLUMN

EQUAL LEG ANGLES

4 x 4 x 1/2

Allowable Axial Stresses and Loads

b/t = 8.0 r z= 0.78 in. A = 3.75 in2

EFFECTIVE EXTREN® 500/525 EXTREN® 625

COLUMN LENGTH E = 2.6 x 106 psi E = 2.8 x 106 psi

(ft.) Fa(psi) Pa(lbs) Fa(psi) Pa(lbs)

LONG

0.5 7.7 4451 16691 4793 17976

Fa' (psi) Pa(lbs) Fa' (psi) Pa(lbs)

1.0 15.4 3440 12899 3704 13892 1.5 23.1 2752 10320 2964 11114 2.0 30.8 2349 8810 2529 9488 2.5 38.5 2078 7793 2238 8393 3.0 46.2 1879 7049 2023 7591 3.5 53.8 1728 6482 1861 6981 4.0 61.5 1606 6023 1729 6486 4.5 69.2 1505 5644 1620 6078 5.0 76.9 1420 5326 1529 5736 5.5 84.6 1347 5054 1450 5443 6.0 92.3 1284 4817 1382 5187 6.5 100.0 1229 4609 1323 4963 7.0 107.7 1180 4425 1270 4765 7.5 115.4 1136 4261 1223 4589 8.0 123.1 1096 4112 1180 4428 8.5 130.8 1060 3977 1141 4283 9.0 138.5 1027 3853 1106 4149 9.5 146.2 997 3740 1073 4027 10.0 153.8 970 3638 1044 3918 10.5 161.5 944 3542 1016 3814 11.0 169.2 920 3452 990 3717 11.5 176.9 898 3369 967 3625 12.0 184.6 877 3290 944 3543 12.5 192.3 857 3217 922 3464 13.0 200.0 839 3148 903 3390

X X

Y

Y Z

Z

Kl r

Page 202: Manual Completo

9-42

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

COLUMN

EQUAL LEG ANGLES

* 5 x 5 x 1/2

Allowable Axial Stresses and Loads

b/t = 10.0 r z= 1.02 in. A = 4.71 in2

EFFECTIVE EXTREN® 500/525 EXTREN® 625

COLUMN LENGTH E = 2.6 x 106 psi E = 2.8 x 106 psi (ft.) Fa(psi) Pa(lbs) Fa(psi) Pa(lbs)

0.5 5.9 3602 16963 3879 18268 1.0 11.8 3602 16963 3879 18268 Fa' (psi) Pa(lbs) Fa' (psi) Pa(lbs) 1.5 17.7 3191 15031 3437 16187 2.0 23.5 2724 12832 2934 13819 2.5 29.4 2410 11350 2596 12224 3.0 35.3 2180 10268 2348 11058 3.5 41.2 2003 9432 2157 10158 4.0 47.0 1861 8764 2004 9439 4.5 52.9 1744 8215 1878 8847 5.0 58.8 1646 7753 1773 8349 5.5 64.7 1562 7357 1682 7923 6.0 70.6 1489 7013 1603 7552 6.5 76.5 1425 6711 1534 7227 7.0 82.4 1368 6443 1473 6938 7.5 88.2 1317 6203 1418 6680 8.0 94.1 1271 5986 1369 6447 8.5 100.0 1229 5790 1324 6235 9.0 105.9 1191 5611 1283 6043 9.5 111.8 1156 5447 1245 5866 10.0 117.7 1124 5295 1211 5702 10.5 123.5 1094 5155 1179 5551 11.0 129.4 1067 5025 1149 5411 11.5 135.3 1041 4903 1121 5281 12.0 141.2 1017 4790 1095 5158 12.5 147.1 994 4683 1071 5044 13.0 152.9 973 4583 1048 4936 13.5 158.8 953 4489 1026 4835 14.0 164.7 934 4401 1006 4739 14.5 170.6 916 4316 987 4648 15.0 176.5 899 4237 969 4563 15.5 182.4 883 4161 951 4401 16.0 188.2 868 4089 935 4403 16.5 194.1 854 4020 919 4329 17.0 200.0 840 3955 904 4259 17.5 205.9 826 3892 890 4192 18.0 211.8 814 3832 876 4127 18.5 217.7 801 3775 863 4065 19.0 223.5 790 3720 851 4006 19.5 229.4 771 3667 839 3949 20.0 235.3 768 3617 827 3895

Kl r

X X

Y

Y Z

Z

SHORT

LONG

Page 203: Manual Completo

9-43

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

SHORT

COLUMN

EQUAL LEG ANGLES

* 6 x 6 x 3/8

Allowable Axial Stresses and Loads

b/t = 16.0 r z= 1.18 in. A = 4.34 in2

EFFECTIVE EXTREN® 500/525 EXTREN® 625

COLUMN LENGTH E = 2.6 x 106 psi E = 2.8 x 106 psi (ft.) Fa(psi) Pa(lbs) Fa(psi) Pa(lbs)

LONG

0.5 5.1 2304 9999 2481 10768 1.0 10.2 2304 9999 2481 10768 1.5 15.2 2304 9999 2481 10768 2.0 20.3 2304 9999 2481 10768 2.5 25.4 2304 9999 2481 10768 3.0 30.5 2304 9999 2481 10768

Fa' (psi) Pa(lbs) Fa' (psi) Pa(lbs)

3.5 35.6 2170 9418 2336 10138 4.0 40.7 2016 8749 2170 9418 4.5 45.8 1889 8197 2034 8228 5.0 50.8 1784 7743 1921 8337 5.5 55.9 1693 7346 1823 7911 6.0 61.0 1613 7000 1737 7540 6.5 66.1 1544 6700 1662 7213 7.0 71.2 1482 6431 1596 6926 7.5 76.3 1427 6191 1536 6667 8.0 81.4 1377 5975 1482 6436 8.5 86.4 1332 5782 1435 6227 9.0 91.5 1291 5602 1390 6033 9.5 96.6 1253 5438 1349 5856 10.0 101.7 1218 5286 1312 5692 10.5 106.8 1186 5146 1277 5541 11.0 111.9 1156 5015 1244 5401 11.5 116.9 1128 4896 1215 5273 12.0 122.0 1102 4782 1187 5150 12.5 127.1 1077 4676 1160 5036 13.0 132.2 1054 4576 1135 4927 13.5 137.3 1033 4482 1112 4826 14.0 142.4 1012 4393 1090 4730 14.5 147.5 993 4308 1069 4640 15.0 152.4 975 4232 1050 4557 15.5 157.6 957 4154 1031 4474 16.0 162.7 941 4082 1013 4396 16.5 167.8 925 4013 996 4322 17.0 172.9 910 3948 980 4251 17.5 178.0 895 3885 964 4184 18.0 183.0 882 3826 949 4121 18.5 188.1 868 3769 935 4059 19.0 193.2 856 3714 922 4000 19.5 198.3 844 3661 908 3943

*Non-stock size subject to mill run requirements.

Kl r

X X

Y

Y Z

Z

Page 204: Manual Completo

9-44

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

SHORT

COLUMN

EQUAL LEG ANGLES

6 x 6 x 1/2

Allowable Axial Stresses and Loads

b/t = 12.0 r z= 1.17 in. A = 5.72 in2

EFFECTIVE EXTREN® 500/525 EXTREN® 625

COLUMN LENGTH E = 2.6 x 106 psi E = 2.8 x 106 psi

(ft.) Fa(psi) Pa(lbs) Fa(psi) Pa(lbs)

LONG

0.5 5.1 3029 17326 3262 18658 1.0 10.3 3029 17326 3262 18658 1.5 15.4 3029 17326 3262 18658

Fa' (psi) Pa(lbs) Fa' (psi) Pa(lbs)

2.0 20.5 2938 16805 3164 18097 2.5 25.6 2599 14864 2798 16007 3.0 30.8 2351 13446 2531 14480 3.5 35.9 2160 12353 2326 13303 4.0 41.0 2007 11478 2161 12361 4.5 46.2 1881 10758 2025 11586 5.0 51.3 1775 10153 1911 10933 5.5 56.4 1684 9634 1814 10375 6.0 61.5 1606 9184 1729 9890 6.5 66.7 1536 8788 1655 9464 7.0 71.8 1475 8437 1588 9086 7.5 76.9 1420 8123 1529 8748 8.0 82.1 1371 7840 1476 8442 8.5 87.2 1325 7582 1427 8166 9.0 92.3 1285 7348 1383 7913 9.5 97.4 1247 7133 1343 7681 10.0 102.6 1212 6934 1306 7468 10.5 107.7 1180 6751 1271 7270 11.0 112.8 1150 6580 1239 7086 11.5 117.9 1123 6421 1209 6915 12.0 123.1 1097 6273 1181 6755 12.5 128.2 1072 6134 1155 6605 13.0 133.3 1049 6003 1130 6464 13.5 138.5 1028 5879 1107 6331 14.0 143.6 1007 5763 1085 6206 14.5 148.7 988 5653 1064 6087 15.0 153.8 970 5548 1045 5975 15.5 159.0 952 5445 1026 5858 16.0 164.1 936 5355 1008 5767 16.5 169.2 920 5265 991 5670 17.0 174.4 905 5179 975 5577 17.5 179.5 891 5097 960 5489 18.0 184.6 877 5019 945 5405 18.5 189.7 864 4944 931 5324 19.0 194.9 852 4872 917 5246 19.5 200.0 840 4803 904 5172

Kl r

X X

Y

Y Z

Z

Page 205: Manual Completo

9-45

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

SHORT

COLUMN

ROUND TUBE

1-1/2 x 1/4

Allowable Axial Stresses and Loads

D/t = 6.0 r = 0.45 in. A = 0.98 in2

EFFECTIVE EXTREN® 500/525 EXTREN® 625

COLUMN LENGTH E = 2.6 x 106 psi E = 2.8 x 106 psi

(ft.) Fa(psi) Pa(lbs) Fa(psi) Pa(lbs)

LONG

0.5 13.3 10000 9800 11000 10780 1.0 26.7 10000 9800 11000 10780

Fa' (psi) Pa(lbs) Fa' (psi) Pa(lbs)

1.5 40.0 9314 9127 10030 9829 2.0 53.3 6413 6284 6906 6768 2.5 66.7 4791 4695 5159 5056 3.0 80.0 3782 3707 4073 3992 3.5 93.3 3097 3035 3335 3268 4.0 106.7 2601 2549 2801 2745 4.5 120.0 2233 2188 2404 2356 5.0 133.3 1948 1909 2097 2055 5.5 146.7 1720 1685 1852 1815 6.0 160.0 1536 1505 1654 1621 6.5 177.3 1344 1317 1447 1418 7.0 186.7 1257 1232 1354 1327 7.5 200.0 1149 1126 1238 1213

Kl r

XX

Page 206: Manual Completo

9-46

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

SHORT

COLUMN

ROUND TUBE

*1-3/4 x 1/4

Allowable Axial Stresses and Loads

D/t = 7 r = 0.54 in. A = 1.18 in2

EFFECTIVE EXTREN® 500/525 EXTREN® 625

COLUMN LENGTH E = 2.6 x 106 psi E = 2.8 x 106 psi

(ft.) Fa(psi) Pa(lbs) Fa(psi) Pa(lbs)

LONG

0.5 11.1 10000 11800 11000 12980 1.0 22.2 10000 11800 11000 12980 1.5 33.3 10000 11800 11000 12980

Fa' (psi) Pa(lbs) Fa' (psi) Pa(lbs)

2.0 44.4 8132 9596 8757 10334 2.5 55.6 6070 7163 6537 7713 3.0 66.7 4791 5653 5159 6088 3.5 77.8 3922 4628 4224 4984 4.0 88.9 3298 3891 3551 4191 4.5 100.0 2830 3339 3048 3596 5.0 111.1 2468 2912 2658 3136 5.5 122.2 2181 2573 2348 2771 6.0 133.3 1948 2298 2097 2475 6.5 144.4 1755 2071 1890 2231 7.0 155.6 1593 1880 1715 2024 7.5 166.7 1456 1718 1568 1851 8.0 177.8 1339 1580 1442 1702 8.5 188.9 1238 1461 1333 1573 9.0 200.0 1149 1356 1238 1461

*Non-stock size subject to mill run requirements.

Kl r

XX

Page 207: Manual Completo

9-47

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

SHORT

COLUMN

ROUND TUBE

2 x 1/4

Allowable Axial Stresses and Loads

D/t = 8.0 r = 0.62 in. A = 1.37 in2

EFFECTIVE EXTREN® 500/525 EXTREN® 625

COLUMN LENGTH E = 2.6 x 106 psi E = 2.8 x 106 psi

(ft.) Fa(psi) Pa(lbs) Fa(psi) Pa(lbs)

LONG

0.5 9.7 9249 12671 9960 13645 1.0 19.4 9249 12671 9960 13645 1.5 29.0 9249 12671 9960 13645 2.0 38.7 9249 12671 9960 13645

Fa' (psi) Pa(lbs) Fa' (psi) Pa(lbs)

2.5 48.4 7269 9959 7828 10725 3.0 58.1 5733 7854 6174 8458 3.5 67.7 4699 6438 5061 6933 4.0 77.4 3948 5409 4252 5825 4.5 87.1 3387 4640 3647 4997 5.0 96.8 2952 4044 3179 4356 5.5 106.5 2608 3572 2808 3847 6.0 116.1 2331 3193 2510 3439 6.5 125.8 2100 2877 2261 3098 7.0 135.5 1907 2612 2053 2813 7.5 145.2 1743 2388 1877 2571 8.0 154.8 1604 2197 1727 2366 8.5 164.5 1482 2030 1596 2186 9.0 174.2 1375 1884 1481 2029 9.5 183.9 1282 1756 1380 1891 10.0 193.5 1200 1644 1292 1770

XX

Kl r

Page 208: Manual Completo

9-48

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

SHORT

COLUMN

ROUND TUBE

2-1/2 x 1/4

Allowable Axial Stresses and Loads

D/t = 10.0 r = 0.80 in. A = 1.77 in2

EFFECTIVE EXTREN® 500/525 EXTREN® 625

COLUMN LENGTH E = 2.6 x 106 psi E = 2.8 x 106 psi

(ft.) Fa(psi) Pa(lbs) Fa(psi) Pa(lbs)

LONG

0.5 7.5 7651 13542 8240 14584 1.0 15.0 7651 13542 8246 14584 1.5 22.5 7651 13542 8246 14584 2.0 30.0 7651 13542 8246 14584 2.5 37.5 7651 13542 8246 14584 3.0 45.0 7651 13542 8246 14584

Fa' (psi) Pa(lbs) Fa' (psi) Pa(lbs)

3.5 52.5 6540 11576 7043 12466 4.0 60.0 5498 9731 5921 10480 4.5 67.5 4717 8350 5080 8992 5.0 75.0 4114 7281 4430 7841 5.5 82.5 3634 6432 3914 6927 6.0 90.0 3245 5745 3495 6168 6.5 97.5 2925 5177 3150 5574 7.0 105.0 2656 4701 2860 5063 7.5 112.5 2428 4298 2615 4629 8.0 120.0 2233 3952 2405 4256 8.5 127.5 2063 3653 2222 3934 9.0 135.0 1916 3391 2063 3652 9.5 142.5 1786 3161 1923 3403 10.0 150.0 1671 2957 1799 3184 10.5 157.5 1568 2775 1689 2989 11.0 165.0 1476 2612 1589 2813 11.5 172.5 1393 2466 1500 2655 12.0 180.0 1318 2333 1419 2512 12.5 187.5 1250 2212 1346 2383 13.0 195.0 1188 2102 1279 2264

Kl r

XX

Page 209: Manual Completo

9-49

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

SHORT

COLUMN

ROUND TUBE

*2-3/4 x 1/4

Allowable Axial Stresses and Loads

D/t = 11 r = 0.89 in. A = 1.96 in2

EFFECTIVE EXTREN® 500/525 EXTREN® 625

COLUMN LENGTH E = 2.6 x 106 psi E = 2.8 x 106 psi (ft.) Fa(psi) Pa(lbs) Fa(psi) Pa(lbs)

LONG

0.5 6.7 7056 13830 7599 14894 1.0 13.4 7056 13830 7599 14894 1.5 20.2 7056 13830 7599 14894 2.0 27.0 7056 13830 7599 14894 2.5 33.7 7056 13830 7599 14894 3.0 40.4 7056 13830 7599 14894 3.5 47.2 7056 13830 7599 14894 Fa' (psi) Pa(lbs) Fa' (psi) Pa(lbs)

4.0 53.9 6320 12388 6806 13340 4.5 60.7 5416 10615 5832 11431 5.0 67.4 4726 9264 5090 9976 5.5 74.2 4171 8176 4492 8804 6.0 80.9 3728 7307 4015 7869 6.5 87.6 3362 6589 3620 7095 7.0 94.3 3054 5987 3289 6447 7.5 101.1 2790 5469 3005 5889 8.0 107.9 2564 5025 2761 5411 8.5 114.6 2371 4646 2553 5004 9.0 121.3 2202 4316 2371 4647 9.5 128.1 2051 4020 2209 4329 10.0 134.8 1920 3762 2067 4052 10.5 141.6 1801 3529 1939 3801 11.0 148.3 1696 3323 1826 3579 11.5 155.1 1600 3135 1723 3376 12.0 161.8 1514 2967 1630 3196 12.5 168.5 1436 2815 1547 3031 13.0 175.3 1364 2674 1469 2880 13.5 182.0 1299 2574 1399 2742 14.0 188.8 1239 2428 1334 2615 14.5 195.5 1184 2320 1275 2499

*Non-stock size subject to mill run requirements.

Kl r

XX

Page 210: Manual Completo

9-50

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

SHORT

COLUMN

ROUND TUBE

*2-3/4 x 3/8

Allowable Axial Stresses and Loads

D/t = 9.33 r = 0.85 in. A = 2.80 in2

EFFECTIVE EXTREN® 500/525 EXTREN® 625

COLUMN LENGTH E = 2.5 x 106 psi E = 2.8 x 106 psi (ft.) Fa(psi) Pa(lbs) Fa(psi) Pa(lbs)

LONG

0.5 7.1 8116 22724 8740 24472 1.0 14.1 8116 22724 8740 24472 1.5 21.2 8116 22724 8740 24472 2.0 28.2 8116 22724 8740 24472 2.5 35.3 8116 22724 8740 24472 3.0 42.4 8116 22724 8740 24472

Fa' (psi) Pa(lbs) Fa' (psi) Pa(lbs)

3.5 49.4 7076 19814 7621 21338 4.0 56.5 5949 16657 6406 17938 4.5 63.5 5104 14292 5497 15391 5.0 70.6 4451 12462 4793 13421 5.5 77.6 3932 11010 4235 11857 6.0 84.7 3512 9833 3782 10589 6.5 91.8 3165 8861 3408 9542 7.0 98.8 2874 8047 3095 8666 7.5 105.9 2627 7357 2829 7923 8.0 112.9 2416 6765 2602 7285 8.5 120.0 2233 6252 2405 6733 9.0 127.1 2073 5804 2232 6251 9.5 134.1 1932 5410 2081 5826 10.0 141.2 1808 5061 1947 5451 10.5 148.2 1697 4750 1827 5116 11.0 155.3 1597 4471 1720 4815 11.5 162.4 1507 4220 1623 4545 12.0 169.4 1426 3993 1536 4300 12.5 176.5 1352 3787 1456 4078 13.0 183.5 1285 3599 1384 3875 13.5 190.6 1224 3426 1318 3690 14.0 197.6 1167 3268 1257 3519

*Non-stock size subject to mill run requirements.

Kl r

XX

Page 211: Manual Completo

9-51

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

SHORT

COLUMN

ROUND TUBE

3 x 1/4

Allowable Axial Stresses and Loads

D/t = 12.0 r = 0.98 in. A = 2.16 in2

EFFECTIVE EXTREN® 500/525 EXTREN® 625

COLUMN LENGTH E = 2.6 x 106 psi E = 2.8 x 106 psi (ft.) Fa(psi) Pa(lbs) Fa(psi) Pa(lbs)

LONG

0.5 6.1 6553 14154 7057 15243 1.0 12.2 6553 14154 7057 15243 1.5 18.4 6553 14154 7057 15243 2.0 24.5 6553 14154 7057 15243 2.5 30.6 6553 14154 7057 15243 3.0 36.7 6553 14154 7057 15243 3.5 42.9 6553 14154 7057 15243 4.0 49.0 6553 14154 7057 15243

Fa' (psi) Pa(lbs) Fa ' (psi) Pa(lbs)

4.5 55.1 6142 13266 6614 14287 5.0 61.2 5358 11574 5770 12464 5.5 67.3 4736 10229 5100 11016 6.0 73.5 4223 9122 4548 9832 6.5 79.6 3807 8224 4100 8856 7.0 85.7 3459 7471 3725 8045 7.5 91.8 3163 6832 3406 7357 8.0 98.0 2905 6276 3129 6758 8.5 104.1 2686 5802 2893 6248 9.0 110.2 2494 5388 2686 5802 9.5 116.3 2326 5023 2504 5410 10.0 122.4 2176 4700 2343 5062 10.5 128.6 2041 4410 2198 4747 11.0 134.7 1921 4140 2069 4469 11.5 140.8 1814 3918 1953 4219 12.0 146.9 1717 3708 1849 3993 12.5 153.1 1627 3514 1752 3784 13.0 159.2 1546 3340 1665 3597 13.5 165.3 1472 3180 1586 3425 14.0 171.4 1405 3034 1513 3267 14.5 177.6 1341 2897 1444 3120 15.0 183.7 1284 2773 1382 2986 15.5 189.8 1230 2657 1325 2862 16.0 195.9 1181 2550 1272 2747

Kl r

XX

Page 212: Manual Completo

9-52

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

SHORT

COLUMN

ROUND TUBE

* 3-1/2 x 1/2

Allowable Axial Stresses and Loads

D/t = 7.0 r = 1.07 in. A = 4.71 in2

EFFECTIVE EXTREN® 500/525 EXTREN® 625

COLUMN LENGTH E = 2.6 x 106 psi E = 2.8 x 106 psi

(ft.) Fa(psi) Pa(lbs) Fa(psi) Pa(lbs)

LONG

0.5 5.6 10000 47100 11000 51810 1.0 11.2 10000 47100 11000 51810 1.5 16.8 10000 47100 11000 51810 2.0 22.4 10000 47100 11000 51810 2.5 28.0 10000 47100 11000 51810 3.0 33.6 10000 47100 11000 51810

Fa' (psi) Pa(lbs) Fa' (psi) Pa(lbs)

3.5 39.3 9538 44922 10271 48377 4.0 44.8 8018 37763 8634 40668 4.5 50.5 6879 32401 7409 34894 5.0 56.1 5999 28254 6460 30427 5.5 61.7 5300 24962 5707 26881 6.0 67.3 4733 22292 5097 24007 6.5 72.9 4265 20089 4593 21634 7.0 78.5 3873 18244 4171 19647 7.5 84.1 3541 16678 3814 17961 8.0 89.7 3256 15336 3507 16516 8.5 95.3 3009 14174 3241 15265 9.0 100.9 2794 13159 3009 14171 9.5 106.5 2604 12266 2805 13210 10.0 112.1 2436 11475 2624 12357 10.5 117.7 2287 10770 2462 11598 11.0 123.3 2152 10138 2318 10917 11.5 129.0 2031 9568 2188 10304 12.0 134.6 1922 9053 2070 9750 12.5 140.2 1822 8585 1963 9246 13.0 145.8 1732 8159 1865 8786 13.5 151.4 1649 7768 1776 8366 14.0 157.0 1573 7409 1694 7979 14.5 162.6 1503 7079 1619 7623 15.0 168.2 1438 6773 1549 7295 15.5 173.8 1378 6491 1484 6990 16.0 179.4 1322 6229 1424 6707 16.5 185.0 1271 5984 1368 6445 17.0 190.7 1222 5757 1316 6199 17.5 196.3 1177 5544 1268 5970 18.0 201.9 1135 5344 1222 5755 18.5 207.5 1095 5157 1179 5554 19.0 213.1 1058 4982 1139 5364 19.5 218.7 1023 4816 1101 5187 20.0 224.3 989 4660 1066 5019

*Non-stock size subject to mill run requirements.

Kl r

XX

Page 213: Manual Completo

9-53

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

SHORT

COLUMN

ROUND TUBE

* 4 x 1/4

Allowable Axial Stresses and Loads

D/t = 16.0 r = 1.33 in. A = 2.94 in2

EFFECTIVE EXTREN® 500/525 EXTREN® 625

COLUMN LENGTH E = 2.6 x 106 psi E = 2.8 x 106 psi

(ft.) Fa(psi) Pa(lbs) Fa(psi) Pa(lbs)

LONG

0.5 4.5 5131 15085 5526 16246 1.0 9.0 5131 15085 5526 16246 1.5 13.5 5131 15085 5526 16246 2.0 18.0 5131 15085 5526 16246 2.5 22.6 5131 15085 5526 16246 3.0 27.1 5131 15085 5526 16246 3.5 31.6 5131 15085 5526 16246 4.0 36.1 5131 15085 5526 16246 4.5 40.6 5131 15085 5526 16246 5.0 45.1 5131 15085 5526 16246 5.5 49.6 5131 15085 5526 16246 6.0 54.1 5131 15085 5526 16246 6.5 58.6 5131 15085 5526 16246 7.0 63.2 5131 15085 5526 16246

Fa' (psi) Pa(lbs) Fa' (psi) Pa(lbs)

7.5 67.7 4699 13816 5061 14878 8.0 72.2 4322 12707 4654 13684 8.5 76.7 3995 11747 4303 12650 9.0 81.2 3710 10907 3995 11746 9.5 85.7 3459 10169 3725 10951 10.0 90.2 3236 9514 3485 10246 10.5 94.7 3038 8931 3271 9618 11.0 99.2 2860 8408 3080 9054 11.5 103.8 2696 7927 2903 8536 12.0 108.3 2551 7501 2748 8078 12.5 112.8 2420 7114 2606 7662 13.0 117.3 2300 6762 2477 7281 13.5 121.8 2190 6439 2358 6934 14.0 126.3 2089 6142 2250 6614 14.5 130.8 1996 5869 2150 6320 15.0 135.3 1910 5616 2057 6048 15.5 139.8 1831 5382 1972 5796 16.0 144.4 1755 5161 1890 5558 16.5 148.9 1687 4959 1816 5340 17.0 153.4 1623 4771 1747 5137 17.5 157.9 1563 4595 1683 4948 18.0 162.4 1507 4430 1623 4770 18.5 166.9 1454 4275 1566 4604 19.0 171.4 1405 4130 1513 4447 19.5 175.9 1358 3993 1463 4300 20.0 180.5 1313 3861 1414 4158

*Non-stock size subject to mill run requirements.

Kl r

XX

Page 214: Manual Completo

9-54

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

SHORT

COLUMN

ROUND TUBE

* 5 x 1/4

Allowable Axial Stresses and Loads

D/t = 20.0 r = 1.68 in. A = 3.73 in2

EFFECTIVE EXTREN® 500/525 EXTREN® 625

COLUMN LENGTH E = 2.6 x 106 psi E = 2.8 x 106 psi (ft.) Fa(psi) Pa(lbs) Fa(psi) Pa(lbs)

LONG

0.5 3.6 4245 15833 4571 17050 1.0 7.1 4245 15833 4571 17050 1.5 10.7 4245 15833 4571 17050 2.0 14.3 4245 15833 4571 17050 2.5 17.9 4245 15833 4571 17050 3.0 21.4 4245 15833 4571 17050 3.5 25.0 4245 15833 4571 17050 4.0 28.6 4245 15833 4571 17050 4.5 32.1 4245 15833 4571 17050 5.0 35.7 4245 15833 4571 17050 5.5 39.3 4245 15833 4571 17050 6.0 42.9 4245 15833 4571 17050 6.5 46.4 4245 15833 4571 17050 7.0 50.0 4245 15833 4571 17050 7.5 53.6 4245 15833 4571 17050 8.0 57.1 4245 15833 4571 17050 8.5 60.7 4245 15833 4571 17050 9.0 64.3 4245 15833 4571 17050 9.5 67.9 4245 15833 4571 17050 10.0 71.4 4245 15833 4571 17050

Fa' (psi) Pa(lbs) Fa' (psi) Pa(lbs)

10.5 75.0 4114 15344 4430 16523 11.0 78.6 3870 14436 4168 15546 11.5 82.1 3657 13641 3938 14690 12.0 85.7 3459 12901 3725 13893 12.5 89.3 3279 12229 3531 13170 13.0 92.9 3114 11617 3354 12510 13.5 96.4 2968 11071 3196 11923 14.0 100.0 2830 10556 3048 11368 14.5 103.6 2703 10082 2911 10857 15.0 107.1 2589 9656 2788 10398 15.5 110.7 2480 9249 2670 9961 16.0 114.3 2379 8872 2562 9555 16.5 117.9 2285 8522 2460 9177 17.0 121.4 2199 8204 2369 8835 17.5 125.0 2117 7898 2280 8505 18.0 128.6 2041 7612 2198 8197 18.5 132.1 1971 7351 2122 7916 19.0 135.7 1903 7098 2049 7644 19.5 139.3 1839 6861 1981 7388 20.0 142.9 1779 6639 1916 7147

*Non-stock size subject to mill run requirements.

XX

Kl r

Page 215: Manual Completo

9-55

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

SHORT

COLUMN

ROUND TUBE

* 6 x 1/4

Allowable Axial Stresses and Loads

D/t = 24.0 r = 2.04 in. A = 4.52 in2

EFFECTIVE EXTREN® 500/525 EXTREN® 625

COLUMN LENGTH E = 2.6 x 106 psi E = 2.8 x 106 psi (ft.) Fa(psi) Pa(lbs) Fa(psi) Pa(lbs)

LONG

0.5 2.9 3635 16430 3915 17696 1.0 7.1 3635 16430 3915 17696 1.5 5.9 3635 16430 3915 17696 2.0 8.8 3635 16430 3915 17696 2.5 14.7 3635 16430 3915 17696 3.0 17.6 3635 16430 3915 17696 3.5 20.6 3635 16430 3915 17696 4.0 23.5 3635 16430 3915 17696 4.5 26.5 3635 16430 3915 17696 5.0 29.4 3635 16430 3915 17696 5.5 32.4 3635 16430 3915 17696 6.0 35.3 3635 16430 3915 17696 6.5 38.2 3635 16430 3915 17696 7.0 41.2 3635 16430 3915 17696 7.5 44.1 3635 16430 3915 17696 8.0 47.0 3635 16430 3915 17696 8.5 50.0 3635 16430 3915 17696 9.0 52.9 3635 16430 3915 17696 9.5 55.9 3635 16430 3915 17696 10.0 58.8 3635 16430 3915 17696 10.5 61.8 3635 16430 3915 17696 11.0 64.7 3635 16430 3915 17696 11.5 67.6 3635 16430 3915 17696 12.0 70.6 3635 16430 3915 17696 12.5 73.5 3635 16430 3915 17696 13.0 76.5 3635 16430 3915 17696 13.5 79.4 3635 16430 3915 17696 14.0 82.4 3635 16430 3915 17696

Fa' (psi) Pa(lbs) Fa' (psi) Pa(lbs)

14.5 85.3 3480 15729 3747 16939 15.0 88.2 3332 15060 3588 16218 15.5 91.2 3190 14419 3535 15528 16.0 94.1 3063 13844 3298 14909 16.5 97.1 2940 13290 3167 14313 17.0 100.0 2830 12792 3048 13776 17.5 102.9 2727 12325 2937 13273 18.0 105.9 2627 11873 2829 12786 18.5 108.8 2536 11463 2731 12345 19.0 111.8 2448 11065 2636 11916 19.5 114.7 2368 10703 2550 11526 20.0 117.6 2292 10361 2468 11157

*Non-stock size subject to mill run requirements.

Kl r

XX

Page 216: Manual Completo

9-56

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

SHORT

COLUMN

SQUARE TUBE

* 1-1/2 x 1/4

Allowable Axial Stresses and Loads

b/t = 6.0 r = 0.52 in. A = 1.24 in2

EFFECTIVE EXTREN® 500/525 EXTREN® 625

COLUMN LENGTH E = 2.6 x 106 psi E = 2.8 x 106 psi

(ft.) Fa(psi) Pa(lbs) Fa(psi) Pa(lbs)

LONG

0.5 11.5 10000 12400 11000 13640 1.0 23.1 10000 12400 11000 13640 1.5 34.6 10000 12400 11000 13640

Fa' (psi) Pa(lbs) Fa' (psi) Pa(lbs)

2.0 46.2 7723 9576 8316 10312 2.5 57.7 5786 7173 6229 7724 3.0 69.2 4567 5663 4919 6099 3.5 80.8 3734 4630 4021 4986 4.0 92.3 3141 3894 3382 4194 4.5 103.8 2696 3343 2903 3600 5.0 115.4 2349 2913 2530 3137 5.5 126.9 2076 2575 2236 2773 6.0 138.5 1853 2298 1996 2475 6.5 150.0 1671 2071 1799 2231 7.0 161.5 1518 1882 1634 2027 7.5 173.1 1387 1720 1493 1852 8.0 184.6 1276 1582 1374 1703 8.5 196.2 1179 1462 1269 1574

*Non-stock size subject to mill run requirements.

Kl r

X

Y

X

Y

Page 217: Manual Completo

9-57

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

SHORT

COLUMN

SQUARE TUBE

* 1-3/4 x 1/4

Allowable Axial Stresses and Loads

b/t = 7.0 r = 0.62 in. A = 1.49 in2

EFFECTIVE EXTREN® 500/525 EXTREN® 625

COLUMN LENGTH E = 2.6 x 10 6 psi E = 2.8 x 106 psi (ft.) Fa(psi) Pa(lbs) Fa(psi) Pa(lbs)

LONG

0.5 9.7 10000 14900 11000 16390 1.0 19.4 10000 14900 11000 16390 1.5 29.0 10000 14900 11000 16390

Fa' (psi) Pa(lbs) Fa' (psi) Pa(lbs)

2.0 38.7 9722 14486 10470 15600 2.5 48.4 7269 10831 7828 11664 3.0 58.1 5732 8542 6147 9199 3.5 67.7 4699 7002 5061 7540 4.0 77.4 3949 5883 4252 6336 4.5 87.1 3387 5046 3647 5434 5.0 96.8 2952 4399 3179 4737 5.5 106.5 2608 3885 2808 4184 6.0 116.1 2331 3473 2510 3740 6.5 125.8 2100 3129 2261 3370 7.0 135.5 1907 2841 2053 3059 7.5 145.2 1743 2597 1877 2796 8.0 154.8 1604 2389 1727 2573 8.5 164.5 1482 2208 1596 2377 9.0 174.2 1375 2049 1481 2207 9.5 183.9 1282 1910 1380 2057 10.0 193.5 1200 1788 1292 1925

*Non-stock size subject to mill run requirements.

Kl r

X

Y

X

Y

Page 218: Manual Completo

9-58

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

SHORT

COLUMN

SQUARE TUBE

** 2 x 1/4

Allowable Axial Stresses and Loads

b/t = 8.0 r = 0.73 in. A = 1.74 in2

EFFECTIVE EXTREN® 500/525 EXTREN® 625

COLUMN LENGTH E = 2.6 x 106 psi E = 2.8 x 106 psi (ft.) Fa(psi) Pa(lbs) Fa(psi) Pa(lbs)

LONG

0.5 8.2 9249 16093 9960 17330 1.0 16.4 9249 16093 9960 17330 1.5 24.7 9249 16093 9960 17330 2.0 32.9 9249 16093 9960 17330

Fa' (psi) Pa(lbs) Fa' (psi) Pa(lbs)

2.5 41.1 8991 15644 9682 16847 3.0 49.3 7097 12349 7643 13299 3.5 57.5 5811 10111 6258 10888 4.0 65.8 4876 8485 5251 9137 4.5 74.0 4186 7284 4508 7844 5.0 82.2 3651 6353 3932 6842 5.5 90.4 3227 5615 3475 6046 6.0 98.6 2882 5015 3104 5401 6.5 106.8 2598 4521 2798 4868 7.0 115.1 2357 4102 2538 4417 7.5 123.3 2155 3750 2321 4039 8.0 131.5 1982 3449 2139 3715 8.5 139.7 1832 3189 1973 3434 9.0 147.9 1702 2961 1832 3188 9.5 156.2 1585 2758 1707 2970 10.0 164.4 1483 2580 1597 2779 10.5 172.6 1392 2422 1499 2608 11.0 180.8 1311 2280 1411 2456 11.5 189.0 1237 2152 1332 2318 12.0 197.3 1170 2035 1260 2192

** Stocked in yellow, Series 525 only.

Kl r

X

Y

X

Y

Page 219: Manual Completo

9-59

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

SHORT

COLUMN

SQUARE TUBE

3 x 1/4

Allowable Axial Stresses and Loads

b/t = 12.0 r = 1.13 in. A = 2.74 in2

EFFECTIVE EXTREN® 500/525 EXTREN® 625

COLUMN LENGTH E = 2.6 x 106 psi E = 2.8 x 106 psi (ft.) Fa(psi) Pa(lbs) Fa(psi) Pa(lbs)

LONG

0.5 5.3 6553 17955 7057 19336 1.0 10.6 6553 17955 7057 19336 1.5 15.9 6553 17955 7057 19336 2.0 21.2 6553 17955 7057 19336 2.5 26.5 6553 17955 7057 19336 3.0 31.9 6553 17955 7057 19336 3.5 37.2 6553 17955 7057 19336 4.0 42.5 6553 17955 7057 19336 4.5 47.8 6553 17955 7057 19336

Fa' (psi) Pa(lbs) Fa' (psi) Pa(lbs)

5.0 53.1 6444 17657 6940 19015 5.5 58.4 5695 15603 6132 16803 6.0 63.7 5086 13937 5478 15009 6.5 69.0 4584 12561 4937 13527 7.0 74.3 4164 11409 4484 12287 7.5 79.6 3807 10431 4100 11234 8.0 85.0 3496 9579 3765 10315 8.5 90.3 3231 8854 3480 9535 9.0 95.6 3001 8221 3231 8854 9.5 100.9 2797 7665 3012 8254 10.0 106.2 2617 7171 2818 7723 10.5 111.5 2457 6731 2646 7249 11.0 116.8 2313 6337 2491 6824 11.5 122.1 2183 5982 2351 6842 12.0 127.4 2066 5660 2225 6095 12.5 132.7 1959 5368 2110 5781 13.0 138.1 1860 5097 2003 5489 13.5 143.4 1771 4853 1907 5226 14.0 148.7 1690 4630 1820 4986 14.5 154.0 1614 4424 1739 4764 15.0 159.3 1545 4233 1664 4559 15.5 164.6 1481 4057 1594 4369 16.0 169.9 1420 3893 1530 4192 16.5 175.2 1365 3741 1470 4028 17.0 180.5 1313 3599 1414 3875 17.5 185.8 1265 3466 1362 3732 18.0 191.2 1219 3339 1312 3596 18.5 196.4 1177 3224 1267 3472

Kl r

X

Y

X

Y

Page 220: Manual Completo

9-60

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

SHORT

COLUMN

SQUARE TUBE

3 x 3 x 3/8

Allowable Axial Stresses and Loads

b/t = 8.0 r = 1.08 in. A = 3.90 in2

EFFECTIVE EXTREN® 500/525 EXTREN® 625

COLUMN LENGTH E = 2.6 x 106 psi E = 2.8 x 106 psi (ft.) Fa(psi) Pa(lbs) Fa(psi) Pa(lbs)

LONG

0.5 5.6 9234 36014 9944 38785 1.0 11.1 9234 36014 9944 38785 1.5 16.7 9234 36014 9944 38785 2.0 22.3 9234 36014 9944 38785 2.5 27.8 9234 36014 9944 38785 3.0 33.3 9234 36014 9944 38785 3.5 38.9 9234 36014 9944 38785

Fa' (psi) Pa(lbs) Fa' (psi) Pa(lbs)

4.0 44.4 8115 31649 8739 34084 4.5 50.0 6963 27156 7499 29245 5.0 55.6 6072 23680 6539 25501 5.5 61.1 5364 20920 5777 22530 6.0 66.7 4790 18683 5159 20120 6.5 72.2 4317 16836 4649 18132 7.0 77.8 3920 15290 4222 16466 7.5 83.3 3584 13978 3859 15054 8.0 88.9 3296 12854 3549 13842 8.5 94.4 3046 11879 3280 12793 9.0 99.9 2827 11029 3045 11877 9.5 105.6 2636 10280 2839 11071 10.0 111.1 2466 9617 2656 10357 10.5 116.7 2314 9025 2492 9720 11.0 122.2 2178 8496 2346 9150 11.5 127.8 2056 8019 2214 8636 12.0 133.3 1945 7587 2095 8171 12.5 138.9 1845 7195 1987 7749 13.0 144.4 1753 6838 1888 7364 13.5 150.0 1669 6510 1798 7011 14.0 155.5 1592 6210 1715 6687 14.5 161.1 1521 5933 1638 6389 15.0 166.7 1456 5677 1568 6114 15.5 172.2 1395 5440 1502 5859 16.0 177.8 1338 5220 1441 5622 16.5 183.3 1286 5015 1385 5401 17.0 188.9 1237 4824 1332 5196 17.5 194.4 1191 4646 1283 5003 18.0 200.0 1148 4479 1237 4824 18.5 205.6 1108 4322 1194 4655 19.0 211.1 1070 4175 1153 4496 19.5 216.7 1035 4036 1115 4347 20.0 222.2 1001 3906 1079 4206

Kl r

X

Y

X

Y

Page 221: Manual Completo

9-61

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

SHORT

COLUMN

SQUARE TUBE

3-1/2 x 1/4

Allowable Axial Stresses and Loads

b/t = 14.0 r = 1.34 in. A = 3.25 in2

EFFECTIVE EXTREN® 500/525 EXTREN® 625

COLUMN LENGTH E = 2.6 x 106 psi E = 2.8 x 106 psi (ft.) Fa(psi) Pa(lbs) Fa(psi) Pa(lbs)

LONG

0.5 4.5 5748 18681 6190 20118 1.0 9.0 5748 18681 6190 20118 1.5 13.4 5748 18681 6190 20118 2.0 18.0 5748 18681 6190 20118 2.5 22.4 5748 18681 6190 20118 3.0 26.9 5748 18681 6190 20118 3.5 31.3 5748 18681 6190 20118 4.0 35.8 5748 18681 6190 20118 4.5 40.3 5748 18681 6190 20118 5.0 44.8 5748 18681 6190 20118 5.5 49.3 5748 18681 6190 20118 6.0 53.7 5748 18681 6190 20118

Fa' (psi) Pa(lbs) Fa' (psi) Pa(lbs)

6.5 58.2 5718 18585 6158 20015 7.0 62.7 5193 16878 5592 18176 7.5 67.2 4748 15431 5113 16618 8.0 71.6 4366 14189 4701 15281 8.5 76.1 4035 13113 4345 14122 9.0 80.6 3746 12174 4034 13111 9.5 85.1 3492 11349 3760 12222 10.0 89.6 3266 10616 3517 11433 10.5 94.0 3066 9964 3301 10731 11.0 98.5 2886 9379 3108 10101 11.5 103.0 2724 8853 2933 9534 12.0 107.5 2577 8376 2775 9020 12.5 111.9 2444 7943 2632 8554 13.0 116.4 2322 7548 2501 8129 13.5 120.9 2211 7186 2381 7739 14.0 125.4 2109 6855 2271 7382 14.5 129.9 2015 6548 2170 7052 15.0 134.3 1928 6267 2076 6749 15.5 138.8 1848 6006 1990 6468 16.0 143.3 1773 5762 1909 6205 16.5 147.8 1703 5536 1834 5962 17.0 152.2 1638 5325 1764 5735 17.5 156.7 1578 5128 1699 5523 18.0 161.2 1521 4944 1638 5324 18.5 165.7 1468 4771 1580 5138 19.0 170.1 1418 4608 1527 4963 19.5 174.6 1371 4455 1476 4798 20.0 179.1 1326 4311 1428 4643

Kl r

X

Y

X

Y

*Non-stock size subject to mill run requirements.

Page 222: Manual Completo

9-62

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

SHORT

COLUMN

SQUARE TUBE

4 x 1/4

Allowable Axial Stresses and Loads

b/t = 16.0 r = 1.53 in. A = 3.74 in2

EFFECTIVE EXTREN® 500/525 EXTREN® 625

COLUMN LENGTH E = 2.6 x 106 psi E = 2.8 x 106 psi (ft.) Fa(psi) Pa(lbs) Fa(psi) Pa(lbs)

LONG

0.5 3.9 5131 19190 5526 20667 1.0 7.8 5131 19190 5526 20667 1.5 11.8 5131 19190 5526 20667 2.0 15.7 5131 19190 5526 20667 2.5 19.6 5131 19190 5526 20667 3.0 23.5 5131 19190 5526 20667 3.5 27.5 5131 19190 5526 20667 4.0 31.4 5131 19190 5526 20667 4.5 35.3 5131 19190 5526 20667 5.0 39.2 5131 19190 5526 20667 5.5 43.1 5131 19190 5526 20667 6.0 47.1 5131 19190 5526 20667 6.5 51.0 5131 19190 5526 20667 7.0 54.9 5131 19190 5526 20667 7.5 58.8 5131 19190 5526 20667 8.0 62.7 5131 19190 5526 20667

Fa' (psi) Pa(lbs) Fa' (psi) Pa(lbs)

8.5 66.7 4791 17918 5159 19295 9.0 70.6 4450 16643 4792 17922 9.5 74.5 4149 15519 4469 16712 10.0 78.4 3883 14523 4181 15640 10.5 82.4 3646 13613 3920 14660 11.0 86.3 3428 12819 3691 13805 11.5 90.2 3236 12103 3485 13034 12.0 94.1 3063 11455 3298 12336 12.5 98.0 2905 10866 3129 11702 13.0 102.0 2758 10315 2970 11108 13.5 105.9 2627 9824 2829 10580 14.0 109.8 2506 9373 2699 10094 14.5 113.7 2395 8957 2579 9646 15.0 117.6 2292 8573 2469 9232 15.5 121.6 2195 8208 2364 8840 16.0 125.5 2106 7878 2268 8484 16.5 129.4 2024 7571 2180 8153 17.0 133.3 1948 7284 2097 7844 17.5 137.3 1874 7010 2018 7549 18.0 141.2 1807 6759 1946 7279 18.5 145.1 1744 6524 1878 7025 19.0 149.0 1685 6303 1815 6787 19.5 152.9 1630 6094 1755 6563 20.0 156.9 1576 5893 1697 6346

Kl r

X

Y

X

Y

Page 223: Manual Completo

9-63

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

SHORT

COLUMN

SQUARE TUBE

4 x 4 x 3/8

Allowable Axial Stresses and Loads

b/t = 10.67 r = 1.48 in. A = 5.48 in2

EFFECTIVE EXTREN® 500/525 EXTREN® 625

COLUMN LENGTH E = 2.6 x 106 psi E = 2.8 x 106 psi (ft.) Fa(psi) Pa(lbs) Fa(psi) Pa(lbs)

LONG

0.5 4.1 7229 39038 7785 42041 1.0 8.1 7229 39038 7785 42041 1.5 12.2 7229 39038 7785 42041 2.0 16.2 7229 39038 7785 42041 2.5 20.3 7229 39038 7785 42041 3.0 24.3 7229 39038 7785 42041 3.5 28.4 7229 39038 7785 42041 4.0 32.4 7229 39038 7785 42041 4.5 36.5 7229 39038 7785 42041 5.0 40.5 7229 39038 7785 42041 5.5 44.6 7229 39038 7785 42041

Fa' (psi) Pa(lbs) Fa' (psi) Pa(lbs)

6.0 48.6 7215 38964 7771 41961 6.5 52.7 6502 35113 7003 37814 7.0 56.8 5905 31888 6359 34341 7.5 60.8 5399 29153 5814 31395 8.0 64.9 4964 26807 5346 28869 8.5 68.9 4588 24775 4941 26681 9.0 73.0 4259 23001 4587 24770 9.5 77.0 3970 21440 4276 23089 10.0 81.1 3714 20057 4000 21600 10.5 85.1 3486 18824 3754 20272 11.0 89.2 3281 17719 3534 19082 11.5 93.2 3097 16725 3335 18010 12.0 97.3 2930 15824 3156 17041 12.5 101.4 2779 15006 2993 16161 13.0 105.4 2641 14260 2844 15357 13.5 109.4 2514 13578 2708 14622 14.0 113.5 2398 12951 2583 13947 14.5 117.6 2291 12373 2468 13325 15.0 121.6 2193 11840 2361 12750 15.5 125.7 2101 11346 2263 12218 16.0 129.7 2016 10887 2171 11724 16.5 133.8 1937 10460 2086 11265 17.0 137.8 1863 10062 2007 10836 17.5 141.9 1794 9690 1932 10435 18.0 145.9 1730 9341 1863 10060 18.5 150.0 1669 9014 1798 9708 19.0 154.1 1612 8707 1736 9377 19.5 158.1 1559 8418 1679 9066 20.0 162.1 1508 8146 1624 8772

Kl r

X

Y

X

Y

Page 224: Manual Completo

9-64

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

COLUMN

SQUARE TUBE

6 x 6 x 3/8

Allowable Axial Stresses and Loads

b/t = 16.0 r = 2.28 in. A = 8.16 in2

EFFECTIVE EXTREN® 500/525 EXTREN® 625

COLUMN LENGTH E = 2.6 x 106 psi E = 2.8 x 106 psi

(ft.) Fa(psi) Pa(lbs) Fa(psi) Pa(lbs)

Kl r

X

Y

X

Y

1.0 5.3 5131 41872 5526 45093 1.5 7.9 5131 41872 5526 45093 2.0 10.5 5131 41872 5526 45093 2.5 13.2 5131 41872 5526 45093 3.0 15.8 5131 41872 5526 45093 3.5 18.4 5131 41872 5526 45093 4.0 21.1 5131 41872 5526 45093 4.5 23.7 5131 41872 5526 45093 5.0 26.3 5131 41872 5526 45093 5.5 28.9 5131 41872 5526 45093 6.0 31.6 5131 41872 5526 45093 6.5 34.2 5131 41872 5526 45093 7.0 36.8 5131 41872 5526 45093 7.5 39.7 5131 41872 5526 45093 8.0 42.1 5131 41872 5526 45093 8.5 47.0 5131 41872 5526 45093 9.0 47.4 5131 41872 5526 45093 9.5 50.0 5131 41872 5526 45093 10.0 52.6 5131 41872 5526 45093 10.5 55.3 5131 41872 5526 45093 11.0 57.9 5131 41872 5526 45093 11.5 60.5 5131 41872 5526 45093 12.0 63.1 5131 41872 5526 45093 Fa' (psi) Pa(lbs) Fa'(psi) Pa(lbs)

12.5 65.8 4877 39800 5253 42861 13.0 68.4 4635 37822 4992 40731 13.5 71.1 4413 36011 4753 38781 14.0 73.7 4209 34348 4533 36990 14.5 76.3 4022 32816 4331 35340 15.0 78.9 3848 31401 4144 33817 15.5 81.6 3688 30091 3971 32406 16.0 84.2 3538 28874 3811 31095 16.5 86.8 3400 27742 3661 29876 17.0 89.5 3270 26686 3522 28739 17.5 92.1 3149 25699 3392 27676 18.0 94.7 3036 24775 3270 26681 18.5 97.4 2930 23908 3155 25747 19.0 100.0 2830 23093 3048 24870 19.5 102.6 2736 22326 2947 24044 20.0 105.3 2648 21604 2851 23265

LONG

SHORT

Page 225: Manual Completo

9-65

Section 9Compression Members (Columns)

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.1013

RECTANGULAR TUBE

7 x 4 x 1/4

Allowable Axial Stresses and Loads

b/t = 28.0 r = 1.64 in. A = 5.25 in2

EFFECTIVE EXTREN® 500/525 EXTREN® 625

COLUMN LENGTH E = 2.6 x 106 psi E = 2.8 x 106 psi (ft.) Fa(psi) Pa(lbs) Fa(psi) Pa(lbs)

Kl r

0.5 3.7 3183 16715 3428 18001 1.0 7.3 3183 16715 3428 18001 1.5 11.0 3183 16715 3428 18001 2.0 14.6 3183 16715 3428 18001 2.5 18.3 3183 16715 3428 18001 3.0 22.0 3183 16715 3428 18001 3.5 25.6 3183 16715 3428 18001 4.0 29.3 3183 16715 3428 18001 4.5 32.9 3183 16715 3428 18001 5.0 36.6 3183 16715 3428 18001 5.5 40.2 3183 16715 3428 18001 6.0 43.9 3183 16715 3428 18001 6.5 47.6 3183 16715 3428 18001 7.0 51.2 3183 16715 3428 18001 7.5 54.9 3183 16715 3428 18001 8.0 58.5 3183 16715 3428 18001 8.5 62.2 3183 16715 3428 18001 9.0 65.9 3183 16715 3428 18001 9.5 69.5 3183 16715 3428 18001 10.0 73.1 3183 16715 3428 18001 10.5 76.8 3183 16715 3428 18001 11.0 80.5 3183 16715 3428 18001 11.5 84.1 3183 16715 3428 18001 12.0 87.8 3183 16715 3428 18001 Fa' (psi) Pa(lbs) Fa'(psi) Pa(lbs)

12.5 91.5 3175 16672 3420 17955 13.0 95.1 3018 15844 3250 17062 13.5 98.8 2873 15085 3094 16245 14.0 102.4 2741 14389 2951 15495 14.5 106.1 2618 13747 2820 14804 15.0 109.8 2506 13154 2698 14166 15.5 113.4 2401 12605 2586 13575 16.0 117.1 2304 12096 2481 13026 16.5 120.7 2214 11621 2384 12515 17.0 124.4 2129 11179 2293 12039 17.5 128.0 2051 10765 2208 11594 18.0 131.7 1977 10378 2129 11176 18.5 135.4 1908 10015 2054 10786 19.0 139.0 1843 9674 1984 10418 19.5 142.7 1781 9353 1919 10072 20.0 146.3 1724 9050 1857 9746 20.5 150.0 1669 8764 1798 9438 21.0 153.6 1618 8494 1742 9147 21.5 157.3 1569 8238 1690 8871 22.0 161.0 1523 7995 1640 8610 22.5 164.6 1479 7765 1593 8362 23.0 168.3 1438 7546 1548 8127 23.5 171.9 1398 7338 1505 7903 24.0 175.6 1360 7140 1465 7689 24.5 179.3 1324 6951 1426 7486 25.0 182.9 1289 6771 1389 7292

LONG

COLUMN

SHORT

Page 226: Manual Completo

10-1

Section 10Plate

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.0502

SECTION 10

PLATE

Page 227: Manual Completo

10-2

Section 10Plate

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.0502

SYMBOLS FOR PLATE

CW Crosswise (transverse) to the direction of pultrusion

E Modulus of elasticity (psi)

Fb Allowable flexural stress (psi)

Fu Ultimate flexural stress (psi)

I Moment of inertia (in4)

LW Lengthwise (parallel) to the direction of pultrusion

M Bending moment from applied loads (lbs-in)

S Section modulus (in3)

S.F. Factor of safety

a Long dimension of rectangular plate (in)

b Short dimension of rectangular plate (in)

c Concentrated load (lbs/ft of width)

fb Flexural stress from applied loads (psi)

l Length of flat sheet (center to center of supports) (in)

t Thickness of section (in)

u Uniform load (lbs/ft2)

w Uniform beam load (lbs/in)

∆ Deflection (in)

∆c Deflection due to concentrated load (in)

∆u Deflection due to uniform load (in)

Page 228: Manual Completo

10-3

Section 10Plate

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.0502

INTRODUCTIONEXTREN® plate may be used as structural members to carry loads applied normal to the surface. Stresses and deflections in the members may be computed by using theories applicable to beams or to orthotropic plate behavior. Directional mechanical properties are inherent in EXTREN® plate due to the pultrusion manufacturing process.

Specific properties necessary for design are provided in Section 3 — PROPERTIES OF EXTREN®. Values of various material properties are the test results of the minimum ultimate coupon properties. The values are listed as lengthwise or crosswise relative to the direction of motion of the plate through the forming die. The user of pultruded plate must be careful to orient the product in a structure in the same direction as that corresponding to the direction indicated by the property design value.

Theories and equations based on exact and approximate analysis are discussed in detail in the “Structural Plastics Design Manual” — Reference 2, and other reference books. For purposes of design with EXTREN® plate, the following procedures are recommended.

ONE-WAY ACTIONSupports for the plate are parallel to each other and limited to two edges of the plate. Selection of the plate thickness for a given load and span or the determination of a load for a given plate thickness and span can be found in the following load/deflection tables. The directional properties of the plate used in the calculations must correspond to the alignment of the plate in the direction of the span between the supports. For uniformly distributed loads over the surface of the plate, it is convenient to work with a “rectangular beam” strip one foot wide to determine stresses and deflections. The load tables are based on a simple span condition. Stresses and deflections for other loading conditions, such as continuous span should be considered in accordance with standard analytical procedures for beams.

The load/deflection tables were generated limiting the deflection to 1% of the span (l/100) and to 1/2 the thickness of the plate. Using this deflection criteria, flexural stress was never a controlling factor. Other deflection criteria may be used at the engineer’s discretion.

The tables are typical values based on the strength and stiffness in the lengthwise (LW) direction. For load values in the crosswise (CW) direction, multiply the listed load values by the ratio of the flexural modulus in the CW direction divided by the flexural modulus in the LW direction. The tables for 1/4” thick plate through 1” thick plate can be used for all EXTREN® series as the flexural moduli for the different series are the same.

A safety factor (S.F.) of 2.5 is used for the allowable load computations in the tables.

SAMPLE PROBLEMA flat roof with rafters located at 2 feet on center is to be covered with EXTREN® 525 plate to support a live load of 10 pounds per square foot. Maximum allowable deflection cannot exceed l/100 or t/2. As a trial, check 1/4” thick plate.

5wl4 (5)(10/12)(24)4

384EI 384(1.8 x 106)(.0156)

wl2 (10/12)(24)2

8 8

M 60 lb-in

S .125 in3

Fu 35,000 psi

S.F. 2.5

∆ = = = .129”

M = = = 60 lb-in

fb = = = 480 psi

Fb = = = 14,000 psi

PLATE

Page 229: Manual Completo

10-4

Section 10Plate

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.0502

Using the load/deflection tables, 1/4” thick plate will deflect .116” at the center of the span which meets the deflection criteria of .125” on a simple span of 24” provided the plates are installed so the lengthwise direction is perpendicular to the rafter direction. If the plates span in the crosswise direction, deflection would be calculated as follows:

ECW

ELW

2.0

1.1

It is noted that the calculated deflection value in the above example is greater than the t/2 deflection limit given in the load tables. The t/2 value is a reference value for the Design Engineer allowing for discretionary judgement.

The standard plate length is 8 feet long so it could extend continuously over 4 spans. The maximum deflection occurring at the end span for the uniform load over 4 spans with the sheets spanning in the lengthwise direction would be as follows:

wl4

EI

The above formula can be found in Section 8 — FLEXURAL MEMBERS (BEAMS); Beam Diagram and Formulas Sub-Section, Load Case 39.

TWO-WAY ACTION

When supports are located around four sides of a plate, the member deforms into a dished configuration and the orthotropic characteristics of the material may be used to an advantage. A limited number of solutions for specific cases are available in various technical literature for orthotropic plates. The Structural Plastics Design Manual— Reference 2 includes procedures for determining deflections and stresses of a plate when simply supported at the four edges. The solutions described are based on small-deflection flexural theory and provide approximate values for maximum deflections and stresses.

The two-way load tables of this manual were computed from the recommended procedures of Reference 2 using the values from Section 3 — PROPERTIES OF EXTREN®. Computed allowable loads were based on a maximum deflection of the plate equal to one-half the thickness (t/2) of the sheet in accordance with the theoretical limitations or l/100 of the shortest span whichever is smaller. Since the load deflection relationship is linear, reduced deflections are proportional to reduced values of allowable load. If plates are continuous over the support, the maximum deflections will be smaller than t/2 for the load shown in the table. In general, the bending stresses will be well below the flexural strength of the material.

Selected dimensions in the two-way load tables for rectangular plates should include the majority of the combinations of sizes used for most applications. The designer may interpolate between the sizes given in the tables to obtain the allowable loads for plate sizes not given in the table. If unusually large spans are required, the designer is referred to Reference 2 for governing equations and parametric charts.

∆ CW = x .116 = .211

∆ = .0065 x =.058”

∆ CW =

Page 230: Manual Completo

10-5

Section 10Plate

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.0502

Allowable Loads

EXTREN® 500, 525 and 625

Plate spanning in Lengthwise DirectionFor allowable loads when plate is spanning in crosswise direction, multiply table values by 0.55

I = 0.0156 in4/ft. of widthS = 0.125 in3/ft. of width.

LOAD/DEFLECTION TABLE

1/4” Thickness Wt/ft2 = 2.34 lbsSpan Inches

PLATE

c IS CONCENTRATED LOAD LBS/FT WIDTH ∆ c IS DEFLECTION UNDER CONCENTRATED LOAD u IS UNIFORM LOAD LBS/FT2

∆ u IS DEFLECTION UNDER UNIFORM LOAD

u 20 30 40 50 60 70 80 90 100 120 140 160 167 12” ∆ u .014 .022 .029 .036 .043 .050 .058 .065 .072 .086 .101 .115 .120 c 10 15 20 25 30 35 40 45 50 60 70 80 104 ∆ c .012 .017 .023 .029 .035 .040 .046 .052 .058 .069 .081 .092 .120

u 13 20 27 33 34 18” ∆ u .047 .073 .099 .121 .125 c 10 15 20 25 32 ∆ c .038 .058 .079 .096 .125

u 5 10 11 24” ∆ u .058 .116 .125 c 5 10 14 ∆ c .046 .092 .125

MAXLOAD AT∆ = l /100

OR t/2

Page 231: Manual Completo

10-6

Section 10Plate

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.0502

Allowable Loads

EXTREN® 500, 525 and 625

Plate spanning in Lengthwise DirectionFor allowable loads when plate is spanning in crosswise direction, multiply table values by 0.70

I = 0.0527 in4/ft. of widthS = 0.28 in3/ft. of width.

LOAD/DEFLECTION TABLE

3/8” Thickness Wt/ft2 = 3.54 lbsSpan Inches

PLATE

c IS CONCENTRATED LOAD LBS/FT WIDTH ∆ c IS DEFLECTION UNDER CONCENTRATED LOAD u IS UNIFORM LOAD LBS/FT2

∆ u IS DEFLECTION UNDER UNIFORM LOAD

u 20 30 40 50 60 80 100 200 300 400 500 562 12” ∆ u .004 .006 .009 .011 .013 .017 .021 .043 .064 .085 .107 .120 c 10 15 20 25 30 40 50 100 150 200 250 351 ∆ c .003 .005 .007 .009 .010 .014 .017 .034 .051 .068 .085 .120 u 20 30 40 50 60 80 100 150 167 18” ∆ u .022 .032 .043 .054 .065 .086 .108 .162 .180 c 15 23 30 38 45 60 75 113 156 ∆ c .017 .026 .035 .043 .052 .069 .086 .130 .180

u 10 20 30 40 50 55 24” ∆ u .034 .068 .102 .137 .171 .188 c 10 20 30 40 50 69 ∆ c .027 .055 .082 .109 .137 .188

u 10 20 23 30” ∆ u .083 .167 .188 c 13 25 35 ∆ c .067 .133 .188

u 10 11 36” ∆ u .173 .188 c 15 20 ∆ c .138 .188

MAXLOAD AT∆ = l /100

OR t/2

Page 232: Manual Completo

10-7

Section 10Plate

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.0502

Allowable Loads

EXTREN® 500, 525 and 625

Plate spanning in Lengthwise DirectionFor allowable loads when plate is spanning in crosswise direction, multiply table values by 0.70

I = 0.125 in4/ft. of widthS = 0.500 in3/ft. of width.

LOAD/DEFLECTION TABLE

1/2” Thickness Wt/ft2 = 4.68 lbsSpan Inches

u 20 30 40 50 60 80 100 250 500 750 1000 1250 1333 12” ∆ u .002 .003 .004 .005 .006 .007 .009 .023 .045 .068 .090 .113 .120 c 10 15 20 25 30 40 50 125 250 370 500 625 833 ∆ c .001 .002 .003 .004 .004 .006 .007 .018 .036 .054 .072 .090 .120

u 20 30 40 50 60 80 100 250 370 18” ∆ u .009 .014 .018 .023 .027 .036 .046 .114 .180 c 15 23 30 38 45 60 75 188 370 ∆ c .007 .011 .015 .018 .022 .029 .036 .091 .180

u 20 30 40 50 60 80 100 150 167 24” ∆ u .029 .043 .058 .072 .086 .115 .144 .216 .240 c 20 30 40 50 60 80 100 150 209 ∆ c .023 .035 .046 .058 .069 .092 .115 .173 .240

u 20 30 40 50 60 71 30” ∆ u .070 .105 .141 .176 .211 .250 c 25 38 50 63 75 111 ∆ c .056 .084 .113 .141 .169 .250

u 10 20 30 34 36” ∆ u .073 .146 .219 .250 c 15 30 45 65 ∆ c .058 .117 .175 .250

u 10 18 42” ∆ u .135 .250 c 18 40 ∆ c .108 .250

u 10 11 48” ∆ u .230 .250 c 20 27 ∆ c .184 .250

PLATE

c IS CONCENTRATED LOAD LBS/FT WIDTH ∆ c IS DEFLECTION UNDER CONCENTRATED LOAD u IS UNIFORM LOAD LBS/FT2

∆ u IS DEFLECTION UNDER UNIFORM LOAD

MAXLOAD AT∆ = l /100

OR t/2

Page 233: Manual Completo

10-8

Section 10Plate

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.0502

Allowable Loads

EXTREN® 500, 525 and 625

Plate spanning in Lengthwise DirectionFor allowable loads when plate is spanning in crosswise direction, multiply table values by 0.70

I = 0.244 in4/ft. of widthS = 0.781 in3/ft. of width.

LOAD/DEFLECTION TABLE

*5/8” Thickness Wt/ft2 = 5.79 lbsSpan Inches u 100 200 300 400 500 1000 1500 2000 2500 2600 12” ∆ u .005 .009 .014 .018 .023 .046 .069 .092 .115 .120 c 50 100 150 200 250 500 750 1000 1250 1622 ∆ c .004 .007 .011 .015 .018 .037 .055 .074 .092 .120

u 100 200 300 400 500 600 700 768 18” ∆ u .023 .047 .070 .093 .117 .140 .163 .180 c 75 150 225 300 375 450 525 723 ∆ c .019 .037 .056 .075 .093 .112 .131 .180

u 20 40 100 200 300 326 24” ∆ u .015 .030 .074 .148 .221 .240 c 20 40 100 200 300 407 ∆ c .012 .024 .059 .118 .177 .240

u 20 40 60 100 150 167 30” ∆ u .036 .072 .108 .180 .270 .300 c 25 50 75 125 188 260 ∆ c .029 .058 .086 .144 .216 .300

u 20 40 60 80 84 36” ∆ u .075 .149 .224 .299 .312 c 30 60 90 120 157 ∆ c .060 .120 .179 .239 .312

u 10 20 30 40 45 42” ∆ u .069 .138 .208 .277 .312 c 18 35 53 70 99 ∆ c .055 .111 .166 .221 .312

u 10 20 27 48” ∆ u .118 .236 .312 c 20 40 66 ∆ c .094 .189 .312

u 10 17 54” ∆ u .189 .312 c 23 47 ∆ c .151 .312

u 10 11 60” ∆ u .288 .312 c 25 34 ∆ c .231 .312

PLATE

c IS CONCENTRATED LOAD LBS/FT WIDTH ∆ c IS DEFLECTION UNDER CONCENTRATED LOAD u IS UNIFORM LOAD LBS/FT2

∆ u IS DEFLECTION UNDER UNIFORM LOAD

* Non-stock size subject to mill run requirement.

MAXLOAD AT∆ = l /100

OR t/2

Page 234: Manual Completo

10-9

Section 10Plate

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.0502

Allowable Loads

EXTREN® 500, 525 and 625

Plate spanning in Lengthwise DirectionFor allowable loads when plate is spanning in crosswise direction, multiply table values by 0.70

I = 0.422 in4/ft. of widthS = 1.125 in3/ft. of width.

LOAD/DEFLECTION TABLE

Span 3/4” Thickness Wt/ft2 = 6.94 lbsInches u 100 200 400 600 800 1000 1500 2000 3000 4000 4499

12” ∆ u .003 .005 .011 .016 .021 .027 .040 .053 .080 .107 .120 c 50 100 200 300 400 500 750 1000 1500 2000 2804 ∆ c .002 .004 .009 .013 .017 .021 .032 .043 .064 .085 .120

u 100 200 400 600 800 1000 1200 1333 18” ∆ u .013 .027 .054 .081 .108 .135 .162 .180 c 75 150 300 450 600 750 900 1250 ∆ c .011 .022 .043 .065 .086 .108 .130 .180

u 50 100 200 300 400 500 563 24” ∆ u .021 .043 .085 .128 .171 .213 .240 c 50 100 200 300 400 500 702 ∆ c .017 .034 .068 .102 .136 .171 .240 u 50 100 150 200 250 288 30” ∆ u .052 .104 .156 .208 .260 .300 c 63 125 188 250 313 450 ∆ c .042 .083 .125 .167 .208 .300

u 50 75 100 125 150 167 36” ∆ u .108 .162 .216 .270 .324 .360 c 75 113 150 188 225 313 ∆ c .086 .130 .173 .216 .259 .360

u 20 40 60 80 94 42” ∆ u .080 .160 .240 .320 .375 c 35 70 105 140 205 ∆ c .064 .128 .192 .256 .375

u 20 30 40 55 48” ∆ u .136 .205 .273 .375 c 40 60 80 138 ∆ c .109 .164 .218 .375

u 10 20 30 34 54” ∆ u .109 .219 .328 .375 c 23 45 68 97 ∆ c .087 .175 .262 .375

u 10 20 22 60” ∆ u .167 .333 .375 c 25 50 71 ∆ c .133 .267 .375

PLATE

c IS CONCENTRATED LOAD LBS/FT WIDTH ∆ c IS DEFLECTION UNDER CONCENTRATED LOAD u IS UNIFORM LOAD LBS/FT2

∆ u IS DEFLECTION UNDER UNIFORM LOAD

MAXLOAD AT∆ = l /100

OR t/2

Page 235: Manual Completo

10-10

Section 10Plate

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.0502

Allowable Loads

EXTREN® 500, 525 and 625

Plate spanning in Lengthwise DirectionFor allowable loads when plate is spanning in crosswise direction, multiply table values by 0.70

I = 1.00 in4/ft. of widthS = 2.00 in3/ft. of width.

LOAD/DEFLECTION TABLE

*1” Thickness Wt/ft2 = 9.27 lbsSpan Inches u 100 200 400 600 800 1000 2000 4000 6000 8000 10000 10677 12” ∆ u .001 .002 .005 .007 .009 .011 .023 .045 .068 .090 .113 .120 c 50 100 200 300 400 500 1000 2000 3000 4000 5000 6667 ∆ c .001 .002 .004 .005 .007 .009 .018 .036 .054 .072 .090 .120

u 100 200 400 600 800 1000 2000 3000 3158 18” ∆ u .006 .011 .023 .034 .046 .057 .114 .171 .180 c 75 150 300 450 600 750 1500 2250 2956 ∆ c .005 .009 .018 .027 .036 .046 .091 .137 .180

u 100 200 400 600 800 1000 1200 1333 24” ∆ u .018 .036 .072 .108 .144 .180 .216 .240 c 100 200 400 600 800 1000 1200 1667 ∆ c .014 .029 .058 .086 .115 .144 .173 .240 u 100 200 300 400 500 600 682 30” ∆ u .044 .088 .132 .176 .220 .264 .300 c 125 250 375 500 625 750 1068 ∆ c .035 .070 .105 .141 .176 .211 .300

u 50 100 150 200 250 300 396 36” ∆ u .046 .091 .137 .182 .228 .273 .360 c 75 150 225 300 375 450 740 ∆ c .036 .073 .109 .146 .182 .219 .360

u 50 75 100 125 150 200 248 42” ∆ u .084 .127 .169 .211 .253 .338 .420 c 88 132 175 219 263 350 544 ∆ c .068 .101 .135 .169 .203 .270 .420

u 20 40 60 80 100 150 167 48” ∆ u .058 .115 .173 .230 .288 .432 .480 c 40 80 120 160 200 300 416 ∆ c .046 .092 .138 .184 .230 .346 .480

u 20 40 60 80 100 108 54” ∆ u .092 .185 .277 .369 .461 .500 c 45 90 135 180 225 305 ∆ c .074 .148 .221 .295 .369 .500

u 20 40 60 71 60” ∆ u .141 .281 .422 .500 c 50 100 150 222 ∆ c .113 .225 .338 .500

PLATE

c IS CONCENTRATED LOAD LBS/FT WIDTH ∆ c IS DEFLECTION UNDER CONCENTRATED LOAD u IS UNIFORM LOAD LBS/FT2

∆ u IS DEFLECTION UNDER UNIFORM LOAD

*Non-stock size subject to mill run requirement.

MAXLOAD AT∆ = l /100

OR t/2

Page 236: Manual Completo

10-11

Section 10Plate

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.0502

PLATE

Allowable Loads For Two-Way Design

EXTREN® 500, 525 and 625

Allowable loads produce a deflection of t/2 or l/100whichever is less.

Plate Reinforcement Direction 1-1 Reinforcement Direction 2-2 Dimensions in. Plate Thickness - in. Plate Thickness - in.

b a 1 3/4 5/8 1/2 3/8 1 3/4 5/8 1/2 3/8

18 36 2727 1258 711 355 151 3896 1798 1016 508 216 24 48 1211 506 294 151 49 1731 724 421 216 71 30 60 619 261 151 64 20 — — — — — 36 72 359 151 75 31 — — — — — — 42 84 225 85 41 16 — — — — — — 48 96 151 50 24 — — — — — — —

18 18 9473 4390 2465 1232 546 9473 4390 2465 1232 546 24 24 4210 1751 1021 524 172 4210 1751 1021 524 172 30 30 2142 909 526 223 70 2142 909 526 223 70 36 36 1241 521 262 107 34 1241 521 262 107 34 42 42 777 295 142 58 — 777 295 142 58 — 48 48 524 173 83 34 — 524 173 83 34 —

18 27 3599 1680 954 475 203 5142 2400 1364 679 290 24 36 1622 679 390 202 66 2318 970 558 289 95 30 45 829 350 202 86 27 1185 501 289 123 39 36 54 484 203 101 41 12 — — — — — 42 63 302 114 54 22 — — — — — — 48 72 202 66 32 12 — — — — — —

Page 237: Manual Completo

10-12

Section 10Plate

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Rev.0502

PLATE

SAFPLATE® FIBERGLASS GRITTED PLATE

SAFPLATE® is the trade name for a proprietary line of pultruded fiberglass gritted plate produced by Strongwell. SAFPLATE® is composed of EXTREN® pultruded fiberglass plate with an epoxy coated anti-skid grit surface. The standard product line is produced in 4-ft. x 8-ft. panels of EXTREN® Series 525 (slate gray) plate, fiberglass reinforced polyester with fire retardant. The standard grit surface is a silica gradation of 35 to 50 mesh.

SAFPLATE® is available in all standard EXTREN® plate thicknesses: 1/8”, 3/16”, 1/4”, 3/8”, 1/2”, 3/4”. The allowable loads are the same as those listed in this section for EXTREN® plate. Typical properties of EXTREN® plate apply to standard SAFPLATE® (see Section 4 — PROPERTIES OF EXTREN®).

SAFPLATE® is available as solid plate or bonded to DURADEK®/DURAGRID® grating. See Section 14 — FIBERGLASS GRATING.

SAFPLATE® can be customized to meet the requirements of a variety of applications.Options include:

• Choice of grit surface – In addition to the standard grit surface, an extra coarse grit (angular, sharp edged quartz 14-25 mesh gradation) or a fine grit (round grain sand 70-100 mesh gradation) may be requested.

• Choices of resin system – Standard SAFPLATE® is EXTREN® Series 525, but EXTREN® Series 500 polyester and Series 625 fire retardant vinyl ester are available upon request.

• Custom colors available for large quantities.

The skid resistance of SAFPLATE® tested for static coefficient of friction per ASTM D-2047, resulted in average test results of 0.99 for SAFPLATE® with extra-coarse grit and 0.95 for SAFPLATE® with standard grit. This exceeds the typical requirements of 0.50 recommended by OSHA for walking surfaces and The American Disabilities Act (ADA) requirement of 0.60 for accessible routes and 0.80 for ramps.

Page 238: Manual Completo

11-1

Section 11FIBREBOLT® Studs and Nuts

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.0502

SECTION 11

FIBREBOLT®

STUDS AND NUTS

Page 239: Manual Completo

11-2

Section 11FIBREBOLT® Studs and Nuts

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.0502

Properties

3/8 1/2 5/8 3/4 1 16 UNC 13 UNC 11 UNC 10 UNC 8 UNC

Ultimate thread shear using Strongwellfiberglass nut (lb.) 1,350 2,400 3,790 5,150 9600

Max ultimate tensileload using Strongwellfiberglass nut (lb.) 1,050 2,000 3,100 4,500 6,500

Max ultimate tensileload using two (2)Strongwell fiberglassnuts (lb.) 1,470 2,800 4,340 6,300 9,700

Transverse shear on threaded rod — doubleshear ASTM B-565 (min.load lb.) 3,000 5,000 7,500 12,000 22,000 Transverse shear onthreaded rod — singleshear (min. load lb.) 1,600 2,600 3,800 6,200 15,000

Compressive strength —longitudinal ASTM-D-695(min. psi) 60,000 60,000 60,000 60,000 60,000

Flexural strength ASTM-D-790 (min. psi ) 50,000 50,000 50,000 50,000 50,000

Flexural modulus ASTM-D-790 (min. psi x 106) 2.0 2.0 2.0 2.50 2.75

Recommended maximuminstallation torque strengthusing Strongwell fiberglassnut lubricated with SAE 10W30 motor oil (ft./lbs.) 4 8 16 24 50

Dielectric strength ASTM- D-149 (kv/in.) 35 35 35 35 35

Water absorption 24 hr.immersion—threadedASTM-D-570 (%) 1 1 1 1 1

Coefficient of thermalexpansion—longitudinal(in/in/°F) 5x10-6 5x10-6 5x10-6 5x10-6 5x10-6

Max recommended operation temp —basedon 50% retention ofultimate thread shear 95°C 95°C 95°C 95°C 95°Cstrength °C (°F) (203°F) (203°F) (203°F) (203°F) (203°F)

Stud weight (lb./ft.) 0.07 0.12 0.18 0.28 0.50

Thickness of nut & washer 3/4” 7/8” 1-1/8” 1-1/4” 1-5/8”

Flammability — ASTM – D635 Self-Extinguishing on All NOTE: • All test results are for bolts with single nuts only. Proper safety factors should be

applied to assembly. • Properties above do not apply when fiberglass stud is used with metal nut. • Appropriate safety factors must be applied. Ultimate strength values are averages obtained in design testing. New property categories added to better clarify stud thread shear properties. Strength values are minimums derived from multiple production sample testing.

STANDARD COLOR–BROWN

SHAPE–HEXFor structural applications where mechanical fasteners must not only be strong, but also non-corrosive and/or non-conductive, FIBREBOLT® fiberglass studs and nuts can be used in place of steel or other metal fasteners.

FIBREBOLT® is being utilized in chemical process equipment, air and water pollution control equipment, marine applications electrical equipment and in general industry.

FIBREBOLT® is available in diameters of 3/8”, 1/2”, 5/8”, 3/4” and 1” with nuts for immediate delivery. Four foot lengths are standard. Other lengths are available on request. Custom partial length threading is also available on request.

FIBREBOLT® STUDS AND NUTS

Page 240: Manual Completo

11-3

Section 11FIBREBOLT® Studs and Nuts

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.0502

FIBREBOLT® studs are pultruded, fiberglass reinforced vinyl ester threaded rods and thermoplastic hex-shaped nuts. The properties and characteristics of FIBREBOLT® differ from steel. Failure to follow the procedure below can result in damage and/or premature failure to the stud/nut assembly.

PROCEDURE

1) Verify that the nuts and studs are well lubricated. If the nuts are to be removed during the application, lubrication is a necessity. A light oil, dry lubricants, and silicone sprays are all satisfactory. Lubricants should be used in small quantities.

2) Bearing surfaces of the nuts must be parallel to the surfaces being fastened.

3) A torque wrench must be used.

The table below gives the ultimate and recommended maximum installation torque.

INSTALLATION TORQUE TABLE

Ultimate Torque Recommended Maximum Size Strength Installation Torque

3/8-16 UNC 8 ft-lbs. 4 ft-lbs. 1/2-13 UNC 18 ft-lbs. 8 ft-lbs. 5/8-11 UNC 35 ft-lbs. 16 ft-lbs. 3/4-10 UNC 50 ft-lbs. 24 ft-lbs. 1-8 UNC 110 ft-lbs. 50 ft-lbs.

4) Wrenches must make full contact with all nut edges. Partial contact will cause the corners to fracture, affecting the performance of the stud/nut assembly. A standard six point socket is recommended.

5) Whenever possible, the stud/nut assembly should be bonded to insure that the nuts do not loosen. The recommended bonding technique is to secure the nut to the proper torque value, then coat the entire nut and exposed stud assembly with a thick layer of adhesive or resin (this step is for assemblies in which the nut will not be subsequently removed).

6) Values reported in the FIBREBOLT® properties data sheet on the previous page were obtained for static conditions. Vibration should be eliminated or minimized in applications utilizing FIBREBOLT®.

CAUTION

1) All data regarding the FIBREBOLT® stud and nut assembly has been generated from tests involving only fiberglass nuts. No data has been generated for metal nuts. If metal nuts are used, strengths will be reduced because of less thread engagement. If metal nuts are used, extreme care should be taken to assure that the threads match and that a snug fit is achieved.

2) The FIBREBOLT® stud has cut, not molded threads. Threads that will be exposed to environments that might attack the glass reinforcements should be sealed after installation. If removal of the nut is anticipated, a very thin (1 mil) sprayed-on coat of polyurethane will normally be effective. Heavier coats of polyurethane, resin, or adhesive are recommended where possible.

FIBREBOLT® STUDS AND NUTS USER’S GUIDE

Page 241: Manual Completo

11-4

Section 11FIBREBOLT® Studs and Nuts

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.0502

FIBREBOLT® STUDS AND NUTS USER’S GUIDE

FIBREBOLT® NUTS

The hex shaped thermoplastic nut in Strongwell’s FIBREBOLT® fastener system is manufactured from fiberglass reinforced PPS resin. The standard color is brown.

NOTE: FIBREBOLT® studs and nuts should be used together as a system to assure proper fit and properties. Interchange with other manufacturer’s bolt or nut is not intended or assured.

HEX NUT DIMENSIONS

NUT SIZE WIDTH ACROSS NOM. WIDTH THICKNESS WASHER WASHER NOM. FLATS “A” ACROSS FLATS “B” DIA. “C” THICKNESS “D”

3/8 – 16 UNC .745 3/4” 5/8” 1” 1/8” 1/2 – 13 UNC .870 7/8” 3/4” 1-1/8” 1/8” 5/8 – 11 UNC 1.057 1-1/16” 15/16” 1-5/16” 3/16” 3/4 – 10 UNC 1.245 1-1/4” 1-1/16” 1-1/2” 3/16” 1 – 8 UNC 1.620 1-5/8” 1-3/8” 2” 1/4”

FIBREBOLT® NUT

A

B D

C

34

34

LOGO

FIBREBOLT

NUT SIZE NOM.

Page 242: Manual Completo

SECTION 12 - FIBERGLASS GRATING

Table of Contents

Introduction to DURADEK® ............................................. 12-2

Introduction to DURAGRID® & DURAGRID® Phenolic .... 12-3

Evolution of Pultruded Grating ......................................... 12-4

Grating Series and Panel Sizes ....................................... 12-6

DURADEK® Stair Treads and Landings .......................... 12-7

How to Specify DURADEK® Grating ................................ 12-8

DURADEK® Grating:

DURADEK® I-6000 1” ...................................................... 12-9

DURADEK® I-6000 1-1/2” .............................................. 12-10

DURADEK® T-5000 2” ................................................... 12-11

DURAGRID® Grating:

DURAGRID® T-3500 1” ................................................. 12-12

DURAGRID® T-1800 1” ................................................. 12-13

DURAGRID® I-4000 1” .................................................. 12-14

DURAGRID® I-6000 1-1/4” ............................................ 12-15

DURAGRID® I-4000 1-1/4” ............................................ 12-16

DURAGRID® I-4000 1-1/2” ............................................ 12-17

DURAGRID® T-3300 2” ................................................. 12-18

DURAGRID® ECONOMY Grating:

DURAGRID® ECONOMY 5000 1” ................................. 12-19

DURAGRID® ECONOMY 5000 1-1/2” ........................... 12-20

Load / Deflection Tables

DURAGRID® PHENOLIC Grating:

DURAGRID® PHENOLIC I-6000 1-1/2” ......................... 12-21

DURAGRID® Heavy Duty Grating:

DURAGRID® HD-6000 1” .............................................. 12-22

DURAGRID® HD-6000 1-1/4” ........................................ 12-23

DURAGRID® HD-6000 1-1/2” ........................................ 12-24

DURAGRID® HD-6000 1-3/4” ........................................ 12-25

DURAGRID® HD-6000 2” .............................................. 12-26

DURAGRID® HD-6000 2-1/4” ........................................ 12-27

DURAGRID® HD-6000 2-1/2” ........................................ 12-28

Page 243: Manual Completo

12-1

Section 12Fiberglass Grating

Copyright © 2014 Strongwell CorporationAll Rights Reserved Rev.1014

SECTION 12

FIBERGLASS GRATING

Page 244: Manual Completo

12-2

Section 12Fiberglass Grating

Copyright © 2014 Strongwell CorporationAll Rights ReservedRev.1014

INTRODUCTION TO DURADEK®

DURADEK® fiberglass grating is a pultruded bar type grating manufactured by Strongwell-Chatfield Division. This grating can be designed and used like traditional metal grates. The individual bearing bars are either “I” bar or “T” bar shapes chosen for their economy and efficiency of design.

Two colors (yellow and gray) are the standard available colors.

DURADEK® fiberglass grating is produced in fire retardant polyester resin. This resin is a premium grade fire retardant polyester with antimony trioxide added. This system exceeds the requirements for Class 1 flame rating of 25 or less per ASTM E-84 and meets the self-extinguishing requirements of ASTM D-635. The bars with this resin have a surfacing veil and a U.V. inhibitor for U.V. protection. This resin is available in either yellow or gray and identified as YFRPE or GFRPE.

Also available as an option is a premium grade vinyl ester resin for severe corrosion applications. Vinyl ester has better resistance to caustic and certain acid environments than polyester resin. This resin also meets the ASTM E-84 Class 1 flame rating. The bars made with this resin have a surfacing veil and a U.V. inhibitor for U.V. protection. This resin is available in either yellow or gray and identified as YFRVE or GFRVE.

Strongwell has also formulated a special resin which has been used on many projects. This resin is a premium grade isophthalic polyester which is chemical resistant, but does not meet the ASTM E-84 Class 1 flame rating. This resin system is available in white only and identified as WISO. It is available on special request. Corrosion information for these resins is listed in Section 23 — CORROSION RESISTANCE GUIDE. Other special resin systems and colors will be considered upon request.

Each bearing bar is reinforced by a core of densely packed continuous glass fibers wrapped by a continuous glass mat plus a synthetic surfacing veil which provides a 100% pure resin surface for added corrosion resistance. The densely packed core makes the bars very rigid and strong in the longitudinal direction. The continuous glass mat gives the bar strength in the transverse direction to protect them from chipping, cracking and lineal fracturing along with giving each bar a resin-rich surface.

The bearing bars are assembled into panels of grating by a unique patented* cross-rod system. The cross-rod system consists of two continuous pultruded spacer bars and a center core wedge. The spacers are notched at each bearing bar so the bars are both mechanically locked and chemically bonded to the web of each bearing bar. The wedge is, in turn, bonded to the spacers to form a strong and rigid cross-rod support system that resists twist, prevents lateral movement of the bearing bars, and transfers load from one bar to the next.

The cross-rod support system allows DURADEK® grating to be cut and fabricated like a solid sheet. Just coat the cut end with a resin sealer and install. If more installation information is needed, ask for Strongwell’s Grating Field Fabrication Guide.

The top of the DURADEK® grating is covered with a permanently bonded, grit-baked epoxy, anti-skid surface. This surface assures a safe, anti-skid walkway.

* U.S. Patent No. 4,522,009 Canadian Patent No. 1,211,270

DURADEK® FIBERGLASS GRATING

Page 245: Manual Completo

12-3

Section 12Fiberglass Grating

Copyright © 2014 Strongwell CorporationAll Rights Reserved Rev.1014

DURAGRID® & DURAGRID® PHENOLIC FIBERGLASS GRATINGINTRODUCTION TO DURAGRID® AND DURAGRID® PHENOLIC

DURAGRID® Custom Fiberglass Grids and Grating

DURAGRID® is the registered product tradename for the non-standard, non-stocked pultruded grating manufactured by Strongwell. Strongwell can custom manufacture grid or grating systems to accommodate specific plant applications that cannot effectively be met by a standard line of fiberglass grating. DURAGRID® offers such options as selection of open space, bar shape, cross rod placement, custom fabrication, custom resin or color. Often a grid or grating system tailored to the demands of a specific application will not only do the job better, but also be more cost effective than trying to adapt standard grating to a specific situation.

Data on some of the more common custom gratings are included herein. Refer to the load/deflection tables for selection.

DURAGRID® Phenolic

DURAGRID® Phenolic is a fire resistant pultruded grating manufactured by Strongwell-Chatfield Division using phenolic resin, and continuous glass fibers wrapped by a continuous strand glass mat. DURAGRID® Phenolic grating generates much less smoke and toxic fumes when exposed to fire than traditional FRP products. DURAGRID® Phenolic grating meets or exceeds USA Fire Safety Standards. It is approved and acceptable for use in locations and applications in Coast Guard PFM 2-98 for fire retardant FRP grating meeting structural fire integrity Level 2.

DURAGRID® Phenolic Technical Data

ASTM D635-77 Flammability Rate cm/min. <1

ASTM E84 Flame Spread Index 10 Smoke Index 10

UL-94 VO

Page 246: Manual Completo

12-4

Section 12Fiberglass Grating

Copyright © 2014 Strongwell CorporationAll Rights ReservedRev.1014

EVOLUTION OF PULTRUDED GRATING

THE FRP GRATING MARKETThe pultrusion process has been responsible for the advancement and expansion of the Fiber-glass Reinforced Plastic (FRP) grating market. This was not possible with other manufacturing processes. The basic needs of floor grating established the need for FRP grating. The evolution of the FRP grating market created a demand for pultruded grating. Grating made from pultruded components is able to provide the many options that the market demands.

THE FIRST GENERATION OF FRP GRATINGThe first generation of FRP grating was by the hand lay-up method. It was composed of resin saturated rovings laid up in a criss-cross pattern to form a grating without the use of a mold. The advantages of this grating were that it was nonmetallic, corrosion-resistant and had a resin-rich surface. The lay-up method allowed versatility in size and strength. The disadvantag-es were that it was very labor intensive, it had rectangular bearing bars and low glass content which lead to high deflections and quality was poor with many voids and a rough appearance. The resin-rich surface at the corners, allowed fast surface wear and chipping. Ultraviolet dete-rioration was also a problem.

THE SECOND GENERATION OF FRP GRATINGThe second generation of fiberglass grating is by the open mold method. The composite is composed of unidirectional glass fiber rovings and resin. This method is similar to the hand lay-up method but now a mold is used. It has the advantages of having a resin-rich surface, a better appearance and lower labor cost. The disadvantage is that a mold limits the versatility in size and strength. It has rectangular bearing bars and a low glass content which leads to high deflections and voids are a problem. It still has resin-rich surfaces at the corners which allow fast surface wear and chipping. A grit surface can be molded into the product for skid resistance but it can chip off easily. Ultraviolet deterioration can be improved only with a UV inhibitor.

THE THIRD GENERATION OF FRP GRATINGThe third generation of FRP grating is by the compression molded method. This method is an improve-ment over the open mold method and gives a resin-rich surface. Because it is compression molded, it has a higher glass content which leads to less deflection than open molded grating. It has fewer and smaller voids and a better wearing surface. The top corners are molded and less susceptible to chipping. The disadvantage is that it is made in a mold and therefore does not offer the versatility in size and bar shape. Fiber content is not ideal and results in the need to use excessive amounts of material to achieve the desired strength and stiffness values. A skid-resistant surface must be applied as a secondary operation. Ultraviolet deterioration can be improved only with a UV inhibitor.

THE FOURTH GENERATION OF FRP GRATINGThe fourth generation of FRP grating is made using pultruded components. The first pultruded FRP grating was made from an all unidirectional roving and resin composite. It had the advantages of using an engineered shape “I bar” for material savings. It had a much higher glass content (up to 70% glass) which made a much stronger part with less deflection. The pultrusion process eliminates the voids and improves quality. Because the bars can be cut to any length and located at any spacing, versatility in size and length is unlimited. The high strength of pultruded grat-ing allows the use of the same depth as would be used with metal grating, and in most cases, without adding additional supports. The disadvantage of the first pultruded grating is that it had a less resin-rich surface and, therefore, lower corrosion resistance. Because it was made from all unidirectional rovings, it could split along the fibers. The method of assembling the bars did not provide good structural integrity, as the bars would loosen up and shift on the cross rods. The high glass content at the surface made ultraviolet deterioration a problem.

Page 247: Manual Completo

12-5

Section 12Fiberglass Grating

Copyright © 2014 Strongwell CorporationAll Rights Reserved Rev.1014

THE FIFTH GENERATION OF FRP GRATINGUp to this point, some people believed that if you wanted a grating that had good corrosion resistance and was easy to fabricate, use molded grating. It you wanted a grating that required high strength, but lower corrosion resistance, use a pultruded grating. This line of reasoning is no longer true. Strongwell — Chatfield Division, has evolved the pultruded grating design and assembling process to the point that you can now have the best of both in a variety of pultruded grating.

Each bearing bar that Strongwell manufactures is reinforced by a core of densely packed, con-tinuous glass fibers wrapped by a continuous glass mat, plus a synthetic surfacing veil. The core of continuous glass fibers gives the longitudinal strength and stiffness. The continuous glass mat gives the bars strength in the transverse direction to protect them from chipping, cracking and lineal fracturing. This mat allows you to optimize the cross-sectional design to achieve the best stiffness and strength from the least amount of material. The synthetic surfacing veil en-capsulates the bar in a 100% resin surface, which provides excellent corrosion resistance and protection from UV exposure. The average resin to glass ratio of the composite is no longer a gauge of corrosion resistance. Location and placement of the glass and resin is the real gauge of corrosion resistance.

The bearing bars are assembled into panels of grating by a unique cross-rod system. The cross-rod support system consists of two continuous, pultruded spacer bars and a center core wedge. The spacers are notched at each bearing bar so the bars are both mechanically locked and chemically bonded to the web of each bearing bar. The wedge is, in turn, bonded to the spacers to form a strong and rigid cross-rod support system that resists twist, prevents lateral movement of the bearing bars, and transfers load from one bar to the next. The cross-rod system allows the grating panels to be cut and fabricated like a solid sheet. This cross-rod system also allows unlimited selection in spacing of bearing bars.

The variety of bearing bars, along with the engineered location and placement of the reinforce-ments, surfacing veil and resin, gives the end user the widest product choice available. No other manufacturing process can offer the corrosion resistance or product options as economically.

EVOLUTION OF PULTRUDED GRATING

Page 248: Manual Completo

12-6

Section 12Fiberglass Grating

Copyright © 2014 Strongwell CorporationAll Rights ReservedRev.1014

The following table lists the standard DURADEK® grating series that are available along with some of the most common custom grating series. More detailed load/deflection tables are listed at the end of this section.

WIDTH WIDTH SPAN OF TOP OF OPEN % OPEN APPROX. (See Note SERIES FLANGE SPACE AREA WEIGHT RESIN COLOR Below)

DURADEK®

I-6000 1” 0.6” 0.9” 60% 2.4 lbs/sq.ft. FRPE Yellow 43” FRVE or Gray

I-6000 1-1/2” 0.6” 0.9” 60% 3.0 lbs/sq. ft. FRPE Yellow 56” FRVE or Gray

T-5000 2” 1.0” 1.0” 50% 3.1 lbs/sq. ft. FRPE Yellow 64” FRVE or GrayDURAGRID® (most common series) T-3500 1” 1.625” .775” 35% 2.3 lbs/sq.ft. FRPE Yellow 39” FRVE or Gray

T-1800 1” 1.625” .375” 18% 2.6 lbs/sq.ft. FRPE Yellow 41” FRVE or Gray

I-4000 1” 0.6” 0.4” 40% 3.4 lbs/sq.ft. FRPE Yellow 48” FRVE or Gray

I-6000 1-1/4” 0.6” 0.9” 60% 2.7 lbs/sq.ft. FRVE Yellow 48” or Gray

I-4000 1-1/4” 0.6” 0.4” 40% 3.9 lbs/sq.ft. FRVE Yellow 54” or Gray

I-4000 1-1/2” 0.6” 0.4” 40% 4.2 lbs/sq. ft. FRPE Yellow 62” FRVE or Gray

T-3300 2” 1.0” 0.5” 33% 3.9 lbs/sq. ft. FRPE Yellow 69” FRVE or Gray

Note: When a 100 pounds per square foot uniform load is placed upon a simple span of this dimension, it will produce a deflection of 1/4” at midspan.

DURADEK® grating panels are built with bearing bars up to 240 inches in length and widths up to 60 inches. Standard panel sizes are listed above. These sizes are generally available in the three standard DURADEK® series to be shipped in 48 hours from various locations in the country. Custom grating sizes and series, other special bearing bar spacing, cross-rod spacings, oversized panels, other colors and resins will be considered upon request. Longer lead time will be required. UV coating is optional on all grating series.

GRATING SERIES AND PANEL SIZES

.5X

.5X

X

Widths3.0'4.0'or

5.0'

Lengths, 8.0', 10.0', 12.0' or 20.0'(Bearing Bar)

StandardCross Tie Rodson 6" Centers

Maximum Panel Size 60” x 240”

Page 249: Manual Completo

12-7

Section 12Fiberglass Grating

Copyright © 2014 Strongwell CorporationAll Rights Reserved Rev.1014

MAXIMUM SPAN FORTREAD WIDTH 300 LBS AT MIDSPANAND COLOR STAIR TREAD 1/8" LESS 1/4" LESSAVAILABILITY SERIES DEFLECTION DEFLECTION

8", 9.5", 11" I-6000 1" 29" 37"Gray or Yellow8", 9.5", 11" I-6000 1-1/2" 40" 52"Gray or Yellow8", 10", 12" T-5000 2" 47" 59"Gray or Yellow9.2", 11.6" T-3500 1" 26" 33"Gray or Yellow8", 10", 12" T-1800 1" 27" 35"Gray or Yellow8", 10", 12" I-4000 1" 31" 40"Gray or Yellow8", 10", 12" I-4000 1-1/2" 44" 57"Gray or Yellow8", 9.5", 11" T-3300 2" 50" 64"Gray or Yellow

DURADEK® STAIR TREADS AND LANDINGSStair treads and landings are produced by attaching a 2" rectangular or “box” shaped nosing to the leading edge of treads or landings. This gives added strength and rigidity to the area that takes impact and abuse. In addition, the nosing provides more surface area for skid-resistance, wear and better visibility. Exceeds O.S.H.A. Standard 1910-24.

Panel Connectors are generally only used at midspan to assist in transferring load from section to section.

Weldable 316L stainless steel saddle clips are available for all grating series, except the T-1800 and T-3500 series.*Bolts are priced separately from the saddle clips.

Insert clip hold-downs are available I-bar grating and 2" T-bar grating.

“Box” shaped nosing is used forgrating with 2" depth.

2" deep rectangular shaped nosing is used for all grating with depths of 1" and 1-1/2".

PANEL HOLD DOWNS

(All bolts are 1/4-20 x 1-1/4", cap head, 316 stainless steel.)

PANEL CONNECTORS

(All bolts are 1/4-20 x 1-1/4", cap head, 316 stainless steel.)

Weldable 316L stainless steel insertclips are available for all grating series,except the T-1800 and T-3500 series.*Bolts are priced separately from the hold-down.

Weldable 316L stainless steel insert clips are available for series T-1800 and T-3500 only.*Bolts are priced separately from the holddown.

316L stainless steel saddle clips are available as panel connectors for I-bar grating and 2" T-bar grating.

Insert clip hold-downs are available I-bar grating and 2" T-bar grating.

Page 250: Manual Completo

12-8

Section 12Fiberglass Grating

Copyright © 2014 Strongwell CorporationAll Rights ReservedRev.1014

Fiberglass grating shall be DURADEK® series-depth of grating ___________ as manufactured by Strongwell - Chatfield Division. Resin shall be (YFRPE), (GFRPE), (YFRVE), (GFRVE). Grating shall be able to carry a uniform distributed load of 100 pounds per square foot on a simple span of ______ inches and not deflect more than .25 inches.*

NOTE: See Section 20 — STRONGWELL SPECIFICATIONS FOR FIBERGLASS REINFORCED POLYMER PRODUCTS AND FABRICATIONS.

* Complete load/deflection tables are listed at the end of this section.

SAMPLE PROBLEM

A 3 foot wide by 100 foot long walkway is to be designed using fiberglass grating. The design load will be a uniform distributed load of 100 pounds/square foot with a maximum deflection of .25 inches. The cross supports down the walkway are located every 43 inches. From the load/deflection tables, you choose I-6000-1”. The grating will be inside a building for a waste water treatment plant with moderate corrosion conditions. You select the fire retardant polyester resin and select gray color.

HOW TO SPECIFY DURADEK® GRATING

Width

Length(Bearing Bar Length)

Width

Length(Bearing BarLength)

Panel Sizes Are Specified: Width x Length

TO ORDER DURADEK® GRATING, IT WILL BE NECESSARY TO SPECIFY:

Series ( I-6000, T-5000, etc.)

Depth of Grating ( 1”, 1-1/2”, 2” )

Color and Resin ( YFRPE, GFRPE, YFRVE, GFRVE)

Size (width x length) **** Width is the measurement from end to end of the cross tie rods. Length is always the bearing bar length.

Page 251: Manual Completo

12-9

Section 12Fiberglass Grating

Copyright © 2014 Strongwell CorporationAll Rights Reserved Rev.1014

DURADEK® I-6000 1"

The modulus of elasticity will vary with span length due to the non-homogeneous make-up of composite material (see table).

DEFLECTION AND SAFE LOAD DATA WAS CALCULATED FROM LAB TESTS CONDUCTED BY STRONGWELL - CHATFIELD DIVISION.

c IS CONCENTRATED LOAD LBS/FT OF WIDTH∆c IS DEFLECTION UNDER CONCENTRATED LOADu IS UNIFORM LOAD LBS/FT2

∆u IS DEFLECTION UNDER UNIFORM LOAD cu

A = 2.496 IN2/FT OF WIDTH S = 0.656 IN3/FT OF WIDTH

I = 0.328 IN4/FT OF WIDTH

LOAD / DEFLECTION TABLEI-6000 1” BEARING BARS

NOTE: When a 100 pounds per square foot uniform load is placed upon a 43" simple span, it will produce a deflection of 1/4" at midspan.

∆u 0.001 0.002 0.003 0.004 0.005 0.005 0.007 0.009 0.014 0.018 0.036 0.054 0.073 0.091 10401 0.189 ∆c 0.001 0.003 0.004 0.006 0.007 0.009 0.012 0.015 0.022 0.029 0.058 0.087 0.116 0.145 5200 0.151

∆u 0.004 0.008 0.013 0.017 0.021 0.025 0.033 0.042 0.063 0.084 0.167 0.251 0.335 0.418 4954 0.415 ∆c 0.004 0.009 0.013 0.018 0.022 0.027 0.036 0.045 0.067 0.089 0.179 0.268 0.357 0.446 3716 0.332

∆u 0.012 0.025 0.037 0.050 0.062 0.075 0.100 0.124 0.187 0.249 0.498 2900 0.722 ∆c 0.010 0.020 0.030 0.040 0.050 0.060 0.080 0.100 0.149 0.199 0.398 0.597 2900 0.577

∆u 0.029 0.058 0.087 0.116 0.145 0.174 0.231 0.289 0.434 0.579 1856 1.074 ∆c 0.019 0.037 0.056 0.074 0.093 0.111 0.148 0.185 0.278 0.370 2320 0.859

∆u 0.058 0.115 0.173 0.230 0.288 0.345 0.460 0.575 1289 1.483 ∆c 0.031 0.061 0.092 0.123 0.153 0.184 0.245 0.307 0.460 0.614 1933 1.186

∆u 0.105 0.211 0.316 0.422 0.527 0.633 943 1.989 ∆c 0.048 0.096 0.145 0.193 0.241 0.289 0.386 0.482 1649 1.591

∆u 0.176 0.353 0.529 0.705 719 2.534 ∆c 0.071 0.141 0.212 0.282 0.353 0.423 0.564 1437 2.027

∆u 0.281 0.563 566 3.184 ∆c 0.100 0.200 0.300 0.400 0.500 0.600 1274 2.548

12

18

24

30

36

42

48

54

3.78

4.15

4.41

4.63

4.83

4.88

4.98

5.00

SAFE LOAD 2:1 SAFETY E x 106

FACTOR DEFLECTION PSI SPANINCHES

LOAD 50 100 150 200 250 300 400 500 750 1000 2000 3000 4000 5000

BEARING BAR NO BARS BEARING BAR OPEN % OPEN APPROX. SERIES THICKNESS FT. WIDTH CENTER SPACE AREA WEIGHT RESIN COLOR

I-6000 1.000” 8 1.500” .900” 60% 2.4 LBS FRPE YELLOW PER OR OR SQ. FT. FRVE GRAY

Standard crossrods at 6” or 12” on center.Other spacings available on request.

AVAILABLE WIDTHS (CENTERS 1.5”)

WIDTH #BARS WIDTH #BARS WIDTH #BARS WIDTH #BARS WIDTH #BARS WIDTH #BARS

3” 2 13.5” 9 22.5” 15 33” 22 42” 28 52.5” 35 4.5” 3 15” 10 24” 16 34.5” 23 43.5” 29 54” 36 6” 4 16.5” 11 25.5” 17 36” 24 45” 30 55.5” 37 7.5” 5 18” 12 27” 18 37.5” 25 46.5” 31 57” 38 9” 6 19.5” 13 28.5” 19 39” 26 48” 32 58.5” 39 10.5” 7 21” 14 30” 20 40.5” 27 49.5” 33 60” 40 12” 8 31.5” 21 51” 34

NOTE: The red line ( ) indicates at what point the load weight has ≤ .25" deflection.

Page 252: Manual Completo

12-10

Section 12Fiberglass Grating

Copyright © 2014 Strongwell CorporationAll Rights ReservedRev.1014

DURADEK® I-6000 1½"

BEARING BAR NO BARS BEARING BAR OPEN % OPEN APPROX. SERIES THICKNESS FT. WIDTH CENTER SPACE AREA WEIGHT RESIN COLOR

I-6000 1.500” 8 1.500” .900” 60% 3.0 LBS FRPE YELLOW PER OR OR SQ. FT. FRVE GRAY

The modulus of elasticity will vary with span length due to the non-homogeneous make-up of composite material (see table).

DEFLECTION AND SAFE LOAD DATA WAS CALCULATED FROM LAB TESTS CONDUCTED BY STRONGWELL - CHATFIELD DIVISION.

c IS CONCENTRATED LOAD LBS/FT OF WIDTH∆c IS DEFLECTION UNDER CONCENTRATED LOADu IS UNIFORM LOAD LBS/FT2

∆u IS DEFLECTION UNDER UNIFORM LOAD cu

AVAILABLE WIDTHS (CENTERS 1.5”)

WIDTH #BARS WIDTH #BARS WIDTH #BARS WIDTH #BARS WIDTH #BARS WIDTH #BARS 3” 2 13.5” 9 22.5” 15 33” 22 42” 28 52.5” 35 4.5” 3 15” 10 24” 16 34.5” 23 43.5” 29 54” 36 6” 4 16.5” 11 25.5” 17 36” 24 45” 30 55.5” 37 7.5” 5 18” 12 27” 18 37.5” 25 46.5” 31 57” 38 9” 6 19.5” 13 28.5” 19 39” 26 48” 32 58.5” 39 10.5” 7 21” 14 30” 20 40.5” 27 49.5” 33 60” 40 12” 8 31.5” 21 51” 34

Standard crossrods at 6” or 12” on center.Other spacings available on request.

A = 3.136 IN2/FT OF WIDTH S = 1.240 IN3/FT OF WIDTH

I = 0.928 IN4/FT OF WIDTH

LOAD / DEFLECTION TABLEI-6000 1½” BEARING BARS

∆u 0.000 0.001 0.001 0.001 0.002 0.002 0.003 0.003 0.005 0.006 0.013 0.019 0.026 0.032 0.038 0.045 17601 0.113 ∆c 0.001 0.001 0.002 0.002 0.003 0.003 0.004 0.005 0.008 0.010 0.020 0.031 0.041 0.051 0.061 0.072 8800 0.090

∆u 0.002 0.003 0.005 0.006 0.008 0.009 0.012 0.015 0.023 0.030 0.061 0.091 0.121 0.152 0.182 0.212 7823 0.237 ∆c 0.002 0.003 0.005 0.006 0.008 0.010 0.013 0.016 0.024 0.032 0.065 0.097 0.129 0.162 0.194 0.226 5867 0.190

∆u 0.005 0.009 0.014 0.018 0.023 0.027 0.037 0.046 0.069 0.091 0.183 0.274 0.366 0.457 0.549 0.640 4400 0.403 ∆c 0.004 0.007 0.011 0.015 0.018 0.022 0.029 0.037 0.055 0.073 0.146 0.220 0.293 0.366 0.439 0.512 4400 0.322

∆u 0.011 0.022 0.032 0.043 0.054 0.065 0.086 0.108 0.161 0.215 0.430 0.646 2773 0.597 ∆c 0.007 0.014 0.021 0.028 0.034 0.041 0.055 0.069 0.103 0.138 0.276 0.413 0.551 3467 0.478

∆u 0.022 0.044 0.065 0.087 0.109 0.131 0.175 0.218 0.327 0.436 1896 0.827 ∆c 0.012 0.023 0.035 0.047 0.058 0.070 0.093 0.116 0.175 0.233 0.466 2845 0.662

∆u 0.040 0.079 0.119 0.159 0.198 0.238 0.317 0.396 0.595 1361 1.079 ∆c 0.018 0.036 0.054 0.072 0.091 0.109 0.145 0.181 0.272 0.362 2381 0.863

∆u 0.067 0.133 0.200 0.266 0.333 0.400 0.533 0.666 1017 1.354 ∆c 0.027 0.053 0.080 0.107 0.133 0.160 0.213 0.266 0.400 0.533 2033 1.083

∆u 0.106 0.211 0.317 0.422 0.528 0.633 777 1.640 ∆c 0.038 0.075 0.113 0.150 0.188 0.225 0.300 0.375 0.563 1748 1.312

∆u 0.160 0.320 0.480 0.639 608 1.944 ∆c 0.051 0.102 0.153 0.205 0.256 0.307 0.409 0.512 1520 1.555

∆u 0.233 0.466 485 2.259 ∆c 0.068 0.136 0.203 0.271 0.339 0.407 0.542 0.678 1333 1.808

3.79

4.05

4.24

4.40

4.50

4.59

4.66

4.71

4.74

4.76

NOTE: When a 100 pounds per square foot uniform load is placed upon a 56" simple span, it will produce a deflection of 1/4" at midspan.

SAFE LOAD 2:1 SAFETY E x 106

FACTOR DEFLECTION PSI

SPANINCHES

LOAD 50 100 150 200 250 300 400 500 750 1000 2000 3000 4000 5000 6000 7000

12

18

24

30

36

42

48

54

60

66

NOTE: The red line ( ) indicates at what point the load weight has ≤ .25" deflection.

Page 253: Manual Completo

12-11

Section 12Fiberglass Grating

Copyright © 2014 Strongwell CorporationAll Rights Reserved Rev.1014

DURADEK® T-5000 2"

BEARING BAR NO BARS BEARING BAR OPEN % OPEN APPROX. SERIES THICKNESS FT. WIDTH CENTER SPACE AREA WEIGHT RESIN COLOR

T-5000 2.000” 6 2.000” 1.000” 50% 3.1 LBS FRPE YELLOW PER OR OR SQ. FT. FRVE GRAY

The modulus of elasticity will vary with span length due to the non-homogeneous make-up of composite material (see table).

LOAD / DEFLECTION TABLET-5000 2” BEARING BARS

cu

A = 3.252 IN2/FT OF WIDTH ST = 1.906 IN3/FT OF WIDTH

SB = 1.495 IN3/FT OF WIDTH I = 1.676 IN4/FT OF WIDTH

∆u 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.002 0.003 0.004 0.007 0.011 0.014 0.018 0.021 0.025 0.028 11333 0.040 ∆c 0.000 0.001 0.001 0.001 0.001 0.002 0.002 0.003 0.004 0.006 0.011 0.017 0.023 0.028 0.034 0.040 0.045 5666 0.032

∆u 0.001 0.002 0.003 0.003 0.004 0.005 0.007 0.009 0.013 0.017 0.035 0.052 0.070 0.087 0.104 0.122 0.139 7536 0.131 ∆c 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.009 0.014 0.019 0.037 0.056 0.074 0.093 0.111 0.130 0.148 5666 0.105

∆u 0.003 0.005 0.008 0.011 0.013 0.016 0.021 0.027 0.040 0.054 0.107 0.161 0.214 0.268 0.321 0.375 0.429 5666 0.304 ∆c 0.002 0.004 0.006 0.009 0.011 0.013 0.017 0.021 0.032 0.043 0.086 0.129 0.171 0.214 0.257 0.300 0.343 5666 0.243

∆u 0.006 0.013 0.019 0.026 0.032 0.038 0.051 0.064 0.096 0.128 0.256 0.384 0.512 0.640 3626 0.464 ∆c 0.004 0.008 0.012 0.016 0.020 0.025 0.033 0.041 0.061 0.082 0.164 0.246 0.327 0.409 0.491 0.573 0.655 4534 0.371

∆u 0.013 0.026 0.039 0.052 0.065 0.078 0.104 0.130 0.195 0.260 0.520 2519 0.655 ∆c 0.007 0.014 0.021 0.028 0.035 0.042 0.055 0.069 0.104 0.139 0.277 0.416 0.555 0.694 3778 0.524

∆u 0.024 0.047 0.071 0.095 0.119 0.142 0.190 0.237 0.356 0.474 1850 0.877 ∆c 0.011 0.022 0.033 0.043 0.054 0.065 0.087 0.108 0.163 0.217 0.433 0.650 3238 0.702

∆u 0.040 0.079 0.119 0.158 0.198 0.238 0.317 0.396 0.594 1417 1.122 ∆c 0.016 0.032 0.048 0.063 0.079 0.095 0.127 0.158 0.238 0.317 0.634 2834 0.898

∆u 0.062 0.125 0.187 0.250 0.312 0.374 0.499 0.624 1120 1.398 ∆c 0.022 0.044 0.067 0.089 0.111 0.133 0.178 0.222 0.333 0.444 2519 1.118

∆u 0.094 0.188 0.282 0.375 0.469 0.563 0.751 907 1.702 ∆c 0.030 0.060 0.090 0.120 0.150 0.180 0.240 0.300 0.450 0.601 2267 1.361

∆u 0.136 0.272 0.408 0.544 0.679 749 2.036 ∆c 0.040 0.079 0.119 0.158 0.198 0.237 0.316 0.395 0.593 2060 1.629

∆u 0.190 0.380 0.570 629 2.390 ∆c 0.051 0.101 0.152 0.203 0.253 0.304 0.405 0.507 1889 1.914

∆u 0.260 0.520 536 2.788 ∆c 0.064 0.128 0.192 0.256 0.320 0.384 0.512 0.640 1744 2.231

∆u 0.347 0.693 463 3.208 ∆c 0.079 0.158 0.238 0.317 0.396 0.475 0.634 1619 2.566

12

18

24

30

36

42

48

54

60

66

72

78

84

3.80

3.91

4.01

4.10

4.18

4.25

4.34

4.41

4.47

4.52

4.58

4.61

4.65

NOTE: When a 100 pounds per square foot uniform load is placed upon a 64" simple span, it will produce a deflection of 1/4" at midspan.

SAFE LOAD 2:1 SAFETY E x 106

FACTOR DEFLECTION PSI

SPANINCHES

LOAD 50 100 150 200 250 300 400 500 750 1000 2000 3000 4000 5000 6000 7000 8000

Standard crossrods at 6” on center.Other spacings available on request.

2.00.6 1.4

1.0 1.0

2 .0

0.16

DEFLECTION AND SAFE LOAD DATA WAS CALCULATED FROM LAB TESTS CONDUCTED BY STRONGWELL - CHATFIELD DIVISION.

c IS CONCENTRATED LOAD LBS/FT OF WIDTH∆c IS DEFLECTION UNDER CONCENTRATED LOADu IS UNIFORM LOAD LBS/FT2

∆u IS DEFLECTION UNDER UNIFORM LOAD

AVAILABLE WIDTHS (CENTERS 2.0”)

WIDTH #BARS WIDTH #BARS WIDTH #BARS WIDTH #BARS WIDTH #BARS WIDTH #BARS

4” 2 14” 7 24” 12 34” 17 44” 22 54” 27 6” 3 16” 8 26” 13 36” 18 46” 23 56” 28 8” 4 18” 9 28” 14 38” 19 48” 24 58” 29 10” 5 20” 10 30” 15 40” 20 50” 25 60” 30 12” 6 22” 11 32” 16 42” 21 52” 26

NOTE: The red line ( ) indicates at what point the load weight has ≤ .25" deflection.

Page 254: Manual Completo

12-12

Section 12Fiberglass Grating

Copyright © 2014 Strongwell CorporationAll Rights ReservedRev.1014

3.27

3.59

3.80

4.00

4.12

4.29

4.37

SAFE LOAD 2:1 SAFETY E x 106

FACTOR DEFLECTION PSI

SPANINCHES

LOAD 50 100 150 200 250 300 400 500 750 1000 2000 2500 3000 4000

12

18

24

30

36

42

48

DURAGRID® T-3500 1"

A = 2.375 IN2/FT OF WIDTH ST = 0.753 IN3/FT OF WIDTH

I = 0.255 IN4/FT OF WIDTH SB = 0.387 IN3/FT OF WIDTH

WEIGHT/FOOT = .373 LBS/FT OF BAR

WEIGHT/FOOT = .186 LBS/FT OF CROSS RODStandard crossrods at 6” or 12” on center. The modulus of elasticity will vary with span length due to the

non-homogeneous make-up of composite material (see table).

LOAD / DEFLECTION TABLET-3500 1” BEARING BARS

DEFLECTION AND SAFE LOAD DATA WAS CALCULATED FROM LAB TESTS CONDUCTED BY STRONGWELL - CHATFIELD DIVISION.

c IS CONCENTRATED LOAD LBS/FT OF WIDTH∆c IS DEFLECTION UNDER CONCENTRATED LOADu IS UNIFORM LOAD LBS/FT2

∆u IS DEFLECTION UNDER UNIFORM LOAD cu

∆u 0.001 0.003 0.004 0.005 0.007 0.008 0.011 0.013 0.020 0.027 0.054 0.067 0.081 0.108 8900 0.240 ∆c 0.002 0.004 0.006 0.009 0.011 0.013 0.017 0.022 0.032 0.043 0.086 0.108 0.130 0.173 4450 0.192

∆u 0.006 0.012 0.019 0.025 0.031 0.037 0.050 0.062 0.093 0.124 0.249 0.311 0.373 0.498 3955 0.492 ∆c 0.007 0.013 0.020 0.027 0.033 0.040 0.053 0.066 0.100 0.133 0.265 0.332 0.398 0.531 2967 0.394

∆u 0.019 0.037 0.056 0.074 0.093 0.111 0.149 0.186 0.279 0.372 2225 0.827 ∆c 0.015 0.030 0.045 0.059 0.074 0.089 0.119 0.149 0.223 0.297 0.594 2225 0.661

∆u 0.043 0.086 0.129 0.172 0.215 0.259 0.345 0.431 0.646 1411 1.216 ∆c 0.028 0.055 0.083 0.110 0.138 0.165 0.221 0.276 0.414 0.551 1763 0.972

∆u 0.087 0.173 0.260 0.347 0.434 0.520 0.694 964 1.672 ∆c 0.046 0.093 0.139 0.185 0.231 0.278 0.370 0.463 1447 1.338

∆u 0.154 0.309 0.463 0.617 694 2.142 ∆c 0.071 0.141 0.212 0.282 0.353 0.423 0.564 1215 1.714

∆u 0.258 0.517 521 2.692 ∆c 0.103 0.207 0.310 0.414 0.517 0.620 1042 2.154

2.40.5 1.9

1.625 0.775

1.0

0.18

BEARING BAR NO BARS BEARING BAR OPEN % OPEN APPROX. SERIES THICKNESS FT. WIDTH CENTER SPACE AREA WEIGHT RESIN COLOR

T-3500 1.000” 5 2.400” .775” 35% 2.3 LBS FRPE YELLOW PER OR OR SQ. FT. FRVE GRAY

AVAILABLE WIDTHS (CENTERS 2.4”)

WIDTH #BARS WIDTH #BARS WIDTH #BARS WIDTH #BARS WIDTH #BARS WIDTH #BARS

4.8” 2 14.4” 6 24” 10 33.6” 14 43.2” 18 52.8” 22 7.2” 3 16.8” 7 26.4” 11 36” 15 45.6” 19 55.2” 23 9.6” 4 19.2” 8 28.8” 12 38.4” 16 48” 20 57.6” 24 12” 5 21.6” 9 31.2” 13 40.8” 17 50.4” 21 60” 25

NOTE: The red line ( ) indicates at what point the load weight has ≤ .25" deflection.

Page 255: Manual Completo

12-13

Section 12Fiberglass Grating

Copyright © 2014 Strongwell CorporationAll Rights Reserved Rev.1014

DURAGRID® T-1800 1"

The modulus of elasticity will vary with span length due to the non-homogeneous make-up of composite material (see table).

LOAD / DEFLECTION TABLET-1800 1” BEARING BARS

DEFLECTION AND SAFE LOAD DATA WAS CALCULATED FROM LAB TESTS CONDUCTED BY STRONGWELL - CHATFIELD DIVISION.

c IS CONCENTRATED LOAD LBS/FT OF WIDTH∆c IS DEFLECTION UNDER CONCENTRATED LOADu IS UNIFORM LOAD LBS/FT2

∆u IS DEFLECTION UNDER UNIFORM LOAD cu

Standard crossrods at 6” or 12” on center.Other spacings available on request.

2.00.5 1.5

1.625 0.375

1.0

0.18

BEARING BAR NO BARS BEARING BAR OPEN % OPEN APPROX. SERIES THICKNESS FT. WIDTH CENTER SPACE AREA WEIGHT RESIN COLOR

T-1800 1.000” 6 2.000” .375” 18% 2.6 LBS FRPE YELLOW PER OR OR SQ. FT. FRVE GRAY

AVAILABLE WIDTHS (CENTERS 2.0”)

WIDTH #BARS WIDTH #BARS WIDTH #BARS WIDTH #BARS WIDTH #BARS WIDTH #BARS

4” 2 14” 7 24” 12 34” 17 44” 22 54” 27 6” 3 16” 8 26” 13 36” 18 46” 23 56” 28 8” 4 18” 9 28” 14 38” 19 48” 24 58” 29 10” 5 20” 10 30” 15 40” 20 50” 25 60” 30 12” 6 22” 11 32” 16 42” 21 52” 26

A = 2.850 IN2/FT OF WIDTH ST = 0.903 IN3/FT OF WIDTH

I = 0.306 IN4/FT OF WIDTH SB = 0.464 IN3/FT OF WIDTH

WEIGHT/FOOT = .373 LBS/FT OF BAR

WEIGHT/FOOT = .186 LBS/FT OF CROSS ROD

∆u 0.001 0.002 0.003 0.004 0.006 0.007 0.009 0.011 0.017 0.022 0.045 0.056 0.067 0.090 10680 0.240 ∆c 0.002 0.004 0.005 0.007 0.009 0.011 0.014 0.018 0.027 0.036 0.072 0.090 0.108 0.144 5340 0.192

∆u 0.005 0.010 0.016 0.021 0.026 0.031 0.041 0.052 0.078 0.104 0.207 0.259 0.311 0.415 4746 0.492 ∆c 0.006 0.011 0.017 0.022 0.028 0.033 0.044 0.055 0.083 0.111 0.221 0.277 0.332 0.442 3560 0.394

∆u 0.015 0.031 0.046 0.062 0.077 0.093 0.124 0.155 0.232 0.310 0.619 2670 0.827 ∆c 0.012 0.025 0.037 0.050 0.062 0.074 0.099 0.124 0.186 0.248 0.495 0.619 2670 0.661

∆u 0.036 0.072 0.108 0.144 0.180 0.215 0.287 0.359 0.539 0.718 1693 1.216 ∆c 0.023 0.046 0.069 0.092 0.115 0.138 0.184 0.230 0.345 0.460 2116 0.972

∆u 0.072 0.145 0.217 0.289 0.361 0.434 0.578 0.723 1157 1.673 ∆c 0.039 0.077 0.116 0.154 0.193 0.231 0.308 0.385 0.578 1736 1.338

∆u 0.129 0.257 0.386 0.514 0.643 833 2.143 ∆c 0.059 0.118 0.176 0.235 0.294 0.353 0.470 0.588 1458 1.714

∆u 0.215 0.431 0.646 625 2.692 ∆c 0.086 0.172 0.258 0.345 0.431 0.517 0.689 1250 2.154

12

18

24

30

36

42

48

3.27

3.59

3.80

4.00

4.12

4.29

4.37

SAFE LOAD 2:1 SAFETY E x 106

FACTOR DEFLECTION PSI

SPANINCHES

LOAD 50 100 150 200 250 300 400 500 750 1000 2000 2500 3000 4000

NOTE: The red line ( ) indicates at what point the load weight has ≤ .25" deflection.

Page 256: Manual Completo

12-14

Section 12Fiberglass Grating

Copyright © 2014 Strongwell CorporationAll Rights ReservedRev.1014

DURAGRID® I-4000 1"

A = 3.744 IN2/FT OF WIDTH S = 0.984 IN3/FT OF WIDTH

I = 0.492 IN4/FT OF WIDTH

WEIGHT/FOOT = .253 LBS/FT OF BAR

WEIGHT/FOOT = .186 LBS/FT OF CROSS ROD

The modulus of elasticity will vary with span length due to the non-homogeneous make-up of composite material (see table).

LOAD / DEFLECTION TABLEI-4000 1” BEARING BARS

AVAILABLE WIDTHS (CENTERS 1”)

WIDTH #BARS WIDTH #BARS WIDTH #BARS WIDTH #BARS WIDTH #BARS WIDTH #BARS WIDTH #BARS

2” 2 11” 11 20” 20 29” 29 38” 38 47” 47 56” 56 3” 3 12” 12 21” 21 30” 30 39” 39 48” 48 57” 57 4” 4 13” 13 22” 22 31” 31 40” 40 49” 49 58” 58 5” 5 14” 14 23” 23 32” 32 41” 41 50” 50 59” 59 6” 6 15” 15 24” 24 33” 33 42” 42 51” 51 60” 60 7” 7 16” 16 25” 25 34” 34 43” 43 52” 52 8” 8 17” 17 26” 26 35” 35 44” 44 53” 53 9” 9 18” 18 27” 27 36” 36 45” 45 54” 54 10” 10 19” 19 28” 28 37” 37 46” 46 55” 55

cu

Standard crossrods at 6” or 12” on center.Other spacings available on request.

BEARING BAR NO BARS BEARING BAR OPEN % OPEN APPROX. SERIES THICKNESS FT. WIDTH CENTER SPACE AREA WEIGHT RESIN COLOR

I-4000 1.000” 12 1.000” .400” 40% 3.4 LBS FRPE YELLOW PER OR OR SQ. FT. FRVE GRAY

∆u 0.001 0.001 0.002 0.002 0.003 0.004 0.005 0.006 0.009 0.012 0.024 0.030 0.036 0.048 0.060 0.073 15600 0.189 ∆c 0.001 0.002 0.003 0.004 0.005 0.006 0.008 0.010 0.015 0.019 0.039 0.048 0.058 0.077 0.097 0.116 7800 0.151

∆u 0.003 0.006 0.008 0.011 0.014 0.017 0.022 0.028 0.042 0.056 0.112 0.139 0.167 0.223 0.279 0.335 7431 0.415 ∆c 0.003 0.006 0.009 0.012 0.015 0.018 0.024 0.030 0.045 0.060 0.119 0.149 0.179 0.238 0.298 0.357 5573 0.332

∆u 0.008 0.017 0.025 0.033 0.041 0.050 0.066 0.083 0.124 0.166 0.332 0.415 0.498 0.664 4350 0.722 ∆c 0.007 0.013 0.020 0.027 0.033 0.040 0.053 0.066 0.100 0.133 0.265 0.332 0.398 0.531 0.664 4350 0.577

∆u 0.019 0.039 0.058 0.077 0.096 0.116 0.154 0.193 0.289 0.386 2784 1.074 ∆c 0.012 0.025 0.037 0.049 0.062 0.074 0.099 0.123 0.185 0.247 0.494 0.617 3480 0.859

∆u 0.038 0.077 0.115 0.153 0.192 0.230 0.307 0.383 0.575 1933 1.482 ∆c 0.020 0.041 0.061 0.082 0.102 0.123 0.164 0.205 0.307 0.409 2900 1.186

∆u 0.070 0.141 0.211 0.281 0.352 0.422 0.563 0.703 1414 1.988 ∆c 0.032 0.064 0.096 0.129 0.161 0.193 0.257 0.321 0.482 0.643 2474 1.590

∆u 0.118 0.235 0.353 0.470 0.588 0.705 1078 2.534 ∆c 0.047 0.094 0.141 0.188 0.235 0.282 0.376 0.470 2155 2.026

3.78

4.15

4.41

4.63

4.83

4.88

4.98

12

18

24

30

36

42

48

SAFE LOAD 2:1 SAFETY E x 106

FACTOR DEFLECTION PSI SPANINCH-

LOAD 50 100 150 200 250 300 400 500 750 1000 2000 2500 3000 4000 5000 6000

DEFLECTION AND SAFE LOAD DATA WAS CALCULATED FROM LAB TESTS CONDUCTED BY STRONGWELL - CHATFIELD DIVISION.

c IS CONCENTRATED LOAD LBS/FT OF WIDTH∆c IS DEFLECTION UNDER CONCENTRATED LOADu IS UNIFORM LOAD LBS/FT2

∆u IS DEFLECTION UNDER UNIFORM LOAD

NOTE: The red line ( ) indicates at what point the load weight has ≤ .25" deflection.

Page 257: Manual Completo

12-15

Section 12Fiberglass Grating

Copyright © 2014 Strongwell CorporationAll Rights Reserved Rev.1014

DURAGRID® I-6000 1¼"

BEARING BAR NO BARS BEARING BAR OPEN % OPEN APPROX. SERIES THICKNESS FT. WIDTH CENTER SPACE AREA WEIGHT RESIN COLOR

I-6000 1.250” 8 1.500” .900” 60% 2.7 LBS FRVE YELLOW PER OR SQ. FT. GRAY

A = 2.816 IN2/FT OF WIDTH S = 0.870 IN3/FT OF WIDTH

I = 0.544 IN4/FT OF WIDTH

WEIGHT/FOOT = .290 LBS/FT OF BAR

WEIGHT/FOOT = .186 LBS/FT OF CROSS ROD

The modulus of elasticity will vary with span length due to the non-homogeneous make-up of composite material (see table).

LOAD / DEFLECTION TABLEI-6000 1¼” BEARING BARS

cu

Standard crossrods at 6” or 12” on center.Other spacings available on request.

3.55

3.82

4.05

4.21

4.35

4.45

4.55

4.61

4.66

12

18

24

30

36

42

48

54

60

SAFE LOAD 2:1 SAFETY E x 106

FACTOR DEFLECTION PSI SPANINCHES

LOAD 50 100 150 200 250 300 400 500 750 1000 2000 3000 4000 5000

∆u 0.001 0.001 0.002 0.002 0.003 0.003 0.005 0.006 0.009 0.012 0.023 0.035 0.047 0.058 14001 0.163 ∆c 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.009 0.014 0.019 0.037 0.056 0.075 0.093 7000 0.130

∆u 0.003 0.005 0.008 0.011 0.014 0.016 0.022 0.027 0.041 0.055 0.110 0.164 0.219 0.274 6388 0.350 ∆c 0.003 0.006 0.009 0.012 0.015 0.018 0.023 0.029 0.044 0.058 0.117 0.175 0.234 0.292 4792 0.280

∆u 0.008 0.016 0.025 0.033 0.041 0.049 0.065 0.082 0.123 0.163 0.327 0.490 0.654 3650 0.596 ∆c 0.007 0.013 0.020 0.026 0.033 0.039 0.052 0.065 0.098 0.131 0.261 0.392 0.523 0.654 3650 0.477

∆u 0.019 0.038 0.058 0.077 0.096 0.115 0.154 0.192 0.288 0.384 2315 0.888 ∆c 0.012 0.025 0.037 0.049 0.061 0.074 0.098 0.123 0.184 0.246 0.491 2893 0.711

∆u 0.039 0.077 0.116 0.154 0.193 0.231 0.308 0.385 0.578 1592 1.226 ∆c 0.021 0.041 0.062 0.082 0.103 0.123 0.164 0.205 0.308 0.411 2389 0.981

∆u 0.070 0.139 0.209 0.279 0.349 0.418 0.558 1151 1.606 ∆c 0.032 0.064 0.096 0.128 0.159 0.191 0.255 0.319 0.478 0.638 2015 1.285

∆u 0.116 0.233 0.349 0.465 0.582 868 2.020 ∆c 0.047 0.093 0.140 0.186 0.233 0.279 0.372 0.465 1735 1.615

∆u 0.184 0.368 0.552 671 2.470 ∆c 0.065 0.131 0.196 0.262 0.327 0.392 0.523 0.654 1511 1.977

∆u 0.277 0.555 531 2.944 ∆c 0.089 0.178 0.266 0.355 0.444 0.533 1327 2.355

DEFLECTION AND SAFE LOAD DATA WAS CALCULATED FROM LAB TESTS CONDUCTED BY STRONGWELL - CHATFIELD DIVISION.

c IS CONCENTRATED LOAD LBS/FT OF WIDTH∆c IS DEFLECTION UNDER CONCENTRATED LOADu IS UNIFORM LOAD LBS/FT2

∆u IS DEFLECTION UNDER UNIFORM LOAD

AVAILABLE WIDTHS (CENTERS 1.5”)

WIDTH #BARS WIDTH #BARS WIDTH #BARS WIDTH #BARS WIDTH #BARS WIDTH #BARS

3” 2 13.5” 9 22.5” 15 33” 22 42” 28 52.5” 35 4.5” 3 15” 10 24” 16 34.5” 23 43.5” 29 54” 36 6” 4 16.5” 11 25.5” 17 36” 24 45” 30 55.5” 37 7.5” 5 18” 12 27” 18 37.5” 25 46.5” 31 57” 38 9” 6 19.5” 13 28.5” 19 39” 26 48” 32 58.5” 39 10.5” 7 21” 14 30” 20 40.5” 27 49.5” 33 60” 40 12” 8 31.5” 21 51” 34

NOTE: The red line ( ) indicates at what point the load weight has ≤ .25" deflection.

Page 258: Manual Completo

12-16

Section 12Fiberglass Grating

Copyright © 2014 Strongwell CorporationAll Rights ReservedRev.1014

DURAGRID® I-4000 1¼"

BEARING BAR NO BARS BEARING BAR OPEN % OPEN APPROX. SERIES THICKNESS FT. WIDTH CENTER SPACE AREA WEIGHT RESIN COLOR

I-4000 1.250” 12 1.000” .400” 40% 3.9 LBS FRVE YELLOW PER OR SQ. FT. GRAY

The modulus of elasticity will vary with span length due to the non-homogeneous make-up of composite material (see table).

LOAD / DEFLECTION TABLEI-4000 1¼” BEARING BARS

AVAILABLE WIDTHS (CENTERS 1”)

WIDTH #BARS WIDTH #BARS WIDTH #BARS WIDTH #BARS WIDTH #BARS WIDTH #BARS WIDTH #BARS

2” 2 11” 11 20” 20 29” 29 38” 38 47” 47 56” 56 3” 3 12” 12 21” 21 30” 30 39” 39 48” 48 57” 57 4” 4 13” 13 22” 22 31” 31 40” 40 49” 49 58” 58 5” 5 14” 14 23” 23 32” 32 41” 41 50” 50 59” 59 6” 6 15” 15 24” 24 33” 33 42” 42 51” 51 60” 60 7” 7 16” 16 25” 25 34” 34 43” 43 52” 52 8” 8 17” 17 26” 26 35” 35 44” 44 53” 53 9” 9 18” 18 27” 27 36” 36 45” 45 54” 54 10” 10 19” 19 28” 28 37” 37 46” 46 55” 55

cu

DEFLECTION AND SAFE LOAD DATA WAS CALCULATED FROM LAB TESTS CONDUCTED BY STRONGWELL - CHATFIELD DIVISION.

c IS CONCENTRATED LOAD LBS/FT OF WIDTH∆c IS DEFLECTION UNDER CONCENTRATED LOADu IS UNIFORM LOAD LBS/FT2

∆u IS DEFLECTION UNDER UNIFORM LOAD

A = 4.224 IN2/FT OF WIDTH S = 1.306 IN3/FT OF WIDTH

I = 0.816 IN4/FT OF WIDTH

WEIGHT/FOOT = .290 LBS/FT OF BAR

WEIGHT/FOOT = .186 LBS/FT OF CROSS ROD

∆u 0.000 0.001 0.001 0.002 0.002 0.002 0.003 0.004 0.006 0.008 0.016 0.023 0.031 0.039 0.047 0.054 21000 0.163 ∆c 0.001 0.001 0.002 0.002 0.003 0.004 0.005 0.006 0.009 0.012 0.025 0.037 0.050 0.062 0.075 0.087 10500 0.130

∆u 0.002 0.004 0.005 0.007 0.009 0.011 0.015 0.018 0.027 0.037 0.073 0.110 0.146 0.183 0.219 0.256 9582 0.350 ∆c 0.002 0.004 0.006 0.008 0.010 0.012 0.016 0.019 0.029 0.039 0.078 0.117 0.156 0.195 0.234 0.273 7187 0.280

∆u 0.005 0.011 0.016 0.022 0.027 0.033 0.044 0.054 0.082 0.109 0.218 0.327 0.436 0.545 0.654 5475 0.596 ∆c 0.004 0.009 0.013 0.017 0.022 0.026 0.035 0.044 0.065 0.087 0.174 0.261 0.349 0.436 0.523 0.610 5475 0.477

∆u 0.013 0.026 0.038 0.051 0.064 0.077 0.102 0.128 0.192 0.256 0.512 3472 0.888 ∆c 0.008 0.016 0.025 0.033 0.041 0.049 0.065 0.082 0.123 0.164 0.327 0.491 0.655 4340 0.711

∆u 0.026 0.051 0.077 0.103 0.128 0.154 0.205 0.257 0.385 0.513 2388 1.226 ∆c 0.014 0.027 0.041 0.055 0.068 0.082 0.110 0.137 0.205 0.274 0.548 3583 0.981

∆u 0.046 0.093 0.139 0.186 0.232 0.279 0.372 0.465 0.697 1727 1.606 ∆c 0.021 0.043 0.064 0.085 0.106 0.128 0.170 0.213 0.319 0.425 3023 1.285

∆u 0.078 0.155 0.233 0.310 0.388 0.465 0.621 1302 2.020 ∆c 0.031 0.062 0.093 0.124 0.155 0.186 0.248 0.310 0.465 0.621 2603 1.615

∆u 0.123 0.245 0.368 0.491 0.613 0.736 1007 2.470 ∆c 0.044 0.087 0.131 0.174 0.218 0.262 0.349 0.436 0.654 2267 1.977

∆u 0.185 0.370 0.555 0.740 796 2.944 ∆c 0.059 0.118 0.178 0.237 0.296 0.355 0.473 0.592 1990 2.355

12

18

24

30

36

42

48

54

60

3.55

3.82

4.05

4.21

4.35

4.45

4.55

4.61

4.66

SAFE LOAD 2:1 SAFETY E x 106

FACTOR DEFLECTION PSI

SPANINCHES

LOAD 50 100 150 200 250 300 400 500 750 1000 2000 3000 4000 5000 6000 7000

Standard crossrods at 6” or 12” on center.Other spacings available on request.

NOTE: The red line ( ) indicates at what point the load weight has ≤ .25" deflection.

Page 259: Manual Completo

12-17

Section 12Fiberglass Grating

Copyright © 2014 Strongwell CorporationAll Rights Reserved Rev.1014

DURAGRID® I-4000 1½"

The modulus of elasticity will vary with span length due to the non-homogeneous make-up of composite material (see table).

LOAD / DEFLECTION TABLEI-4000 1½” BEARING BARS

AVAILABLE WIDTHS (CENTERS 1”)

WIDTH #BARS WIDTH #BARS WIDTH #BARS WIDTH #BARS WIDTH #BARS WIDTH #BARS WIDTH #BARS

2” 2 11” 11 20” 20 29” 29 38” 38 47” 47 56” 56 3” 3 12” 12 21” 21 30” 30 39” 39 48” 48 57” 57 4” 4 13” 13 22” 22 31” 31 40” 40 49” 49 58” 58 5” 5 14” 14 23” 23 32” 32 41” 41 50” 50 59” 59 6” 6 15” 15 24” 24 33” 33 42” 42 51” 51 60” 60 7” 7 16” 16 25” 25 34” 34 43” 43 52” 52 8” 8 17” 17 26” 26 35” 35 44” 44 53” 53 9” 9 18” 18 27” 27 36” 36 45” 45 54” 54 10” 10 19” 19 28” 28 37” 37 46” 46 55” 55

cu

BEARING BAR NO BARS BEARING BAR OPEN % OPEN APPROX. SERIES THICKNESS FT. WIDTH CENTER SPACE AREA WEIGHT RESIN COLOR

I-4000 1.500” 12 1.000” .400” 40% 4.2 LBS FRPE YELLOW PER OR OR SQ. FT. FRVE GRAY

Standard crossrods at 6” or 12” on center.Other spacings available on request.

∆u 0.000 0.000 0.001 0.001 0.001 0.001 0.002 0.002 0.003 0.004 0.009 0.013 0.017 0.021 0.026 0.030 0.034 0.038 26400 0.113 ∆c 0.000 0.001 0.001 0.001 0.002 0.002 0.003 0.003 0.005 0.007 0.014 0.020 0.027 0.034 0.041 0.048 0.055 0.061 13200 0.090

∆u 0.001 0.002 0.003 0.004 0.005 0.006 0.008 0.010 0.015 0.020 0.040 0.061 0.081 0.101 0.121 0.141 0.162 0.182 11734 0.237 ∆c 0.001 0.002 0.003 0.004 0.005 0.006 0.009 0.011 0.016 0.022 0.043 0.065 0.086 0.108 0.129 0.151 0.172 0.194 8800 0.190

∆u 0.003 0.006 0.009 0.012 0.015 0.018 0.024 0.030 0.046 0.061 0.122 0.183 0.244 0.305 0.366 0.427 0.488 0.549 6600 0.403 ∆c 0.002 0.005 0.007 0.010 0.012 0.015 0.020 0.024 0.037 0.049 0.098 0.146 0.195 0.244 0.293 0.342 0.390 0.439 6600 0.322

∆u 0.007 0.014 0.022 0.029 0.036 0.043 0.057 0.072 0.108 0.143 0.287 0.430 0.574 0.717 4160 0.597 ∆c 0.005 0.009 0.014 0.018 0.023 0.028 0.037 0.046 0.069 0.092 0.184 0.276 0.367 0.459 0.551 0.643 5200 0.478

∆u 0.015 0.029 0.044 0.058 0.073 0.087 0.116 0.145 0.218 0.291 0.582 2844 0.827 ∆c 0.008 0.016 0.023 0.031 0.039 0.047 0.062 0.078 0.116 0.155 0.310 0.466 0.621 4267 0.662

∆u 0.026 0.053 0.079 0.106 0.132 0.159 0.211 0.264 0.396 0.528 2041 1.079 ∆c 0.012 0.024 0.036 0.048 0.060 0.072 0.097 0.121 0.181 0.242 0.483 0.725 3571 0.863

∆u 0.044 0.089 0.133 0.178 0.222 0.266 0.355 0.444 0.666 1525 1.354 ∆c 0.018 0.036 0.053 0.071 0.089 0.107 0.142 0.178 0.266 0.355 3050 1.083

∆u 0.070 0.141 0.211 0.281 0.352 0.422 0.563 0.704 1165 1.639 ∆c 0.025 0.050 0.075 0.100 0.125 0.150 0.200 0.250 0.375 0.500 2622 1.312

∆u 0.107 0.213 0.320 0.426 0.533 0.639 912 1.944 ∆c 0.034 0.068 0.102 0.136 0.171 0.205 0.273 0.341 0.512 0.682 2280 1.555

∆u 0.155 0.311 0.466 0.621 727 2.259 ∆c 0.045 0.090 0.136 0.181 0.226 0.271 0.362 0.452 0.678 2000 1.808

12

18

24

30

36

42

48

54

60

66

3.79

4.05

4.24

4.40

4.50

4.59

4.66

4.71

4.74

4.76

A = 4.704 IN2/FT OF WIDTH S = 1.860 IN3/FT OF WIDTH

I = 1.392 IN4/FT OF WIDTH

WEIGHT/FOOT = .319 LBS/FT OF BAR

WEIGHT/FOOT = .186 LBS/FT OF CROSS ROD

SAFE LOAD 2:1 SAFETY E x 106

FACTOR DEFLECTION PSI

SPANINCHES

LOAD 50 100 150 200 250 300 400 500 750 1000 2000 3000 4000 5000 6000 7000 8000 9000

DEFLECTION AND SAFE LOAD DATA WAS CALCULATED FROM LAB TESTS CONDUCTED BY STRONGWELL - CHATFIELD DIVISION.

c IS CONCENTRATED LOAD LBS/FT OF WIDTH∆c IS DEFLECTION UNDER CONCENTRATED LOADu IS UNIFORM LOAD LBS/FT2

∆u IS DEFLECTION UNDER UNIFORM LOAD

NOTE: The red line ( ) indicates at what point the load weight has ≤ .25" deflection.

Page 260: Manual Completo

12-18

Section 12Fiberglass Grating

Copyright © 2014 Strongwell CorporationAll Rights ReservedRev.1014

DURAGRID® T-3300 2"

The modulus of elasticity will vary with span length due to the non-homogeneous make-up of composite material (see table).

LOAD / DEFLECTION TABLET-3300 2” BEARING BARS

DEFLECTION AND SAFE LOAD DATA WAS CALCULATED FROM LAB TESTS CONDUCTED BY STRONGWELL - CHATFIELD DIVISION.

c IS CONCENTRATED LOAD LBS/FT OF WIDTH∆c IS DEFLECTION UNDER CONCENTRATED LOADu IS UNIFORM LOAD LBS/FT2

∆u IS DEFLECTION UNDER UNIFORM LOADc

u

Standard crossrods at 6” or 12” on center.Other spacings available on request.

1.50.6 0.9

1.0 0.5

2 .0

0.16

BEARING BAR NO BARS BEARING BAR OPEN % OPEN APPROX. SERIES THICKNESS FT. WIDTH CENTER SPACE AREA WEIGHT RESIN COLOR

T-3300 2.000” 8 1.500” .500” 33% 3.9 LBS FRPE YELLOW PER OR OR SQ. FT. FRVE GRAY

A = 4.338 IN2/FT OF WIDTH ST = 2.541 IN3/FT OF WIDTH

I = 2.234 IN4/FT OF WIDTH SB = 1.994 IN3/FT OF WIDTH

WEIGHT/FOOT = .446 LBS/FT OF BAR

WEIGHT/FOOT = .186 LBS/FT OF CROSS ROD

∆u 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.002 0.003 0.005 0.007 0.008 0.011 0.013 0.016 0.019 0.021 15110 0.040 ∆c 0.000 0.000 0.001 0.001 0.001 0.001 0.002 0.002 0.003 0.004 0.008 0.011 0.013 0.017 0.021 0.025 0.030 0.034 7555 0.032

∆u 0.001 0.001 0.002 0.003 0.003 0.004 0.005 0.007 0.010 0.013 0.026 0.033 0.039 0.052 0.065 0.078 0.091 0.104 10048 0.131 ∆c 0.001 0.001 0.002 0.003 0.003 0.004 0.006 0.007 0.010 0.014 0.028 0.035 0.042 0.056 0.070 0.083 0.097 0.111 7555 0.105

∆u 0.002 0.004 0.006 0.008 0.010 0.012 0.016 0.020 0.030 0.040 0.080 0.100 0.121 0.161 0.201 0.241 0.281 0.321 7555 0.304 ∆c 0.002 0.003 0.005 0.006 0.008 0.010 0.013 0.016 0.024 0.032 0.064 0.080 0.096 0.129 0.161 0.193 0.225 0.257 7555 0.243

∆u 0.005 0.010 0.014 0.019 0.024 0.029 0.038 0.048 0.072 0.096 0.192 0.240 0.288 0.384 0.480 0.576 0.672 4835 0.464 ∆c 0.003 0.006 0.009 0.012 0.015 0.018 0.025 0.031 0.046 0.061 0.123 0.154 0.184 0.246 0.307 0.368 0.430 0.491 6045 0.371

∆u 0.010 0.020 0.029 0.039 0.049 0.059 0.078 0.098 0.146 0.195 0.390 0.488 0.586 3358 0.655 ∆c 0.005 0.010 0.016 0.021 0.026 0.031 0.042 0.052 0.078 0.104 0.208 0.260 0.312 0.416 0.520 0.625 5037 0.524

∆u 0.018 0.036 0.053 0.071 0.089 0.107 0.142 0.178 0.267 0.356 2467 0.877 ∆c 0.008 0.016 0.024 0.033 0.041 0.049 0.065 0.081 0.122 0.163 0.325 0.406 0.488 0.650 4317 0.702

∆u 0.030 0.059 0.089 0.119 0.149 0.178 0.238 0.297 0.446 0.594 1889 1.122 ∆c 0.012 0.024 0.036 0.048 0.059 0.071 0.095 0.119 0.178 0.238 0.475 0.594 3778 0.898

∆u 0.047 0.094 0.140 0.187 0.234 0.281 0.375 0.468 1493 1.398 ∆c 0.017 0.033 0.050 0.067 0.083 0.100 0.133 0.166 0.250 0.333 0.666 3358 1.118

∆u 0.070 0.141 0.211 0.282 0.352 0.422 0.563 1209 1.703 ∆c 0.023 0.045 0.068 0.090 0.113 0.135 0.180 0.225 0.338 0.451 3022 1.362

∆u 0.102 0.204 0.306 0.408 0.510 0.612 999 2.037 ∆c 0.030 0.059 0.089 0.119 0.148 0.178 0.237 0.297 0.445 0.593 2747 1.629

∆u 0.142 0.285 0.427 0.570 839 2.391 ∆c 0.038 0.076 0.114 0.152 0.190 0.228 0.304 0.380 0.570 2519 1.914

∆u 0.195 0.390 0.585 715 2.788 ∆c 0.048 0.096 0.144 0.192 0.240 0.288 0.384 0.480 2325 2.232

∆u 0.260 0.520 617 3.209 ∆c 0.059 0.119 0.178 0.238 0.297 0.357 0.475 0.594 2159 2.566

12

18

24

30

36

42

48

54

60

66

72

78

84

3.80

3.91

4.01

4.10

4.18

4.25

4.34

4.41

4.47

4.52

4.58

4.61

4.65

SAFE LOAD 2:1 SAFETY E x 106

FACTOR DEFLECTION PSI

SPANINCHES

LOAD 50 100 150 200 250 300 400 500 750 1000 2000 2500 3000 4000 5000 6000 7000 8000

AVAILABLE WIDTHS (CENTERS 1.5”)WIDTH #BARS WIDTH #BARS WIDTH #BARS WIDTH #BARS WIDTH #BARS WIDTH #BARS

3” 2 13.5” 9 22.5” 15 33” 22 42” 28 52.5” 35 4.5” 3 15” 10 24” 16 34.5” 23 43.5” 29 54” 36 6” 4 16.5” 11 25.5” 17 36” 24 45” 30 55.5” 37 7.5” 5 18” 12 27” 18 37.5” 25 46.5” 31 57” 38 9” 6 19.5” 13 28.5” 19 39” 26 48” 32 58.5” 39 10.5” 7 21” 14 30” 20 40.5” 27 49.5” 33 60” 40 12” 8 31.5” 21 51” 34

NOTE: The red line ( ) indicates at what point the load weight has ≤ .25" deflection.

Page 261: Manual Completo

12-19

Section 12Fiberglass Grating

Copyright © 2014 Strongwell CorporationAll Rights Reserved Rev.1014

DURAGRID® ECONOMY 5000 1"

The modulus of elasticity will vary with span length due to the non-homogeneous make-up of composite material (see table). Suggested max. span continuous 3’-0.

LOAD / DEFLECTION TABLEET-5000 1” BEARING BARS

DEFLECTION AND SAFE LOAD DATA WAS CALCULATED FROM LAB TESTS CONDUCTED BY STRONGWELL - CHATFIELD DIVISION.

c IS CONCENTRATED LOAD LBS/FT OF WIDTH∆c IS DEFLECTION UNDER CONCENTRATED LOADu IS UNIFORM LOAD LBS/FT2

∆u IS DEFLECTION UNDER UNIFORM LOAD cu

Standard crossrods at 6” on center.Other spacings available on request.

2.00.375 1.625

1.0 1.0

1.0

0.125

BEARING BAR NO BARS BEARING BAR OPEN % OPEN APPROX. SERIES THICKNESS FT. WIDTH CENTER SPACE AREA WEIGHT RESIN COLOR

ET-5000 1.000” 6 2.000” 1.00” 50% 1.6 LBS FRVE GRAY PER SQ. FT.

12

18

24

30

36

42

2.99

3.09

3.20

3.30

3.40

3.51

∆u 0.002 0.004 0.006 0.008 0.010 0.011 0.015 0.019 0.029 0.038 0.076 4766 0.182 ∆c 0.003 0.006 0.009 0.012 0.015 0.018 0.024 0.031 0.046 0.061 0.122 2383 0.146

∆u 0.009 0.019 0.028 0.037 0.047 0.056 0.075 0.094 0.140 0.187 0.374 2144 0.401 ∆c 0.010 0.020 0.030 0.040 0.050 0.060 0.080 0.100 0.150 0.200 0.399 1609 0.321

∆u 0.029 0.057 0.086 0.114 0.143 0.171 0.228 0.286 0.428 0.571 1221 0.697 ∆c 0.023 0.046 0.069 0.091 0.114 0.137 0.183 0.228 0.343 0.457 1221 0.558

∆u 0.068 0.135 0.203 0.270 0.338 0.406 0.541 0.676 791 1.069 ∆c 0.043 0.087 0.130 0.173 0.216 0.260 0.346 0.433 0.649 989 0.856

∆u 0.136 0.272 0.408 0.544 0.680 556 1.513 ∆c 0.073 0.145 0.218 0.290 0.363 0.435 0.580 0.726 834 1.210

∆u 0.244 0.488 0.732 413 2.017 ∆c 0.112 0.223 0.335 0.446 0.558 0.670 723 1.614

A = 1.596 IN2/FT OF WIDTH ST = 0.530 IN3/FT OF WIDTH

I = 0.197 IN4/FT OF WIDTH SB = 0.314 IN3/FT OF WIDTH

WEIGHT/FOOT = .207 LBS/FT OF BAR

WEIGHT/FOOT = .186 LBS/FT OF CROSS ROD

SAFE LOAD 2:1 SAFETY E x 106

FACTOR DEFLECTION PSI

SPANINCHES

LOAD 50 100 150 200 250 300 400 500 750 1000 2000

NOTE: The red line ( ) indicates at what point the load weight has ≤ .25" deflection.

Page 262: Manual Completo

12-20

Section 12Fiberglass Grating

Copyright © 2014 Strongwell CorporationAll Rights ReservedRev.1014

DURAGRID® ECONOMY 5000 1½"

BEARING BAR NO BARS BEARING BAR OPEN % OPEN APPROX. SERIES THICKNESS FT. WIDTH CENTER SPACE AREA WEIGHT RESIN COLOR

ET-5000 1.500” 6 2.000” 1.00” 50% 1.9 LBS FRVE GRAY PER SQ. FT.

Standard crossrods at 6” on center.Other spacings available on request.

The modulus of elasticity will vary with span length due to the non-homogeneous make-up of composite material (see table). Suggested max. span continuous 4’-0.

LOAD / DEFLECTION TABLEET-5000 1½” BEARING BARS

DEFLECTION AND SAFE LOAD DATA WAS CALCULATED FROM LAB TESTS CONDUCTED BY STRONGWELL - CHATFIELD DIVISION.

c IS CONCENTRATED LOAD LBS/FT OF WIDTH∆c IS DEFLECTION UNDER CONCENTRATED LOADu IS UNIFORM LOAD LBS/FT2

∆u IS DEFLECTION UNDER UNIFORM LOAD cu

2.00.375 1.625

1.0 1.0

1.5

0.125

∆u 0.001 0.001 0.002 0.003 0.003 0.004 0.006 0.007 0.010 0.014 0.028 0.034 0.041 0.055 0.069 10322 0.142 ∆c 0.001 0.002 0.003 0.004 0.006 0.007 0.009 0.011 0.017 0.022 0.044 0.055 0.066 0.088 0.110 5161 0.114

∆u 0.003 0.007 0.010 0.014 0.017 0.020 0.027 0.034 0.051 0.068 0.136 0.170 0.204 0.273 0.341 4643 0.316 ∆c 0.004 0.007 0.011 0.015 0.018 0.022 0.029 0.036 0.055 0.073 0.145 0.182 0.218 0.291 0.364 3482 0.253

∆u 0.011 0.021 0.032 0.042 0.053 0.063 0.084 0.105 0.158 0.211 0.421 0.526 0.632 2643 0.556 ∆c 0.008 0.017 0.025 0.034 0.042 0.051 0.067 0.084 0.126 0.168 0.337 0.421 0.505 0.674 2643 0.445

∆u 0.025 0.050 0.076 0.101 0.126 0.151 0.202 0.252 0.378 0.504 1712 0.863 ∆c 0.016 0.032 0.048 0.065 0.081 0.097 0.129 0.161 0.242 0.323 0.645 2139 0.690

∆u 0.051 0.102 0.153 0.204 0.256 0.307 0.409 0.511 0.767 1202 1.229 ∆c 0.027 0.055 0.082 0.109 0.136 0.164 0.218 0.273 0.409 0.545 1804 0.984

∆u 0.093 0.185 0.278 0.371 0.463 0.556 0.742 894 1.657 ∆c 0.042 0.085 0.127 0.169 0.212 0.254 0.339 0.424 0.636 1564 1.325

∆u 0.155 0.310 0.464 0.619 692 2.143 ∆c 0.062 0.124 0.186 0.248 0.310 0.372 0.495 0.619 1384 1.714

12

18

24

30

36

42

48

2.93

3.00

3.07

3.13

3.20

3.27

3.34

A = 1.968 IN2/FT OF WIDTH ST = 0.950 IN3/FT OF WIDTH

I = 0.557 IN4/FT OF WIDTH SB = 0.609 IN3/FT OF WIDTH

WEIGHT/FOOT = .250 LBS/FT OF BAR

WEIGHT/FOOT = .186 LBS./FT OF CROSS ROD

SAFE LOAD 2:1 SAFETY E x 106

FACTOR DEFLECTION PSI

SPANINCHES

LOAD 50 100 150 200 250 300 400 500 750 1000 2000 2500 3000 4000 5000

NOTE: The red line ( ) indicates at what point the load weight has ≤ .25" deflection.

Page 263: Manual Completo

12-21

Section 12Fiberglass Grating

Copyright © 2014 Strongwell CorporationAll Rights Reserved Rev.1014

LOAD / DEFLECTION TABLEPHENOLIC I-6000 1½” BEARING BARS

DURAGRID® PHENOLIC I-6000 1½"

A = 3.114 IN2/FT OF WIDTH S = 1.176 IN3/FT OF WIDTH

I = 0.882 IN4/FT OF WIDTH

The modulus of elasticity will vary with span length due to the non-homogeneous make-up of composite material (see table).

cu

BEARING BAR NO BARS BEARING BAR OPEN % OPEN APPROX. SERIES THICKNESS FT. WIDTH CENTER SPACE AREA WEIGHT RESIN COLOR

I-6000 1.50” 8.0 1.50” 0.90” 60% 3.4 LBS PHENOLIC BROWN PER SQ. FT.

AVAILABLE WIDTHS (CENTERS 1.5")

WIDTH #BARS WIDTH #BARS WIDTH #BARS WIDTH #BARS WIDTH #BARS WIDTH #BARS

3” 2 13.5” 9 22.5” 15 33” 22 42” 28 52.5” 35 4.5” 3 15” 10 24” 16 34.5” 23 43.5” 29 54” 36 6” 4 16.5” 11 25.5” 17 36” 24 45” 30 55.5” 37 7.5” 5 18” 12 27” 18 37.5” 25 46.5” 31 57” 38 9” 6 19.5” 13 28.5” 19 39” 26 48” 32 58.5” 39 10.5” 7 21” 14 30” 20 40.5” 27 49.5” 33 60” 40 12” 8 31.5” 21 51” 34

SPAN

INCHES

LOADSAFE

LOAD, 2:1 SAFETY FACTOR

DEFLECTIONAT SAFE

LOADE X 106

PSI50 100 150 200 250 300 400 500 750 1000 2000 3000 4000 5000 6000

24∆u 0.004 0.008 0.012 0.015 0.019 0.023 0.031 0.038 0.058 0.077 0.154 0.231 0.308 0.385 0.461 5,583 0.429

5.31∆c 0.003 0.006 0.009 0.012 0.015 0.018 0.025 0.031 0.046 0.062 0.123 0.185 0.246 0.308 0.369 5,583 0.343

30∆u 0.009 0.018 0.027 0.036 0.045 0.053 0.071 0.089 0.134 0.178 0.356 3,573 0.636

5.60∆c 0.006 0.011 0.017 0.023 0.028 0.034 0.046 0.057 0.085 0.114 0.228 0.342 0.456 4,467 0.509

36∆u 0.018 0.035 0.053 0.071 0.088 0.106 0.141 0.176 0.265 0.353 2,482 0.876

5.86∆c 0.009 0.019 0.028 0.038 0.047 0.056 0.075 0.094 0.141 0.188 0.376 3,722 0.700

42∆u 0.032 0.064 0.095 0.127 0.159 0.191 0.254 0.318 0.477 1,823 1.160

6.02∆c 0.015 0.029 0.044 0.058 0.073 0.087 0.116 0.145 0.218 0.291 3,191 0.928

48∆u 0.053 0.107 0.160 0.213 0.266 0.320 0.426 1,396 1.488

6.13∆c 0.021 0.043 0.064 0.085 0.107 0.128 0.171 0.213 0.320 0.426 2,792 1.190

54∆u 0.084 0.169 0.253 0.338 0.422 0.506 1,103 1.862

6.20∆c 0.030 0.060 0.090 0.120 0.150 0.180 0.240 0.300 0.450 2,482 1.490

60∆u 0.128 0.256 0.383 893 2.283

6.24∆c 0.041 0.082 0.123 0.164 0.205 0.245 0.327 0.409 2,233 1.827

66∆u 0.186 0.372 738 2.749

6.27∆c 0.054 0.108 0.163 0.217 0.271 0.325 0.433 2,030 2.200

72∆u 0.263 620 3.260

6.29∆c 0.070 0.140 0.210 0.280 0.351 0.421 1,861 2.610

DEFLECTION AND SAFE LOAD DATA WAS CALCULATED FROM LAB TESTS CONDUCTED BY STRONGWELL - CHATFIELD DIVISION.

c IS CONCENTRATED LOAD LBS/FT OF WIDTH∆c IS DEFLECTION UNDER CONCENTRATED LOADu IS UNIFORM LOAD LBS/FT2

∆u IS DEFLECTION UNDER UNIFORM LOAD

Standard crossrods at 6” on center.Other spacings available on request.

Please check the DURAGRID® PHENOLIC Fire Integrity Composite Grating Brochure for additional information.

NOTE: The red line ( ) indicates at what point the load weight has ≤ .25" deflection.

Page 264: Manual Completo

12-22

Section 12Fiberglass Grating

Copyright © 2014 Strongwell CorporationAll Rights ReservedRev.1014

DURAGRID® Heavy Duty Grating

DURAGRID® HD-6000 1" Bearing BarA = 4.8 in2/ft. of width I = 0.40 in4/ft. of width S = 0.80 in3/ft. of width

The following load tables are for the solid bar heavy duty grating designed to take heavy wheel traffic such as forklifts, tow motors and truck traffic. Due to the variety of wheel types and loading, it is recommended that you contact Strongwell—Chatfield Division at (507) 867-3479 to determine the series of heavy duty grating needed for your application.

12

18

24

30

36

42

48

54

5.08

5.73

5.83

5.95

5.99

6.02

6.03

6.07

SAFE LOAD 2:1 SAFETY E x 106

FACTOR DEFLECTION PSI

SPANINCHES

LOAD 100 200 300 500 1000 2000 3000 4000

∆u 0.001 0.002 0.003 0.006 0.011 0.022 0.033 0.044 4445 0.049 ∆c 0.002 0.004 0.005 0.009 0.018 0.035 0.053 0.071 4445 0.079

∆u 0.005 0.010 0.015 0.025 0.050 0.099 0.149 0.199 4285 0.213 ∆c 0.005 0.011 0.016 0.027 0.053 0.106 0.159 3857 0.204

∆u 0.015 0.031 0.046 0.077 0.154 0.309 2948 0.455 ∆c 0.012 0.025 0.037 0.062 0.123 0.247 2948 0.364

∆u 0.037 0.074 0.111 0.185 0.369 1543 0.570 ∆c 0.024 0.047 0.071 0.118 0.236 1928 0.456

∆u 0.076 0.152 0.228 0.380 1071 0.815 ∆c 0.041 0.081 0.122 0.203 0.406 1607 0.652

∆u 0.140 0.280 0.421 787 1.104 ∆c 0.064 0.128 0.192 0.320 0.641 1377 0.883

∆u 0.239 0.478 603 1.440 ∆c 0.096 0.191 0.287 0.478 1205 1.151

∆u 0.380 476 1.809 ∆c 0.135 0.270 0.405 0.676 1071 1.447

Series Bar Width Open Space % Open Area Approx Wt. (per sq. ft.) I-in4/ft. of Width S-in3/ft. of Width

HD 6000 .60 .90 60 4.9 0.40 0.80HD 5000 .60 .60 50 5.9 0.50 1.00HD 4000 .60 .40 40 7.0 0.60 1.20

1.5

0.6 0.9

1 .0

Multipliers for Series Other Than HD-6000HD 5000 - Multiply Load Table Deflection by 0.80HD 4000 - Multiply Load Table Deflection by 0.67

NOTE: The red line ( ) indicates at what point the load weight has ≤ .25" deflection.

Page 265: Manual Completo

12-23

Section 12Fiberglass Grating

Copyright © 2014 Strongwell CorporationAll Rights Reserved Rev.1014

DURAGRID® HD-6000 1-1/4" Bearing BarA = 6.0 in2/ft. of width I = 0.781 in4/ft. of width S = 1.24 in3/ft. of width

12

18

24

30

36

42

48

54

60

∆u 0.001 0.001 0.002 0.003 0.006 0.013 0.019 0.025 0.032 0.038 0.044 0.051 13760 0.087 ∆c 0.001 0.002 0.003 0.005 0.010 0.020 0.030 0.040 0.051 0.061 0.071 0.081 13760 0.139

∆u 0.003 0.005 0.008 0.013 0.027 0.053 0.080 0.107 0.134 0.160 0.187 7684 0.205 ∆c 0.003 0.006 0.009 0.014 0.028 0.057 0.085 0.114 0.142 0.171 0.199 7200 0.205

∆u 0.008 0.016 0.024 0.040 0.080 0.161 0.241 0.322 0.402 0.483 0.563 7032 0.566 ∆c 0.006 0.013 0.019 0.032 0.064 0.129 0.193 0.257 0.322 0.386 0.450 7032 0.453

∆u 0.019 0.038 0.057 0.095 0.190 0.381 0.571 4504 0.858 ∆c 0.012 0.024 0.037 0.061 0.122 0.244 0.366 0.487 0.609 5626 0.686

∆u 0.039 0.078 0.117 0.196 0.392 3125 1.224 ∆c 0.021 0.042 0.063 0.104 0.209 0.418 0.626 4680 0.977

∆u 0.072 0.144 0.216 0.360 2296 1.652 ∆c 0.033 0.066 0.099 0.164 0.329 0.658 4018 1.321

∆u 0.122 0.243 0.365 0.609 1758 2.140 ∆c 0.049 0.097 0.146 0.243 0.487 3516 1.712

∆u 0.195 0.390 0.585 1389 2.708 ∆c 0.069 0.139 0.208 0.347 3125 2.166

∆u 0.296 0.591 1125 3.326 ∆c 0.095 0.189 0.284 0.473 2812 2.660

SAFE LOAD 2:1 SAFETY E x 106

FACTOR DEFLECTION PSI

SPANINCHES

LOAD 100 200 300 500 1000 2000 3000 4000 5000 6000 7000 8000

4.56

5.46

5.73

5.91

5.96

6.01

6.06

6.06

6.09

Multipliers for Series Other Than HD-6000HD 5000 - Multiply Load Table Deflection by 0.80HD 4000 - Multiply Load Table Deflection by 0.67

Series Bar Width Open Space % Open Area Approx Wt. I-in4/ft. of Width S-in3/ft. of Width

HD 6000 .60 .90 60 5.9 .781 1.25HD 5000 .60 .60 50 7.2 .977 1.56HD 4000 .60 .40 40 8.5 1.172 1.88

1.5

0.6 0.9

1 .25

NOTE: The red line ( ) indicates at what point the load weight has ≤ .25" deflection.

Page 266: Manual Completo

12-24

Section 12Fiberglass Grating

Copyright © 2014 Strongwell CorporationAll Rights ReservedRev.1014

DURAGRID® HD-6000 1-1/2" Bearing BarA = 7.2 in2/ft. of width I = 1.35 in4/ft. of width S = 1.80 in3/ft. of width

Series Bar Width Open Space % Open Area Approx Wt. I-in4/ft. of Width S-in3/ft. of Width

HD 6000 .60 .90 60 7.0 1.35 1.80HD 5000 .60 .60 50 8.5 1.69 2.25HD 4000 .60 .40 40 10.1 2.02 2.70

12

18

24

30

36

42

48

54

60

66

72

Multipliers for Series Other Than HD-6000HD 5000 - Multiply Load Table Deflection by 0.80HD 4000 - Multiply Load Table Deflection by 0.67

SAFE LOAD 2:1 SAFETY E x 106

FACTOR DEFLECTION PSI

SPANINCHES

LOAD 100 200 300 500 1000 2000 3000 4000 5000 6000 7000 8000

1.5

0.6 0.9

1 .5

∆u 0.000 0.001 0.001 0.002 0.005 0.009 0.014 0.019 0.023 0.028 0.033 0.037 18880 0.088 ∆c 0.001 0.001 0.002 0.004 0.007 0.015 0.022 0.030 0.037 0.045 0.052 0.060 18880 0.141

∆u 0.002 0.004 0.005 0.009 0.018 0.035 0.053 0.070 0.088 0.106 0.123 0.141 9728 0.171 ∆c 0.002 0.004 0.006 0.009 0.019 0.038 0.056 0.075 0.094 0.113 0.132 0.150 9760 0.183

∆u 0.005 0.010 0.015 0.026 0.051 0.103 0.154 0.205 0.256 0.308 0.359 0.410 9500 0.487 ∆c 0.004 0.008 0.012 0.021 0.041 0.082 0.123 0.164 0.205 0.246 0.287 0.328 9500 0.390

∆u 0.012 0.024 0.036 0.060 0.120 0.240 0.360 0.480 0.599 0.719 6570 0.788 ∆c 0.008 0.015 0.023 0.038 0.077 0.153 0.230 0.307 0.384 0.460 0.537 0.614 8212 0.630

∆u 0.025 0.049 0.074 0.123 0.246 0.492 0.783 4562 1.122 ∆c 0.013 0.026 0.039 0.066 0.131 0.262 0.393 0.525 0.656 6843 0.897

∆u 0.045 0.090 0.135 0.225 0.449 3352 1.505 ∆c 0.021 0.041 0.062 0.103 0.205 0.411 0.616 5865 1.204

∆u 0.076 0.152 0.228 0.380 2566 1.952 ∆c 0.030 0.061 0.091 0.152 0.304 0.608 5132 1.561

∆u 0.121 0.242 0.364 0.606 2027 2.456 ∆c 0.043 0.086 0.129 0.215 0.431 4562 1.966

∆u 0.185 0.369 0.554 1642 2.033 ∆c 0.059 0.118 0.177 0.296 0.591 4106 2.427

∆u 0.269 0.537 1354 3.636 ∆c 0.078 0.156 0.234 0.391 3732 2.915

∆u 0.380 0.761 1140 4.335 ∆c 0.101 0.203 0.304 0.507 3422 3.470

3.58

4.79

5.20

5.43

5.49

5.57

5.61

5.64

5.64

5.68

5.68

NOTE: The red line ( ) indicates at what point the load weight has ≤ .25" deflection.

Page 267: Manual Completo

12-25

Section 12Fiberglass Grating

Copyright © 2014 Strongwell CorporationAll Rights Reserved Rev.1014

DURAGRID® HD-6000 1-3/4" Bearing BarA = 8.4 in2/ft. of width I = 2.14 in4/ft. of width S = 2.45 in3/ft. of width

12

18

24

30

36

42

48

54

60

66

72

78

Multipliers for Series Other Than HD-6000HD 5000 - Multiply Load Table Deflection by 0.80HD 4000 - Multiply Load Table Deflection by 0.67

SAFE LOAD 2:1 SAFETY E x 106

FACTOR DEFLECTION PSI

SPANINCHES

LOAD 100 200 300 500 1000 2000 3000 4000 5000 6000 7000 8000

2.95

4.53

5.14

5.51

5.63

5.74

5.80

5.84

5.84

5.88

5.89

6.00

∆u 0.000 0.001 0.001 0.002 0.004 0.007 0.011 0.014 0.018 0.021 0.025 0.029 19920 0.071 ∆c 0.000 0.001 0.002 0.003 0.006 0.011 0.017 0.023 0.029 0.034 0.040 0.046 19920 0.114

∆u 0.001 0.002 0.004 0.006 0.012 0.023 0.035 0.047 0.059 0.070 0.082 0.094 15926 0.187 ∆c 0.001 0.003 0.004 0.006 0.013 0.025 0.038 0.050 0.063 0.075 0.088 0.100 12400 0.155

∆u 0.003 0.007 0.010 0.016 0.033 0.065 0.098 0.131 0.164 0.196 0.229 0.262 12400 0.406 ∆c 0.003 0.005 0.008 0.013 0.026 0.052 0.079 0.105 0.131 0.157 0.183 0.209 12400 0.325

∆u 0.007 0.015 0.022 0.037 0.075 0.149 0.224 0.298 0.373 0.447 0.522 0.596 9062 0.675 ∆c 0.005 0.010 0.014 0.024 0.048 0.095 0.143 0.191 0.239 0.286 0.334 0.382 11328 0.540

∆u 0.015 0.030 0.045 0.076 0.151 0.303 0.454 0.605 0.756 0.908 6294 0.952 ∆c 0.008 0.016 0.024 0.040 0.081 0.161 0.242 0.323 0.403 0.484 0.565 0.645 9440 0.762

∆u 0.027 0.055 0.082 0.137 0.275 0.550 4623 1.271 ∆c 0.013 0.025 0.038 0.063 0.126 0.251 0.377 0.503 0.628 8091 1.017

∆u 0.046 0.093 0.139 0.232 0.464 3540 1.643 ∆c 0.019 0.037 0.056 0.093 0.186 0.371 0.557 7080 1.314

∆u 0.074 0.148 0.221 0.369 0.738 2796 2.064 ∆c 0.026 0.052 0.079 0.131 0.262 0.525 6293 1.652

∆u 0.113 0.225 0.338 0.563 2265 2.549 ∆c 0.036 0.072 0.108 0.180 0.360 5664 2.039

∆u 0.164 0.327 0.491 1872 3.063 ∆c 0.048 0.095 0.143 0.238 0.476 5149 2.451

∆u 0.231 0.463 0.694 1573 3.639 ∆c 0.062 0.123 0.185 0.308 0.617 4720 2.912

∆u 0.313 0.626 1340 4.192 ∆c 0.077 0.154 0.231 0.385 4356 3.355

1.5

0.6 0.9

1 .75

Series Bar Width Open Space % Open Area Approx Wt. I-in4/ft. of Width S-in3/ft. of Width

HD 6000 .60 .90 60 8.0 2.14 2.45HD 5000 .60 .60 50 9.8 2.68 3.06HD 4000 .60 .40 40 11.6 3.22 3.68

NOTE: The red line ( ) indicates at what point the load weight has ≤ .25" deflection.

Page 268: Manual Completo

12-26

Section 12Fiberglass Grating

Copyright © 2014 Strongwell CorporationAll Rights ReservedRev.1014

DURAGRID® HD-6000 2" Bearing BarA = 9.6 in2/ft. of width I = 3.20 in4/ft. of width S = 3.20 in3/ft. of width

SAFE LOAD 2:1 SAFETY E x 106

FACTOR DEFLECTION PSI

SPANINCHES

LOAD 100 200 300 500 1000 2000 3000 4000 5000 6000 7000 8000

12

18

24

30

36

42

48

54

60

66

72

78

84

2.32

3.87

4.61

5.10

5.28

5.45

5.48

5.56

5.58

5.64

5.65

5.67

5.70

∆u 0.000 0.001 0.001 0.002 0.003 0.006 0.009 0.012 0.015 0.018 0.021 0.024 15360 0.047 ∆c 0.000 0.001 0.001 0.002 0.005 0.010 0.015 0.019 0.024 0.029 0.034 0.039 15360 0.074

∆u 0.001 0.002 0.003 0.005 0.009 0.018 0.028 0.037 0.046 0.055 0.064 0.074 13500 0.124 ∆c 0.001 0.002 0.003 0.005 0.010 0.020 0.029 0.039 0.049 0.059 0.069 0.078 13500 0.132

∆u 0.002 0.005 0.007 0.012 0.024 0.049 0.073 0.098 0.122 0.146 0.171 0.195 13000 0.317 ∆c 0.002 0.004 0.006 0.010 0.020 0.039 0.059 0.078 0.098 0.117 0.137 0.156 13000 0.254

∆u 0.005 0.011 0.016 0.027 0.054 0.108 0.162 0.215 0.269 0.323 0.377 0.431 9946 0.536 ∆c 0.003 0.007 0.010 0.017 0.034 0.069 0.103 0.138 0.172 0.207 0.241 0.276 12432 0.428

∆u 0.011 0.022 0.032 0.054 0.108 0.216 0.324 0.431 0.539 0.647 6880 0.742 ∆c 0.006 0.012 0.017 0.029 0.058 0.115 0.173 0.230 0.288 0.345 0.403 0.460 10320 0.594

∆u 0.019 0.039 0.058 0.097 0.194 0.387 0.581 0.774 5112 0.990 ∆c 0.009 0.018 0.027 0.044 0.089 0.177 0.266 0.354 0.443 0.531 0.620 0.708 8880 1.786

∆u 0.033 0.066 0.099 0.164 0.328 0.657 3860 1.268 ∆c 0.013 0.026 0.039 0.066 0.131 0.263 0.394 0.526 0.657 7770 1.021

∆u 0.052 0.104 0.156 0.259 0.519 3070 1.592 ∆c 0.018 0.037 0.055 0.092 0.184 0.369 0.553 6907 1.274

∆u 0.079 0.158 0.236 0.394 2485 1.957 ∆c 0.025 0.050 0.076 0.126 0.252 0.504 6216 1.567

∆u 0.114 0.228 0.342 0.570 2054 2.343 ∆c 0.033 0.066 0.100 0.166 0.332 0.664 5650 1.875

∆u 0.161 0.323 0.484 0.806 1726 2.784 ∆c 0.043 0.086 0.129 0.215 0.430 5180 2.228

∆u 0.221 0.443 0.664 1471 3.256 ∆c 0.054 0.109 0.163 0.272 0.545 4781 2.605

∆u 0.296 0.592 1269 3.758 ∆c 0.068 0.135 0.203 0.338 0.677 4440 3.006

Multipliers for Series Other Than HD-6000HD 5000 - Multiply Load Table Deflection by 0.80HD 4000 - Multiply Load Table Deflection by 0.67

Series Bar Width Open Space % Open Area Approx Wt. I-in4/ft. of Width S-in3/ft. of Width

HD 6000 .60 .90 60 9.0 3.20 3.20HD 5000 .60 .60 50 11.1 4.00 4.00HD 4000 .60 .40 40 14.4 4.80 4.80

1.5

0.6 0.9

2 .0

NOTE: The red line ( ) indicates at what point the load weight has ≤ .25" deflection.

Page 269: Manual Completo

12-27

Section 12Fiberglass Grating

Copyright © 2014 Strongwell CorporationAll Rights Reserved Rev.1014

DURAGRID® HD-6000 2-1/4" Bearing BarA = 10.8 in2/ft. of width I = 4.56 in4/ft. of width S = 4.05 in3/ft. of width

12

18

24

30

36

42

48

54

60

66

72

78

84

90

96

∆u 0.000 0.000 0.001 0.001 0.002 0.005 0.007 0.010 0.012 0.015 0.017 0.019 20960 0.051 ∆c 0.000 0.001 0.001 0.002 0.004 0.008 0.012 0.016 0.019 0.023 0.027 0.031 20960 0.082

∆u 0.001 0.001 0.002 0.004 0.007 0.014 0.021 0.028 0.035 0.042 0.050 0.057 16640 0.118 ∆c 0.001 0.002 0.002 0.004 0.008 0.015 0.023 0.030 0.038 0.045 0.053 0.060 16640 0.126

∆u 0.002 0.003 0.005 0.009 0.017 0.035 0.052 0.070 0.087 0.105 0.122 0.139 16000 0.279 ∆c 0.001 0.003 0.004 0.007 0.014 0.028 0.042 0.056 0.070 0.084 0.098 0.112 16000 0.223

∆u 0.004 0.008 0.011 0.019 0.038 0.076 0.114 0.152 0.190 0.228 0.266 0.304 12800 0.486 ∆c 0.002 0.005 0.007 0.012 0.024 0.049 0.073 0.097 0.121 0.146 0.170 0.194 16000 0.389

∆u 0.007 0.015 0.022 0.037 0.075 0.149 0.224 0.299 0.374 0.448 0.523 0.598 10720 0.801 ∆c 0.004 0.008 0.012 0.020 0.040 0.080 0.120 0.159 0.199 0.239 0.279 0.319 16000 0.637

∆u 0.013 0.027 0.040 0.067 0.134 0.268 0.402 0.536 0.669 7876 1.055 ∆c 0.006 0.012 0.018 0.031 0.061 0.122 0.184 0.245 0.306 0.367 0.428 0.490 13783 0.844

∆u 0.022 0.045 0.067 0.112 0.224 0.447 0.671 6030 1.348 ∆c 0.009 0.018 0.027 0.045 0.089 0.179 0.268 0.358 0.447 0.537 0.626 12060 1.078

∆u 0.035 0.070 0.106 0.176 0.352 4764 1.679 ∆c 0.013 0.025 0.038 0.063 0.125 0.251 0.376 0.501 0.627 10720 1.344

∆u 0.053 0.107 0.160 0.267 0.534 3859 2.063 ∆c 0.017 0.034 0.051 0.086 0.171 0.342 0.513 0.684 9648 1.650

∆u 0.078 0.155 0.233 0.388 3789 2.939 ∆c 0.023 0.045 0.068 0.113 0.226 0.451 0.677 8771 1.979

∆u 0.109 0.219 0.328 0.547 2680 2.935 ∆c 0.029 0.058 0.088 0.146 0.292 0.584 8040 2.348

∆u 0.151 0.301 0.452 2283 3.437 ∆c 0.037 0.074 0.111 0.185 0.371 7421 2.750

∆u 0.201 0.403 0.604 1954 3.937 ∆c 0.046 0.092 0.138 0.230 0.461 6841 3.150

∆u 0.265 0.529 1715 4.538 ∆c 0.056 0.113 0.169 0.282 0.565 6432 3.631

∆u 0.341 0.683 1507 5.145 ∆c 0.068 0.137 0.205 0.341 0.683 6030 4.117

SAFE LOAD 2:1 SAFETY E x 106

FACTOR DEFLECTION PSI

SPANINCHES

LOAD 100 200 300 500 1000 2000 3000 4000 5000 6000 7000 8000

2.03

3.53

4.53

5.08

5.35

5.53

5.65

5.74

5.77

5.82

5.84

5.85

5.88

5.90

5.92

1.5

0.6 0.9

2 .25Multipliers for Series Other Than HD-6000HD 5000 - Multiply Load Table Deflection by 0.80HD 4000 - Multiply Load Table Deflection by 0.67

Series Bar Width Open Space % Open Area Approx Wt. I-in4/ft. of Width S-in3/ft. of Width

HD 6000 .60 .90 60 10.1 4.56 4.05HD 5000 .60 .60 50 12.4 5.70 5.06HD 4000 .60 .40 40 14.7 6.83 6.07

NOTE: The red line ( ) indicates at what point the load weight has ≤ .25" deflection.

Page 270: Manual Completo

12-28

Section 12Fiberglass Grating

Copyright © 2014 Strongwell CorporationAll Rights ReservedRev.1014

DURAGRID® HD-6000 2-1/2" Bearing BarA = 12.0 in2/ft. of width I = 6.25 in4/ft. of width S = 5.00 in3/ft. of width

∆u 0.000 0.000 0.001 0.001 0.002 0.004 0.007 0.009 0.011 0.013 0.016 0.018 22400 0.050 ∆c 0.000 0.001 0.001 0.002 0.004 0.007 0.011 0.014 0.018 0.021 0.025 0.029 22400 0.080

∆u 0.001 0.001 0.002 0.003 0.006 0.012 0.018 0.023 0.029 0.035 0.041 0.047 17640 0.103 ∆c 0.001 0.001 0.002 0.003 0.006 0.013 0.019 0.025 0.031 0.038 0.044 0.050 19600 0.123

∆u 0.001 0.003 0.004 0.007 0.014 0.029 0.043 0.057 0.071 0.086 0.100 0.114 13716 0.196 ∆c 0.001 0.002 0.003 0.006 0.011 0.023 0.034 0.046 0.057 0.069 0.080 0.091 15240 0.174

∆u 0.003 0.006 0.009 0.015 0.030 0.060 0.091 0.121 0.151 0.181 0.211 0.241 11800 0.356 ∆c 0.002 0.004 0.006 0.010 0.019 0.039 0.058 0.077 0.097 0.116 0.135 0.155 14750 0.285

∆u 0.006 0.012 0.017 0.029 0.058 0.117 0.175 0.233 0.292 0.350 0.408 0.467 9493 0.554 ∆c 0.003 0.006 0.009 0.016 0.031 0.062 0.093 0.124 0.156 0.187 0.218 0.249 14240 0.443

∆u 0.010 0.021 0.031 0.051 0.103 0.206 0.309 0.412 0.515 0.617 6975 0.718 ∆c 0.005 0.009 0.014 0.024 0.047 0.094 0.141 0.188 0.235 0.282 0.329 0.376 12206 0.574

∆u 0.017 0.034 0.052 0.086 0.172 0.344 0.516 0.688 5340 0.918 ∆c 0.007 0.014 0.021 0.034 0.069 0.138 0.206 0.275 0.344 0.413 0.481 0.550 10680 0.735

∆u 0.027 0.054 0.081 0.135 0.270 0.541 4419 1.195 ∆c 0.010 0.019 0.029 0.048 0.096 0.192 0.288 0.385 0.481 0.577 0.673 9943 0.956

∆u 0.041 0.082 0.123 0.204 0.408 3417 1.395 ∆c 0.013 0.026 0.039 0.065 0.131 0.261 0.392 0.523 0.653 8544 1.116

∆u 0.059 0.119 0.178 0.297 0.594 2824 1.676 ∆c 0.017 0.035 0.052 0.086 0.173 0.345 0.518 0.691 7767 1.341

∆u 0.084 0.168 0.252 0.420 2374 1.992 ∆c 0.022 0.045 0.067 0.112 0.224 0.448 0.671 7120 1.593

∆u 0.115 0.230 0.345 0.575 2022 2.324 ∆c 0.028 0.057 0.085 0.141 0.283 0.566 0.849 6572 1.860

∆u 0.154 0.308 0.461 1744 2.682 ∆c 0.035 0.070 0.105 0.176 0.352 0.703 6103 2.145

∆u 0.202 0.404 0.606 1519 3.068 ∆c 0.043 0.086 0.129 0.215 0.431 5696 2.454

∆u 0.260 0.520 1335 3.472 ∆c 0.052 0.104 0.156 0.260 0.520 5340 2.777

∆u 0.330 0.659 1182 3.897 ∆c 0.062 0.124 0.186 0.310 0.621 5026 3.119

12

18

24

30

36

42

48

54

60

66

72

78

84

90

96

102

SAFE LOAD 2:1 SAFETY E x 106

FACTOR DEFLECTION PSI

SPANINCHES

LOAD 100 200 300 500 1000 2000 3000 4000 5000 6000 7000 8000

1.61

3.11

4.03

4.66

5.00

5.25

5.36

5.46

5.51

5.55

5.56

5.59

5.62

5.64

5.67

5.70

1.5

0.6 0.9

2 .5

Series Bar Width Open Space % Open Area Approx Wt. I-in4/ft. of Width S-in3/ft. of Width

HD 6000 .60 .90 60 11.1 6.25 5.00HD 5000 .60 .60 50 13.7 7.81 6.25HD 4000 .60 .40 40 16.3 9.38 7.50

Multipliers for Series Other Than HD-6000HD 5000 - Multiply Load Table Deflection by 0.80HD 4000 - Multiply Load Table Deflection by 0.67

NOTE: The red line ( ) indicates at what point the load weight has ≤ .25" deflection.

Page 271: Manual Completo

13-1

Section 13SAFRAILTM Handrail & Ladder Systems

Copyright © 2014 Strongwell CorporationAll Rights Reserved

Look for this blue line in the left margin of the Design Manual documents. This line shows you where the latest update has been made.

Rev.1014

SECTION 13

SAFRAILTM FIBERGLASS HANDRAILAND LADDER SYSTEMS

Page 272: Manual Completo

13-2

Section 13SAFRAILTM Handrail & Ladder Systems

Copyright © 2014 Strongwell CorporationAll Rights ReservedRev.1014

INTRODUCTION TO SAFRAIL™ HANDRAIL SYSTEMS

SAFRAIL™ industrial fiberglass handrails are commercial railing systems for stair rails, platform/walkway handrails and guardrails. SAFRAIL™ systems are fabricated from pultruded fiberglass components produced by Strongwell and molded thermoplastic connectors. The railing systems are particularly well-suited to corrosive environments like those found in industrial, chemical and wastewater treatment plants as well as commercial structures with urban and salt air corrosion.

SAFRAIL™ fiberglass handrail systems are:• Corrosion resistant • Easy to field fabricate• Structurally strong • Low in thermal conductivity• Impact resistant • Low electrical conductivity• Lightweight

SAFRAIL™ systems are the result of more than 40 years of experience in the manufacture, design and fabrication of fiberglass handrail systems. The systems offer the following advantages:

• Ease of Assembly — SAFRAIL™ systems are produced in lightweight standard sections that include both post and rail. Systems can be prefabricated in large sections and shipped to the site or they can also be fabricated and installed on site with simple carpenter tools.

• Internal Connection System — All connections fit flush, resulting in a pleasing, streamlined appearance. The internal connections allow the construction of continuous handrail systems around circular tanks without special fittings.

• Safety Features — SAFRAIL™ systems come in a “safety yellow color”, feature low electrical conductivity for worker safety and exhibit high strength. Systems meet federal OSHA standards with a 2:1 factor of safety with a 6-foot (1830mm) maximum post spacing. SAFRAIL™ systems also comply with international standard AFNOR NF E 85-101.

• Low Maintenance — Corrosion resistant fiberglass with molded-in color will outlast aluminum or steel systems with virtually no maintenance.

• Cost Effective — Fiberglass components and easy-to-assemble design provide savings on labor and maintenance, resulting in long-term savings and elimination of the cost and inconvenience of “downtime for repairs” in plant operations.

GuardrailSAFRAIL™ industrial systems can be used in guardrail applications where railing is needed to protect the open side of an elevated walkway. SAFRAIL™ systems meet OSHA requirements for a height of 42" (1067mm) from the top of walkway to the top of the guardrail. The OSHA loading requirement for both guardrail and handrail is a 200 pound (890 N) concentrated load at any point or direction on the top rail. Other building codes may require different loading conditions.

Custom Handrail SystemsSAFRAIL™ is designed to fit a wide variety of applications and because it is a standard system, to be cost effective. However, custom handrail systems are available from Strongwell to suit special needs. Contact Strongwell for special requirements.

SAFRAIL™ FIBERGLASS SQUARE HANDRAILAND LADDER SYSTEMS

Page 273: Manual Completo

13-3

Section 13SAFRAILTM Handrail & Ladder Systems

Copyright © 2014 Strongwell CorporationAll Rights Reserved Rev.1014

BASIC SAFRAIL™ SQUARE HANDRAIL COMPONENTS

A = 1.151 in2

S = .657 in3

I = .657 in4

*E = 3.7 x 106 psiWT = .95 lbs./lin. ft.

Kickplate 90o Corner Adjustable Corner Assembly

Post Base End Cap Supplementary Components: • Nylon Rivets • 1/8” x 1-1/2” Tension Plus • Two Part Epoxy Kits • Mounting Bolts • Kickplate Splice and Corner Connectors

R .145"

.156

"W

ALL

2" S

QU

AR

E

1.01" THRU

1.68

"S

QU

AR

E

.14 WALL

1.70

"

Post or Rail Section Properties Square Plug Split Tube Connector

2"C

UB

E2.

5"LE

GS

1.68

"S

QU

AR

E

1.68"SQUARE

30˚MIN.

1/4" PIN

4.9"

9/16"

4"

6"

.75"

2"

1" 4" 2" x 2" MOUNTEDIN CENTER OFBASE PLATE

2" SQUARE

1/8"

3/4"

*E = Flexural modulus full strength

.50"

.125" WALL

4.00

" or

6.0

0"

Page 274: Manual Completo

13-4

Section 13SAFRAILTM Handrail & Ladder Systems

Copyright © 2014 Strongwell CorporationAll Rights ReservedRev.1014

FABRICATIONThe fiberglass handrail system can be fabricated into finished sections by fabricating and joining together the pultruded square tube using molded and pultruded components epoxy bonded and connected as shown in the fabrication details. Where required by OSHA, fiberglass kickplate shall be attached to the handrail posts with nylon rivets. Handrail sections shall be fabricated to the size shown on the approved fabrication drawings and shall be piece marked with a waterproof tag.

INSTALLATION AND MOUNTINGThe post is constructed with a square pultruded bottom plug. The length must extend a minimum of one inch beyond the uppermost bolt hole to prevent crushing of post tubing. Bolt holes must provide clearance of 1/16” for 1/2” diameter bolts/studs. The holes should be on the longitudinal center line of the post 1” from bottom of post (minimum) and not less than 3” apart on center. The posts are fastened with stainless steel anchor bolts or studs 1/2” diameter, extending no less than 3-1/4” into the concrete, or into a minimum thickness of 1/4” structural steel or pultruded fiberglass.

Post locations must be no greater than 18”, nor less than 9” from horizontal or vertical change in handrail direction. Posts are centered no greater than 72” apart on any straight run of rail, or 48” apart on any inclined rail section.

Base mount, embedded, and removable are also types of mounting procedures for handrail. Contact approved fabricator for detailed information on these connection types.

The fabricated handrail systems are supplied complete with fittings by Strongwell. The components used to join fabricated sections together may be shaped loose, to be epoxied and tension pinned together in the field by the contractor, per Strongwell’s recommendations.

FABRICATION METHODSCut components to length and miter where necessary. Locate and drill holes for split tube connector with a 1.68” diameter core drill. Apply recommended epoxy adhesive (available from Strongwell – Chatfield Division) to connectors and inside tube. Press sections together and wipe off excess adhesive. 1/8” tension pin is recommended at connections for field fabrication.

Joints must be immobilized until cured. The recommended temperature for epoxy cure is 60° F or above. Failure to use these installation and fabrication methods, including recommended epoxy adhesive and 1.68” diameter core drill, may cause failure.

SAFRAILTM SQUARE HANDRAILFABRICATION AND INSTALLATION

SUGGESTED POST AND KICK PLATE INSTALLATION

WELD(STEEL)

(1) 6" SQUARE PLUG(TYPICAL)

6" PLUG

4" M

IN

6" PLUG

4" M

IN

WELD

STOP

1/16" MAXCLEARANCEBETWEENPOST & SLEEVE

NYLON (2) RIVETS

CUT 1-1/2" x 1-1/2" x 4"ANGLE FROM 2 x 2 TUBE

NYLON (4) RIVETS

CUT (2) 3/4"x 3" STRIPSFROM 2 x 2 TUBEOR KICKPLATE

Posts with FRPBase Plate

Fastening to Structural Steel or Fiberglass

I BEAM WITH SPACERS

PERPENDICULAR PLATE

PARALLELPLATE

CHANNEL

ANCHOREDTO CONCRETE

EMBEDDEDIN CONCRETE

SLEEVE ONSTRUCTURAL STEEL

SLEEVE INCONCRETE

Kickplateto Post

KickplateCorner

KickplateSplice

Fastening to Concrete Removable Posts

Page 275: Manual Completo

13-5

Section 13SAFRAILTM Handrail & Ladder Systems

Copyright © 2014 Strongwell CorporationAll Rights Reserved Rev.1014

TYPICAL SAFRAIL™ SQUARE HANDRAIL CONSTRUCTIONConnection DetailsAll components securedwith epoxy.

Alternative Post Design

A Rail Splice

B End Post to Rail

C Line Post to Rail

D Stair Rail Return

2 x .156" SQUARE HANDRAILTUBE TOP & MID RAIL

1/8 x 1/2" SS POPRIVET (BOTH SIDES)

2-3/8 x 3/16" SQUAREHANDRAIL TUBE POST

1/4 x 1/2" NYLON HAMMERDRIVE RIVET (2 REQ'D)

ADD PLUG AS REQUIRED

4" KICKPLATE

TOP & MID RAIL OPENINGSWILL BE ROUTERED OUT

20

LEN

GTH

TO

BE

DET

ERM

INED

1-3/

4

45 CHAMFER TYPICALON TOP EDGE OF POST

˚

3'-6

(O

SH

A)

21

"2

1"

1/4

" M

AX

.

18" MAX.

6'-0 MAX.(STRAIGHT ROW)

4'-0 MAX.(STAIRS OR INCLINES) 2

'-8

(O

SH

A)

D

CBA

6" SQUARE PLUG

STRAIGHT

ANGLE

ADJUSTABLE CORNERASSEMBLY

(2) ADJUSTABLE CORNERASSEMBLIES

8"SPLIT TUBE CONNECTOR

4" SPLIT TUBE CONNECTOR

4" SPLIT TUBE CONNECTOR

90˚ CORNER

Page 276: Manual Completo

13-6

Section 13SAFRAILTM Handrail & Ladder Systems

Copyright © 2014 Strongwell CorporationAll Rights ReservedRev.1014

SAFRAILTM SQUARE HANDRAIL MECHANICAL PROPERTIES

MATERIAL PROPERTIES FOR STANDARD RAILING FIBERGLASS PULTRUDED SQUARE RAILS AND POSTS

PROPERTIES TEST METHOD UNITS VALUESUltimate Flexural Stress (Full Section) n/a psi 30,000Flexural Modulus (non-phenolic) (Full Section)

n/a psi x 106 3.7

Flexural Modulus (phenolic) (Full Section)

n/a psi x 106 6.0

Density ASTM D792 lbs/in3 .065 - .07524 hr. Water Abosrption (non-phenolic)

ASTM D570 % max by wt. 0.6

24 hr. Water Abosrption (phenolic) ASTM D570 % max by wt. 2.0Coefficient of Thermal Expansion, lengthwise

ASTM D696 10-6 in/in/ºF 7

Page 277: Manual Completo

13-7

Section 13SAFRAILTM Handrail & Ladder Systems

Copyright © 2014 Strongwell CorporationAll Rights Reserved Rev.1014

SAFRAIL™ ROUND HANDRAIL SYSTEM

INTRODUCTIONThe SAFRAIL™ round handrail system is a round fiberglass system that is ideal for any high traffic area where handrail is needed. The round rails are easy to grip and 90o molded corners eliminate sharp edges.

The handrail system meets OSHA strength requirements with a 2:1 factor of safety with a 5-foot maximum post spacing. The handrail system can be made to comply with ADA standards upon request.

Internally bonded fiberglass connectors result in no visible rivets or metal parts. Rail and posts are 1.90’’ O.D. x 1.51’’ I.D. This is the same outside dimension as typical metal rails for ease of adapting to common metal brackets. Kickplates are available upon request.

The SAFRAIL™ round handrail system is pultruded using either a vinyl ester or a polyester resin system. The handrail system includes a UV inhibitor for additional resistance to ultraviolet degradation and corrosion.

A = 1.05 in.2

S = .405 in.3

I = .385 in.4

E = 4.5 x 106 psi

WT = .86 lbs./lin. ft.

where E = Flexural modulus full section

ROUND POST OR RAIL SECTION PROPERTIES

MATERIAL PROPERTIES FOR STANDARD RAILING FIBERGLASS PULTRUDED ROUND TUBES

PROPERTIES TEST METHOD UNITS VALUESUltimate Flexural Stress (Full Section) n/a psi 60,000Flexural Modulus (non-phenolic) (Full Section)

n/a psi x 106 4.5

Flexural Modulus (phenolic) (Full Section)

n/a psi x 106 6.0

Density ASTM D792 lbs/in3 .065 - .07524 hr. Water Abosrption (non-phenolic)

ASTM D570 % max by wt. 0.6

24 hr. Water Abosrption (phenolic) ASTM D570 % max by wt. 2.0Coefficient of Thermal Expansion, lengthwise

ASTM D696 10-6 in/in/ºF 7

Page 278: Manual Completo

13-8

Section 13SAFRAILTM Handrail & Ladder Systems

Copyright © 2014 Strongwell CorporationAll Rights ReservedRev.1014

(2) Adj. Corner Assemblies

Intermediate Connector

1.5" x 4"

1.5" x 8"Split Tube

Split Tube

90° Corner

1.5" x 4" Split Tube

Intermediate Connector

1.5" x 8"

Straight

Angle

Adjustable Corner Assembly

TYPICAL SAFRAIL™ ROUND HANDRAIL CONSTRUCTION

21"

21"

1/4"

Max

.

42"

(OS

HA

)

18" Max.

5'-0" Max.(Straight Row)

4'-0" Max.(Stairs or Incline)

32"

(OS

HA

)

A

B

C

D

Rail SpliceA End Post to RailB Line Post to RailC Stair Rail ReturnD

Connection Details All components secured with epoxy.

Page 279: Manual Completo

13-9

Section 13SAFRAILTM Handrail & Ladder Systems

Copyright © 2014 Strongwell CorporationAll Rights Reserved Rev.1014

1.25"ID.

1.5"OD.1.5"OD.

1"ID.

1.9O"OD.

1.51"ID.

SAFRAIL™ ROUND HANDRAIL SYSTEM

SUGGESTED ROUND POST AND KICKPLATE INSTALLATION

Weld

(Stl.)

2" M

in.

2" M

in.

2" M

in.

2" M

in.

1.5 Tube

Typical

2" M

in.

2" M

in.

4" M

in.

4" M

in.

2" M

in.

2" M

in.

4" M

in.

Weld

Nylon (2) Rivets

Cut 1-1/2" x 1-1/2" x 4"

Angle From 2 x 2 Tube

Nylon (4) Rivets

From 2 x 2 Tube

Cut 3/4" x 3" Strips1/4" BOLTS

S.S. Kickplate

Bracket

Posts with FRPBase Plate

Fastening to Structural Steel or FiberglassKickplateto Post

KickplateCorner

KickplateSplice

Fastening to Concrete Removable Posts

ROUND HANDRAIL COMPONENTS

Post or Rail Round Plug Split Tube Connector

1.5"

2.5"

Kickplate

1.9"

3/4"

5.7"

30° Min.

1.5"

90o Corner Adjustable Corner Assembly

Post Base End Cap

I BEAM WITH SPACERS

PERPENDICULAR PLATE

PARALLELPLATE

CHANNEL

ANCHOREDTO CONCRETE

EMBEDDEDIN CONCRETE

SLEEVE ONSTRUCTURAL STEEL

SLEEVE INCONCRETE

.50"

.125" WALL

4.00

" or

6.0

0"

1/8" x 1/2" SS Pop Rivets

Cut 1-1/2" x 1-1/2" x 4" Angle From 2 x 2 Tube

1/8" x 1/2" SS Pop Rivets

Cut 3/4" x 3" Strips From 2 x 2 Tube

4" (102mm)

.75" (20mm)

Note: For Capping Tubes (Special Construction)

Page 280: Manual Completo

13-10

Section 13SAFRAILTM Handrail & Ladder Systems

Copyright © 2014 Strongwell CorporationAll Rights ReservedRev.1014

INTRODUCTION TO SAFRAILTM LADDERS AND LADDER CAGE SYSTEMS

SAFRAIL™ fiberglass ladders and ladder cages are fabricated from pultruded fiberglass components and produced by Strongwell. SAFRAIL™ fiberglass ladders are constructed of side rails, rungs and cage straps produced by the pultrusion process and cage hoops produced by the open molded hand lay-up method.

SAFRAIL™ ladder and cage systems meet the requirements set forth in OSHA 1910.27.

The side rails and cage straps are fiberglass reinforced pultruded polyester with OSHA safety yellow pigment. An optional industrial grade polyurethane coating may be applied to the finished ladder and cage for outdoor application.

The side rails are 2” or 2.375" square tube with a wall thickness of .156” or greater. The rungs are 1.25” pultruded fluted round tube for a non-skid surface.

Cage hoops are produced by the open mold hand lay-up process with a width of 3” and thickness of 1/4” minimum at the top and bottom and 2” x 1/4” at the intermediate hoops. The cage is interconnected with 2” x 3/16” pultruded straps spaced 9” on center around the hoop.

All cut or machined edges, holes and abrasions shall be sealed with a resin compatible with the resin matrix used in the structural shape.

All joints and rungs are epoxied and riveted. The hoops are attached to the rails so that hand clearance is provided throughout the length of the ladder. The cages may be shipped as kits for field assembly.

Ladders are shop assembled and may be pre-drilled and prepared for field attachment of standoff clips.

FIBERGLASS LADDERS & LADDER CAGES

Page 281: Manual Completo

13-11

Section 13SAFRAILTM Handrail & Ladder Systems

Copyright © 2014 Strongwell CorporationAll Rights Reserved Rev.1014

FIBERGLASS LADDERS & LADDER CAGES

7

1

2

6

9

8

1

2

3

5

4

6

Part Identification

Side Rail and Rung Detail

Name Description1 Side Rail 2” x .156” sq. tube2 Rung 1.25” dia. fluted tube3 Top or Bottom Hoop 3” x 1/4” strip4 Intermediate Hoop 2” x 1/4” strip5 Cage Straps 2” x 3/16” strip6 Standoff Bracket 5” bracket plate7 Standoff Bracket 10-1/2” bracket plate8 Base Angle 3” angle9 End Plug Molded end cap

Ladder Options

Walk-Through Cage w/Return Side Mount Cage Floor MountWalk-Through w/Return Wall Mount

Page 282: Manual Completo

14-1

Section 14DURASHIELD® & DURASHIELD HC® Building Panels

Copyright © 2014 Strongwell CorporationAll Rights Reserved Rev.0814

SECTION 14

DURASHIELD®

FIBERGLASS FOAM COREBUILDING PANELS

&DURASHIELD HC®

FIBERGLASS HOLLOW COREBUILDING PANELS

Look for this blue line in the left margin of the Design Manual documents. This line shows you where the latest update has been made.

Page 283: Manual Completo

14-2

Section 14DURASHIELD® & DURASHIELD HC® Building Panels

Copyright © 2014 Strongwell CorporationAll Rights ReservedRev.0814

SYMBOLS FOR DURASHIELD® FOAM CORE PANELS

Q Heat flow (BTU)

A Cross-sectional area (ft.2)

∆T T2-T1 = Temperature difference on either side of wall or DURASHIELD®

k Thermal conductivity (BTU/ft.2/hr./°F/in.)

L Wall thickness (inches)

R Thermal resistance; R-factor

q Heat flow in BTU (ft.2/hr.)

Page 284: Manual Completo

14-3

Section 14DURASHIELD® & DURASHIELD HC® Building Panels

Copyright © 2014 Strongwell CorporationAll Rights Reserved Rev.0814

FEATURES

The DURASHIELD® panel is a tongue-and-groove fiberglass pultruded panel comprised of a pultruded skin over a foam core. The panel provides these features:

• Integral Insulation • Light Weight • Strength • Corrosion Resistance • Non-Conductive • Flame Retardant • Transparent to Electromagnetic Emissions

SIZES

DURASHIELD® panels are currently available in 1” x 12” and 3” x 24” sizes. Special thicknesses or widths are possible if the quantity warrants. The panels can be produced in any length that is practical. Typical lengths would be in the 12’ to 32’ range.

MATERIALS OF CONSTRUCTION

The pultruded fiberglass skin is available in either an isophthalic polyester or vinyl ester resin. Both resin systems provide flame retardance (UL94 VO). The vinyl ester is utilized in extreme corrosive applications. A synthetic surfacing veil is incorporated into the skin to improve weathering, corrosion resistance and resistance to degradation from ultraviolet rays. Resistance to weathering can be further enhanced by the application of a polyurethane paint. The core material is a rigid closed-cell urethane foam. The ends of the panels must be encapsulated or coated with a resin similar to the skin resin to maintain the corrosion and weather resistant qualities of the total panel.

APPLICATIONS

DURASHIELD® panels are designed to be used as walls, roofs, and covers. Typical applications are:

• Radar, Microwave, Radio and TV Antenna Enclosures • Enclosures for Electrical Equipment • Enclosures of Chemical Processing Operations • Buildings for EMI Testing (Computer Testing) • Chemical Pit Covers • Roofs on Wet-End Pulp and Paper Manufacturing • Modular Buildings

DURASHIELD® FIBERGLASS FOAM CORE BUILDING PANELS

Page 285: Manual Completo

14-4

Section 14DURASHIELD® & DURASHIELD HC® Building Panels

Copyright © 2014 Strongwell CorporationAll Rights ReservedRev.0814

1” PANEL ALLOWABLE UNIFORM LOAD (psf) ** @∆ = span/60 @∆ = span/120 @ ∆ = span/180 SPAN (ft.) ∆ Siding Roofing ∆ Siding Roofing ∆ Siding Roofing (IN.) (IN.) (IN.)

4 .8 *138 *136 .4 *138 *136 .27 90 88 5 1.0 *88 *86 .5 72 70 .33 40 38 6 1.2 *61 *59 .6 38 36 .40 20 18 7 1.4 45 43 .7 22 20 .47 12 10 8 1.6 32 30 .8 14 12 .53 8 6 9 1.8 22 20 .9 8 6 .60 4 2 10 2.0 14 12 1.0 6 4 – – – 11 2.2 10 8 1.1 4 2 – – – 12 2.4 8 6 – – – – – –

3” PANEL ALLOWABLE UNIFORM LOAD (psf) **

@∆ = span/60 @∆ = span/120 @ ∆ = span/180 SPAN (ft.) ∆ Siding Roofing ∆ Siding Roofing ∆ Siding Roofing (IN.) (IN.) (IN.)

6 1.2 *340 *336 .6 289 285 .4 190 186 7 1.4 *246 *242 .7 188 184 .47 124 120 8 1.6 *189 *185 .8 129 125 .53 85 81 9 1.8 *150 *146 .9 93 89 .60 61 57 10 2.0 *121 *117 1.0 69 65 .67 45 41 11 2.2 100 96 1.1 53 49 .73 35 31 12 2.4 84 80 1.2 41 37 .80 27 23 13 2.6 67 63 1.3 33 29 .87 22 18 14 2.8 55 51 1.4 27 23 .93 18 14 15 3.0 45 41 1.5 22 18 1.00 15 11 16 3.2 38 34 1.6 18 14 1.07 12 8 17 3.4 32 28 1.7 16 12 1.13 10 6 18 3.6 27 23 1.8 13 9 1.20 9 5 19 3.8 23 19 1.9 11 7 1.27 8 4 20 4.0 20 16 2.0 10 6 1.33 7 3

*Controlled by stress with a factor of safety of 1.50. **Values are typical.

PERFORMANCE: These tables are offered as a guide only. The effects of sustained impact or dynamic loads, the particular corrosive environment and/or elevated temperatures have not been factored into these tables.

ROOFING AND SIDING LOAD TABLES

Page 286: Manual Completo

14-5

Section 14DURASHIELD® & DURASHIELD HC® Building Panels

Copyright © 2014 Strongwell CorporationAll Rights Reserved Rev.0814

PHYSICAL PROPERTIES (NOMINAL)

PROPERTY 1” PANEL 3” PANEL

Weight (lbs/linear ft.) 1.99 7.85 Panel Width (in.) 12 24 ‘R’ Factor 5 17

Foam Density (lbs/cu. ft.) 4 4 Min. thickness FRP composite skin (in.) .060 .088 Flame Spread Rating • Fiberglass Composite skin MAX 25 MAX 25 • Foam MAX 25 MAX 25 Water Absorption <.3% if <.3% if properly sealed properly sealed UL94 VO VO

MECHANICAL PROPERTIES (NOMINAL)

PROPERTY 1” PANEL 3” PANEL

Flexural Strength (psi) 1,750 869

Flexural Modulus (106 psi) .2 .17 Short Beam Shear (psi) 113 90 Coefficient of Thermal Exp. (10-6 in/in/oF) 5.2 5.2 Pullout Test (pull through) (lbs.) • Std. washer (1” dia. with 3/8” hole) 650 730 • Fender washer (2” dia. with 1/2” hole) 1,300 1,620 Crush Test (6” x 6” load plate) (lbs.) 5,600 6,750 Crush Test (full width) (lbs.) • 1” dia. bar 5,200 • 2-1/2” dia. bar 18,800

DURASHIELD® PROPERTIES AND DIMENSIONS

1” x 12” DURASHIELD®

3” x 24” DURASHIELD®

NOMINAL DIMENSIONS

hr ft2 °FBtu( )

Page 287: Manual Completo

14-6

Section 14DURASHIELD® & DURASHIELD HC® Building Panels

Copyright © 2014 Strongwell CorporationAll Rights Reserved

NOTE: These connections and supporting shapes can also be used with DURASHIELD HC ®. See 14-10 for more information about DURASHIELD HC ®.

Rev.0814

1” PANEL SUPPORTING SHAPES 3” PANEL SUPPORTING SHAPES

Use Shape Description Shape Description SECTION/BASE 5-1/2” x 1-1/2” X 1/4” F Section Standard EXTREN® Angle

CORNER POST 3-1/4”x 1/4” Custom Corner Post Standard EXTREN® Angles Inside & Outside

ROOF JOINER 5-1/2” x 1-1/2” x 1/4” F Section 90° Custom Angle 1-1/2” x 1-1/2” x 1/4” EXTREN® Channel

DOOR FRAMING 1-1/2” x 1-1/2” x 1/4” EXTREN® Channel 3-1/2” x 2” x 7/32” EXTREN® Channel

WINDOW LOUVERS 1-1/2” x 1-1/2” x 1/4” EXTREN® Channel 3-1/2” x 2” x 7/32” EXTREN® Channel

FASTENERS 3/8” dia. FIBREBOLT® Stud & Nut 1/2” dia. FIBREBOLT® Stud & Nut Stainless Steel (optional) Stainless Steel (optional)

SUPPORTING FIBERGLASS STRUCTURAL SHAPESDURASHIELD® panels are made for use with Strongwell’s EXTREN® line of structural shapes. EXTREN® is available in over 100 standard shapes. Typical additional supporting shapes are shown below.

"F" SECTIONTO ATTACHROOF PANEL

SECTION / ROOF

TONGUE CUT OFFOF TOP PANEL

C1-1/2x1-1/2x1/4 3/8" DIA. FRP BOLT W/NUTS @ 1'-0

ROOF

SECTION / BASE

1" FOAM COREDPANELS (TYP.)

1" "F" SECTION

4

FIELD EPOXY4 BOLTS W/WALL

ATTACHED TOFRONT WALL

SECTION / WALL CORNER

3/8" DIA. FRP BOLTW/NUT @ 1'-0

DRILL & TAP C1-1/2

7/16 DIA. DRILL 3/8 PLATE &C1-1/2 THIS SIDE ONLY

DOOR

3/8 PLATE FORDOOR STOP

C1-1/2x1-1/2x1/4ATTACHED TODOOR PANEL

SECTION / DOOR FRAMING

1" "F" SECTION

4

3/8" DIA.FRP BOLT

W/NUT @ 1'-0

DRILL & TAPC1-1/2

7/16 DIA. DRILL3/8 PLATE &

C1-1/2THIS SIDE ONLY

DOOR

3/8 PLATE FORDOOR STOP

C1-1/2x1-1/2x1/4ATTACHED TODOOR PANEL

SECTION / DOOR FRAMING

1" FOAM COREDPANELS (TYP.)

SECTION / WINDOW LOUVERS

C1-1/2x1-1/2x1/4

1-1/2

3/4

1/2

45˚CLR

FB 1-1/2x1/4(BEYOND)

LS 1-1/2x1/8

TYPICAL DURASHIELD® ASSEMBLY SECTIONS

Page 288: Manual Completo

14-7

Section 14DURASHIELD® & DURASHIELD HC® Building Panels

Copyright © 2014 Strongwell CorporationAll Rights Reserved Rev.0814

The R-factor technique is a simple way to estimate the heat flow and to compare insulating materials and approaches for DURASHIELD®.

The R-Factors for DURASHIELD® are: 1” DURASHIELD®: R = 5 3” DURASHIELD®: R = 17

The R-Factors will be used by considering heat flowing through a wall on a straight line.

The heat flow equation for one dimensional heat transfer through a wall of thickness “L” is given by:

DURASHIELD® HEAT FLOW ESTIMATES

∆T ∆T T2-T1

L R RQ = kA = A = A

The R-Factor approach becomes a simplified way to write the heat flow equation. The above sketch does not indicate whether T2 or T1 is inside or outside of the wall. Heat flows from the hotter to the colder location.

For the 1” DURASHIELD® For the 3” DURASHIELD®

∆T ∆T

5 17

Q

A

That is, “q” is the number of BTU’s that flow through one square foot in one hour. For the Strongwell DURASHIELD®:

Q ∆T Q ∆T

A 5 A 17

= heat flow per unit area = q = BTU/Ft2.Hr.

Q = A Q = A

= q = (1) = q = (2)

Page 289: Manual Completo

14-8

Section 14DURASHIELD® & DURASHIELD HC® Building Panels

Copyright © 2014 Strongwell CorporationAll Rights ReservedRev.0814

EXAMPLES

1) Outside Temperature = 100° F 1” DURASHIELD®

Inside Temperature = 180° F For the 1” DURASHIELD®, from equation (1)

q = = 16.0 for a 24 hour time period q24 = 16.0 x 24 = 384

2) Outside Temperature = 0°F 3” DURASHIELD®

Inside Temperature = 180°F For the 3” DURASHIELD®, from equation (2)

q = = = 10.6

q24 = 24 hour heat flow = 10.6 x 24 = 254 BTU/ft. 2

3) Outside Temperature = 0°F 1” DURASHIELD®

Inside Temperature = 180°F

q = = 36

q24 = 864 BTU/hr.

NOTE: The above calculations assume: One dimensional heat flow. This is rarely a strictly valid assumption but is used as a first order approximation. The heat flow will generally be in all directions from a heat source.

GENERAL RULES FOR THE DURASHIELD® CALCULATION:

1) Calculate heat flow using

q = (3)

This is the BTU’s per hour per cross sectional area.

2) Determine the desired time interval. Often, either a one hour or 24 hour time period is selected.

q24 = 24 = 24 hour heat flow. (4) To obtain the heat flow for any time period, multiply the results of equation (3) by the time in hours.

3) To obtain the heat flow for any cross sectional area multiply equation (3) by the area. Thus, a 40 ft2 subjected to this type of heat flow for a 3” DURASHIELD® system would have a total heat flow given by:

Q = A = 40 x

As an example, if the temperature difference, ∆T, equaled 80°F for an area of 40 ft.2

Q = 40 x = 188.2 and for 24 hours: Q24 = 24 x 188.2 = 4517 BTU

180 - 100 80 BTU 5 5 hr. ft.2

180 - 0 180 BTU 17 17 hr. ft.2

180 - 0 BTU 5 hr. ft.2

∆TR

∆T ∆T R 17

BTUft2

DURASHIELD® HEAT FLOW SAMPLE CALCULATIONS

∆T R = 5; 1” DURASHIELD® R R = 17; 3” DURASHIELD®

80 BTU17 hr.

Page 290: Manual Completo

14-9

Section 14DURASHIELD® & DURASHIELD HC® Building Panels

Copyright © 2014 Strongwell CorporationAll Rights Reserved Rev.0814

Using the same one dimensional heat flow assumption, a quick reference chart is presented for a building constructed of DURASHIELD® and maintained at a constant 75°F temperature on the inside:

HEAT OUTSIDE BTU/FT2 - ONE DAY FLOW TEMPERATURE (°F) 1” DURASHIELD® 3” DURASHIELD®

HEAT -50 600 176.5 OUT -25 480 141.2 OF 0 360 105.9 ROOM 25 240 70.6 50 120 35.3 75 0 0

HEAT 100 120 35.3 INTO 125 240 70.6 ROOM 150 360 105.9 175 480 141.2 200 600 176.5

DURASHIELD® HEAT FLOW CHART

Page 291: Manual Completo

14-10

Section 14DURASHIELD® & DURASHIELD HC® Building Panels

Copyright © 2014 Strongwell CorporationAll Rights ReservedRev.0814

FEATURES

The DURASHIELD HC® panel is a tongue-and-groove hollow fiberglass pultruded panel. The panel is a sensible choice for any type of roofing, flooring, enclosures or screening that does not require insulation. The panel provides these features:

• Lightweight • Easy to Install • Strength • Rot, Rust & Mildew Resistance • Low in Conductivity • Flame Retardant • Low Maintenance

SIZES

DURASHIELD® panels are currently available in standard 1” x 12” panels. The panels can be produced in any length that is practical. Typical lengths would be in the 12’ to 32’ range.

MATERIALS OF CONSTRUCTION

The pultruded fiberglass skin is available in either an isophthalic polyester or vinyl ester resin. Both resin systems provide flame retardance (UL94 VO). The vinyl ester is utilized in extreme corrosive applications. A synthetic surfacing veil is incorporated into the skin to improve weathering, corrosion resistance and resistance to degradation from ultraviolet rays. Resistance to weathering can be further enhanced by the application of a polyurethane paint. Both resin systems include flame retardants and meet the requirements of a Class 1 flame spread per ASTM E84 and the self-extinguishing requirements of ASTM D-635.

APPLICATIONS

DURASHIELD HC® panels are designed to be used as walls, roofs, and covers. Typical applications are:

• Cladding • Decking • Cellular Enclosures and Screening • Tank Covers • Cooling Tower Partition Walls • Buildings and Enclosures when Insulation is Not Required

DURASHIELD HC® FIBERGLASS HOLLOW CORE BUILDING PANELS

Page 292: Manual Completo

14-11

Section 14DURASHIELD® & DURASHIELD HC® Building Panels

Copyright © 2014 Strongwell CorporationAll Rights Reserved Rev.0814

1” PANEL ALLOWABLE UNIFORM LOAD (psf) **

PERFORMANCE: These tables are offered as a guide only. The effects of sustained impact or dynamic loads, the particular corrosive environment and/or elevated temperatures have not been factored into these tables.

DURASHIELD HC® ROOFING AND SIDING LOAD TABLES

SPAN(ft.)

@∆=span/60 @∆=span/120 @∆=span/180 @∆=span/240 @∆=span/300 @∆=span/360

LOAD (lbs/ft2)

∆(IN.)

LOAD (lbs/ft2)

∆(IN.)

LOAD (lbs/ft2)

∆(IN.)

LOAD (lbs/ft2)

∆(IN.)

LOAD (lbs/ft2)

∆(IN.)

LOAD (lbs/ft2)

∆(IN.)

2.0 1727 0.40 863 0.20 576 0.13 432 0.10 345 0.08 288 0.07

2.5 1045 0.50 523 0.25 348 0.17 261 0.13 209 0.10 174 0.08

3.0 671 0.60 335 0.30 224 0.20 168 0.15 134 0.12 112 0.10

3.5 451 0.70 225 0.35 150 0.23 113 0.18 90 0.14 75 0.12

4.0 315 0.80 157 0.40 105 0.27 79 0.20 63 0.16 52 0.13

4.5 226 0.90 113 0.45 75 0.30 57 0.23 45 0.18 38 0.15

5.0 168 1.00 84 0.50 56 0.33 42 0.25 34 0.20 28 0.17

5.5 127 1.10 64 0.55 42 0.37 32 0.28 25 0.22 21 0.18

6.0 99 1.20 49 0.60 33 0.40 25 0.30 20 0.24 16 0.20

6.5 78 1.30 39 0.65 26 0.43 20 0.33 16 0.26 13 0.22

7.0 63 1.40 31 0.70 21 0.47 16 0.35 13 0.28 10 0.23

7.5 51 1.50 26 0.75 17 0.50 13 0.38 10 0.30 9 0.25

8.0 43 1.60 21 0.80 14 0.53 11 0.40 9 0.32 7 0.27

NOTE: Controlled by stress with a factor of safety of 1.50. **Values are typical.

Page 293: Manual Completo

14-12

Section 14DURASHIELD® & DURASHIELD HC® Building Panels

Copyright © 2014 Strongwell CorporationAll Rights ReservedRev.0814

1” x 12” DURASHIELD®

DURASHIELD HC® PROPERTIES AND DIMENSIONS

NOMINAL DIMENSIONS

PHYSICAL PROPERTIES (NOMINAL)

PROPERTY 1” PANEL

Depth (in.) 1

Panel Width (in.) 12

Weight (lbs./linear ft.) 3.27

Area (in2) 3.914

Section Modulus (SX) 1.312 in3 / ft. of width

Moment of Inertia (IX) 0.656 in4 / ft. of width

Coefficient of Thermal Exp. (10-6 in/in/Fo) 7.0

Flame Spread Rating (ASTM E-84) Max 25

Water Absorption <.6%

MECHANICAL PROPERTIES (NOMINAL)

PROPERTY ASTM 1” Panel

LW Compressive Strength (psi) D695 50,000

LW Compressive Modulus (106 psi) D695 3.5

LW Tensile Strength (psi) D638 58,000

LW Tensile Modulus (106 psi) D638 3.5

LW Short Beam Shear (psi) D2344 4,500

.110 MIN.3.825

.950

.110 MIN.2X (.140)

1.000 .720 .470

.110 MIN.

3.825

12.975

3.825

.080 MIN.

.750

1.000.110 MIN.

.080 MIN. .110 MIN.

Page 294: Manual Completo

14-13

Section 14DURASHIELD® & DURASHIELD HC® Building Panels

Copyright © 2014 Strongwell CorporationAll Rights Reserved Rev.0814

NOTE: These connections and supporting shapes can also be used with DURASHIELD®.

SUPPORTING FIBERGLASS STRUCTURAL SHAPESDURASHIELD HC® panels are made for use with Strongwell’s EXTREN® line of structural shapes. EXTREN® is available in over 100 standard shapes. Typical additional supporting shapes are shown below.

"F" SECTIONTO ATTACHROOF PANEL

SECTION / ROOF

TONGUE CUT OFFOF TOP PANEL

C1-1/2x1-1/2x1/4 3/8" DIA. FRP BOLT W/NUTS @ 1'-0

ROOF

SECTION / BASE

1" DURASHIELD HC®

PANELS (TYP.)

1" "F" SECTION

4

ATTACHED TOFRONT WALL

SECTION / WALL CORNER

3/8" DIA. FRP BOLTW/NUT @ 1'-0

DRILL & TAP C1-1/2

7/16 DIA. DRILL 3/8 PLATE &C1-1/2 THIS SIDE ONLY

DOOR

3/8 PLATE FORDOOR STOP

C1-1/2x1-1/2x1/4ATTACHED TODOOR PANEL

SECTION / DOOR FRAMING

1" "F" SECTION

4

3/8" DIA.FRP BOLT

W/NUT @ 1'-0

DRILL & TAPC1-1/2

7/16 DIA. DRILL3/8 PLATE &

C1-1/2THIS SIDE ONLY

DOOR

3/8 PLATE FORDOOR STOP

C1-1/2x1-1/2x1/4ATTACHED TODOOR PANEL

SECTION / DOOR FRAMING

1" DURASHIELD HC®

PANELS (TYP.)

SECTION / WINDOW LOUVERS

C1-1/2x1-1/2x1/4

1-1/2

3/4

1/2

45°CLR

FB 1-1/2x1/4(BEYOND)

LS 1-1/2x1/8

TYPICAL DURASHIELD HC® ASSEMBLY SECTIONS

1” PANEL SUPPORTING SHAPES

Use Shape Description SECTION/BASE 5-1/2” x 1-1/2” X 1/4” F Section

CORNER POST 3-1/4”x 1/4” Custom Corner Post

ROOF JOINER 5-1/2” x 1-1/2” x 1/4” F Section 1-1/2” x 1-1/2” x 1/4” EXTREN® Channel

DOOR FRAMING 1-1/2” x 1-1/2” x 1/4” EXTREN® Channel

WINDOW LOUVERS 1-1/2” x 1-1/2” x 1/4” EXTREN® Channel

FASTENERS 3/8” dia. FIBREBOLT® Stud & Nut Stainless Steel (optional)

Page 295: Manual Completo

15-1

Section 15COMPOSOLITE® Building Panel System

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Look for this blue line in the left margin of the Design Manual documents. This line shows you where the latest update has been made.

Look for this blue line in the left margin of the Design Manual documents. This line shows you where the latest update has been made.

Rev.0610

SECTION 15

COMPOSOLITE®

FIBERGLASS BUILDING PANEL SYSTEM

NOTE: COMPOSOLITE® is a registered trademark of Maunsell Structural Plastics, Ltd. and used by Strongwell Corporation pursuant to license.

Page 296: Manual Completo

15-2

Section 15COMPOSOLITE® Building Panel System

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.0610

INTRODUCTION

COMPOSOLITE® is an advanced composite building panel system suitable for major load bearing structural applications. The modular construction system consists of a small number of interlocking fiber reinforced polymer (FRP) structural components produced by the pultrusion process. The main building panel is an open-ribbed 3” thick x 24” wide nominal size panel. Panels can be connected using the 3-way connectors, 45o connectors, toggles and/or hangers.

This uniquely designed system of interlocking components makes it possible to design fiberglass structures at significantly lower costs for a broad range of construction applications.

COMPOSOLITE® structures can be designed in “kit form” and shipped flat to the job site.

FEATURES

The COMPOSOLITE® fiberglass building panel system is comprised of pultruded FRP components. The system provides these features:

• Corrosion Resistance • Light Weight • Easy to Maintain • Strong • Non-Conductive • Cost Effective • Interlocking Joints • Easy to Install

SYSTEM DESIGN

COMPOSOLITE® combines manufacturing simplicity with an almost unlimited number of configurations.

The panels feature integrally molded longitudinal grooves into which a connector or toggle (of the same length or longer) is inserted during assembly. Three-way and 45o connectors allow the system components to turn corners and facilitate the joining of walls or sides. Toggles lock panels and connectors together securely. For added flexibility, the system also includes a hanger and an end cap.

For permanent structures, joints between panels and connectors are bonded during assembly. After the adhesive is applied along the length of the panel and connector, the toggle mechanically secures the components and creates even pressure along the length of the joint until the adhesive cures.

MATERIALS OF CONSTRUCTION

COMPOSOLITE® is a system of five interlocking components manufactured of pultruded fiberglass reinforced polymer. This construction makes COMPOSOLITE® particularly well-suited to outdoor use and/or corrosive environments.

COMPOSOLITE® is available in either polyester, polyester fire retardant, or vinyl ester resin systems. It is stocked in the polyester fire retardant resin system in slate gray color. The standard fire retardant resins meet the requirements of Class 1 rating of 25 or less per ASTM E-84 and the self-extinguishing requirements of ASTM D-635. The resin mixture is UV inhibited and the composite includes a surface veil on all exposed surfaces for enhanced corrosion and UV protection.

Other resins and colors are available upon request.

APPLICATIONS

COMPOSOLITE® panels are designed for major load bearing structural applications. Typical applications are:

• FRP Buildings • Bridge Enclosure Systems • Bridge Decks • Tank Covers • Platforms & Walkways • Cellular Enclosures

COMPOSOLITE® FIBERGLASS BUILDING PANEL SYSTEM

Page 297: Manual Completo

15-3

Section 15COMPOSOLITE® Building Panel System

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.0610

COMPOSOLITE® FIBERGLASS BUILDING PANEL SYSTEM

Panel (3” x 24” nominal size - 80mm x 604.7mm actual)7.49 lb/ft

3-Way Connector1.65 lbs/ft

Toggle Connector.34 lbs/ft

Hanger1.55 lbs/ft

COMPONENTS

*Controlled by strength with a factor of safety of 2.50 for flexural or 3.0 for shear. NOTE: All values are typical.

MECHANICAL PROPERTIES (minimum coupon)

ASTM Properties Test Method Value

Flexural Strength, LW D790 24.5 ksi

Flexural Strength, CW D790 8.2 ksi

Flexural Modulus , LW D790 885 ksi

Flexural Modulus, CW D790 646 ksi

Tensile Strength, LW D638 31.1 ksi

Tensile Modulus, LW D638 2,486 ksi

Short Beam Shear, LW D2344 3.19 ksi

COMPOSOLITE® ALLOWABLE UNIFORM LOAD TABLE (PSF)

@∆=span/60 @∆=span/120 @∆=span/180SPAN

(ft.) ∆

(IN.)

(IN.)

(IN.)Siding Siding SidingRoofing Roofing Roofing

45o Connector1.65 lbs/ft

End Cap.57 lbs/ft

4 .8 *778 *774 .4 *778 *774 .27 *778 *774

5 1.0 *624 *620 .5 *624 *620 .33 490 486

6 1.2 *520 *516 .6 449 445 .40 299 295

7 1.4 *466 *462 .7 303 299 .47 204 200

8 1.6 *390 *386 .8 214 210 .53 142 138

9 1.8 311 308 .9 156 152 .60 104 100

10 2.0 233 229 1.0 116 112 .67 78 74

11 2.2 176 172 1.1 88 84 .73 59 55

12 2.4 140 136 1.2 70 64 .80 47 43

13 2.6 110 106 1.3 56 52 .87 37 33

14 2.8 90 86 1.4 48 44 .93 30 26

15 3.0 74 70 1.5 37 33 1.00 25 21

16 3.2 61 57 1.6 30 26 1.09 21 17

17 3.4 51 47 1.7 25 21 1.13 17 13

18 3.6 43 39 1.8 22 18 1.20 14 10

19 3.8 36 32 1.9 18 14 1.27 12 8

20 4.0 32 28 2.0 15 11 1.33 11 7

NOTE: All values are minimum ultimate properties from coupon tests except as noted.

Ix = 15.9 in.4

Sx = 10.2 in.3

rx = 1.33 in.Iy = 422 in.4

Sy = 39.9 in.3

ry = 6.88 in.A = 8.89 in.2

Awx = 2.78 in.2

Awy = 6.11 in.2

Ixx = 2.73 in.4

Iyy = 2.69 in.4

Sxx = 1.80 in.3

Syy = 1.71 in.3

A = 2.01 in.2

rx = 1.17 in.ry = 1.17 in.

SECTION PROPERTIES

Page 298: Manual Completo

15-4

Section 15COMPOSOLITE® Building Panel System

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.0610

Ea I = The typical apparent stiffness based on deflection testing; the load tables developed based on this stiffness are typical values

U = Uniform load (lbf/ft) (N/m)

C = Concentrated load (lbf) (N)

∆C = Deflection inches (mm) under concentrated load

∆U = Deflection inches (mm) under uniform load

Span(ft) (m)

Ea I(106 lbf.-in.2)(109 N-cm2)

6 (1.83)

c 300 (1334) 600 (2667) 900 (4001) 1000 (4445) 1250 (5557) 1500 (6668) 1750 (7780) 2000 (8891) 2250 (10002) 2500 (11114) 2750 (12225) 3000 (13336) --Dc .06" (1.53) .11" (2.80) .19" (4.32) .19" (4.83) .23" (5.85) .28" (7.12) .32" (8.13) .39" (9.40) .42" (10.68) .46" (11.69) .51" (12.96) .55" (13.98) 42.7 (1.23)u 50 (729) 100 (1459) 150 (2189) 167 (2437) 208 (3035) 250 (3648) 292 (4261) 333 (4859) 375 (5472) 417 (6085) 458 (6684) 500 (7296) --

Du .03" (0.76) .07" (1.78) .10" (2.54) .11" (2.80) .14" (3.56) .17" (4.32) .20" (5.08) .23" (5.85) .26" (6.61) .28" (7.12) .31" (7.88) .34" (8.64) 42.7 (1.23)

7 (2.13)

c 300 (1334) 600 (2667) 900 (4001) 1000 (4445) 1250 (5557) 1500 (6668) 1750 (7780) 2000 (8891) 2250 (10002) 2500 (11114) --Dc .08" (2.03) .15" (3.81) .23" (5.85) .26" (6.61) .32" (8.13) .38" (9.66) .45" (11.44) .51" (12.96) .58" (14.74) .64" (16.27) 48.2 (1.38)u 43 (627) 86 (1255) 128 (1868) 143 (2086) 178 (2597) 214 (3123) 250 (3648) 285 (4159) 321 (4684) 357 (5210) --

Du .05" (1.27) .10" (2.54) .14" (3.56) .16" (4.07) .20" (5.08) .24" (6.10) .28" (7.12) .32" (8.13) .36" (9.15) .40" (10.17) 48.2 (1.38)

8 (2.44)

c 300 (1334) 600 (2667) 900 (4001) 1000 (4445) 1250 (5557) 1500 (6668) 1750 (7780) 2000 (8891) 2250 (10002) --Dc .15" (3.81) .23" (5.85) .34" (8.64) .38" (9.66) .48" (12.20) .58" (14.74) .67" (17.03) .77" (19.57) .86" (21.86) 48.6 (1.39)u 38 (554) 75 (1094) 112 (1634) 125 (1824) 156 (2276) 188 (2743) 219 (3196) 250 (3648) 281 (4100) --

Du .07" (1.78) .14" (3.56) .21" (5.34) .24" (6.10) .30" (7.63) .36" (9.15) .41" (10.42) .47" (11.95) .53" (13.47) 48.6 (1.39)

9 (2.74)

c 300 (1334) 600 (2667) 900 (4001) 1000 (4445) 1250 (5557) 1500 (6668) 1750 (7780) 2000 (8891) --Dc .16" (4.07) .32" (8.13) .47" (11.95) .53" (13.47) .66" (16.78) .79" (20.08) .92" (23.38) 1.05" (26.69) 50.2 (1.44)u 33 (481) 67 (977) 100 (1459) 111 (1619) 129 (1883) 167 (2437) 194 (2831) 222 (3239) --

Du .10" (2.54) .20" (5.08) .29" (7.37) .33" (8.39) .41" (10.42) .49" (12.45) .57" (14.49) .65" (16.52) 50.2 (1.44)

10 (3.04)

c 300 (1334) 600 (2667) 900 (4001) 1000 (4445) 1250 (5557) 1500 (6668) 1750 (7780) --Dc .21" (5.34) .42" (10.68) .63" (16.01) .70" (17.79) .87" (22.11) 1.05 (26.69) 1.22" (31.01) 51.8 (1.49)u 30 (437) 60 (875) 90 (1313) 100 (1459) 125 (1824) 150 (2189) 175 (2553) --

Du .13" (3.30) .26" (6.61) .39" (9.91) .44" (11.18) .54" (13.73) .65" (16.52) .76" (19.32) 51.8 (1.49)

11 (3.35)

c 300 (1334) 600 (2667) 900 (4001) 1000 (4445) 1250 (5557) 1500 (6668) 1750 (7780) --Dc .27" (6.86) .55" (13.98) .82" (20.84) .92" (23.38) 1.14" (28.98) 1.4" (35.58) 1.6" (40.67) 52.4 (1.50)u 27 (394) 55 (802) 82 (1196) 91 (1328) 114 (1663) 136 (1984) 159 (2320) --

Du .17" (4.32) .35" (8.89) .52" (13.21) .57" (14.48) .72" (18.29) .85" (21.59) 1.00" (25.40) 52.4 (1.50)

12 (3.66)

c 300 (1334) 600 (2667) 900 (4001) 1000 (4445) 1250 (5557) 1500 (6668) --Dc .35" (8.90) .70" (17.79) 1.05" (26.69) 1.17" (29.74) 1.46" (37.11) 1.75" (44.48) 53.5 (1.54)u 25 (364) 50 (729) 75 (1094) 83 (1211) 104 (1517) 125 (1824) --

Du .22" (5.59) .44" (11.18) .65" (16.52) .72" (18.30) .91" (23.13) 1.09" (27.70) 53.5 (1.54)

13 (3.96)

c 300 (1334) 600 (2667) 900 (4001) 1000 (4445) 1250 (5559) --Dc .44" (11.18) .77" (22.37) 1.31" (33.30) 1.46" (37.11) 1.82" (46.26) 54.4 (1.56)u 23 (335) 46 (671) 69 (1006) 77 (1123) 96 (1401) --

Du .28" (7.12) .57" (14.49) .85" (21.60) .95" (24.15) 1.18" (29.99) 54.4 (1.56)

14 (4.27)

c 300 (1334) 600 (2667) 900 (4001) 1000 (4445) 1250 (5557) --Dc .54" (13.73) 1.08" (27.45) 1.63" (41.43) 1.81" (46.00) 2.26" (57.44) 54.7 (1.57)u 21 (306) 43 (627) 64 (934) 71 (1036) 89 (1298) --

Du .34" (8.64) .68" (17.28) 1.02" (25.93) 1.13" (28.72) 1.41" (35.84) 54.7 (1.57)

15 (4.57)

c 300 (1334) 600 (2667) 900 (4001) 1000 (4445) --Dc .66" (16.78) 1.33" (33.80) 1.99" (50.58) 2.21" (56.17) 55.1 (1.58)u 20 (291) 40 (583) 60 (875) 67 (977) --

Du .41" (10.42) .82" (20.84) 1.24" (31.52) 1.38" (35.08) 55.1 (1.58)

16 (4.87)

c 300 (1334) 600 (2667) 900 (4001) 1000 (4445) --Dc .80" (20.33) 1.60" (40.67) 2.39" (60.75) 2.66" (67.61) 55.4 (1.59)u 19 (277) 37 (539) 56 (817) 62 (904) --

Du .51" (12.96) 1.0" (25.42) 1.50" (38.13) 1.66" (42.19) 55.4 (1.59)

17 (5.18)

c 300 (1334) 600 (2667) 900 (4001) 1000 (4445) --Dc .96" (24.40) 1.91" (48.55) 2.87" (72.95) 3.19" (81.08) 55.5 (1.59)u 18 (262) 35 (510) 53 (773) 59 (861) --

Du .61" (15.50) 1.19" (30.25) 1.80" (45.75) 2.0" (50.83) 55.5 (1.59)

18 (5.49)

c 300 (1334) 600 (2667) 900 (4001) 1000 (445) --Dc 1.13" (28.72) 2.27" (57.70) 3.40" (86.42) 3.78" (96.08) 55.6 (1.60)u 17 (248) 33 (481) 50 (729) 56 (817) --

Du .70" (17.79) 1.41" (35.84) 2.11" (53.63) 2.36" (59.98) 55.6 (1.60)

19 (5.79)

c 300 (1334) 600 (2667) 900 (4001) --Dc 1.3" (33.03) 2.70" (68.63) 4.0" (101.67) 56.0 (1.61)u 16 (233) 32 (467) 47 (685) --

Du .84" (21.35) 1.69" (42.95) 2.48" (63.03) 56.0 (1.61)

20 (6.10)

c 300 (1334) 600 (2667) 900 (4001) --Dc 1.54" (39.13) 3.07" (78.03) 4.60" (116.92) 56.4 (1.62)u 15 (218) 30 (437) 45 (656) --

Du .96" (24.40) 1.91" (48.55) 2.87" (72.95) 56.4 (1.62)

COMPOSOLITE® FIBERGLASS BUILDING PANEL SYSTEM

LOAD TABLE (METRIC)

Page 299: Manual Completo

16-1

Section 16Flooring and Decking Systems

Copyright © 2014 Strongwell CorporationAll Rights Reserved

Rev.1214

SECTION 16

FIBERGLASS FLOORING AND DECKING SYSTEMS

SAFPLANK®

FIBERGLASS PLANK SYSTEM

STRONGDEK™FIBERGLASS DECKING SYSTEM

SAFDECK®

FIBERGLASS DECKING SYSTEM

Look for this blue line in the left margin of the Design Manual documents. This line shows you where the latest update has been made.

Page 300: Manual Completo

16-2

Section 16Flooring and Decking Systems

Copyright © 2014 Strongwell CorporationAll Rights Reserved

Rev.1214

INTRODUCTION

SAFPLANK® is a high strength plank system of fiberglass panels designed to interconnect for a continuous solid surface. SAFPLANK® is intended to replace wood, aluminum or steel planks in environments where corrosion or rotting creates costly maintenance problems or unsafe conditions. Non-conductive and non-sparking, SAFPLANK® provides safe walkways in electrical applications.

FEATURES

The SAFPLANK® fiberglass plank system is comprised of pultruded FRP panels. The system provides these features:

• Corrosion Resistant • Easy to Maintain

• Strong • Non-Sparking

• Lightweight • Easily Transported

• Easy to Install • Non-Conductive

SIZES

SAFPLANK® is available in 2” deep planks in both 12” and 24” widths to offer flexibility in design. Stock panels are available in 20’ and 24’ lengths. Other lengths are available upon request. SAFPLANK® may be ordered with a grit surface or with a smooth surface for non-pedestrian applications.

MATERIALS OF CONSTRUCTION

SAFPLANK® is a composite of fiberglass reinforcements (glass and mat) and a thermoset resin system. The panels are produced by the pultrusion process. Planks will be manufactured using polyester resin to ANSI/NSF standard 61 certified for potable water applications, if required.

The standard resin system is a slate gray fire retardant polyester resin meeting the requirements of Class 1 flame spread rating of 25 or less per ASTM E-84 and the self-extinguishing requirements of ASTM D-635. The resin is UV inhibited and the composite includes a surface veil on all exposed surfaces for enhanced corrosion and UV protection. Other resins and colors are available upon request.

The standard grit system for SAFPLANK® is a polyurethane based medium grit. This grit system is recommended for light pedestrian traffic only. Other grit systems available include epoxy medium and epoxy coarse and may be more appropriate for applications with heavier traffic.

APPLICATIONS

SAFPLANK® is designed to be used for flooring and covers. Typical applications include:

• Cooling Tower Decking • Temporary Flooring

• Odor Control Covers • Access Walkways

• Roofing Walkways • Cellular Wall Panels

SAFPLANK®, when turned upside down, serves as an excellent stay-in-place concrete forming system in applications where corrosion and weight are construction concerns. Vinyl Ester resin is required if SAFPLANK® will be used as a concrete reinforcement.

SAFPLANK® FIBERGLASS PLANK SYSTEM

Page 301: Manual Completo

16-3

Section 16Flooring and Decking Systems

Copyright © 2014 Strongwell CorporationAll Rights Reserved

Rev.1214

SAFPLANK® FIBERGLASS PLANK SYSTEM

SAFPLANK® Load / Deflection Data (Right Side Up Position)

SPAN

u = Uniform load in lbs/ft2 (N/m2). For example, a 100 lb. uniform load over 3 ft.2 is 300 lbs. of total load.

∆u = Typical deflection under the uniform load in inches (mm)

c = Concentrated load in lbs/ft of width (N/m of width)

∆c = Typical deflection under concentrated load in inches (mm)

12” SAFPLANK®

I12 = 1.69 in.4, wt = 2.6 lb/lin. ft. (gritted)24” SAFPLANK®

I24 = 3.01 in.4, wt = 5.1 lb/lin. ft. (gritted)

Maximum deflections shown are based on a deflection of approximately L/100

50 100 200 300 500 1000 100 200 300 500 1000 (u=2394) (u=4788) (u=9576) (u=14364) (u=23990) (u=47888) (u=4788) (u=9576) (u=14364) (u=28990) (u=47888) (c= 730) (c=1460) (c=2920) (c=4380) (c=7300) (c=14600) (c=1460) (c=2920) (c=4380) (c=7300) (c=14600)

24” ∆u .006 .011 .023 .034 .057 .113 .015 .030 .045 .075 .151(610 mm) ∆u (.152) (.279) (.584) (.864) (1.448) (2.87) (.381) (.762) (1.143) (1.905) (3.835) ∆c < .005 .009 .018 .027 .045 .091 .012 .024 .036 .060 .121 ∆c (< .127) (.229) (.457) (.686) (1.143) (2.311) (.305) (.610) (.914) (1.524) (3.073)

36" ∆u .022 .043 .087 .130 .217 — .046 .092 .138 .231 —(914 mm) ∆u (.559) (1.092) (2.210) (3.302) (5.512) — (1.168) (2.337) (3.505) (5.867) — ∆c .012 .023 .046 .070 .116 .232 .024 .049 .074 .123 .246 ∆c (.305) (.584) (1.168) (1.778) (2.946) (5.893) (.610) (1.245) (1.870) (3.124) (6.248)

48" ∆u .062 .123 .247 .370 — — .133 .265 .398 — —(1219 mm) ∆u (1.575) (3.124) (6.274) (9.398) — — (3.378) (6.731) (10.109) — — ∆c .025 .049 .099 .148 .247 .494 .053 .106 .159 .265 — ∆c (.635) (1.245) (2.515) (3.759) (6.274) (12.548) (1.346) (2.692) (4.039) (6.731) —

60" ∆u .140 .281 .562 — — — .302 .605 — — —(1524 mm) ∆u (3.556) (7.137) (14.275) — — — (7.671) (15.367) — — — ∆c .045 .090 .180 .270 .450 — .097 .193 .290 .484 — ∆c (1.143) (2.286) (4.572) (6.858) (11.43) — (2.464) (4.902) (7.417) (12.294) —

72" ∆u .291 .583 — — — — .627 — — — —(1829 mm) ∆u (7.391) (14.808) — — — — (15.926) — — — — ∆c .078 .155 .311 .466 — — .167 .334 .501 — — ∆c (1.981) (3.937) (7.899) (11.836) — — (4.242) (8.611) (12.725) — —

Two hold-down connections are available for installing SAFPLANK® . Both hold-downs can be used with either 12” or 24” wide SAFPLANK®.

1/4” x 1-1/4” CARRIAGE BOLT ASSEMBLY

316 S.S. INSERT HOLD DOWN

SAFPLANK® joints have been tested for 300 lbs concentrated point load applied over 4 in.2 area (See ASCE 7 - Minimum Design Loads for Buildings and other Structures). For 24” span, a 300 lbs concentrated load has a factor of safety (FS) of 6, for 36” FS of 4, and for 48” FS of 3. Spans should be limited to 48” for this type of loading.

Page 302: Manual Completo

16-4

Section 16Flooring and Decking Systems

Copyright © 2014 Strongwell CorporationAll Rights Reserved

Rev.1214

SAFPLANK® FIBERGLASS PLANK SYSTEM

SAFPLANK® Load / Deflection Data (Upside Down Position)

50 100 200 300 500 1000 100 200 300 500 1000 (u=2394) (u=4788) (u=9576) (u=14364) (u=23990) (u=47888) (u=4788) (u=9576) (u=14364) (u=28990) (u=47888) (c= 730) (c=1460) (c=2920) (c=4380) (c=7300) (c=14600) (c=1460) (c=2920) (c=4380) (c=7300) (c=14600)

SPAN

u = Uniform load in lbs/ft2 (N/m2). For example, a 100 lb. uniform load over 3 ft2 is 300 lbs. of total load.∆u = Typical deflection under the uniform load in inches (mm)c = Concentrated load in lbs/ft of width (N/m of width)∆c = Typical deflection under concentrated load in inches (mm)

12” SAFPLANK®

Ι12 = 1.69 in.4, wt = 2.6 lb/lin. ft. (gritted)24” SAFPLANK®

Ι24 = 3.01 in.4, wt = 5.1 lb/lin.ft. (gritted)

Maximum deflections shown are based on a deflection of approximately L/100

Vinyl Ester resin is required if SAFPLANK® will be used as a concrete reinforcement.

24” ∆u .007 .014 .026 .040 .062 — .017 .030 .054 .086 .161(610 mm) ∆u (.178) (.356) (.660) (1.016) (1.575) — (.432) (.762) (1.372) (2.184) (4.089) ∆c .006 .011 .023 .033 .053 .099 .014 .026 .039 .057 .138 ∆c (.152) (.279) (.584) (.838) (1.346) (2.515) (.356) (.660) (.991) (1.448) (3.505)36” ∆u .024 .046 .089 .121 — — .051 .109 .161 .261 —(914 mm) ∆u (.610) (1.168) (2.261) (3.073) — — (1.295) (2.769) (4.089) (6.629) — ∆c .013 .026 .050 .074 .118 .233 .030 .055 .080 .130 .287 ∆c (.330) (.660) (1.270) (1.880) (2.997) (5.918) (.762) (1.397) (2.032) (3.302) (7.292)48” ∆u .064 .120 .237 — — — .130 .287 .414 — —(1219 mm) ∆u (1.626) (3.048) (6.020) — — — (3.302) (7.290) (10.516) — — ∆c .029 .053 .102 .148 .239 .469 .055 .106 .157 .259 — ∆c (.737) (1.346) (2.591) (3.759) (6.071) (11.913) (1.397) (2.692) (3.988) (6.579) —60” ∆u .138 .266 — — — — .286 .634 — — —(1524 mm) ∆u (3.525) (6.756) — — — — (7.264) (16.104) — — — ∆c .047 .088 .175 .258 .426 — .095 .186 .278 .457 — ∆c (1.194) (2.235) (4.445) (6.553) (10.820) — (2.413) (4.724) (7.061) (11.608) —72” ∆u .268 — — — — — .622 — — — —(1829 mm) ∆u (6.807) — — — — — (15.799) — — — — ∆c .079 .150 .289 .430 — — .150 .298 .442 .740 — ∆c (2.007) (3.810) (7.341) (10.922) — — (3.810) (7.569) (11.227) (18.796) —

Page 303: Manual Completo

16-5

Section 16Flooring and Decking Systems

Copyright © 2014 Strongwell CorporationAll Rights Reserved

Rev.1214

INTRODUCTION

SAFDECK® is a system of 24” wide fiberglass panels designed to overlap for a continuous solid surface. SAFDECK® is intended to replace wood, aluminum or steel decking in environments where corrosion or rotting creates costly maintenance problems or unsafe conditions. Nonconductive and non-sparking, SAFDECK® provides safe walkways in electrical applications.

FEATURES

The SAFDECK® fiberglass decking system is comprised of pultruded FRP panels. The system provides these features:

• Corrosion Resistant • Easy to Maintain

• Strong • Non-Sparking

• Lightweight • Easily Transported

• Easy to Install • Non-Conductive

SIZES

SAFDECK® is available in 1-1/8” deep planks in 24” widths. The decking system is designed to be a one-for-one replacement for plywood and has a 60-pound per square foot rating at 3-foot spans with less than L/180 deflection.

All panels are gritted and are available in 24’ lengths. Other lengths are available upon request. SAFDECK® may be ordered with a smooth surface for non-pedestrian applications.

MATERIALS OF CONSTRUCTION

SAFDECK® is a high strength, one-piece, overlapping panel system. Manufactured of pultruded fiberglass reinforced polymer (FRP), SAFDECK® is particularly well suited to corrosive environments.

The standard resin system is a slate gray fire retardant polyester resin meeting the requirements of Class 1 flame spread rating of 25 or less per ASTM E-84 and the self-extinguishing requirements of ASTM D-635. The resin is UV inhibited and the composite includes a surface veil on all exposed surfaces for enhanced corrosion and UV protection. Other resins and colors are available upon request.

The standard grit system for SAFDECK® is a polyurethane based medium grit. This grit system is recommended for light pedestrian traffic only. Other grit systems available include epoxy medium and epoxy coarse and may be more appropriate for applications with heavier traffic.

APPLICATIONS

SAFDECK® is designed to be used for flooring and covers. Typical applications include:

• Cooling Tower Decking • Temporary Flooring

• Odor Control Covers • Wind Walls

• Roofing Walkways • Cellular Wall Panels

SAFDECK® FIBERGLASS DECKING SYSTEM

Page 304: Manual Completo

16-6

Section 16Flooring and Decking Systems

Copyright © 2014 Strongwell CorporationAll Rights Reserved

Rev.1214

SAFDECK® Load / Deflection DataSINGLESPAN

LENGTH(I)

24” SAFDECK®Ι = 0.439 in.4 Wt = 4.1 lb./lin. ft. (gritted)

SAFDECK® FIBERGLASS DECKING SYSTEM

24” ∆u .015 .030 .036 .044 .059 .119 .179(610 mm) ∆u (.38) (.76) (.91) (1.12) (1.50) (3.02) (4.55) ∆c .012 .023 .029 .036 .048 .096 .143 ∆c (.30) (.58) (.74) (.91) (1.22) (2.44) (3.63)36" ∆u .063 .126 .151 .189 .252 — —(914 mm) ∆u (1.60) (3.20) (3.84) (4.80) (6.40) — — ∆c .032 .064 .081 .101 .134 .269 — ∆c (.81) (1.63) (2.06) (2.57) (3.40) (6.83) —48" ∆u .215 .430 — — — — —(1219 mm) ∆u (5.46) (10.92) — — — — — ∆c .073 .147 .206 .257 .343 — — ∆c (1.85) (3.73) (5.23) (6.53) (8.71) — —

25 50 60 75 100 200 300 (u=1197) (u=2394) (u=2873) (u=3591) (u=4788) (u=9576) (u=14364) (c=365) (c=730) (c=876) (c=1095) (c=1460) (c=2920) (c=4380)

u = Uniform load in lbs/ft2 (N/m2). For example, a 100 lb. uniform load over 3 ft.2 is 300 lbs. of total load.∆u = Typical deflection under the uniform load in inches (mm) c = Concentrated load in lbs/ft of width (N/m of width)∆c = Typical deflection under concentrated load in inches (mm)

Maximum deflections shown are based on a deflection of approximately L/100. To calculate the maximum deflection for a simply supported continuous beam spanning two equal lengths with the uniform or concentrated load on one span only, multiply the above deflections by 0.71.

Page 305: Manual Completo

16-7

Section 16Flooring and Decking Systems

Copyright © 2014 Strongwell CorporationAll Rights Reserved

Rev.1214

INTRODUCTION

STRONGDEK™ is a system of 12” wide architectural fiberglass decking panels designed to overlap and interlock for a continuous solid surface. STRONGDEK™ is intended to replace wood, aluminum or steel decking in environments where the environment or use conditions create costly maintenance problems. STRONGDEK™ panels will not rot, rust, chip or mildew, which make them ideal for high-moisture environments, including saltwater.

FEATURES

The STRONGDEK™ fiberglass decking system is comprised of pultruded FRP panels. The system provides these features:

• Easy to Install • Easy to Maintain

• Strong • Hidden Fastening System

• Non-Conductive • Slip Resistant when Gritted

• Lightweight

SIZES

STRONGDEK™ is available in 1-1/8” deep panels that are 12” wide and standard 24’ long panels are available in stock. Panels can also be produced in any length that is practical. Standard colors are light gray or beige. Panels can be produced with an optional grit surface.

MATERIALS OF CONSTRUCTION

STRONGDEK™ is a high strength, planking panel system. Manufactured of pultruded fiberglass reinforced polymer (FRP). STRONGDEK™ panels have intermediate ribs on each panel that help provide extra stiffness and strength, allowing the deck to perform ideally in areas with pedestrian traffic. An optional grit surface can be added to provide a non-skid surface. Standard colors are light gray and beige.

The standard resin system is a fire retardant polyester resin meeting the requirements of Class 1 flame spread rating of 25 or less per ASTM E-84 and the self-extinguishing requirements of ASTM D-635. The resin is UV inhibited and the composite includes a surface veil on all exposed surfaces for enhanced corrosion and UV protection. Other resins and colors are available upon request.

APPLICATIONS

STRONGDEK™ is designed to be used for architectural flooring/decking. Typical applications include:

• Hotel Recreation Areas • Homes and Condominiums

• Buildings in Coastal Areas • Marinas and Docks

STRONGDEK™ FIBERGLASS DECKING SYSTEM

Page 306: Manual Completo

16-8

Section 16Flooring and Decking Systems

Copyright © 2014 Strongwell CorporationAll Rights Reserved

Rev.1214

12.00 1.00

.94

.18

.12

.12

(3.64)FASTENER

(2.92)(2.92)(3.32)

.94

.24

CONNECTION - TYP.

12.00 1.00

.94

.18

.12

.12

(3.64)FASTENER

(2.92)(2.92)(3.32)

.94

.24

CONNECTION - TYP.

STRONGDEKTM Load / Deflection DataI12 = 0.31 in.4 Wt = 2.58 lb/lin. ft

SPAN 50 100 150 200 250 300 350 400 450 500 550 600 650

24”(610mm)

∆u 0.019 0.026 0.034 0.041 0.048 0.054 0.073 0.080 0.086 0.094 0.100 0.107 0.113∆u (0.488) (0.671) (0.853) (1.036) (1.219) (1.372) (1.859) (2.042) (2.195) (2.377) (2.530) (2.713) (2.865)∆c 0.016 0.022 0.028 0.034 0.04 0.045 0.061 0.067 0.072 0.078 0.083 0.089 0.094∆c (0.406) (0.559) (0.711) (0.864) (1.016) (1.143) (1.549) (1.702) (1.829) (1.981) (2.108) (2.261) (2.388)

30”(762mm)

∆u 0.032 0.041 0.056 0.069 0.081 0.096 0.117 0.131 0.144 0.155 0.165 0.179 —∆u (0.800) (1.029) (1.410) (1.753) (2.057) (2.438) (2.972) (3.315) (3.658) (3.924) (4.191) (4.534) —∆c 0.021 0.027 0.037 0.046 0.054 0.064 0.078 0.087 0.096 0.103 0.11 0.119 —∆c (0.533) (0.686) (0.940) (1.168) (1.372) (1.626) (1.981) (2.210) (2.438) (2.616) (2.794) (3.023) —

36”(914mm)

∆u 0.047 0.065 0.090 0.115 0.140 0.169 0.207 0.227 0.252 — — — —∆u (1.189) (1.646) (2.286) (2.926) (3.566) (4.298) (5.258) (5.761) (6.401) — — — —∆c 0.026 0.036 0.05 0.064 0.078 0.094 0.115 0.126 0.14 — — — —∆c (0.660) (0.914) (1.270) (1.626) (1.981) (2.388) (2.921) (3.200) (3.556) — — — —

42”(1067mm)

∆u 0.067 0.101 0.145 0.191 0.239 0.288 0.340 0.365 — — — — —∆u (1.707) (2.560) (3.680) (4.854) (6.081) (7.308) (8.641) (9.281) — — — — —∆c 0.032 0.048 0.069 0.091 0.114 0.137 0.162 0.174 — — — — —∆c (0.813) (1.219) (1.753) (2.311) (2.896) (3.480) (4.115) (4.420) — — — — —

48”(1220mm)

∆u 0.096 0.158 0.233 0.310 0.391 0.463 — — — — — — —∆u (2.438) (4.023) (5.913) (7.864) (9.936) (11.765) — — — — — — —∆c 0.04 0.066 0.097 0.129 0.163 0.193 — — — — — — —∆c (1.016) (1.676) (2.464) (3.277) (4.140) (4.902) — — — — — — —

54”(1372mm)

∆u 0.138 0.246 0.370 0.497 0.626 — — — — — — — —∆u (3.498) (6.241) (9.395) (12.619) (15.911) — — — — — — — —∆c 0.051 0.091 0.137 0.184 0.232 — — — — — — — —∆c (1.295) (2.311) (3.480) (4.674) (5.893) — — — — — — — —

u = Uniform load in lbs/ft2 (N/m2). For example, a 100 lb uniform load over 3 ft2 is 300 lbs of total load.∆u = Typical deflection under the uniform load in inches (mm)c = Concentrated load in lbs/ft of width (N/m of width)∆c = Typical deflection under concentrated load in inches (mm)

STRONGDEK TM panels were attached to beams with tek screws and tested in a multi-panel configuration. This data was used to create the STRONGDEK TM load table above for a single panel.

1.000

1.0001.000

.406±0.020

.125

OPTIONAL STARTER CHANNEL

FASTENER

Optional AccessoriesStrongwell manufactures accessories to provide a fully-finished look to STRONGDEK™ installations:

• Custom Starter Channel - For use on lengthwise edges to attach decking to support members• Standard Equal Leg Angles - For end closures or cantilever supports

STRONGDEK™ MECHANICAL PROPERTIES

Page 307: Manual Completo

SECTION 17 - EXTREN DWB® DESIGN GUIDE

Table of Contents

Introduction ............................................................17-3

Independent Testing Certification ...........................17-4

Physical and Section Properties .............................17-5

Materials .................................................................17-7

Statement of Approach ...........................................17-8

Beam Load Tables ...............................................17-10

Web Buckling ........................................................17-30

Connections ..........................................................17-31

Appendix - Existing Bridge Projects .....................17-40

Look for this blue line in the left margin of the Design Manual documents. This line shows you where the latest update has been made.

Page 308: Manual Completo

17-1

Section 17EXTREN DWB® Design Guide

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.1008

SECTION 17

EXTREN DWB® DESIGN GUIDE

8” x 6” EXTREN DWB®

Hybrid and All-Glass Material Configurations

36” x 18” EXTREN DWB®

Hybrid Material Configuration

Page 309: Manual Completo

17-2

Section 17EXTREN DWB® Design Guide

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.1008

Based on Independent Research, Testing and Analysis Under the Direction of:

Professor John J. Lesko, Ph.D.

Department of Engineering Science & Mechanics

Virginia Polytechnic Institute and State University

&

Professor Thomas E. Cousins, Ph.D.

Via Department of Civil and Environmental Engineering

Virginia Polytechnic Institute and State University

©Copyright 2008 by Strongwell Corporation

Bristol, VA, U.S.A.

All Rights Reserved

EXTREN DWB® DESIGN GUIDE

8”x 6” EXTREN DWB® Hybrid and All-Glass Material Configurations

36”x 8” EXTREN DWB® Hybrid Material Configuration

Page 310: Manual Completo

17-3

Section 17EXTREN DWB® Design Guide

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.1008

INTRODUCTION FROM STRONGWELL

Strongwell’s EXTREN DWB® (Double Web Beam) was developed with the assistance of the U.S. Department of Commerce’s Advanced Technology Program (ATP). This involved a three year cooperative research and development program between Strongwell and the Advanced Technology Program.

The goal of Strongwell’s ATP project was to design, develop and produce an optimized fiber-reinforced polymer (FRP) structural shape for use in heavy structures such as vehicular bridges and offshore drilling platforms. The program included the development of manufacturing processes and equipment to produce such a product. The result of Strongwell’s efforts is a double web beam with carbon fibers in the top and bottom flanges for increased stiffness.

The carbon/glass “hybrid” (hybrid refers to the combination of the dual carbon and glass reinforcements) beam has a flexural modulus of elasticity greater than 6.0 x 106 psi. The flexural modulus of elasticity of a standard EXTREN® WF beam is 2.6 - 2.8 x 106 psi. Additionally, the double web shape has significantly improved the lateral torsional stability of the beam under load. This increased stability is very significant and reduces the beam’s need for lateral bracing.

Strongwell presently produces an 8” x 6” and a 36” x 18” DWB. Both of these sizes have undergone extensive laboratory testing and the 8” x 6” was installed on a short span bridge in Blacksburg, Virginia, in June 19971. The 36” x 18” DWB was installed in an AASHTO HS-20 vehicular bridge in Sugar Grove, Virginia in September 20012.

The EXTREN DWB® design data presented herein is the result of extensive testing and evaluation work by two engineering departments of Virginia Tech - Via Department of Civil & Environmental Engineering and the Department of Engineering Sciences and Mechanics. The availability of Virginia Tech’s heavy structures laboratory and the recognized expertise of its engineering professors provided Strongwell with an excellent source for independent testing of the EXTREN DWB®.

Strongwell’s mechanical testing laboratory has created a data bank of coupon test properties for the EXTREN DWB® structural shape. This data bank enables Strongwell to compare the coupon properties of each manufactured lot of EXTREN DWB® shapes and to certify that each lot meets the performance characteristics and criteria identified in this design guide. Strongwell’s certification of these properties provides structural engineers with the confidence that EXTREN DWB® structural shapes meet the performance requirements listed herein.

This guide includes design information for the 8” x 6” and 36” x 18” shapes. The enclosed information allows structural engineers to design their projects with EXTREN DWB® beams with confidence.

Strongwell received raw material support in manufacturing the 36” DWB from Dow Chemical, Owens Corning and Fortifil Fibers. Their assistance in manufacturing the beams used for performing the various destructive testing is very much appreciated.1 Hayes, M.D., Lesko, J.J., Haramis, J., Cousins, T.E., Gomez, J., Massarelli, P., “Laboratory and Field Testing of Com-

posite Bridge Superstructure,” ASCE, Journal of Composites for Construction, Vol. 4, No. 3, 2000, pp. 120-128.2 Hayes, M.D., Lesko, J.J., Cousins T., Waldron C., Witcher D., Barefoot G., & Gomez J., “Design of a Short Span Bridge

Using FRP Girders,” Composites in Construction International Conference, October 10-12, 2001, Porto, Portugal.

Page 311: Manual Completo

17-4

Section 17EXTREN DWB® Design Guide

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.1008

INDEPENDENT TESTING CERTIFICATION

MEMORANDUM

To: Users of the EXTREN DWB® Design Guide

FROM: JOHN J. LESKO, PHD. DEPARTMENT OF ENGINEERING SCIENCE & MECHANICS

THOMAS E. COUSINS, PHD. VIA DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING

Subj: The development of the EXTREN DWB® Design Guide

Date: 10 February 2003

The basis for this design manual comes from independent stiffness and strength characterizations carried out in our laboratories. These tests were completed on 8" x 6" all-glass and hybrid DWB and the 36" x 18" hybrid DWB manufactured under production conditions and supplied to us by Strongwell Corp. The final design values presented in the EXTREN DWB® Design Guide are the direct result of these tests and interpretations described within the guidelines.

A LAND-GRANT UNIVERSITY THE COMMONWEALTH IS OUR CAMPUSAN EQUAL OPPORTUNITY / AFFIRMATIVE ACTION INSTITUTION

Page 312: Manual Completo

17-5

Section 17EXTREN DWB® Design Guide

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.1008

PHYSICAL AND SECTION PROPERTIES

Dimensions specified are nominal and apply for both the all-glass and hybrid forms of this beam (shown in Figure 2 and Figure 3). Standard tolerances for the as-pultruded shape (section dimensions and straightness) are also listed in Table 1:

NOMINAL SECTION PROPERTIES

Ixx = 129 in4

Sxx = 32.2 in3

rxx = 3.07 in

A = 13.7 in2

A2 webs = 5.36 in2

A2 flanges = 7.44 in2

Iyy = 31.8 in4

Syy = 10.6 in3

ryy = 1.52 in

Weight = 11.2 lbs/lf

Figure 1. Nominal Section Properties and Dimensions (in inches) for the 8” DWB

Page 313: Manual Completo

17-6

Section 17EXTREN DWB® Design Guide

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.1008

PHYSICAL AND SECTION PROPERTIES

Condition Tolerance

Wall Thickness 15%

Outside Dimension 1.5%

Straightness .060" x length in ft.

Flatness .040" per inch of outside dimension

Twist 1/2o x length in ft., 5o maximum

Cut Lengths -0”, +3.00"

Squareness of end cut 1o

TABLE 1STANDARD TOLERANCES

NOMINAL SECTION PROPERTIES

Ixx = 15291 in4

Sxx = 849 in3

rxx = 12.9 in

A = 91.2 in2

A2 webs = 50.1 in2

A2 flanges = 34.0 in2

Iyy = 2626 in4

Syy = 292 in3

ryy = 5.37 in

Weight = 70 lbs/lf

Figure 2. Nominal Section Properties and Dimensions (in inches) for the 36” DWB

Page 314: Manual Completo

17-7

Section 17EXTREN DWB® Design Guide

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.1008

MATERIALS

8" x 6" EXTREN DWB® — ALL-GLASS

The 8" x 6" EXTREN DWB® - G (8" DWB-G), all-glass beam, is a pultruded structural shape composed of four different types of E-glass reinforcements in a vinyl ester resin matrix. The all-glass laminate includes 0° longitudinal rovings, continuous strand mat, 0°/90° stitched fabric, and 45° stitched fabric. The approximate fiber volume fraction is 55%. The DWB shape improves the apparent (or effective) modulus of elasticity and the stability of the structure under load versus traditional FRP WF or I shapes. The shape weighs 11.2 pounds per linear foot (11.2/lf).

8" x 6" EXTREN DWB® — HYBRID BEAM

The 8"x 6" EXTREN DWB® - H (8" DWB-H), hybrid beam, is a pultruded structural shape comprised of carbon fiber tows and four different types of glass reinforcements in a vinyl ester resin matrix. The 0° carbon tows replace some of the 0°glass rovings in the top and bottom flanges of the shape. The remainder of the laminate is identical to the all-glass beam. The carbon tows improve the apparent (or effective) modulus of elasticity at least 30% versus the all-glass beam. The approximate fiber volume is 55% (including glass and carbon). The shape weighs 11.2 pounds per linear foot (11.2/lf).

36" x 18" EXTREN DWB® BEAM — HYBRID BEAM

The 36" x 18" EXTREN DWB® (36" DWB-H) is only produced as a hybrid beam. It is a pultruded structural shape composed of carbon fiber tows in the top and bottom flanges and the same four types of E-glass reinforcements as the 8" DWB-G and 8" DWB-H in a vinyl ester resin matrix throughout the entire structural shape. The carbon tows improve the apparent (effective) modulus of elasticity. The approximate fiber volume is 55% (including glass and carbon) and the shape weighs 70 pounds per linear foot (70 lbs/lf). The 36" DWB-H was designed specifically for use in vehicular bridges.

ANTICIPATED APPLICATIONS FOR EXTREN DWB®

This guide is intended for assistance in the design of structures such as bridges, buildings, offshore structures, and miscellaneous heavy structural fabrications.

• Bridges — Primary and secondary stringers and floor beams

• Buildings — Primary and secondary structural members for building components including floor beams, roof beams, purlins, etc.

• Offshore Structures — Floor beams, deck beams, and primary decking structure

• Miscellaneous Structures — Towers, heavy industrial platform and floor beams, pipe racks, etc.

Page 315: Manual Completo

17-8

Section 17EXTREN DWB® Design Guide

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.1008

STATEMENT OF APPROACH

The design guide for the Strongwell DWB is presented as a material specification where the material system and its manufacturing process are well defined and controlled. Given these tolerances on the FRP product, guidelines for its use in a structure are defined.

As a guide, the Load Resistance Factor Design (LRFD) approach is used to define these operating limits.3 In this approach, the probability distribution of load/stress (Loads) is compared to the probability of failure strength of the material (Resistance), as illustrated in Figure 4. Selecting the form and size of the structure determines the desired overlap of the two distributions, thus defining the stated allowable risk.

For the purposes of this design guide, we, however, only define for the engineer the Resistance side of the problem. Therefore, the engineer of record is required to define the Loads side of the particular design application based on the variability of loads and operating environment. These details will define the level of reliability required for the application.

In determining the Resistance element of the design problem, based on this material specification, Weibull statistics are employed to describe the variability of the material. The Weibull statistical distribution is widely accepted in the composites community for describing the variability of failure for these material systems.4,5

3 AASHTO, “LRFD Bridge Design Specification,” 2nd Edition, American Association of State Highway and Transportation Officials, Washington, D.C., 1998.

4 Weibull, Waloddi, “A Statistical Distribution Function of Wide Applicability,” J. of Applied Mechanics, 1951, pp. 293-297.5 Weibull, Waloddi, “A Statistical Representation of Fatigue Failures in Solids, Transactions of the Royal Institute of

Technology,” No. 27, Stockholm, 1949.

Figure 3. LRFD Conceptual Representation for Design

Page 316: Manual Completo

17-9

Section 17EXTREN DWB® Design Guide

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.1008

STATEMENT OF APPROACH

A reliability based approach is used to define A- and B-basis allowable levels of resistance (described further in the Commentary, page 21). These values define for the engineer the level of risk allowed in operating the structure based on a determined design load. Figure 5 illustrates the margin between a design load (supplied by the engineer) and the A-basis or the B-basis resistance listed in this guide. This margin is identified as the level of risk, or inversely, the margin of safety for the design.

This margin or factor of safety should take into account the variability in loads as defined by the engineer for the particular structure. An extensive presentation of load factors is available from the American Society of Civil Engineers.6 In addition, as the A- and B-basis allowables (resistance) can change over time due to environmental exposure and fatigue. The selected margin of safety must also consider the potential effects of the service environment on the performance of the structure. As FRP structural shapes are new to the industry, definitive criteria for reasonable factors of safety based on durability are not presently available. However, the engineer is referred to several sources for guidance in selecting reduction factors for the stated A- and B-basis allowables.7 The engineer is also referred to several sources of ongoing research on the durability of the DWB in service and laboratory testing which are not as yet in the form of criteria for the selection of reduction factors. 8, 9 While this guide does not provide load reduction factors, the referenced documents and codes do refer the engineer to appropriate load factors.

6 Minimum Design Loads for Buildings and Other Structures, ASCE 7-02, American Society of Civil Engineers, Reston, VA, 2002.7 EUROCOMP Design Code and Handbook, “Structural Design of Polymer Composites,” Ed Clarke, J.L., E&F Spon, London, UK, 1997, pp. 37-41.8 Neely, W. D., “Evaluation of the In-Service Performance of the Tom’s Creek Bridge,” M.S. Thesis Via Department of Civil & Environmental Engineering,Virginia Tech, May 2000, electronic thesis available on-line at: http://scholar.lib.vt.edu/theses/index.html.9 Senne, J.L., “Fatigue Life of Hybrid FRP Composite Beams,” M.S. Thesis, Department of Engineering Science & Mechanics, Virginia Tech, July 2000, electronic thesis available at http://scholar.lib.vt.edu/theses/index.html.

Figure 4. Margin of Safety (based on the selection of working loads/stress relative to the A- and B-basis allowables.

Page 317: Manual Completo

17-10

Section 17EXTREN DWB® Design Guide

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.1008

BEAM LOAD TABLES

Failure Mode: The controlling failure mode observed for the all-glass beams was delamination within the compression flange. The tension flange typically was left intact and able to support load. In some cases, interply damage was observed in the tension flange and less able to carry bending loads.

Lateral Torsional Stability: Flexural stiffness and strength characterizations were carried out with no lateral supports for spans to 20'. Thus, for spans to 20', flexural strength is the controlling limit state for both all-glass and hybrid beams. In subsequent flexural tests on laterally unsupported all-glass spans of 20' to 40', lateral-torsional buckling was not observed at deflections to L/90.

The following load tables have been developed using the Load Resistance Factor Design (LRFD) approach and are further defined later in this section.

TABLE 38" x 6" EXTREN DWB® - G (All-Glass)

Major Axis B-Basis PropertiesEzz =4.25 x 106 psi kGzyAv =1.6 x 106 psi-in2 Mmax= 108 kip ft.

B-Basis Allowable Distributed Loads in Pounds Per Lineal Foot

TABLE 28" x 6" EXTREN DWB® - G (All-Glass)

Major Axis A-Basis PropertiesEzz =4.01 x 106 psi kGzyAv =1.0 x 106 psi-in2 Mmax= 96.1 kip ft.

A-Basis Allowable Distributed Loads in Pounds Per Lineal Foot

8 12013 1945 1459 1167 973 834 700 584 438 10 7688 1140 855 684 570 488 410 342 256 12 5339 716 537 429 358 307 258 215 161 14 3922 475 356 285 237 204 171 142 107 16 3003 330 247 198 165 141 119 99 74 18 2373 238 178 143 119 102 86 71 53 20 1922 176 132 106 88 76 63 53 40

Span Capacity Deflection in Ft. Moment L/180 L/240 L/300 L/360 L/420 L/500 L/600 L/800

8 13463 2338 1754 1403 1169 1002 842 701 526 10 8616 1322 992 793 661 567 476 397 298 12 5983 811 609 487 406 348 292 243 183 14 4396 530 398 318 265 227 191 159 119 16 3366 364 273 218 182 156 131 109 82 18 2659 260 195 156 130 112 94 78 59 20 2154 192 144 115 96 82 69 58 43

Span Capacity Deflection in Ft. Moment L/180 L/240 L/300 L/360 L/420 L/500 L/600 L/800

Page 318: Manual Completo

17-11

Section 17EXTREN DWB® Design Guide

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.1008

BEAM LOAD TABLES

Failure Mode: The controlling failure mode observed for the hybrid beam was delamination within the compression flange, leaving the tensile flange essentially undamaged.

Lateral Torsional Stability: Flexural stiffness and strength characterizations were carried out with no lateral supports for spans to 20'. Thus, for spans to 20', flexural strength is the controlling limit state for both all-glass and hybrid beams. In subsequent flexural tests on laterally unsupported hybrid spans of 20' to 40', lateral-torsional buckling was not observed at deflections to L/90.

TABLE 48" x 6" EXTREN DWB® - H (Hybrid)

Major Axis A-Basis PropertiesEzz= 5.66 x 106 psi kGzyAv= 1.8 x 106 psi-in2 Mmax= 36.1 kip ft.

A-Basis Allowable Distributed Loads in Pounds Per Lineal Foot

TABLE 58" x 6" EXTREN DWB® - H (Hybrid)

Major Axis B-Basis PropertiesEzz= 5.97 x 106 psi kGzyAv= 2.2 x 106 psi-in2 Mmax= 51.6 kip ft.

B-Basis Allowable Distributed Loads in Pounds Per Lineal Foot

8 4513 2970 2228 1782 1485 1273 1069 891 668 10 2888 1703 1277 1022 851 730 613 511 383 12 2006 1054 791 632 527 454 379 316 237 14 1473 693 520 416 346 297 249 208 156 16 1128 478 358 287 239 205 172 143 107 18 891 342 257 205 171 147 123 103 77 20 722 253 190 152 127 109 91 76 57

Span Capacity Deflection in Ft. Moment L/180 L/240 L/300 L/360 L/420 L/500 L/600 L/800

8 6450 3266 2449 1960 1633 1400 1176 980 735 10 4128 1850 1388 1110 925 793 666 555 416 12 2867 1136 852 682 568 487 409 341 256 14 2106 743 557 446 372 318 268 223 167 16 1613 511 383 306 255 219 184 153 115 18 1274 365 274 219 182 156 131 109 82 20 1032 270 202 162 135 116 97 81 61

Span Capacity Deflection in Ft. Moment L/180 L/240 L/300 L/360 L/420 L/500 L/600 L/800

Long-term Performance, Fatigue & Durability: Presently there is limited information regarding the long-term performance of the beam in combined hygro-thermal mechanical service environments. Fatigue loading of the hybrid beam has revealed no loss in stiffness and no failure after 10 million cycles at an applied moment of 37.3 kip ft.,9 slightly above the A-basis allowable single cycle moment capacity of 36.1 kip ft. Further field work with the beams in the Tom’s Creek Bridge, Blacksburg, VA, has demonstrated that the beam can withstand 15 months in service with no loss in stiffness and strength under a modest service environment.8 Moreover, no residual creep deflection was observed following the 15 months in service.8

Page 319: Manual Completo

17-12

Section 17EXTREN DWB® Design Guide

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.1008

TABLE 6

36" x 18" EXTREN DWB® - H (Hybrid)

Major Axis A-Basis Properties

Ezz= 5.76 x 106 psi kGzyAv= 44.5 x 106 psi-in2 I= 15291 in4

Mmax= 964.0 kip-ft. @ 30’ Span & 635.6 kip-ft. 40-60’ Span

A-Basis Allowable Distributed Loads in Pounds Per Lineal Foot

TABLE 7

36" x 18" EXTREN DWB® - H (Hybrid)

Major Axis B-Basis Properties

Exx =6.10 x 106 psi kGxyA =46.2 x 106 psi-in2 I=15291 in4

Mmax= 1139 kip ft. @ 30’ Span & 916.7 kip-ft. 40-60’ Span

B-Basis Allowable Distributed Loads in Pounds Per Lineal Foot

30 8569 1960 1764 1411 1176 1008 882 784 705 35 5223 1465 1319 1055 879 754 659 586 527

40 3178 1117 1006 804 670 575 503 447 402 45 2511 867 780 624 520 446 390 347 312 50 2034 683 615 492 410 351 307 273 246 55 1681 546 491 393 328 281 246 218 197 60 1412 442 398 318 265 227 199 177 159

Span Capacity Deflection in Ft. Moment L/180 L/240 L/300 L/360 L/420 L/500 L/600 L/800

30 10124 2051 1846 1477 1231 1055 923 820 738 35 6712 1536 1382 1106 921 790 691 614 553 40 4584 1173 1055 844 704 603 528 469 422 45 3622 911 820 656 547 468 410 364 328 50 2933 719 647 517 431 370 323 287 259 55 2424 575 517 414 345 296 259 230 207 60 2037 466 419 335 279 239 210 186 168

Span Capacity Deflection in Ft. Moment L/180 L/240 L/300 L/360 L/420 L/500 L/600 L/800

Failure Mode: The controlling failure mode for all beams was delamination within the compression flange, leaving the tensile flange undamaged.

Bearing Conditions: The values noted are valid for full width elastomeric bearing.

BEAM LOAD TABLES

Page 320: Manual Completo

17-13

Section 17EXTREN DWB® Design Guide

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.1008

The preceding charts are allowable load tables for the hybrid and all-glass EXTREN DWB® when used as flexural members (beams).

These allowable loads are based upon:

1. Flexural testing conducted at ambient conditions under four-point loading2. Laterally unsupported beams 3. Single span with simply supported ends4. Allowable distributed loads in the plane of the web, based on strength (ultimate

flexural moment capacity) and deflection determined from A- and B-basis statistics for a shear deformable beam where,

5. Because k and Av are difficult to quantify in some cases, the full value of kGzyAv is experimentally determined for the purposes of this design guide. See the details presented in the Commentary (pages 17 -18) regarding the determination of kGzyAv and it’s A- and B-basis values.

ANALYTICAL METHODOLOGY

Determination of Allowables

Five or more replicates at each of the spans were used to compute the “allowable” design values for stiffness and strength. The allowable values are a measure of the confidence in the data and the reliability at which one desires to operate a structural system*. Allowable values are prescribed here as opposed to arbitrary factors of safety because they represent a level of confidence in the data and a desired level of reliability prescribed for the structure. For instance, the A-basis allowable is based on a level of confidence of 95% in the data (that is, 95% of the data falls above a prescribed value) and ensures 99% reliability (only 1% of the derived values will fall below this value) in the value chosen as the design value. Likewise, the B-basis allowable prescribes a level of confidence of 95% (that is, 95% of the data falls above a prescribed value) and ensures 90% reliability (10% of the derived values will fall below this value). Both bases are presented in this design guide.

ω = distributed load in pounds per foot of beam length

L = length of the simple span

Ezz = flexural modulus of the beam section about its major axis

k = shear non-dimensional correction factor for the cross section

Gzy = shear modulus of the beam

Av = shear area of the beam

MAX =L2

+384EZZIXX 8kGzyAv

ω ω 5 L4

δ

BEAM LOAD TABLES

Page 321: Manual Completo

17-14

Section 17EXTREN DWB® Design Guide

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.1008

Weibull Statistics

The basis for these calculations lies in Weibull statistics, where the cumulative probability distribution function describing the distribution of measured values is derived from,

where α and β are the two parameters used to fit the data. The value of α (the shape parameter) determines the breadth of the distribution while β (the location parameter) defines the value most closely representing the center of the distribution. Based on the concept of reliability, R(x), the probability of failure, F(x), is related to the reliability by,

F(x) = 1- e -(x/β)α

This relationship can be rearranged to form an expression for the A- and B-basis values from the following expressions,

R(x) = 1 - F(x)

A allowable = βlower [Ln( )]10.99

1/αB allowable = βlower [Ln( )]1

0.90

1/α

* MIL Standard: MIL-HDBK-17 (2001). Composite Materials Handbook. Available at http://www.mil17.org

BEAM LOAD TABLES

Page 322: Manual Completo

17-15

Section 17EXTREN DWB® Design Guide

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.1008

BEAM LOAD TABLES

Lateral Torsional Stability: Flexural stiffness and strength characterizations were carried out with no lateral supports for spans to 60'. Thus, flexural strength is the controlling limit state in these conditions. Subsequent flexural tests on laterally unsupported spans @ 60' demonstrated that lateral-torsional buckling does not occur at deflections of L/180. It is, however, recommended that the beam only be loaded to L/360, allowing for a factor of safety of 2.

Long-term Performance, Fatigue & Durability: Fatigue testing of the girder is presently underway to assess the flexural durability of the section. Failure mode and number of cycles to failure under design loads will be determined for limited conditions. The girder has also been installed (September 2001) in the Dickey Creek bridge of Route 601 in Sugar Grove, VA.2 Monitoring and field work are underway to examine the performance of the bridge and the girders under service conditions.

OTHER SECTION PROPERTIES:

Shear Deformable Beams

The elastic shear properties of the section are represented by the value kGxyAv, where k is the shear correction factor (which accounts for the non-uniform shear stress distribution through the depth of the beam), Gxy is the shear modulus and Av is the shear area. Because k and Av are difficult to quantify in some cases, the full value of kGxyAv is experimentally determined for the purposes of this design manual. The A & B basis values for kGxyAv are presented in the tables preceeding this section.

The average10 shear values (kGxyAv) have been determined as:

Beam Type (kGxyAv)

(Msi-in4) 8” DWB Hybrid 2.8

8” DWB All-Glass 3.1

36” DWB Hybrid 46.5

TABLE 8

Page 323: Manual Completo

17-16

Section 17EXTREN DWB® Design Guide

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.1008

Torsional

Using the relationship for torsion, GJeff=TL / φ

the torsional section stiffness, GJeff of the hybrid beam are reported as averages:10

Minor Axis Bending Modulus of Section

Minor axis flexural moduli were computed via laminated beam theory11, 12 for bending about the yy axis. Validation of these computed values was undertaken for the 8” DWB for bending about the major axis and found to be in good agreement with the experimentally determined values discussed above. Confirmation of the 36” DWB prediction has not been completed.10

11 E. J. Barbero, R. Lopez-Anido, and J.F. Davalos, “On the Mechanics of Thin-Wall Laminated Composite Beams,” Journal of Composite Materials, v27 n8 (1993), pp. 806-829. AND,12 J. F. Devalos, H.A. Salim, P. Qiao, R. Lopez-Anido, and E.J. Barbero, “Analysis and Design of Pultruded FRP Shapes Under Bending,” Composites Part B: Engineering, v27 n3-4 (1996) pp. 295-305.

Beam Type GJeff

(Msi-in4) 8” DWB Hybrid 3.1

8” DWB All-Glass 3.4

36” DWB Hybrid 3170

Beam Type Eyy

(Msi) 8” DWB Hybrid (Iyy=31.8 in4) 5.96

8” DWB All-Glass (Iyy=31.8 in4) 3.58

36” DWB Hybrid (Iyy=2626 in4) 4.35

TABLE 9

TABLE 10

where T is the applied torque, L is the span and φ is the angle of rotation in radians.

BEAM LOAD TABLES

Page 324: Manual Completo

17-17

Section 17EXTREN DWB® Design Guide

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.1008

BEAM LOAD TABLES

Major axis bending stiffness and moment capacity was assessed at spans of 8’, 14’ and 20’ for the 8” DWB and nominally 30’, 40’, 60’ for the 36” DWB. A four-point bending test configuration was used to assess these performance attributes, as shown below. Measurements of load deflection and strain were taken continuously during the course of each test. Quantities recorded during the tests and their location are also noted in Figure 6. Load was applied using open loop servo hydraulic actuators. The duration of the test (from zero load to the failure load) was less than five minutes to avoid creep induced damage.

F = Load

Di = Displacement, quarter & midspan

S = Shear strain bridge

T = Torsional strain bridge

B = Bending strain bridge

Bending strain gauges positioned within the constant moment section of the beam (see Figure 5) were used to determine the flexural modulus using the classical relationship,

Ezz = Mxxc

εzzIxx

where c, is the outer fiber distance from the neutral axis (4" for the 8” DWB and 18” for the 36” DWB). Because there are some differences in the tension and compression strains due to differences in the material response in these modes (typically only a few percent), the top and bottom strains were averaged. Again, this value only represents the strains due to bending and does not include shear effects.

Extraction of the shear contribution to deflection is accomplished by treating the section shear properties kGzyAv, as a single quantity. Again, k is the non-dimensional shear correction factor (which accounts for the non-uniform shear stress distribution through the depth of the beam), Gzy is the shear modulus and Av is the shear area. Because k and Av are difficult to quantify in some cases, the aggregate value of kGzyAv is experimentally determined for the purposes of this design guide. This was accomplished by taking the shear deformable expression for a four-point loading case,

Figure 5. Test Set-up for the Determination of Strength and Elastic Constants

TB

BDmid

L/3L/3

L/4

S

Dqtr

F

L/3

S

L/2

x

y

z

Flexural Stiffness Properties and Moment Capacity Determination

COMMENTARY:

and solving for kGzyAv. For each span and replicate tested, the value for kGzyAv was determined at a nominal moment. This was done for each beam tested in conjunction with its individually determined Ezz.

δmax = +7PL3

216EzzIxx

PL3kGzyAv

Page 325: Manual Completo

17-18

Section 17EXTREN DWB® Design Guide

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.1008

Note that in our use of the expression, kGzyAv is dependent on Ezz and can not be determined independently as was accomplished with the bending modulus. For this reason, the determination of A- and B-basis allowable shear properties could not be determined independently. The means to determine these allowables are discussed next.

Possessing Ezz, i and the (kGzyAv)i for each beam, the distributed load, ωi , for each simply supported beam corresponding to a given deflection was determined using,

where κ defines the basis for the deflection criteria noted in the design tables (that is, δ=L/κ). A- and B-basis allowable distributed loads, ωa, were determined through the Weibull based approach discussed in this design guide. Using the A- and B-basis allowable major axis flexural modulus for the beams, Ezz,a the A- and B-basis allowable (kGzyAv)a’s were determined from,

kGzyAv = 384 LE zz,aIxx

8(384Ezz,a Ixx - 5 L3)

ωaκ κ ωa

κ 1

L{ }5L2

+(kGzyAv )i

1384Ezz, i I xx

ωi =

βlower is the value representing the lower bound of the 95% confidence interval above which 95% of the data is predicted to occur in the distribution. This is computed from,

where χ(2n)20.05 is the Chi-Squared of the one-sided confidence interval at 5% for n degrees

of freedom (n = the number of samples or replicates). This value can be obtained from standard math tables or text on statistics.

βlower = β1/α[ ]χ(2n)2

0.05

2n

BEAM LOAD TABLES

Page 326: Manual Completo

17-19

Section 17EXTREN DWB® Design Guide

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.1008

BEAM LOAD TABLES

Figure 7: Loading point configuration to allow rotation and translation of the midspan.

Figure 6: Plan view of lateral-torsional buckling test configuration.

8" x 6" EXTREN DWB® Lateral Torsional Stability

13 Mottram, J.T., “Lateral-Torsional Buckling of a Pultruded I-beam,” Composites, V.23, No.2, 1992, pp. 81-92.

2x Lateral-Torsional restraints tosatisfy Mottram boundry conditions

4x Lateral Supports@ 9' off-center w/ 1" clearance

To investigate the lateral torsional buckling characteristics of the 8" x 6" EXTREN DWB®, multiple tests at varying spans were performed. These multiple tests were conducted on an unbraced, simply supported beam subjected to a single vertical load at mid-span and allowed to freely torque about the long axis of the beam and bend horizontally (see Figure 6). Simply supported ends were augmented with torsional constraints to prevent twisting.13 The loading point allowed for the rotation and translation of the beam (see Figure 7). Four beams, 42’ long, (two hybrid and two all-glass beams) were loaded to a deflection of L/90 at spans of 20’ to 40’, in 4’ increments. Instrumentation was applied (including strain gauges and deflectometers) to measure the tendency of the beam to rotate and/or deflect out-of-plane as load was applied. In all cases, lateral torsional buckling was not observed at the L/90 deflection.

COMMENTARY:

Page 327: Manual Completo

17-20

Section 17EXTREN DWB® Design Guide

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.1008

36" x 18" EXTREN DWB® Lateral Torsional

A similar arrangement to that of the 8” DWB stability test was conducted for the 36" DWB. Load was applied at midspan using a conventional hydraulic ram. Load was transferred to the beam using a system of rollers that released the beam from any torsional or lateral restraints (see Figure 8). The ends of the beam rested on elastomeric bearing pads. These tests were deflection controlled, and investigated beam stability up to a deflection of L/180, or approximately 4" deflection at midspan for a test span of 60’.

Simply supported ends (on full width bearing pads) were augmented with torsional constraints to prevent twisting at the ends (preventing movement of the top flange laterally either direction). Lateral guards were used for the 36" DWB as was done for the 8" DWB (See Figure 6).The beam was instrumented to detect lateral, vertical, and torsional movement in the beam using a system of wire pots and strain gauges. Wire pots were attached to the bottom flange to measure vertical movement, attached horizontally to the top and bottom flanges to measure twist and lateral movement, and attached to a bar projecting away from and clamped to the top flange to detect rotation. Strain gauges were placed on the bottom flange along the centerline of the beam and on the underside of each flange on each side of the beam, near the edges of the flange. Any warping of the cross section was expected to show up as a difference in the strain values.The beam was cycled to 10 kips three times to ensure that the test set-up was both safe and working properly. The beam was then cycled to roughly 50 kips (or 4" of deflection) three times.The beam did not buckle laterally or torsionally in any of the cycles. The beam did slightly deflect laterally as it was loaded, but showed no signs of decreased load capacity.

Figure 8: Loading point configuration to allow rotation and translation of the mid-span for the 36" DWB.

BEAM LOAD TABLES

COMMENTARY:

For further details on shear deformable beams, please see: Cowpers 196614, Bank 198715 and Hayes 199816.14 Cowper, G.R., “The Shear Coefficient in Timoshenko’s Beam Theory,” Journal of Applied Mechanics, June 1966, pp. 335-340.15 Bank, L.C., “Shear Coefficients for Thin-Walled Composite Beams,” Composite Structures, Vol. 8, 1987, pp. 47-61.16 Hayes, M.D., “Characterization and Modeling of a FRP Hybrid Structural Beam and Bridge Structure for Use in the Tom’s Creek Bridge Rehabilitation Project,” M.S. Thesis, Department of Engineering Science & Mechanics, Virginia Tech, February 1998, electronic thesis available at http://scholar.lib.vt.edu/theses/index.html.

Page 328: Manual Completo

17-21

Section 17EXTREN DWB® Design Guide

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.1008

BEAM LOAD TABLES

ANALYTICAL METHODOLOGY:

Single span beam simply supported under a uniformly distributed load.

Shear Deformable Beam Formulas

ω

L

δMax = δ(z = L/2) = 5ωL4 ωL2 +384EzzIxx 8kGzyAv

[ ] -(z,L)=ω z4

2- Lz3 + L

3z ωδ 2kGzyAv12EzzIxx

[ ]z2-Lz2

Figure 9.

Single span beam simply supported under a mid-span point load.

Figure 10.

P

L/2L/2

For z < L/2: δ(z,L) = Pz(24Ezzlxx + 3kGzyAvL

2 - 4kGzyAvz2)

48EzzIxxkGzyAv

δ(z,L) = P(z-L)(-6EzzIxx+1/4kGzyAvL

2 - 2kGzyAvLx + kGzyAvz2)

12EzzIxxkGzyAv

δMax = δ(z = L/2) = + PL3 PL48EzzIxx 4kGA

For z L/2:>–

Page 329: Manual Completo

17-22

Section 17EXTREN DWB® Design Guide

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.1008

Simply supported beam under four-point loading.

Cantilevered beam under a uniform load.

P

L/2L/2

Pb b

For z< L/2 - b : δ(z,L)= Pz(24EzzIxx+ kGzyAv(-12b2 + 3L2 - 4z2)

24EzzIxxkGzyAv

Figure 11.

δ(z,L) = P(2b - L)[- 24EzzIxx+ kGzyAv(4b2 - 4bL + L2 -12Lz+12z2)]

48EzzIxxkGzyAv

For L/2 - b z< L/2 + b :<

δ(z,L) = P(L-z)[- 24EzzIxx+ kGzyAv( 12b2 + L2 - 8Lz + 4z2)]

24EzzIxxkGzyAv

For z L/2 + b :> –

P(2b - L)[ -24EzzIxx+ kGzyAv(4b2 - 4bL - 2L2)]δMax= δ(z =L/2) =

48EzzIxxkGzyAv

δMax= δ(z = L) = +ωL4 ωL2

8EzzIxx 2kGzyAv

Figure 12.

ω

L

ω [ ] - [ Lz - ]ωδ(z,L) = z4 Lz3 L2z2

- + kGzyAv

2EzzIxx

z2

12 3 2 2

BEAM LOAD TABLES

Page 330: Manual Completo

17-23

Section 17EXTREN DWB® Design Guide

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.1008

BEAM LOAD TABLES

Designing For Concentrated Loads

As previously noted in the load tables, compression flange failure was the controlling failure mode for all spans recommended for safe use (i.e. 8’-20’ for the 8" DWB and 30'-60' for the 36" DWB. Typical failure modes for both the 8" DWB and the 36" DWB are shown in Figure 13.

COMMENTARY:

Figure 13: Typical compression flange failures for four point bend testing of the 8" DWB (top photo) and the 36" DWB (bottom photo).

Page 331: Manual Completo

17-24

Section 17EXTREN DWB® Design Guide

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.1008

BEAM LOAD TABLES

Testing of the 8" DWB below an L/d (span to depth ratio) of 10 continued to exhibit this compression flange failure mode. However, at an L/d of 6, the 36" DWB failed at the supports, as shown in Figure 14. The magnitude of the load at which end support failure occurred is dependent on the bearing pad geometry.

Figure 14: Bearing failure at supports for 36" DWB tested at L/d of 6.

These data are summarized in an examination of shear capacity versus the span to depth ratio, Figure 15. The recommended bearing condition for the 36" DWB is noted as condition 3 of Figure 15 where the pad width extends only to the flange tips.

Figure 15: Support bearing capacity and associated failure mode as a function of the span to depth ratio for the 8" DWB and the 36" DWB.

Page 332: Manual Completo

17-25

Section 17EXTREN DWB® Design Guide

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.1008

BEAM LOAD TABLES

ANALYTICAL METHODOLOGY:

EXAMPLE 1: Design for Concentrated Load

Given: A simply supported beam of length L=6' is loaded at midspan by a concentrated load.

A-Basis Allowables:

Moment Capacity = 96.1 kip- ft

Shear Capacity = 35.6 kip

Determine: If the all-glass 8" DWB is to operate under A-basis allowables, what is the maximum allowed concentrated load? What is Pmax if limited to deflection of L/180?

(not including shear deformation)limited to L/180, Pmax =

Pmax = 26.6 kips = Pallowed∴

xP =

(48)(4.01x 106 psi)(129 in4)12 in ft

180 (6 ft )2

P = 48EI180 L2

= L PL3

180 48EI

P

L/23'3'

max

V V

Pmax = 64 kips

Reaction at support is 32 kips = Vmax

Vmax, Vallowed = 32 kips, < 35.6 kips

∴ Pmax = 64 kips = Pallowable

If deflection is a constraint for design and

Figure 16.

Pmax based on Mmax: Mmax= ; Pmax= =PL Mmax 4 (96.1 kip-ft)(4) ...........................................................4 L (6 ft)

Page 333: Manual Completo

17-26

Section 17EXTREN DWB® Design Guide

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.1008

BEAM LOAD TABLES

EXAMPLE 2: Design for Concentrated Load

Given: A simply supported 8" DWB of length L=13.5' is loaded off center @ L/5 by a concentrated load.

A-Basis Allowables:

Moment Capacity = 36.1 kip-ft

Shear Capacity = 13.4 kip

Determine: If the hybrid 8" DWB is to operate under A-basis allowables, what is the maximum allowed concentrated load if limited to deflection of L/180?

Pmax from Mmax:

abL

Mmax =

Pmax = Mmax L = (36.1 kip-ft)(13.5 ft) = 16.7 kips

ab (2.7 ft)( 10.8 ft)

Vmax = V1 = Pb = (16.7 kips)(10.8 ft) = 13.4 kipsL (13.5 ft)

Note: Vmax = Vallowed

Checking for deflection criteria: (not including shear deformation)

∴ Pmax = Pallowable = 16.7 kips

a = L5

Pmax = Pallowed = 12 kips

Figure 17.

P

ba

max

V V1 2

2.7' 10.8'

L Pa (L2-a2)3/2

180 9 3 EI L=

ANALYTICAL METHODOLOGY:

Page 334: Manual Completo

17-27

Section 17EXTREN DWB® Design Guide

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.1008

BEAM LOAD TABLES

EXAMPLE 3: Design for Concentrated and Distributed Load

Given: A simply supported 8" DWB x 12' long is loaded with a distributed load of 500 lb/ft and three concentrated loads of unknown value spaced 3' apart.

B-Basis Allowables:

Moment Capacity = 51.6 kip-ft

Shear Capacity = 19.1 kip

Determine: If the hybrid 8" DWB is to operate under B-basis allowables, what is the maximum allowed loads P that can be applied?

The reaction at the supports are given by:

V1 = V2 = 3 kips + 3/2 P

19.1 kip = 3 kips + 3/2 P

Pmax = (19.1 kips - 3 kips) 2/3

Pmax = 10.73 kips

Pmax = P allowed

We must choose Pmax = Pallowed = 7.1 kips due to limits on moment capacity.

NOTE: Also check deflection

Pmax based on moment capacity:

Mmax = 9 kip-ft + 6P

51.6 kip-ft = 9 kip-ft + 6P

P = (51.6 kip-ft - 9 kip-ft) = 7.1 kips = Pmax

6Pmax based on max shear capacity

Figure 18.

ANALYTICAL METHODOLOGY:

Page 335: Manual Completo

17-28

Section 17EXTREN DWB® Design Guide

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.1008

EXAMPLE 4: Design for Concentrated Load

Given: A simply supported beam of length L=30' is loaded at midspan by a concentrated load.

A-Basis Allowables:

Moment Capacity = 964 kip-ft (See Table 6)

Web Buckling = 45.0 kip (See Table 11)

Determine: If the 36" DWB is to operate under A-basis allowables, what is the maximum allowed load? What is Pmax if limited to deflection @ L/360?

ANALYTICAL METHODOLOGY:

Pmax based on Mmax:

Mmax= ; Pmax= =

Pmax = 129 kips

Reaction at support is 64.5 kips = Vmax

Vmax = 64.5 kips, > 45.0 kips

∴ Pmax = (45.0 kips)(2)= 90.0 kips = Pallowable

(not including shear deformation)

PL Mmax 4 (964 kip-ft)(4) ..............................................................4 L (30 ft)

If deflection is a constraint for design and limited to L/360, Pmax =

= L PL3

360 48EI

Pmax = 252 kips> Pallowed; therefore Pmax = 90.0 kips∴

xP =

(48)(5.76 x 106 psi)(15291 in4)12 in ft

360 (30 ft )3

P = 48EI360 L3

Figure 19.

BEAM LOAD TABLES

Page 336: Manual Completo

17-29

Section 17EXTREN DWB® Design Guide

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.1008

EXAMPLE 5: Design for Concentrated and Distributed Load

Given: A simply supported beam of length 44' is loaded with a distributed load of 1,000 lb/ft and three concentrated loads of unknown value spaced 3' apart.

B-Basis Allowables:

Moment Capacity = 917 kip-ft (See Table 7)

Web Buckling = 50.1 kip (See Table 11)

Determine: If the hybrid 36" DWB is to operate under B-basis allowables, what is the maximum allowed loads P that can be applied?

Pmax based on moment capacity:

Mmax = 242 kip-ft + 22P

917 kip-ft = 242 kip-ft + 22P

The reaction at the supports are given by:

V1 = V2 = 22 kips + 3/2 P

50.1 kip = 22 kips + 3/2 P

Pmax = (50.1 kips - 22 kips) 2/3

Pmax = 18.7 kips

Pmax = P allowed

We must choose Pmax = Pallowed = 18.7 kips due to limits on web buckling capacity.

NOTE: Also check deflection

Pmax based on max shear capacity:

Figure 20.

P = (917 kip-ft - 242 kip-ft) = 30.7 kips = Pmax

22

ANALYTICAL METHODOLOGY:

BEAM LOAD TABLES

Page 337: Manual Completo

17-30

Section 17EXTREN DWB® Design Guide

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.1008

This section deals with the web buckling capacity of the double web member. Loads and/or reactions applied to the beam can fail the webs of the beam by crippling at points of high stress concentrations. The load resistance limit of the beam at these areas is referred to as the web buckling capacity of the member. Web buckling capacity for the DWB is generally critical in areas of support reactions.

WEB BUCKLING:

To quantify the web buckling failure mode of the 8" DWB and 36" DWB, a series of full section tests was conducted. Allowable capacities are summarized in the accompanying table.

The web buckling tests consisted of loading the top flanges of various lengths of beams through 4" x full width plates. The 4" plates simulated bearing pads in erected field conditions. It is noted that short segments were utilized in the web buckling test as opposed to full-length beam conditions seen outside of the laboratory. The tests did not incorporate vertical bearing stiffeners. It is predicted that external vertical bearing stiffeners will increase the web buckling capacity of the members. Due to the inherent design of the continual internal horizontal stiffeners, external stiffeners will only be required in extreme loading conditions.

Beam Type Web Buckling (kips)

A-Basis B-Basis

8" DWB Hybrid or Glass 34.1 47.3

36" DWB Hybrid 45.0 50.1

TABLE 11

Figure 21. Buckling of Web

Crack in Fillet

WEB BUCKLING

For most applications, other design considerations (web shear, flexural stress, deflection, etc.) will ultimately control the particular use of the beam.

Web buckling tests for the 36" DWB were performed on 12" lengths cut from full sections. These samples were centered in a test frame and fully supported by two (2) 9" x 18" elastomeric bearing pads. Load was applied centrically to the top flange via 1" x 4" x 1' - 6" steel plates under load controlled conditions.

It is noted that all specimens were loaded until the section would take no more additonal load (i.e. additional application of load head only continued to buckle the web with no increase in load). In all samples the web buckled as shown in Figure 22.

Page 338: Manual Completo

17-31

Section 17EXTREN DWB® Design Guide

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.1008

CONNECTIONS

This section deals with web-to-web framing connections of 8" DWB members. Connections of this configuration (see Figure 22 and 23) are controlled by rotation and shear through the elements, bolt bearing of the fasteners and any related distortion, and shear of the fasteners.

Due to the performance of the EXTREN DWB® composite material and configuration, it is recommended that steel clip angles and fasteners be utilized. Testing and methodology described has been verified using stainless steel bolts and clip angles.

Test Series

Connection tests consisted of the following series of tests:

• Bolt Bearing Capacity

This initial battery of tests established pin bearing capacities and end/edge distances for web/pin fastening. Steel pins were passed through holes drilled in the webs and loaded perpendicular to the longitudinal axis of the pins until crushing was initiated in FRP bearing area around the pins.

• Short Beam Connection Test

Utilizing the criteria developed in the above tests, full scale bolted assemblies were fabricated and tested (see Figure 22 and 23). Short lengths of beams less than 1'-6" were incorporated to isolate shear through clip angles, shear through fasteners, and bolt bearing on fasteners/FRP.

• Long Beam Connection Test

Utilizing the criteria developed in the above tests, full scale bolted assemblies were fabricated and tested (see Figures 22 and 23). Lengths of the beams were sufficient to develop full shear and rotation through clip angles, shear and rotation through fasteners, and bolt bearing on fasteners/FRP.

Testing has demonstrated that when stainless steel fasteners and stainless steel clip angles are incorporated, the controlling element of the connection capacity is the bolt bearing into or crushing the region around the fastener.

COMMENTARY:

Page 339: Manual Completo

17-32

Section 17EXTREN DWB® Design Guide

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.1008

ANALYTICAL METHODOLOGY:

Maximum bolt bearing capacities from the series of connections may be estimated by the following equations:

FPCr = FU / 3.0

P = (FPCr) (tw) (d)

where:

FPCr = Critical Bearing Stress (psi)

FU = Ultimate Compressive Web Bearing Stress (psi)

P = Pin Bearing Capacity (lbs)

tw = Total Web Thickness (in)

d = Diameter of Fastener (in)

Table 12

Allowable Bearing Capacities In Web Area of Section (in lbs.)8" DWB (Web Thickness = .36") and Single Pin Fastener

• Fastener Edge Distances (Web Area) - 2 diameters or 1" minimum, whichever is greater

• Fastener Pitch - 4 diameters or 3" minimum, whichever is greater

1/4 900 1800

3/8 1350 2700

1/2 1800 3600

5/8 2430 4860

3/4 2700 5400

7/8 3150 6300

1 3600 7200

Diameter of Fastener Single Web Double Web (in.) (lbs.) (lbs.)

CONNECTIONS

Page 340: Manual Completo

17-33

Section 17EXTREN DWB® Design Guide

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.1008

CONNECTIONS

Example 1

Given: 8" DWB with ultimate compressive web bearing stress of 30,000 psi* and (l) 3/4" diameter steel pin passing through 13/16" diameter holes aligned in the webs.

Find: Pin bearing capacity at one web and on both webs.

FPCr = FU / 3.0 = 30,000 psi / 3.0 = 10,000 psi

P = (FPCr) (tw) (d)

= (10,000 psi) (.36") (.75")

= 2700 lb. one web

Or 2700 lb. x 2 = 5,400 lb. two webs

* Minimum coupon properties and may be affected by enviro/mechanical conditions

Table 13

Allowable Bearing Capacities in Web Area of Section (in lbs.)

36" DWB (Web Thickness = .69") and Single Pin Fastener

• Fastener Edge Distance (Web Area) - 2 diameters or 1" minimum, whichever is greater.

• Fastener Pitch - 4 diameters or 3" mininimum, whichever is greater.

1/4 1725 3450

3/8 2590 5180

1/2 3450 6900

5/8 4310 8620

3/4 5175 10350

7/8 6040 12080

1 6900 13800

Diameter of Fastener Single Web Double Web (in.) (lbs.) (lbs.)

ANALYTICAL METHODOLOGY:

Page 341: Manual Completo

17-34

Section 17EXTREN DWB® Design Guide

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.1008

Example 2

Given: Figure 20 – Clip angles 1/4" stainless steel (Fy = 48,000 psi) and 3/4" diameter stainless steel bolts (Fv = 30,000 psi). Where Fy is stress of stainless steel and Fv is bearing stress in FRP beam web.

Find: Capacity of connection assuming 30,000 psi* ultimate compressive bearing stress of 8" DWB.

1. Find bearing capacity of 2 bolts in 8" DWB web area

FPCr = FU / 3.0 = 30,000 psi / 3.0 = 10,000 psi

P = (FPCr)(tw)(d)

= (10,000 psi)(.36" x 4)(.75")

= 10,800 lb.

2. Shear through stainless steel clips

ANet/Clip = 5.62" x .25" – (2)(.25")(.81") = 1.0"

Fv = .40 Fy = .40(48,000 psi) = 19,200 psi

PvSS= FvA = (19,200 psi)(1" x 2 clips) = 38,400 lb.

3. Shear of stainless steel bolts in double shear

Pbolts = FvANom

= (30,000 psi)(.442") x 2

= 26,520 lb.

4. Check pin bearing of stainless steel

PSS Pin Bear = .45 FyA

= .45(48,000 psi)(2)(.25" x .75")

= 18,000 psi

By inspection, the connection is controlled by bearing capacity of bolts on 8" DWB or 10,800 lb.

* Minimum coupon properties and may be affected by enviro/mechanical conditions

ANALYTICAL METHODOLOGY:

CONNECTIONS

Page 342: Manual Completo

17-35

Section 17EXTREN DWB® Design Guide

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.1008

CONNECTIONS

Example 3

Given: Figure 20 – Clip angles 1/4" stainless steel (Fy = 48,000 psi) and 3/4" diameter stainless steel bolts and rods (Fv = 30,000 psi).

Find: Capacity of connection assuming 30,000 psi* ultimate compressive bearing stress of 8" DWB.

1. a. Find bearing capacity of 2 bolts in 8" DWB web area

FPCr = FU / 3.0

= 30,000 psi / 3.0 = 10,000 psi

P8” = (FPCr)(tw)(d)

= (10,000 psi)(.36" x 4)(.75")

= 10,800 lb.

1. b. Find bearing capacity of 2 rods in 36" DWB web area

P36” = (FPCr)(tw)(d)

=(10,000 psi)(.69” x 2)(.75”)

=10,350 lb.

2. Shear through stainless steel clips

PvSS= 38,400 lb. (See Example 2)

3. Shear of stainless steel bolts/rods

Pbolts = 26,520 lb. (See Example 2)

4. Check pin bearing of stainless steel

PPin Bear = 18,000 lb. (See Example 2)

By inspection, the connection is controlled by bearing capacity of bolts on 36" DWB or 10,350 lb.

* Minimum coupon properties and may be affected by enviro/mechanical conditions

ANALYTICAL METHODOLOGY:

Page 343: Manual Completo

17-36

Section 17EXTREN DWB® Design Guide

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.1008

CONNECTIONS

Figure 22. Web-to-Web Framing Connection

NOTES: These details are framing and bearing connection details and are provided as suggested construction details. The designer is cautioned that particular specific site conditions may affect or require the altering of these details.

Figure 23. Web-to-Web Framing Connection

8" DWB to 36" DWB

Page 344: Manual Completo

17-37

Section 17EXTREN DWB® Design Guide

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.1008

Figure 25. Section A—A; Bridge Bearing

CONNECTIONS

Figure 24

Page 345: Manual Completo

17-38

Section 17EXTREN DWB® Design Guide

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.1008

Figure 27. Deck Connection

Figure 26. Bridge Diaphragm

CONNECTIONS

Page 346: Manual Completo

17-39

Section 17EXTREN DWB® Design Guide

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.1008

Figure 28. Steel Shelf Lug

CONNECTIONS

Page 347: Manual Completo

17-40

Section 17EXTREN DWB® Design Guide

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.1008

APPENDIX

Tom’s Creek Bridge

8" x 6" EXTREN DWB® Demonstration Project

The Tom’s Creek Bridge is a small-scale demonstration project involving the use of 8" x 6” EXTREN DWB® hybrid beams as the main load carrying members in a short-span bridge. The Tom’s Creek Bridge is located in Blacksburg, VA and was built during the Summer of 1997.

The project is intended to serve two purposes. First, by calculating bridge design parameters such as the dynamic load allowance, transverse wheel load distribution and deflections under service loading, the Tom’s Creek Bridge will aid in modifying current American Association of State Highway and Transportation Officials (AASHTO) bridge design standards for use with FRP composite materials. Second, by evaluating the FRP girders after being exposed to service conditions, the project will begin to answer questions about the long-term performance of these advanced composite material beams when used in bridge design.

This project involved replacing the superstructure in the Tom’s Creek Bridge, a rural short-span (18 feet) medium volume vehicular traffic bridge with corroded steel girders and a timber deck. Twenty-four (24) 8" DWB hybrid beams and a glulam timber deck with asphalt surface were used to rehabilitate the bridge. In order to verify the composite girder design and to address construction issues prior to the rehabilitation, a full-scale mock-up of the bridge was built and tested in the laboratory. This set-up utilized the actual composite beams, glulam timber deck panels, and geometry to be implemented in the rehabilitation. (Figure 29)

After the rehabilitation was completed, the bridge was field tested under a known truck load. Five load tests nominally, at six-month intervals, were conducted. Using midspan strain and deflection data gathered from the FRP composite girders during these field tests, the above mentioned bridge design parameters were obtained. The Tom’s Creek Bridge was determined to have a dynamic load allowance of 0.90, a transverse wheel load distribution factor of 0.101 and a maximum live load deflection of L/490. Also, no significant long-term change in these parameters for the bridge were noted over the 3 year duration.

Two 8" DWB bridge girders were removed from the Tom’s Creek Bridge after 15 months of service. These FRP composite girders were tested at the Structures and Materials Research Laboratory at Virginia Tech for residual stiffness and ultimate strength and compared to pre-service values for the same beams. This analysis indicates that after 15 months of service, the FRP composite girders had not significantly changed in stiffness or ultimate moment capacity.

For complete details about this project see the theses of Michael David Hayes and William Douglas Neely at http://etd.vt.edu/.

Figure 29. Full scale mock-up of Tom’s Creek Bridge.

Figure 30. Installation of the Tom’s Creek Bridge.

Page 348: Manual Completo

17-41

Section 17EXTREN DWB® Design Guide

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.1008

APPENDIX

Route 601 Dicky Creek Bridge

36" x 18" EXTREN DWB® Demonstration Project

Figure 31. Route 601 Bridge Superstructure

The Virginia Route 601 Bridge, spanning 39 feet over Dickey Creek in Sugar Grove, VA, is the first use of Strongwell’s 36" x 18" EXTREN DWB® hybrid beams as the main load carrying members in a low volume vehicular traffic bridge. The bridge was designed with the aid of the American Association of State Highway and Transportation Officials’ (AASHTO) Standard Specification for Highway Bridges for an AASHTO HS20-44 and alternate military loading with a targeted deflection limit of L/800. To meet the deflection target, eight beams were required and spaced transversely at 3.5 feet. A glulam timber deck was used with an asphalt overlay and the guard rail was a crash tested glulam system. The photos below show the Route 601 bridge.

The experimental research related to the Route 601 Bridge consisted of two phases. The first phase, completed in July of 2001, consisted of testing eleven 36" DWB beams (eight of these beams were used in the bridge) to determine their stiffness properties (E and kGxyAv) to insure that these properties were above the values assumed in the preliminary design. One of these eleven girders was then tested to failure to determine the failure mode and flexural strength of the 36" DWB. The test of the beam to failure revealed a safety factor of over 7 against the AASHTO service load.

The second phase began in October of 2001 after construction of the Route 601 Bridge was completed and consisted of field testing the bridge to determine girder distribution factors, dynamic load allowance, and service load deflections for the structure. To evaluate the in-service behavior of the bridge, mid-span deflections and strains were continuously recorded during live load tests with a vehicle slightly above the legal load limit for the bridge. The wheel load distribution factors in the AASHTO Standard Specification for Highway Bridges for glulam timber decks on steel stringers were found to apply to this bridge. A dynamic load allowance was determined to be 0.36 (slightly larger than that specified in AASHTO), and the maximum deflection of the bridge was L/1100. This improvement in deflection performance is attributed to partial composite action of the deck-to-girder connections, bearing restraint at the supports, and contribution of guardrail stiffness. It was also found that the absence of a midspan diaphragm had a minimal effect on the wheel load distribution factor.

For complete details about this project see the theses of Christopher J. Waldron and Edgar Salom Restrepo at http://etd.vt.edu/.

Page 349: Manual Completo

18-1

Section 18Custom Pultrusions

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.0502

SECTION 18

CUSTOM PULTRUSIONS

Page 350: Manual Completo

18-2

Section 18Custom Pultrusions

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.0502

WHAT IS A CUSTOM PULTRUSION?

While this manual is for designing with EXTREN® standard structurals, it is important for the designer to be aware that virtually an infinite number of custom pultrusion possibilities exist. Pultrusions can be customized in one or more of the following ways:

Shape: Virtually any constant cross-section part can be pultruded. Strongwell produces custom shape dies in-house.

Resin Matrix: Standard resin systems can be modified or special resins used to address special needs such as elevated temperatures or special environments. Typical resins include polyesters, vinyl esters, epoxies, and hybrids. Phenolics and thermoplastic systems are under development.

Reinforcements: The type, form, placement and quantity of reinforcements can be customized to maximize economy, oriented-strength, and/or other physical characteristics. The reinforcement type is either glass, carbon or aramid fibers. The reinforcement form of any of these fibers can be rovings (multifilament strands), mat (long fibers held together in a mat form with a resinous binder), woven fabrics, or non-woven fabrics.

Composite Design: An EXTREN® shape could be made into a non-EXTREN® custom pultrusion by customizing the resin or reinforcement to achieve a particular customer need. A standard shape could be given custom physical properties, for example, by changing the amount, placement, or type or form of reinforcements.

Strongwell manufactures hundreds of different custom pultrusions for industries ranging from aeronautical and automotive to agriculture and sporting goods. Contact Strongwell for any custom pultrusion needs or questions.

CUSTOM PULTRUSIONS

Page 351: Manual Completo

18-3

Section 18Custom Pultrusions

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.0502

NON-EXTREN® PRODUCTSNON-EXTREN® products produced by Strongwell and included in this manual are:

Thermal Cure Rod and Bar

Solid thermal cure rod and bar produced by Strongwell is not EXTREN® and does not have the same properties as EXTREN® structural shapes. Rod and bar stock contain longitudinal reinforcements only - no mat, and do not have a surfacing veil. A number of standard sizes are available. While solid rod and bar can also be produced with fire retardant and/or vinyl ester resin, it is not EXTREN® Series 525 or 625. Thermal cure rod and bar were not designed to be machined. Machining may cause splintering or other issues due to the lack of off-axis reinforcements. See Section 3 — PROPERTIES OF EXTREN® for properties of thermal cure rod and bar.

Special Pultruded Shapes

Strongwell produces custom pultrusions in many shapes and materials for hundreds of customers. A partial listing of dies owned by Strongwell is included as Special Pultruded Shapes in Section 4 — EXTREN® AVAILABILITY LIST. These sections vary from EXTREN® standard shapes in one or more of the ways described for custom pultrusions. Additional sections are frequently added and modifications to existing sections may be possible. For special needs contact Strongwell.

Grating

Strongwell manufactures a complete line of fiberglass grating. DURADEK® high strength pultruded fiberglass grating and DURAGRID® custom fiberglass grating are product trademarks belonging to Strongwell. See Section 12 — FIBERGLASS GRATING for complete product information on DURADEK®and DURAGRID® product lines.

FIBREBOLT®

FIBREBOLT® fiberglass studs and nuts are a non-metallic fastener system. FIBREBOLT® studs are pultruded, machined fiberglass reinforced vinyl ester. The hex shaped nut is fiberglass reinforced PPS resin thermoplastic. See Section 11 — FIBREBOLT® for properties and product information.

DURASHIELD®

The DURASHIELD® panels are fiberglass foam core building panels. The tongue-and-groove panel is comprised of a pultruded skin over a foam core. See Section 14 — DURASHIELD® for complete product information.

COMPOSOLITE®

COMPOSOLITE® is an advanced composites building panel system suitable for major load bearing applications. The unique system of interlocking components make it possible to design monolithic fiberglass structures. See Section 15 — COMPOSOLITE® for product information.

SAFPLANK®

SAFPLANK® is a system of interlocking fiberglass planks designed to create a continuous solid surface. It replaces wood, aluminum and steel where corrosion creates costly maintenance problems or unsafe conditions. See Section 16 — SAFPLANK® for product information.

Page 352: Manual Completo

19-1

Section 19Fabrication

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.1013

SECTION 19

FABRICATION

Look for this blue line in the left margin of the Design Manual documents. This line shows you where the latest update has been made.

Page 353: Manual Completo

19-2

Section 19Fabrication

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.1013

GENERAL FABRICATION CONSIDERATIONS

Fabrication with EXTREN® structural shapes is similar to working with wood, aluminum and other comparable materials. Strongwell has available an extensive Fabrication and Repair Manual that can be provided upon request to fabricators and contractors unfamiliar with fiberglass fabrication. Some of the more common questions concerning fabrication with EXTREN® are:

Q. Do I need special tools?

A. The tools and methods are the same, but since fiberglass is very abrasive, standard bits and blades wear quickly and will need frequent resharpening or replacing.

Q. What types of blades and bits work best?

A. Carbide tip blades and bits are preferred. Diamond tipped or coated blades are best, allowing faster speeds and longer tool life.

Q. Can EXTREN® be punched and sheared?

A. Yes, but material thickness should be limited to 3/16” for punching and 1/4” maximum for shearing. Punches and shears work best if the blade is tapered to permit the cutting edge to penetrate a small amount of the material at any one time.

Q. Can EXTREN® products be formed or bent?

A. No, EXTREN® cannot be bent, rolled or pressed as can steel shapes and plates.

Q. Fabrication can be very dusty. Is the dust harmful?

A. Although the dust is non-toxic and presents no serious health hazard, it can cause skin irritation. The amount of irritation will vary from person to person and can be reduced or eliminated by use of a protective cream. A coverall or shop coat and gloves will add to the operator’s comfort.

Q. What other general fabrication practices should be observed?

A. Machine ways and other friction producing areas should be kept clean. Fiberglass chips are damaging abrasives.

Avoid excessive pressure when sawing, drilling, routing, etc. Too much force will rapidly dull tools and create excessive heat that can scorch the fiberglass.

Do not generate excessive heat in any machining operation. Excessive heat softens the bonding resin in the fiberglass resulting in a ragged rather than clean cut edge.

Support the fiberglass material rigidly during cutting operations. Shifting may cause chipping at the cut edges. Proper support will also prevent warping.

Always seal any cut surfaces or edges of the fiberglass shape with a compatible resin before reporting the job complete.

Fastenings and connections are an important part of both the fabrication and design process. See CONNECTIONS later in this section.

Page 354: Manual Completo

19-3

Section 19Fabrication

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.1013

INTRODUCTION

Connections of EXTREN® shapes and plates may be structural or non-structural. Structural joints — beams to beams, beams to columns, columns to floor, plate on grating (for composite action), etc. — must transmit design loads. Examples of non-structural joints might be coverplates of a foam cored insulating panel or a coverplate epoxied to fiberglass grating (for a walking surface).

Structural connections usually employ mechanical fasteners, adhesive bonding or a combination connection utilizing both. The strongest joint between pieces of EXTREN® shapes is obtained by using a combination of mechanical fasteners with adhesive applied to the mating surfaces.

Selection of the connection method is usually determined by:

• The required capacity of the joint • Joint reliability • The available space for the joint • The types of members to be joined • Suitability of joint for fabrication, especially high volume production work • Service environment • Need for disassembly • Aesthetics desired

COMBINATION MECHANICAL AND ADHESIVE JOINTS

As was stated earlier, the best joints for most structural applications are combination joints. These joints offer the advantages of both types of connection. Adhesive bonding affords the joint good distribution of stresses, reduced effects of stress concentrations (at the holes) and increased joint stiffness while the mechanical fastening provides reliability, reduces the effect of peel and tension in eccentric joints and also provides the necessary clamping force to allow the curing of the epoxy. The table of allowable loads for clip angle at beam ends was developed using combination joints.

MECHANICAL CONNECTIONS

Mechanical connections utilize some type of mechanical fastener to join parts of fiberglass assemblies. Some of the more common types of mechanical fasteners are:

• Bolts with washer and nut (steel, stainless, monel, etc.) • Threaded rod and nuts (steel and fiberglass FIBREBOLT®) • Screws (self-tapping, and thread cutting) • Rivets (blind rivets, drive rivets, solid rivets — available in many materials including steel,

stainless, aluminum, nylon, etc.) • Spring clips • Nails • Staples • Threaded inserts with bolts • Threaded holes with bolts

NOTE: Strongwell recommends the use of stainless steel fasteners to eliminate the corrosion problem associated with regular steel fasteners.

Although mechanical joints provide many advantages (such as conventional fabrication and assembly methods, ease of inspection, option of disassembly, etc.) the designer should be cautioned that improper spacing and edge distances of the bolts could cause a catastrophic failure by tear-out or shear-through. The American Society of Civil Engineers Structural Plastics Design Manual —Reference 2 recommends the edge distances (centerline of fastener to edge of material) and minimum pitch dimensions (center to center of fasteners in a line) – see table “Recommended Minimum Fastener Edge Distances And Pitch Ratio Of Distance To Fastener Diameter” shown in this section.

CONNECTIONS

Page 355: Manual Completo

19-4

Section 19Fabrication

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.1013

ADHESIVE BONDED CONNECTIONS

A structural adhesive holds fiberglass parts together by surface attachment and can sustain a continuously applied load without excessive deformations or failure. In addition to sealing joints and surfaces, adhesives distribute the joint stresses more evenly.

Adhesive bonded joints work best when the adhesive layer is primarily stressed in shear or compression. Direct tensile or peel forces on adhesive joints should be avoided or evaluated with great care.

Successfully bonded adhesive joints of EXTREN® materials require careful fabrication procedures including:

1) Proper selection of the adhesive.

The two types of adhesives recommended for use with EXTREN® fiberglass reinforced materials are polyesters and epoxies. Either adhesive will produce a satisfactory joint. However, polyester adhesives are somewhat less convenient to use because of the difficulty of measuring the small amount of catalyst required.

The epoxy adhesives recommended for structural connections are either Shell 828 Epoxy Resin or Dow D.E.R. 331 Epoxy Resin or Strongwell Epoxy Adhesive. In general, epoxy adhesives provide stronger joints than polyester adhesives.

2) Proper preparation of the surfaces to be joined.

The polyester surfacing veil must be removed to allow bonding of substrates.

Contaminated surfaces must be thoroughly cleansed by wiping with a clean rag dampened with a solvent such as acetone, toluol or methyl alcohol. Wipe dry with a clean cloth. Do not immerse or soak EXTREN® shapes in these solvents.

3) Properly cure the adhesive joint.

Freshly bonded joints should be held in position with clamps or weights until the adhesive cures. Joints bonded with epoxy adhesives generally can be handled with reasonable care after 8 hours of curing. It is desirable to leave the clamps or bonding pressure on the joints overnight for a total of 20 to 24 hours. If an oven is available, the curing time can be lessened considerably by heating moderately. The joint should not be expected to carry its design load until the adhesive joints have cured a minimum of 48 hours at 70°F. Lower temperatures require longer cure times.

On the following page is a procedure for making structural epoxy joints. It provides additional information on surface preparation, mixing of epoxy and application.

CONNECTIONS

Page 356: Manual Completo

19-5

Section 19Fabrication

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.1013

PROCEDURE FOR MAKING STRUCTURAL EPOXY JOINTS

Materials Used

Strongwell epoxy adhesive baseStrongwell epoxy adhesive hardenerSmall wax coated paper cup for mixingClean wooden or FRP stick for mixing80 grit sandpaperClamps for holding epoxy joints during cureClean cloth

Surface Preparation

1) Sand mating surfaces with 80 grit sandpaper until the surface gloss has been removed. The surfacing veil must be ground off to expose the glass reinforcement. Sand blasting equipment can also be used.

2) Remove all dust with a clean cloth; air blasting equipment may also be used. Avoid recontamination of the surface from handling.

Mixing of Epoxy

Mix equal volume portions of the base and hardener in a small wax coated paper cup with a clean stick until a uniform gray color is attained and all marbled appearance is gone.

NOTE: Other adhesive systems compatible with fiberglass can be utilized and the manufacturer’s mixing instructions for these systems should be followed.

Application and Cure

1) Apply the mixed epoxy uniformly to all surfaces to be joined. A thin application is often more beneficial than a thick application.

2) Avoid introducing moisture into the joint.

3) Join the surfaces to be bonded. The pot life at 77°F for a 3 oz. mixture of equal volumes of base and hardener is 2.5 hours.

4) Secure the joint with clamps (or rivets or bolts) and allow 24 hours for a full cure. The assembly can often be handled with reasonable care in less than 8 hours. The structure should not be required to support its design load until at least 48 hours (at 70°F) after bonding. Lower temperatures require a longer cure.

5) After securing the joint, wipe away excess epoxy.

CONNECTIONS

Page 357: Manual Completo

19-6

Section 19Fabrication

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.1013

BOLTED AND EPOXIED CAPACITY (SEE NOTE #1) - 3375#BOLTED ONLY CAPACITY (SEE NOTE #2)

3/8” Bolt & 1/4” Web = 1400# 3/8” Bolt & 3/8” Web = 2110#1/2” Bolt & 1/4” Web = 1875# 1/2” Bolt & 3/8” Web = 2810#5/8” Bolt & 1/4” Web = 2340# 5/8” Bolt & 3/8” Web = 3375#

BOLTED AND EPOXIED CAPACITY (SEE NOTE #1) - 4200#BOLTED ONLY CAPACITY (SEE NOTE #2)

3/8” Bolt & 3/8” Web = 2110# 3/8” Bolt & 1/2” Web = 2810#1/2” Bolt & 3/8” Web = 2810# 1/2” Bolt & 1/2” Web = 3750#5/8” Bolt & 3/8” Web = 3515# 5/8” Bolt & 1/2” Web = 4200#

BOLTED AND EPOXIED CAPACITY (SEE NOTE #1) - 5600#BOLTED ONLY CAPACITY (SEE NOTE #2)

3/8” Bolt & 3/8” Web = 2110# 3/8” Bolt & 1/2” Web = 2810#1/2” Bolt & 3/8” Web = 2810# 1/2” Bolt & 1/2” Web = 3750#5/8” Bolt & 3/8” Web = 3515# 5/8” Bolt & 1/2” Web = 4680#

2½"2½"

1"3"

1" 2½"

3"

L4 x 4 x 1/2"(N.S. & F.S.)

W8 or C8W10 or C10I 8 or I 10 2½"

1¼"

3"1¼

"

BEAM SHEAR CONNECTIONSDETAIL FOR W4, W6, C4, C6, I 4 or I 6

DETAIL FOR W8, W10, C8, C10, I 8 or I 10

DETAIL FOR W8, W10, C8, C10, I 8 or I 10

DETAIL 1—

DETAIL 2

DETAIL 3—

WHEN 5/8” BOLTS ARE USEDWHEN 3/8” OR 1/2” BOLTS ARE USED

Page 358: Manual Completo

19-7

Section 19Fabrication

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.1013

BOLTED AND EPOXIED CAPACITY (SEE NOTE #1) - 6700#BOLTED ONLY CAPACITY (SEE NOTE #2)

3/8” Bolt & 3/8” Web = 3160# 3/8” Bolt & 1/2” Web = 4220#1/2” Bolt & 3/8” Web = 4220# 1/2” Bolt & 1/2” Web = 5620# 5/8” Bolt & 3/8” Web = 5270# 5/8” Bolt & 1/2” Web = 6700#

BOLTED AND EPOXIED CAPACITY (SEE NOTE #1) - 9000#BOLTED ONLY CAPACITY (SEE NOTE #2)

3/8” Bolt & 3/8” Web = 3160# 3/8” Bolt & 1/2” Web = 4220#1/2” Bolt & 3/8” Web = 4220# 1/2” Bolt & 1/2” Web = 5620#5/8” Bolt & 3/8” Web = 5270# 5/8” Bolt & 1/2” Web =7030#

BOLTED AND EPOXIED CAPACITY (SEE NOTE #1) - 11250#BOLTED ONLY CAPACITY (SEE NOTE #2) 3/8” Bolt & 1/2” Web = 4220# 1/2” Bolt & 1/2” Web = 5620# 5/8” Bolt & 1/2” Web = 7030#

WHEN 5/8” BOLTS ARE USED WHEN 3/8” OR 1/2” BOLTS ARE USED

2½"

1¼"

3"3"

1¼"

DETAIL 4—

DETAIL 5—

DETAIL 6—

DETAIL FOR W10, W12, C10, C12, I 10 or I 12

BEAM SHEAR CONNECTIONS

DETAIL FOR W10, W12, C10, C12, I 10 or I 12

DETAIL FOR W12 or I 12

2½"2½"

1"3"

3"1"

3" 3"3"

W10, W12, C10I 10, I 12

L4 x 4 x 1/2"(N.S. & F.S.)

3"2" 2½

"

10"

BE

AM

12"

BE

AM

2½"2½"

2"3"

3"2" 3"

3"3"

I 12, W12

L4 x 4 x 1/2"(N.S. & F.S.)

NOTES:1. Capacities shown controlled

by shear thru heel of angle (FV=4500 psi / 4 = 1125 psi)

2. Capacities shown controlled by bearing around fastener or shear of stainless steel fasteners.

3. The beam capacity must be verified as being adequate.

4. Epoxy and joint preparation in accordance with Section 19 — FABRICATION in the Strongwell Design Manual.

5. Details 1, 2 and 4 are standard Strongwell fabrication connections. Details 3, 5 and 6 are alternate fabrication connections.

6. Recommended hole diameters: Fastener +1/16”.

7. 1/4” stainless steel angles can be substituted for the EXTREN® angles shown in the details.

8. The effect on strength of notches, copes or other stress concentrations must be considered.

Page 359: Manual Completo

19-8

Section 19Fabrication

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.1013

TYPICAL CALLOUTON DESIGN DWG.

CAPACITIES -LBS CLIP PLATE - tp Lc tc 3/8 1/2 3/4 3/8 1325* 1850* 2550 3 1/2 1800* 2350* 3375 3/8 2100* 2900* 4225 5 1/2 2850* 3725* 5625 3/8 2550* 3500* 5075 6 1/2 3450* 4525* 6750

* BENDING CONTROLS

DETAIL 1(PLAN) —

SECTION A—

1C1B

Lc tc tp 3 - 1/2 - 3/4

TYPE B (SIM)

TYPICAL CALLOUTON DESIGN DWG.

DETAIL 2(PLAN) —

SECTION B—

4"

Lc

2"

1" (T

YP.)

Lp(L

c=4)

EQ

.E

Q.

2d M

IN. W

HE

RE

d =

AN

CH

OR

B

OLT

Ø

B

CU

T C

OLU

MN

SQ

UA

RE

2tp

tc L 4 x 4 x tc

P tp x LpL

NOTE 6

CAPACITIES -LBS CLIP PLATE - tp Lc tc 1/2 3/4 1 1/2 2825 4500 6650 6 3/4 4400 6650 8750 1/2 3675 5800 8525 8 3/4 5750 8275 11,350 1/2 4525 7125 10,425 10 3/4 7075 10,175 13,900

* BENDING CONTROLS

2 Lc tc tp 8 - 1/2 - 3/4

TYPE C C1

COLUMN BASE PLATES

3"

1½"1"

(TY

P.)

Lp(L

c+4)

L

c =

6Lp

(Lc+

3)

Lc

= 3

or

5

EQ

.E

Q.

EQ

.E

Q.

CU

T C

OLU

MN

SQ

UA

RE

1½1½ tp

tc

L 4 x 3 x tc(TYP)

P tp x Lp

A

L

Page 360: Manual Completo

19-9

Section 19Fabrication

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.1013

COLUMN BASE PLATES

TYPE ATYPICAL BOLTING

TYPE CCOLUMN ON FLAT

W/ CENTER ANCHOR BOLTS

TYPE BCOLUMN ON GROUT

W/ CENTER ANCHOR BOLTS

DETAIL 3—

DETAIL 4—

ANGLE (N.S. & F.S.)MAY BE REQUIRED TO PREVENTBEAM WEB BUCKLING- REF. DESIGN GUIDE - BEAMS

NOTES:

(DEVELOPED WITH TENSION LOADS)

1. Values shown here are based on epoxy and bolted connections. For bolted only connections see Bearing and Shear values shown later in this section.

2. Capacities shown were controlled by shear through heel of angle (Fv=1125 psi) or bending of plate and angle with Fb=10000 psi/4=2500 psi.

3. For columns with combined tension and shear, both of which put shear into the heel of the angle, the total of the tension load + shear load must be less than the capacity listed.

4. 3/4” thick angles are special hand-layed-up angles and are not EXTREN® sections.

5. Plates shown square Lp required for capacity, but width can vary (i.e. for I-beam columns.)

6. Detail 2 can utilize anchor bolts separate from base plate assembly bolts. Two required, 1/2” dia. minimum.

7. Epoxy and joint preparation in accordance with Section 19 — FABRICATION.

8. 1/4” stainless steel angles can be substituted for the EXTREN® angles shown in the details.

Page 361: Manual Completo

19-10

Section 19Fabrication

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.1013

DETAIL 1—

DETAIL 3 DETAIL 9——

DETAIL 2—

DETAIL 5—

DETAIL 8—SEE ALTERNATE DETAIL 13 SEE ALTERNATE DETAIL 14

DOUBLE O

R SIN

GLE L

's

B/B L's

4"

NOM

W.P.

1½"

TY

P

1½"TYP

SPACERW/BOLT @

MID-LENGTH(TYP. FOR L)L

SINGLE/DOUBLE ANGLE & TEE BRACING DETAILS

DETAIL 7—

DETAIL 4—

DETAIL 6B—

DETAIL 6T—

Page 362: Manual Completo

19-11

Section 19Fabrication

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.1013

TYPICAL CALLOUTS ONDESIGN DRAWINGS

BOLT CALLOUT FORANGLES & TEES

DETAIL 10—

DETAIL 11

DETAIL 12B—

DETAIL 14—

DETAIL 12T—

W8x8x3/8

W10

x10x

1/2 L

3x3x

1/4

(TYP)

OR T4x

4x3/

8 (T

YP)

# OF PAIRS( 3 SHOWN )

# OF BOLTS CONN. ANGLE OR TEETO GUSSET OR TEE ( 2 SHOWN )

# OF PAIRS OF BOLTS IN FLANGE( OR WEB ) OF COLUMN ( 2 SHOWN )

L

8 T4x6x3/8x0’-9~P 3/8

W8x8x3/8 C2L

T4x6x1/4x1’-0

W6x6x1/4

8 C2

GUSSET TEE DEPTH x WIDTH x THICKNESS x LENGTH

CUT TEE FROM

GUSSET THK.

NOTES:

1. These connections are to be used with epoxy. 3/8” dia. bolts only provide clamp until epoxy cures. Ultimate capacity of joint = 1000 psi. For bolted only connections see Bearing and Shear values later in this section.

2. Designer is cautioned to check required area for epoxy with FALL = 1000/4 = 250 psi and tee thickness with Fv = 4500/4 =1125 psi.

3. Gussets should be symmetrical about WP whenever possible.

4. Epoxy and joint preparation in accordance with Section 19 — FABRICATION.

SINGLE/DOUBLE ANGLE & TEE BRACING DETAILS

DETAIL 13—

Page 363: Manual Completo

19-12

Section 19Fabrication

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.1013

DETAIL 2

DETAIL 9—

DETAIL 3—

DETAIL 6—

DETAIL 7

DETAIL 5—

—DETAIL 4

DETAIL 8—

—DETAIL 1

PLAN

HORIZONTAL BRACING — TEE & ANGLE DETAILS

Page 364: Manual Completo

19-13

Section 19Fabrication

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.1013

DETAIL 12—

DETAIL 11—

DETAIL 10—

NOTES:

1. These connections are to be used with epoxy. 3/8” dia. bolts only provide clamp until epoxy cures. Ultimate capacity of joint = 1000 psi. For bolted only connections see Bearing and Shear values later in this section.

2. Designer is cautioned to check required area for epoxy with FALL = 1000/4 = 250 psi and gusset/tee thickness with Fv = 4500/4 =1125 psi.

3. Gussets should be symmetrical about WP whenever possible.

4. Epoxy and joint preparation in accordance with Section 19 — FABRICATION.

TYPICAL CALLOUTS ONDESIGN DRAWINGS

BOLT CALLOUT ONDESIGN DRAWINGS

4 P 3/8x1’-6

(MITRE) C3

LL4x4x3/8x0’-9 (P t)

(MITRE)

2 C3

ANGLE SIZE x LENGTH

NOTES

L

– (SQUARE) –

HORIZONTAL BRACING — TEE & ANGLE DETAILS

Page 365: Manual Completo

19-14

Section 19Fabrication

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.1013

BEARINGALLOWABLE LOADS IN POUNDS

FIBERGLASS BOLT DIAMETER THICKNESS 1/4” 3/8” 1/2” 5/8” 3/4” 1”

1/8” 234 352 469 586 703 938 1/4” 469 703 938 1172 1406 1875 3/8” 703 1055 1406 1758 2109 2812 1/2” 938 1406 1875 2344 2812 3750 3/4” 1406 2109 2812 3516 4219 5625

Allowable load = Allowable bearing stress x bearing area.

EXAMPLE

1/4” thickness with 1/2” dia. bolt Allowable load = x .25” x .50” = 938 lbs.

NOTE: The above table assumes the bearing stress on fiberglass controls. The designer should verify that no other element of the connection controls.

SHEARALLOWABLE LOADS IN POUNDS

BOLT DIAMETERBOLT TYPE 1/4” 3/8” 1/2” 5/8” 3/4” 1”S.S. Single Shear 1473 3312 5889 9204 13254 23562S. S. Double Shear 2964 6624 11778 18408 26508 47124FIBREBOLT®, Single Shear — 400 650 950 1550 3750FIBREBOLT®, Double Shear — 750 1250 1875 3000 5000

NOTE: The above table assumes the shear capacity of the fastener controls. The designer should verify that no other element of the connection controls.

RECOMMENDED MINIMUM FASTENER EDGE DISTANCES AND PITCHRATIO OF DISTANCE TO FASTENER DIAMETER

RANGE COMMONEdge Distance - end 2.0 to 4.5 3.0

Edge Distance - side 1.5 to 3.5 2.0

Pitch 4.0 to 5.0 5.0

THREADED FASTENERS

30,000 psi

4

Page 366: Manual Completo

Strongwell Specifications

Are you specifying Strongwell products? Click the link below to view and download the latest Strongwell Product Specifications documents in either Microsoft Word format or PDFs.

www.strongwell.com/tools/strongwell-specifications/

BRISTOL FACILITY 400 Commonwealth Ave., P. O. Box 580, Bristol, VA 24203-0580 USA

(276) 645-8000 FAX (276) 645-8132

HIGHLANDS FACILITY CHATFIELD FACILITY

26770 Newbanks Road, Abingdon, VA 24210 USA (276) 645-8000 FAX (276) 645-8132

1610 Highway 52 South, Chatfield, MN 55923-9799 USA (507) 867-3479 FAX (507) 867-4031

www.strongwell.com

Page 367: Manual Completo

21-1

Section 21Project Worksheets

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.0502

SECTION 21- PROJECT WORKSHEETS

Table of Contents

Introduction ..................................................................... 21-2

Platform Worksheet ......................................................... 21-3

Platform Worksheet Commentary ................................... 21-4

SAFRAILTM Worksheet .................................................... 21-5

SAFRAILTM Worksheet Commentary ............................... 21-6

Handrail Posts at Structural Members ............................. 21-7

Handrail Posts at Concrete .............................................. 21-8

Removable Handrail Posts at Concrete .......................... 21-9

Removable Handrail Posts at Structural Members ........ 21-10

Suggested Post & Kick Plate Installation ....................... 21-11

STRONGRAILTM Worksheet .......................................... 21-13

Building Worksheet ........................................................ 21-14

Building Worksheet Commentary .................................. 21-15

Grating Worksheet ......................................................... 21-16

DURADEK®/DURAGRID® Worksheet Commentary ...... 21-17

Standard Ladder Worksheet:

with Large Standoff Wall Mount ............................. 21-18

with Base Mount ..................................................... 21-19

Standard Walk-Through Ladder Worksheet:

with Large Standoff Bracket ................................... 21-20

with Base Clip ......................................................... 21-21

Standard Cage Worksheet ............................................ 21-22

Stair Worksheet ............................................................. 21-23

Page 368: Manual Completo

21-2

Section 21Project Worksheets

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.0502

SECTION 21

PROJECT WORKSHEETS

Page 369: Manual Completo

21-3

Section 21Project Worksheets

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.0502

PROJECT WORKSHEET INTRODUCTION

For projects that require Strongwell to perform structural design engineering, certain information must be supplied.

To assist our customers in submitting the necessary data, "fill-in-the-blank" worksheets have been developed and are included in this section. Different structures have separate worksheets.

On the back of the building, platform, SAFRAILTM and grating worksheets is a commentary designed to help the customer provide the required data. Such assistance is offered on the ladder, ladder cage and stair worksheets through helpful notes.

Page 370: Manual Completo

21-4

Section 21Project Worksheets

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.0502

PLATFORM WORKSHEET

Bristol Division Fax: 276-645-8003

Chatfield Division Fax: 507-867-4031DATE QUOTE REQUIRED: ____________

GEOGRAPHICAL INFORMATION1. __________________________________________ 2. OUTDOORS YES NO (City, State AND Nearest Large City) (If No - Go to 9A)

3. LOCATED AT: GROUND LEVEL or FEET ABOVE

4. IN GENERALLY OPEN AND FLAT TERRAIN: YES NO (Extending 1/2 mile or more from site in any Quadrant)

DESIGN CONDITIONS AND LOADS5. LOCAL BUILDING CODE APPLICABLE TO JOB: __________________________

6. WIND LOAD: (MPH)

7. SEISMIC DESIGN CATAGORY: _________________________________________

8. SNOW LOAD: (PSF) (Local Conditions May Control)

9A. LIVE LOAD: (PSF) DEFL. CRITERIA

9B. CONC. LOADS: (Barrels, Pallets, Equipment, Etc.)

SERVICE AND QUOTING REQUIREMENTS10. CORROSIVES: ____________________ 11. TEMP ___________ (°F or AMBIENT)

12. EXTREN® SERIES: ____________ STD COLOR _____________ OTHER ___________

13. HARDWARE: FIBREBOLT _________ 304SS ______ 316SS _____ OTHER _________

14. HANDRAIL: YES (USE HANDRAIL WORKSHEET) NO

INFORMATION TO SHOW: PLAN VIEW OF PLATFORM (WIDTH, LENGTH, ETC.); HEIGHT

ABOVE FLOOR AND/OR GRADE; HANDRAILS SHOWN IN PLANS AS OBSTRUCTIONS/

INTERFERENCES; LOCATION OF CONCENTRATED LOADS; TYPE OF GRATING (IF KNOWN),

ETC. USE EXTRA SHEETS AS REQUIRED.

Page 371: Manual Completo

21-5

Section 21Project Worksheets

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.0502

PLATFORM WORKSHEET COMMENTARY

GEOGRAPHICAL INFORMATION1. CITY AND STATE and NEAREST LARGE CITY is important because location may control

wind loads, snow loads, earthquake criteria, etc. Building Code maps usually show major metropolitan cities so NEAREST LARGE CITY is important if actual site location is remote.

2. Platforms sheltered or inside other structures (INDOORS) will not require wind or snow loads. This answer may be apparent from specifications or drawings, but not so apparent from a telephone request for quote. Go to 9A if INDOORS.

3. Platforms outdoors and ABOVE GRADE (like on buildings) will have larger gust factors for wind conditions.

4. Platforms in OPEN AND FLAT TERRAIN support HIGHER wind loads and LOWER snow loads. Platforms can be designed for worst case, but may be conservative and unnecessarily uneconomical.

DESIGN CONDITIONS AND LOADS5. Building codes may vary by locality. The IBC (International Building Code) is becoming the

standard, however, other applicable building codes may be BOCA, SBC, ANSI (now ASCE-7) or a local (city or state) building code. All design information can be easily obtained except local building code information. Customer should provide local code information either with a copy of the code or supplying values 6 thru 9.

6. WIND LOAD is usually given in MPH (miles per hour).

7. SEISMIC DESIGN CATEGORY is to be designated. If unknown, design will default to ASCE-7.

8. SNOW LOAD is given in PSF (pounds per square foot). Local conditions may govern in mountain regions, the west coast through the Rocky Mountain states and the East coast, North of Massachusetts.

9A. LIVE LOAD is usually given in PSF (pounds per square foot). Typical design values for platforms are:

• ACCESS PLATFORM (1-3 people - limited use) — 50 PSF • OPERATING PLATFORM (1-3 people - constant) — 75 PSF • WORK PLATFORM (men with tools, portable equipment) — 100 PSF

DEFLECTION CRITERIA is typically:

• Specified as 1/4" for the grating with 100 PSF LIVE LOAD (NOT necessarily the the PLATFORM DESIGN LIVE LOAD) • Specified as L/180 to L/360 for structural members (span in inches divided by 180 to 360, respectively)

9B. CONCENTRATED LOADS are ADDITIONAL TO LIVE LOAD and may be permanent equipment, barrels or drums of chemicals, pallets of materials, boxes, etc. Obtain these LOAD in LBS. and possibly an area over which they act (i.e. pallets 4'x4' weighing 4,000 lbs. ea.)

SERVICE AND QUOTING REQUIREMENTS10-11. CORROSIVES AND TEMPERATURE may dictate EXTREN® requirements.

12. EXTREN® SERIES may be specified. STANDARD COLOR (YES or NO) or OTHER color are also needed.

13. HARDWARE will be bolts for structurals, grating clips and bolts, etc. SPECIFY as necessary.

Page 372: Manual Completo

21-6

Section 21Project Worksheets

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.0502

SAFRAILTM WORKSHEET

Bristol Division Fax: 276-645-8003

Chatfield Division Fax: 507-867-4031DATE QUOTE REQUIRED: ____________

GEOGRAPHICAL INFORMATION

1. ____________________________________ (City, State AND Nearest Large City)

2. OUTDOORS: YES (UV Coating - Standard) NO

DESIGN CONDITIONS AND LOADS

3. SAFRAILTM WILL MEET: 200# ANY DIRECTION ON POST OR TOP RAIL 50#/LF HORIZONTALLY APPLIED TO TOP RAIL

OTHER REQUIREMENTS: _______________________________________________

SERVICE AND QUOTING REQUIREMENTS4. CORROSIVES: _______________ 5. TEMP ____________ (°F or AMBIENT)

6. RESIN: POLYESTER (Standard) _________ STANDARD COLOR (Yellow) (Gray) _____

VINYL ESTER (Minimum Required) ________________

OTHER (Call) __________________________________

7A. SQUARE TUBE ROUND TUBE CUSTOM (attach sketch) 7B. STANDARD 2 RAIL WITH TOE PLATE: YES NO

OR 3 RAIL _________ 4 RAIL ________ 5 RAIL __________ TOEPLATE _______

8. MOUNTING HARDWARE: 316SS _________ OTHER _______

9. TYPE OF POST ASSEMBLY:

BASE MOUNTED _________ POCKET MOUNTED _________ SIDE MOUNTED _________

10. POST SPACING 3 FT. ON CENTER _________ 5 FT. ON CENTER ___________

4 FT. ON CENTER _________ 6 FT. ON CENTER ___________

INFORMATION TO SHOW: PLAN VIEW OF PLATFORM (WIDTH, LENGTH, ETC.); HEIGHT ABOVE FLOOR AND/OR GRADE; HANDRAILS SHOWN IN PLANS AS OBSTRUCTIONS/INTERFERENCES; LOCATION OF CONCENTRATED LOADS; TYPE OF GRATING (IF KNOWN), ETC. USE EXTRA SHEETS AS REQUIRED.

Page 373: Manual Completo

21-7

Section 21Project Worksheets

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.0502

SAFRAILTM WORKSHEET COMMENTARY

GEOGRAPHICAL INFORMATION1. CITY AND STATE and NEAREST LARGE CITY is important because location may control

code to be used for design.

2. Standard SAFRAILTM is UV coated.

DESIGN CONDITIONS AND LOADS3. Standard SAFRAILTM will meet most codes for loading - OSHA, BOCA, UBC, etc. Other codes

(for specific contract requirement, etc.) may require higher loads or have specific deflection requirements.

SERVICE AND QUOTING REQUIREMENTS4-5. CORROSIVES AND TEMPERATURE may dictate resin requirements.

6. Standard color is safety yellow or gray. Standard resin is polyester. Contact Strongwell for other resin systems and other colors.

7. Standard SAFRAILTM is a two-rail system with toeplate. Note that toeplate is not usually required where a platform or walkway is less than 4' above the adjacent floor or people cannot pass below (like SAFRAILTM around a clarifier).

8. Mounting hardware is supplied, if both structures and rail are furnished by Strongwell. Mounting hardware is 316 S.S. bolts unless otherwise noted. Lengths to be specified.

9-10. These are required to determine accurate pricing for quantity and type of material (base plates are more expensive). Post spacing determines the amount of material required per lineal foot.

DRAWINGS AND SKETCHES OF SAFRAILTM

Simple SAFRAILTM layouts can easily be sketched. Be certain that any specifications are noted, such as: overall lengths, locations of openings, sections to be removable, post spacing (if this has been set by the customer), straight rail, or sloped (on concrete, steel or FRP stairs), gates, chained openings, etc.

One section through the handrail can easily show: overall height to top rail, height above walking surface, quantity of midrail, midrail spacing, toeplate, mounting style, bolts, anchors, etc.

Intricate, lengthy, or involved layouts will require drawings from the customer. However, do not forget to get specifications required on worksheet.

Page 374: Manual Completo

21-8

Section 21Project Worksheets

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.0502

HANDRAIL POSTS AT STRUCTURAL MEMBERS

NOTE: All details are applicable to both standard SAFRAILTM (TS 2" x 2" x .156") and Heavy Duty (TS 2" x 2" x 1/4") unless otherwise indicated. Please contact Strongwell for information concerning SAFRAILTM Round Handrail system.

Page 375: Manual Completo

21-9

Section 21Project Worksheets

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.0502

HANDRAIL POSTS AT CONCRETE

NOTE: All details are applicable to both standard SAFRAILTM (TS 2" x 2" x .156") and Heavy Duty (TS 2" x 2" x 1/4") unless otherwise indicated. Please contact Strongwell for information concerning SAFRAILTM Round Handrail system.

Page 376: Manual Completo

21-10

Section 21Project Worksheets

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.0502

REMOVABLE HANDRAIL POSTS AT CONCRETE

NOTE: All details are applicable to both standard SAFRAILTM (TS 2" x 2" x .156") and Heavy Duty (TS 2" x 2" x 1/4") unless otherwise indicated. Please contact Strongwell for information concerning SAFRAILTM Round Handrail system.

Page 377: Manual Completo

21-11

Section 21Project Worksheets

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.0502

REMOVABLE HANDRAIL POSTS AT STRUCTURAL MEMBERS

NOTE: All details are applicable to both standard SAFRAILTM (TS 2" x 2" x .156") and Heavy Duty (TS 2" x 2" x 1/4") unless otherwise indicated. Please contact Strongwell for information concerning SAFRAILTM Round Handrail system.

Page 378: Manual Completo

21-12

Section 21Project Worksheets

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.0502

SUGGESTED POST & KICK PLATE INSTALLATION

WELD(STEEL)

(1) 6" SQUARE PLUG(TYPICAL)

6" PLUG

4" M

IN

6" PLUG

4" M

IN

WELD

STOP

1/16" MAXCLEARANCEBETWEENPOST & SLEEVE

NYLON (2) RIVETS

CUT 1-1/2" x 1-1/2" x 4"ANGLE FROM 2 x 2 TUBE

NYLON (4) RIVETS

CUT (2) 3/4"x 3" STRIPSFROM 2 x 2 TUBEOR KICKPLATE

Posts with FRPBase Plate

Fastening to Structural Steel or Fiberglass

I BEAM WITH SPACERS

PERPENDICULAR PLATE

PARALLELPLATE

CHANNEL

ANCHOREDTO CONCRETE

EMBEDDEDIN CONCRETE

SLEEVE ONSTRUCTURAL STEEL

SLEEVE INCONCRETE

Kickplateto Post

KickplateCorner

KickplateSplice

Fastening to Concrete Removable Posts

NOTE: All details are applicable to both standard SAFRAILTM (TS 2" x 2" x .156") and Heavy Duty (TS 2" x 2" x 1/4") unless otherwise indicated. Please contact Strongwell for information concerning SAFRAILTM Round Handrail system.

Page 379: Manual Completo

21-13

Section 21Project Worksheets

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.0502

STRONGRAIL™ WORKSHEET

Bristol Division Fax: 276-645-8003

Chatfield Division Fax: 507-867-4031DATE QUOTE REQUIRED: ____________

GEOGRAPHICAL INFORMATION

1. ____________________________________ (City, State AND Nearest Large City)

DESIGN CONDITIONS AND LOADS

2. STRONGRAILTM WILL MEET IBC 2006 WITH A 2:1 FACTOR OF SAFETY.

3. PICKET SPACING IS 4.75" ON CENTER (Open spacing between pickets will be less than 4").

4. LIST OTHER REQUIREMENTS TO BE MET: ________________________________________

_____________________________________________________________________________

SERVICE AND QUOTING REQUIREMENTS

5. COLOR (All handrail is UV coated):

WHITE

BLACK

OTHER __________________

6. TOP RAIL TYPE:

2" SQUARE TUBE

3" ROUNDED

7. PICKET TYPE:

1" SQUARE

1" ROUND

8. POST TYPE:

2" SQUARE TUBE

4" SQUARE TUBE

WALL MOUNT BRACKET

9. POST MOUNTING TYPE:

SIDE MOUNT

TOP BASE MOUNT

EMBEDDED POCKET MOUNT

10. TYPE OF STRONGRAILTM AND ESTIMATED FOOTAGE:

STRAIGHT RAIL

FOOTAGE OF STRAIGHT RAIL ______________

STAIR RAIL

FOOTAGE OF STAIR RAIL _________________

NOTE: For a firm price, submit drawings with this worksheet.

.156”

1.69” 2”

3“

2.125”

0.156”2“

Page 380: Manual Completo

21-14

Section 21Project Worksheets

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.0502

BUILDING WORKSHEETBristol Division Fax: 276-645-8003

Chatfield Division Fax: 507-867-4031DATE QUOTE REQUIRED: ____________

GEOGRAPHICAL INFORMATION1. _______________________________________ 2. OUTDOORS YES NO (City, State AND Nearest Large City)

3. LOCATED AT: GROUND LEVEL or FEET ABOVE

4. IN GENERALLY OPEN AND FLAT TERRAIN: YES NO

(Extending 1/2 Mile or more from site in any Quadrant)

DESIGN CONDITIONS AND LOADS5. LOCAL BUILDING CODE APPLICABLE TO JOB: ______________________________

6. WIND LOAD: _________ (MPH) 7. ROOF LIVE LOAD: ____________(PSF)

8. FLOOR LIVE LOAD: (PSF) (FOR MEZZANINES, PLATFORMS IF APPLICABLE)

9. SEISMIC DESIGN CATEGORY: ________________________________

10. SNOW LOAD: ____________(PSF) (Local Conditions May Control)

SERVICE AND QUOTING REQUIREMENTS11. CORROSIVES: (Type) ______________ 12. TEMP _____________(°F or AMBIENT)

13. EXTREN® SERIES: ___________ STD COLOR ___________ OTHER ____________

14. HARDWARE: FIBREBOLT _________ 304SS ______ 316SS _____ OTHER _________

SHOW OUT-TO-OUT DIMENSIONS.NOTE: INSIDE DIMENSIONS WILL BE SMALLER BY 4.5' IN WIDTH AND 3' IN LENGTH AND PEAK HEIGHT. SHOW DOORS, WINDOWS AND SKYLIGHT AND SIZES ON THE SKETCH.

Page 381: Manual Completo

21-15

Section 21Project Worksheets

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.0502

BUILDING WORKSHEET COMMENTARY

GEOGRAPHICAL INFORMATION1. CITY AND STATE and NEAREST LARGE CITY is important because location may control

wind loads, snow loads, earthquake criteria, etc. Building Code maps usually show major metropolitan cities so NEAREST LARGE CITY is important if actual site location is remote.

2. Buildings sheltered or inside other structures (INDOORS) will not require wind or snow loads. This answer may be apparent from specifications or drawings, but not so apparent from a telephone request for quote.

3. Buildings outdoors and ABOVE GRADE (like on buildings) will have larger gust factors for wind conditions.

4. Buildings in OPEN AND FLAT TERRAIN support HIGHER wind loads and LOWER snow loads. Buildings can be designed for worst case, but may be conservative and unnecessarily uneconomical.

DESIGN CONDITIONS AND LOADS5. Building codes may vary by locality. The IBC (International Building Code) is becoming the

standard, however, other applicable building codes may be BOCA, SBC, ANSI (now ASCE-7) or a local (city or state) building code. All design information can be easily obtained except local building code information. Customer should provide local code information either with a copy of the code or supplying values 6 thru 9.

6. WIND LOAD is usually given in MPH (miles per hour).

7. ROOF LIVE LOAD is given is PSF (pounds per square foot). They are usually dependant on the slope of the roof.

8. FLOOR LIVE LOAD is given in PSF (pounds per square foot). This value is only required if the building has additional internal floors, platforms or mezzanines that tie to the structure. For buildings on concrete slabs, this is not applicable unless the platforms are to be quoted. Use the PLATFORM WORKSHEET if required.

9. SEISMIC DESIGN CATEGORY is to be designated. If unknown, design will default to ASCE-7.

10. SNOW LOAD is given in PSF (pounds per square foot). Local conditions may govern in mountain regions, the west coast through the Rocky Mountain states and the East coast, North of Massachusetts.

SERVICE AND QUOTING REQUIREMENTS11-12. CORROSIVES AND TEMPERATURE may dictate EXTREN® requirements.

13. EXTREN® SERIES may be specified. STANDARD COLOR (YES or NO) or OTHER color are also needed.

14. HARDWARE will be bolts for structurals, door/window hardware, trim, panels, etc. SPECIFY as necessary.

Page 382: Manual Completo

21-16

Section 21Project Worksheets

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.0502

GRATING WORKSHEETDURADEK® / DURAGRID®

Bristol Division Fax: 276-645-8003

Chatfield Division Fax: 507-867-4031DATE QUOTE REQUIRED: ____________

GEOGRAPHICAL INFORMATION

1. _________________________________ (City, State AND Nearest Large City)

2. OUTDOORS: YES (UV inhibitor is Standard, UV coating needs to be specified) NO

DESIGN CONDITIONS AND LOADS3. STANDARD DESIGN LOAD FOR PEDESTRIAN WALKWAYS IS 100 PSF

SERVICE AND QUOTING REQUIREMENTS 4. CORROSIVES: _________________

5. TEMP _________________________ (°F or AMBIENT)

6. RESINS: POLYESTER (Standard Gray Yellow)

VINYL ESTER (Call for availability)

OTHER (Special ______________ minimum required of 15,000 lineal feet of bearing bars)

7. HARDWARE:

SS SADDLE CLIPS __________ (QTY)

SS INSERT HOLD DOWNS __________ (QTY)

1/4" x 20 x 1-1/4" SOCKET HEAD CAP SCREW W/LOCK NUT & WASHER _________ (QTY) 8. STANDARD PANEL SIZES:

WIDTH 3 FT. 4 FT. 5 FT. (Cross Rod Length)

LENGTH 8 FT. 10 FT. 12 FT. 20 FT. (Bar Length or Span) 9. CUSTOM PANEL SIZES: ______________________________________ (Anything other than sizes listed in No. 8)

When quoting custom panel sizes, be sure to verify with your customer which dimension is the width (length of the cross rod) and which dimension is the span (length of the bearing bar).

INFORMATION TO SHOW OR OBTAIN:PLAN VIEW OF GRATING LAYOUT FOR CUSTOM JOBS. SPECIFICATION OF GRATING TYPE REQUIRED.

Page 383: Manual Completo

21-17

Section 21Project Worksheets

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.0502

DURADEK® / DURAGRID® WORKSHEET COMMENTARY

GEOGRAPHICAL INFORMATION1. CITY, STATE and NEAREST LARGE CITY is important because location may control code to

be used for design.

2. UV inhibitor is standard. UV coating may be specified for added protection. Many of our competitors do not have coating as an option. When bidding in a competitive situation, consider the extra cost.

DESIGN CONDITIONS AND LOADS3. Published load tables are available for DURADEK® and DURAGRID® gratings. The load tables

specify span capabilities based on given load requirements. When quoting wheel loads (fork lifts, hand carts, etc) it is necessary to specify the wheel diameter and width along with the maximum load per wheel.

SERVICE AND QUOTING REQUIREMENTS4-5. Corrosives and temperatures may dictate resin requirements.

6. Standard colors are yellow and gray. Custom colors are available. Set-up charges for non-standard colors are determined by quantity/color. Polyester is the standard resin, except for 1-1/4" bearing bars and the DURAGRID® Economy series where it is vinyl ester. Non-standard runs are possible with a minimum order of 15,000 lineal feet, which in I-6000 is equivalent to approximately 1,875 ft2.

7. A standard 316 S.S. saddle clip and a 316 S.S. insert clip are available. The saddle clip wraps around 2 bars and is recommended for stair tread applications. The insert hold down fits between the bars (this type "sandwiches" the bottom flange of the bar to the structural support member). Recommend 2 hold downs of each support with a minimum of 4 per panel.

8. Standard sizes/colors available for a 2 - 5 day shipment are as follows:

I-6000 1", I-6000 1-1/2" and T-5000 2" in yellow or gray polyester. Vinyl ester stock is sometimes maintained. All stock is inventoried in limited quantities and will only be held with a Purchase Order on a first come, first served basis.

9. Custom panels may require detailed shop drawing submittals prior to order entry. Custom panels require longer lead times. If submittals are required it is necessary to know the customer expected ship date, when drawings are required, number of sets required and the customer contact name/address the drawings for approval should be sent to. If a set of blueprints are not available from the customer, exact panel sizes will need to be specified.

Be sure to verify the span and width dimensions.

Page 384: Manual Completo

21-18

Section 21Project Worksheets

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.0502

STANDARD LADDER WORKSHEET

Bristol Division Fax: 276-645-8003

Chatfield Division Fax: 507-867-4031

DATE QUOTE REQUIRED: ____________

WITH LARGE STANDOFF WALL MOUNT

A = __________________ Customer Name: _____________________

B = __________________ Address: ___________________________

C = __________________ ___________________________________

D = __________________ Phone: _____________________________

Fax: _______________________________

Page 385: Manual Completo

21-19

Section 21Project Worksheets

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.0502

STANDARD LADDER WORKSHEET

Bristol Division Fax: 276-645-8003

Chatfield Division Fax: 507-867-4031

DATE QUOTE REQUIRED: ____________

WITH BASE MOUNT

A = __________________ Customer Name: _____________________

B = __________________ Address: ___________________________

C = __________________ ___________________________________

D = __________________ Phone: _____________________________

Fax: _______________________________

FLOOR ELEVATION

A

B

11 ½

" MA

X

CD

1'-0

(TY

P)

1'-6

CL

CL

CL

2 x

2 T

UB

E

2 x

2 T

UB

E

1-1/4" OFLUTED RUNG

( REQ'D)

/

STA

ND

OF

F B

RK

T. S

PAC

ING

@ 6

'-0 M

AX STANDOFF

BRACKET(SHIPS LOOSE)

BASE CLIP(SHIPS LOOSE)

7"

Page 386: Manual Completo

21-20

Section 21Project Worksheets

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.0502

STANDARD WALK-THROUGH LADDER WORKSHEET

Bristol Division Fax: 276-645-8003

Chatfield Division Fax: 507-867-4031DATE QUOTE REQUIRED: ____________

WITH LARGE STANDOFF BRACKET

A = __________________ Customer Name: _____________________

B = __________________ Address: ___________________________

C = __________________ ___________________________________

Phone: _____________________________

Fax: _______________________________

FLOOR ELEVATION

A

B

11 ½

" MA

X

C3'

-6½

1'-0

(TY

P)

1'-6

CL

CL

CL2"

2 x

2 T

UB

E

2 x

2 T

UB

E

1-1/4" O FLUTEDRUNG

( REQ'D)

/

STA

ND

OF

F B

RK

T. S

PAC

ING

@ 6

'-0 M

AX

STANDOFFBRACKET

(SHIPS LOOSE)

LARGESTANDOFFBRACKET

(SHIPS LOOSE)

7"

4'-3

½ M

AX

TOP

OF

RU

NG

/

WA

LKIN

G S

UR

FAC

E

OPTIONAL RETURNUPON REQUEST

Page 387: Manual Completo

21-21

Section 21Project Worksheets

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.0502

STANDARD WALK-THROUGH LADDER WORKSHEET

Bristol Division Fax: 276-645-8003

Chatfield Division Fax: 507-867-4031DATE QUOTE REQUIRED: ____________

WITH BASE CLIP

A = __________________ Customer Name: _____________________

B = __________________ Address: ___________________________

C = __________________ ___________________________________

Phone: _____________________________

Fax: _______________________________

FLOOR ELEVATION

A

B11

½" M

AXC

3'-6

½1'

-0(T

YP

)

CL

CL

CL2"

2 x

2 TU

BE

2 x

2 TU

BE

1-1/4" OFLUTEDRUNG

( REQ'D)

/

STAN

DO

FF B

RKT

. SPA

CIN

G@

6'-0

MAX

STANDOFFBRACKET

(SHIPS LOOSE)7"

4'-3

½" M

AX

TOP

OF

RU

NG

/ W

ALK

ING

SU

RFA

CE

OPTIONAL RETURNUPON REQUEST

BASE CLIP(SHIPS LOOSE)

1'-6"

Page 388: Manual Completo

21-22

Section 21Project Worksheets

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.0502

STANDARD CAGE WORKSHEET

Bristol Division Fax: 276-645-8003

Chatfield Division Fax: 507-867-4031

DATE QUOTE REQUIRED: ____________

Customer Name: __________________________

Address: _________________________________

_________________________________________

Phone: __________________________________

Fax: _____________________________________

Page 389: Manual Completo

21-23

Section 21Project Worksheets

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.0502

STAIR WORKSHEET

Bristol Division Fax: 276-645-8003

Chatfield Division Fax: 507-867-4031DATE QUOTE REQUIRED: ____________

A = __________________

B = __________________

C = __________________

Stair Width (between stringers) = ________________

EXTREN® Series = _____________________________

Treads (type) = _______________________________

Handrail: Stringer Mount or Wall Mount

Both Sides or One Side

NOTE: Furnish dimensions for each stair

Customer Name: _______________________

Address: ______________________________

______________________________________

Phone: _______________________________

Fax: __________________________________

Page 390: Manual Completo

21-24

Section 21Project Worksheets

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.0502

STAIR WORKSHEET

Bristol Division Fax: 276-645-8003

Chatfield Division Fax: 507-867-4031DATE QUOTE REQUIRED: ____________

A = __________________

B = __________________

C = __________________

D = __________________

E = __________________

F = __________________

Stair Width (between stringers) = ________________

EXTREN® Series = _____________________________

Treads (type) = _______________________________

Handrail: Stringer Mount or Wall Mount

Both Sides or One Side

NOTE: Furnish dimensions for each stair

Customer Name: _______________________

Address: ______________________________

______________________________________

Phone: _______________________________

Fax: __________________________________

Page 391: Manual Completo

CORROSION RESISTANCE GUIDEINDUSTRIAL PRODUCTS

Page 392: Manual Completo

2

The cover photo shows severe, short-term corrosive effects of 37% sulfuric acid on various materials. All bar samples originally measured 6” long x 1/4” thick x 1/2” wide. Products depicted from left to right are carbon steel, EXTREN® Series 625, aluminum and EXTREN® Series 525. The steel base has deteriorated significantly below the solution line and incurred atmospheric corrosion. The aluminum also deteriorated and developed corrosive aluminum sulfite deposits. Both EXTREN® samples were not affected by the sulfuric acid solution.

Page 393: Manual Completo

3

The Resin Selection Guide for Strongwell Industrial Product Lines:

NOTE: Information in this Corrosion Guide is specifically intended for the products manufactured by Strongwell and may have little correspondence to other pultruded or molded products.

Strongwell Corrosion Resistance GuideStrongwell Corrosion Resistance Guide

FIBERGLASS STRUCTURAL SHAPES

HIGH STRENGTH GRATING

MOLDED FIBERGLASS GRATING

CUSTOM FIBERGLASS GRIDS AND GRATING

FIBERGLASS STUD AND NUT SYSTEM

FIBERGLASS FOAM CORE BUILDING PANELS

CUSTOM ENGINEERING AND FABRICATION

FIBERGLASS HANDRAIL SYSTEM

FIBERGLASS GRITTED PLATE

FIBERGLASS BUILDING PANEL SYSTEM

FIBERGLASS PLANK SYSTEM

*COMPOSOLITE® is a registered trademark of Maunsell Structural Plastics, Ltd. and used by Strongwell Corporation pursuant to license.

Page 394: Manual Completo

4

Page 395: Manual Completo

5

Strongwell believes the information and recommendations herein to be accurate and reliable. Any questionable application should be preceded by a small sample or prototype evaluation in the actual chemical environment. Corrosive conditions not specifically discussed in this guide (including lower concentrations than those tested) should be referenced to Strongwell’s Customer Service Department for an evaluation of the individual situation.

The specific recommendations in this Corrosion Guide are for immersion applications where good fabrication procedures have been followed. The pH of the solution can be used as an approximate indication of corrosion performance. A pH > 7.0 is caustic and will typically require a vinyl ester composite for immersion applications.

Special Considerations:

• DURAGRATE® - Corrosion resistance data for polyester resins is applicable only to the PP, premium (isophthalic) polyester resin system. The general purpose orthothalic

polyester resin system (GP) is only recommended for corrosion situations such as salt water or mild wastewater and is not listed in this guide. Other corrosion chemicals will be reviewed individually for GP resin.

• DURASHIELD® - The cut ends must be sealed with an epoxy system for polyester and a vinyl ester system for the vinyl ester DURASHIELD® such that there is no possibility of chemical intrusion.

• Fiberglass Structures - The standard components of Strongwell FIBERGLASS STRUCTURES are shown in this Corrosion Resistance Guide. Fabrication procedures similar to those in Strongwell’s EXTREN® Fabrication and Repair Manual should be followed to obtain the corrosion resistance stated in this guide.

• Concrete - Polyester resin is acceptable when pultruded FRP shapes are used as a stay in place (SIP) form. For concrete installations where long-term structural integrity is required, vinyl ester resin should be used.

• A spill/splash application can be considered separately if the spill/splash can be netralized within one (1) hour.

How To Use This GuideHow To Use This Guide

The following definitions will aid readers using this Guide:

R.T. Room Temperature (≤< 100°F)

TP Thermoplastic

R Resistant

NR Not Resistant

C Concern (Indicates data is inconclusive. Customer is advised to confirm the corrosion resistance in their applications with pre-shipment sample.)

EXTREN® 500/525 Isophthalic Polyester

EXTREN® 625 Vinyl Ester

DURAGRATE®

VE Vinyl Ester

PP Isophthalic Polyester (Premium Polyester)

GP Orthothalic Polyester (General Purpose)* *Not referred to in this Corrosion Resistance Guide

Note: Temperature data is not necessarily the maximum service temperature; it is the upper temperature at which a resin has been tested, used or evaluated. Other temperatures can be reviewed separately.

Page 396: Manual Completo

6

CHEMICALENVIRONMENT

VINYL ESTERCOMPOSOLITE®

EXTREN®

DURADEK®

DURAGRID®

DURASHIELD®

SAFPLANK®

SAFPLATE®

SAFRAILTM

R.T. (< 100OF)

VINYL ESTERCOMPOSOLITE®

EXTREN®

DURADEK®

DURAGRID®

DURASHIELD®

SAFPLANK®

SAFPLATE®

SAFRAILTM

160OF

POLYESTERCOMPOSOLITE®

EXTREN®

DURADEK®

DURAGRID®

DURASHIELD®

SAFPLANK®

SAFPLATE®

SAFRAILTM

R.T. (< 100OF)

POLYESTERCOMPOSOLITE®

EXTREN®

DURADEK®

DURAGRID®

DURASHIELD®

SAFPLANK®

SAFPLATE®

SAFRAILTM

150OF

A Acetic Acid 0-25% R R R R A Acetic Acid 0-25% R R R R R 125Acetic Acid 25-50% R R R NR Acetic Acid 25-50% R R R R R NRAcetic Anhydride NR NR NR NR Acetic Anhydride NR NR NR NR NR NRAcetone NR NR NR NR Acetone NR NR NR NR NR NRAcrylonitrile NR NR NR NR Acrylonitrile NR NR NR NR NR NRAlcohol, Butyl R NR NR NR Alcohol, Butyl R NR R NR NR NRAlcohol, Ethyl 10% R 120 NR NR Alcohol, Ethyl 10% R 150 R 120 NR NRAlcohol, Ethyl 100% NR NR NR NR Alcohol, Ethyl 100% NR NR NR NR NR NRAlcohol, Isopropyl 10% R 150 NR NR Alcohol, Isopropyl 10% R 150 R 150 NR NRAlcohol, Isopropyl 100% R NR NR NR Alcohol, Isopropyl 100% R NR R NR NR NRAlcohol, Methyl 10% R NR NR NR Alcohol, Methyl 10% R NR R NR NR NRAlcohol, Methyl 100% NR NR NR NR Alcohol, Methyl 100% NR NR NR NR NR NRAlcohol, Methyl Isobutyl R 120 NR NR Alcohol, Methyl Isobutyl R 120 R 120 NR NRAlcohol, Secondary Butyl R 150 NR NR Alcohol, Secondary Butyl R 150 R 150 NR NRAlum R 120 R R Alum R 120 R 120 NR NRAluminum Chloride R 120 R NR Aluminum Chloride R 120 R 120 R NRAluminum Hydroxide 5% R 120 NR NR Aluminum Hydroxide 5% R 120 R 120 NR NRAluminum Nitrate R 120 R NR Aluminum Nitrate R 120 R 120 NR NRAluminum Potassium Sulfate R 120 R NR Aluminum Potassium Sulfate R 120 R 120 NR NRAmmonia, Aqueous 0-10% R NR NR NR Ammonia, Aqueous 0-10% R NR R NR NR NRAmmonia, Gas R NR NR NR Ammonia, Gas R NR R NR NR NRAmmonium Bicarbonate R 120 R NR Ammonium Bicarbonate R 120 R 120 R NRAmmonium Bisulfite R 120 R NR Ammonium Bisulfite R NR R 120 R NRAmmonium Carbonate 10% R 120 NR NR Ammonium Carbonate 10% R NR R 120 NR NRAmmonium Citrate R 120 R NR Ammonium Citrate R 120 R 120 R NRAmmonium Hydroxide 5% R 120 NR NR Ammonium Hydroxide 5% R NR R 120 NR NRAmmonium Hydroxide 10% R 120 NR NR Ammonium Hydroxide 10% R NR R 120 NR NRAmmonium Hydroxide 20% R NR NR NR Ammonium Hydroxide 20% R NR R NR NR NRAmmonium Nitrate R R R R Ammonium Nitrate R R R R R RAmmonium Persulfate R 120 NR NR Ammonium Persulfate R NR R 120 NR NRAmmonium Phosphate R 120 NR NR Ammonium Phosphate R 120 R 120 NR NRAmmonium Sulfate R R R R Ammonium Sulfate R R R R R RArsenious Acid R R R NR Arsenious Acid R R R R R NR

B Barium Acetate R R NR NR B Barium Acetate R 120 R R NR NRBarium Carbonate R R R NR Barium Carbonate R R R R R NRBarium Chloride R R R 120 Barium Chloride R R R R R 120Barium Hydroxide R 120 NR NR Barium Hydroxide R NR R 120 NR NRBarium Sulfate R R R R Barium Sulfate R R R R R RBarium Sulfide R R NR NR Barium Sulfide R 120 R R NR NRBeer R 120 R NR Beer R 120 R 120 R NRBenzene NR NR NR NR Benzene NR NR NR NR NR NR5% Benzene in Kerosene R NR NR NR 5% Benzene in Kerosene R NR R NR NR NRBenzene Sulfonic Acid 30% R R NR NR Benzene Sulfonic Acid 30% R R R R NR NR

Page 397: Manual Completo

7

CHEMICAL ENVIRONMENT

FIBREBOLT®

SYSTEM R.T.

(< 100°F)

FIBREBOLT®

SYSTEM 150°F

DURAGRATE® MOLDED GRATINGVINYL ESTER

R.T.(< 100°F)

VINYL ESTER 160°F

PREMIUM ISOPHTHALIC POLYESTER R.T. (<100°F)

PREMIUM ISOPHTHALIC POLYESTER

150°F

A Acetic Acid 0-25% R R R R A Acetic Acid 0-25% R R R R R 125Acetic Acid 25-50% R R R NR Acetic Acid 25-50% R R R R R NRAcetic Anhydride NR NR NR NR Acetic Anhydride NR NR NR NR NR NRAcetone NR NR NR NR Acetone NR NR NR NR NR NRAcrylonitrile NR NR NR NR Acrylonitrile NR NR NR NR NR NRAlcohol, Butyl R NR NR NR Alcohol, Butyl R NR R NR NR NRAlcohol, Ethyl 10% R 120 NR NR Alcohol, Ethyl 10% R 150 R 120 NR NRAlcohol, Ethyl 100% NR NR NR NR Alcohol, Ethyl 100% NR NR NR NR NR NRAlcohol, Isopropyl 10% R 150 NR NR Alcohol, Isopropyl 10% R 150 R 150 NR NRAlcohol, Isopropyl 100% R NR NR NR Alcohol, Isopropyl 100% R NR R NR NR NRAlcohol, Methyl 10% R NR NR NR Alcohol, Methyl 10% R NR R NR NR NRAlcohol, Methyl 100% NR NR NR NR Alcohol, Methyl 100% NR NR NR NR NR NRAlcohol, Methyl Isobutyl R 120 NR NR Alcohol, Methyl Isobutyl R 120 R 120 NR NRAlcohol, Secondary Butyl R 150 NR NR Alcohol, Secondary Butyl R 150 R 150 NR NRAlum R 120 R R Alum R 120 R 120 NR NRAluminum Chloride R 120 R NR Aluminum Chloride R 120 R 120 R NRAluminum Hydroxide 5% R 120 NR NR Aluminum Hydroxide 5% R 120 R 120 NR NRAluminum Nitrate R 120 R NR Aluminum Nitrate R 120 R 120 NR NRAluminum Potassium Sulfate R 120 R NR Aluminum Potassium Sulfate R 120 R 120 NR NRAmmonia, Aqueous 0-10% R NR NR NR Ammonia, Aqueous 0-10% R NR R NR NR NRAmmonia, Gas R NR NR NR Ammonia, Gas R NR R NR NR NRAmmonium Bicarbonate R 120 R NR Ammonium Bicarbonate R 120 R 120 R NRAmmonium Bisulfite R 120 R NR Ammonium Bisulfite R NR R 120 R NRAmmonium Carbonate 10% R 120 NR NR Ammonium Carbonate 10% R NR R 120 NR NRAmmonium Citrate R 120 R NR Ammonium Citrate R 120 R 120 R NRAmmonium Hydroxide 5% R 120 NR NR Ammonium Hydroxide 5% R NR R 120 NR NRAmmonium Hydroxide 10% R 120 NR NR Ammonium Hydroxide 10% R NR R 120 NR NRAmmonium Hydroxide 20% R NR NR NR Ammonium Hydroxide 20% R NR R NR NR NRAmmonium Nitrate R R R R Ammonium Nitrate R R R R R RAmmonium Persulfate R 120 NR NR Ammonium Persulfate R NR R 120 NR NRAmmonium Phosphate R 120 NR NR Ammonium Phosphate R 120 R 120 NR NRAmmonium Sulfate R R R R Ammonium Sulfate R R R R R RArsenious Acid R R R NR Arsenious Acid R R R R R NR

B Barium Acetate R R NR NR B Barium Acetate R 120 R R NR NRBarium Carbonate R R R NR Barium Carbonate R R R R R NRBarium Chloride R R R 120 Barium Chloride R R R R R 120Barium Hydroxide R 120 NR NR Barium Hydroxide R NR R 120 NR NRBarium Sulfate R R R R Barium Sulfate R R R R R RBarium Sulfide R R NR NR Barium Sulfide R 120 R R NR NRBeer R 120 R NR Beer R 120 R 120 R NRBenzene NR NR NR NR Benzene NR NR NR NR NR NR5% Benzene in Kerosene R NR NR NR 5% Benzene in Kerosene R NR R NR NR NRBenzene Sulfonic Acid 30% R R NR NR Benzene Sulfonic Acid 30% R R R R NR NR

Page 398: Manual Completo

8

CHEMICALENVIRONMENT

VINYL ESTERCOMPOSOLITE®

EXTREN®

DURADEK®

DURAGRID®

DURASHIELD®

SAFPLANK®

SAFPLATE®

SAFRAILTM

R.T. (< 100OF)

VINYL ESTERCOMPOSOLITE®

EXTREN®

DURADEK®

DURAGRID®

DURASHIELD®

SAFPLANK®

SAFPLATE®

SAFRAILTM

160OF

POLYESTERCOMPOSOLITE®

EXTREN®

DURADEK®

DURAGRID®

DURASHIELD®

SAFPLANK®

SAFPLATE®

SAFRAILTM

R.T. (< 100OF)

POLYESTERCOMPOSOLITE®

EXTREN®

DURADEK®

DURAGRID®

DURASHIELD®

SAFPLANK®

SAFPLATE®

SAFRAILTM

150OF

B Benzoic Acid R R R NR B Benzoic Acid R R R R R NRO-Benzoyl Benzoic Acid R R NR NR O-Benzoyl Benzoic Acid R R R R NR NRBenzyl Alcohol R NR NR NR Benzyl Alcohol R NR R NR NR NRBenzyl Chloride NR NR NR NR Benzyl Chloride NR NR NR NR NR NRBrass Plating Solution: 3% Copper Cyanide 6% Sodium Cyanide 1% Zinc Cyanide 3% Sodium Carbonate

R 120 NR NR

Brass Plating Solution: 3% Copper Cyanide 6% Sodium Cyanide 1% Zinc Cyanide 3% Sodium Carbonate

R R R R NR NR

Butyl Acetate NR NR NR NR Butyl Acetate NR NR NR NR NR NRButylene Glycol R R R R Butylene Glycol R R R R R RButyric Acid 0-50% R R R NR Butyric Acid 0-50% R R R R R NR

C Cadmium Chloride R R R NR C Cadmium Chloride R R R R R NRCadmium Cyanide Plating Solution: 3% Cadmium Oxide, 6% Sodium Cyanide 1% Caustic Soda

R 120 NR NR

Cadmium Cyanide Plating Solution: 3% Cadmium Oxide, 6% Sodium Cyanide 1% Caustic Soda

R 120 R 120 NR NR

Calcium Bisulfite R R R R Calcium Bisulfite R R R R R RCalcium Chlorate R R R R Calcium Chlorate R R R R R RCalcium Chloride R R R R Calcium Chloride R R R R R RCalcium Hydroxide R R NR NR Calcium Hydroxide NR NR NR NR NR NRCalcium Hypochlorite R 120 NR NR Calcium Hypochlorite C C R 120 NR NRCalcium Nitrate R R R R Calcium Nitrate R R R R R RCalcium Sulfate R R R R Calcium Sulfate R R R R R RCalcium Sulfite R R R R Calcium Sulfite R R R R R RCaprylic Acid R R R NR Caprylic Acid R R R R R NRCarbon Dioxide R R R R Carbon Dioxide R R R R R RCarbon Disulfide NR NR NR NR Carbon Disulfide NR NR NR NR NR NRCarbon Monoxide R R R R Carbon Monoxide R R R R R RCarbon Tetrachloride NR NR NR NR Carbon Tetrachloride NR NR NR NR NR NRCarbonic Acid R R R NR Carbonic Acid R R R R R 120Carbon Methyl Cellulose R 120 NR NR Carbon Methyl Cellulose R 120 R 120 NR NRCastor Oil R R R R Castor Oil R R R R R RChlorinated Wax R R NR NR Chlorinated Wax R 120 R R NR NRChlorine Dioxide/Air R R NR NR Chlorine Dioxide/Air R 120 R R NR NRChlorine Dioxide, Wet Gas R R NR NR Chlorine Dioxide, Wet Gas R NR R R NR NRChlorine, Dry Gas R R NR NR Chlorine, Dry Gas R NR R R NR NRChlorine, Wet Gas R R NR NR Chlorine, Wet Gas R NR R R NR NRChlorine, Liquid NR NR NR NR Chlorine, Liquid NR NR NR NR NR NRChlorine, Swimming Pool (pH 7 to <8) R R R R Chlorine, Swimming

Pool (pH 7 to <8) R NR R R R R

Chlorine, Water R 120 NR NR Chlorine, Water R NR R NR NR NRChloroacetic Acid 0-50% R NR NR NR Chloroacetic Acid 0-50% R NR R NR NR NR

Page 399: Manual Completo

9

CHEMICAL ENVIRONMENT

FIBREBOLT®

SYSTEM R.T.

(< 100°F)

FIBREBOLT®

SYSTEM 150°F

DURAGRATE® MOLDED GRATINGVINYL ESTER

R.T.(< 100°F)

VINYL ESTER 160°F

PREMIUM ISOPHTHALIC POLYESTER R.T. (<100°F)

PREMIUM ISOPHTHALIC POLYESTER

150°F

B Benzoic Acid R R R NR B Benzoic Acid R R R R R NRO-Benzoyl Benzoic Acid R R NR NR O-Benzoyl Benzoic Acid R R R R NR NRBenzyl Alcohol R NR NR NR Benzyl Alcohol R NR R NR NR NRBenzyl Chloride NR NR NR NR Benzyl Chloride NR NR NR NR NR NRBrass Plating Solution: 3% Copper Cyanide 6% Sodium Cyanide 1% Zinc Cyanide 3% Sodium Carbonate

R 120 NR NR

Brass Plating Solution: 3% Copper Cyanide 6% Sodium Cyanide 1% Zinc Cyanide 3% Sodium Carbonate

R R R R NR NR

Butyl Acetate NR NR NR NR Butyl Acetate NR NR NR NR NR NRButylene Glycol R R R R Butylene Glycol R R R R R RButyric Acid 0-50% R R R NR Butyric Acid 0-50% R R R R R NR

C Cadmium Chloride R R R NR C Cadmium Chloride R R R R R NRCadmium Cyanide Plating Solution: 3% Cadmium Oxide, 6% Sodium Cyanide 1% Caustic Soda

R 120 NR NR

Cadmium Cyanide Plating Solution: 3% Cadmium Oxide, 6% Sodium Cyanide 1% Caustic Soda

R 120 R 120 NR NR

Calcium Bisulfite R R R R Calcium Bisulfite R R R R R RCalcium Chlorate R R R R Calcium Chlorate R R R R R RCalcium Chloride R R R R Calcium Chloride R R R R R RCalcium Hydroxide R R NR NR Calcium Hydroxide NR NR NR NR NR NRCalcium Hypochlorite R 120 NR NR Calcium Hypochlorite C C R 120 NR NRCalcium Nitrate R R R R Calcium Nitrate R R R R R RCalcium Sulfate R R R R Calcium Sulfate R R R R R RCalcium Sulfite R R R R Calcium Sulfite R R R R R RCaprylic Acid R R R NR Caprylic Acid R R R R R NRCarbon Dioxide R R R R Carbon Dioxide R R R R R RCarbon Disulfide NR NR NR NR Carbon Disulfide NR NR NR NR NR NRCarbon Monoxide R R R R Carbon Monoxide R R R R R RCarbon Tetrachloride NR NR NR NR Carbon Tetrachloride NR NR NR NR NR NRCarbonic Acid R R R NR Carbonic Acid R R R R R 120Carbon Methyl Cellulose R 120 NR NR Carbon Methyl Cellulose R 120 R 120 NR NRCastor Oil R R R R Castor Oil R R R R R RChlorinated Wax R R NR NR Chlorinated Wax R 120 R R NR NRChlorine Dioxide/Air R R NR NR Chlorine Dioxide/Air R 120 R R NR NRChlorine Dioxide, Wet Gas R R NR NR Chlorine Dioxide, Wet Gas R NR R R NR NRChlorine, Dry Gas R R NR NR Chlorine, Dry Gas R NR R R NR NRChlorine, Wet Gas R R NR NR Chlorine, Wet Gas R NR R R NR NRChlorine, Liquid NR NR NR NR Chlorine, Liquid NR NR NR NR NR NRChlorine, Swimming Pool (pH 7 to <8) R R R R Chlorine, Swimming

Pool (pH 7 to <8) R NR R R R R

Chlorine, Water R 120 NR NR Chlorine, Water R NR R NR NR NRChloroacetic Acid 0-50% R NR NR NR Chloroacetic Acid 0-50% R NR R NR NR NR

Page 400: Manual Completo

10

CHEMICALENVIRONMENT

VINYL ESTERCOMPOSOLITE®

EXTREN®

DURADEK®

DURAGRID®

DURASHIELD®

SAFPLANK®

SAFPLATE®

SAFRAILTM

R.T. (< 100OF)

VINYL ESTERCOMPOSOLITE®

EXTREN®

DURADEK®

DURAGRID®

DURASHIELD®

SAFPLANK®

SAFPLATE®

SAFRAILTM

160OF

POLYESTERCOMPOSOLITE®

EXTREN®

DURADEK®

DURAGRID®

DURASHIELD®

SAFPLANK®

SAFPLATE®

SAFRAILTM

R.T. (< 100OF)

POLYESTERCOMPOSOLITE®

EXTREN®

DURADEK®

DURAGRID®

DURASHIELD®

SAFPLANK®

SAFPLATE®

SAFRAILTM

150OF

C Chlorobenzene NR NR NR NR C Chlorobenzene NR NR NR NR NR NRChloroform NR NR NR NR Chloroform NR NR NR NR NR NRChlorosulfonic Acid NR NR NR NR Chlorosulfonic Acid NR NR NR NR NR NRChromic Acid NR NR NR NR Chromic Acid NR NR NR NR NR NRChromium Sulfate R R R R Chromium Sulfate R R R R R RCitric Acid R R R R Citric Acid R R R R R RCoconut Oil R R R NR Coconut Oil R R R R R NRConcrete R R NR NR Concrete NR NR R R NR NRCopper Chloride R R R R Copper Chloride R R R R R RCopper Cyanide R R R NR Copper Cyanide R R R R R NRCopper Fluoride R R NR NR Copper Fluoride NR NR R R NR NRCopper Nitrate R R R R Copper Nitrate R NR R R R R

Copper Plating Solution: Copper Cyanide 10.5% Copper 4% Copper Cyanide 6% Rochelle Salts

R R NR NR

Copper Plating Solution: Copper Cyanide 10.5% Copper 4% Copper Cyanide 6% Rochelle Salts

R R R R NR NR

Copper Brite Plating: Caustic Cyanide R 120 NR NR Copper Brite Plating:

Caustic Cyanide R 120 R 120 NR NR

Copper Plating Solution: 45% Copper Fluoborate 19% Copper Sulfate 8% Sulfuric Acid

R R NR NR

Copper Plating Solution: 45% Copper Fluoborate 19% Copper Sulfate 8% Sulfuric Acid

NR NR R R NR NR

Copper Matte Dipping Bath: 30% Ferric Chloride 19% Hydrochloric Acid

R 120 NR NRCopper Matte Dipping Bath: 30% Ferric Chloride 19% Hydrochloric Acid

R R R R NR NR

Copper Pickling Bath: 10% Ferric Sulfate 10% Sulfuric Acid

R R NR NRCopper Pickling Bath: 10% Ferric Sulfate 10% Sulfuric Acid

R R R R NR NR

Copper Sulfate R R R R Copper Sulfate R R R R R RCorn Oil R R R R Corn Oil R R R R R RCorn Starch-Slurry R R R R Corn Starch-Slurry R R R R R RCorn Sugar R R R R Corn Sugar R R R R R RCottonseed Oil R R R NR Cottonseed Oil R R R R R RCrude Oil, Sour R R R NR Crude Oil, Sour R R R R R NRCrude Oil, Sweet R R R NR Crude Oil, Sweet R R R R R NRCyclohexane R 120 NR NR Cyclohexane R 120 R 120 NR NR

D Detergents, Sulfonated R R R NR D Detergents, Sulfonated R R R R R NRDi-Ammonium Phosphate R R NR NR Di-Ammonium Phosphate R R R R NR NRDibromophenol NR NR NR NR Dibromophenol NR NR NR NR NR NRDibutyl Ether R NR NR NR Dibutyl Ether R NR R NR NR NRDichloro Benzene NR NR NR NR Dichloro Benzene NR NR NR NR NR NRDichloroethylene NR NR NR NR Dichloroethylene NR NR NR NR NR NR

Page 401: Manual Completo

11

CHEMICAL ENVIRONMENT

FIBREBOLT®

SYSTEM R.T.

(< 100°F)

FIBREBOLT®

SYSTEM 150°F

DURAGRATE® MOLDED GRATINGVINYL ESTER

R.T.(< 100°F)

VINYL ESTER 160°F

PREMIUM ISOPHTHALIC POLYESTER R.T. (<100°F)

PREMIUM ISOPHTHALIC POLYESTER

150°F

C Chlorobenzene NR NR NR NR C Chlorobenzene NR NR NR NR NR NRChloroform NR NR NR NR Chloroform NR NR NR NR NR NRChlorosulfonic Acid NR NR NR NR Chlorosulfonic Acid NR NR NR NR NR NRChromic Acid NR NR NR NR Chromic Acid NR NR NR NR NR NRChromium Sulfate R R R R Chromium Sulfate R R R R R RCitric Acid R R R R Citric Acid R R R R R RCoconut Oil R R R NR Coconut Oil R R R R R NRConcrete R R NR NR Concrete NR NR R R NR NRCopper Chloride R R R R Copper Chloride R R R R R RCopper Cyanide R R R NR Copper Cyanide R R R R R NRCopper Fluoride R R NR NR Copper Fluoride NR NR R R NR NRCopper Nitrate R R R R Copper Nitrate R NR R R R R

Copper Plating Solution: Copper Cyanide 10.5% Copper 4% Copper Cyanide 6% Rochelle Salts

R R NR NR

Copper Plating Solution: Copper Cyanide 10.5% Copper 4% Copper Cyanide 6% Rochelle Salts

R R R R NR NR

Copper Brite Plating: Caustic Cyanide R 120 NR NR Copper Brite Plating:

Caustic Cyanide R 120 R 120 NR NR

Copper Plating Solution: 45% Copper Fluoborate 19% Copper Sulfate 8% Sulfuric Acid

R R NR NR

Copper Plating Solution: 45% Copper Fluoborate 19% Copper Sulfate 8% Sulfuric Acid

NR NR R R NR NR

Copper Matte Dipping Bath: 30% Ferric Chloride 19% Hydrochloric Acid

R 120 NR NRCopper Matte Dipping Bath: 30% Ferric Chloride 19% Hydrochloric Acid

R R R R NR NR

Copper Pickling Bath: 10% Ferric Sulfate 10% Sulfuric Acid

R R NR NRCopper Pickling Bath: 10% Ferric Sulfate 10% Sulfuric Acid

R R R R NR NR

Copper Sulfate R R R R Copper Sulfate R R R R R RCorn Oil R R R R Corn Oil R R R R R RCorn Starch-Slurry R R R R Corn Starch-Slurry R R R R R RCorn Sugar R R R R Corn Sugar R R R R R RCottonseed Oil R R R NR Cottonseed Oil R R R R R RCrude Oil, Sour R R R NR Crude Oil, Sour R R R R R NRCrude Oil, Sweet R R R NR Crude Oil, Sweet R R R R R NRCyclohexane R 120 NR NR Cyclohexane R 120 R 120 NR NR

D Detergents, Sulfonated R R R NR D Detergents, Sulfonated R R R R R NRDi-Ammonium Phosphate R R NR NR Di-Ammonium Phosphate R R R R NR NRDibromophenol NR NR NR NR Dibromophenol NR NR NR NR NR NRDibutyl Ether R NR NR NR Dibutyl Ether R NR R NR NR NRDichloro Benzene NR NR NR NR Dichloro Benzene NR NR NR NR NR NRDichloroethylene NR NR NR NR Dichloroethylene NR NR NR NR NR NR

Page 402: Manual Completo

12

CHEMICALENVIRONMENT

VINYL ESTERCOMPOSOLITE®

EXTREN®

DURADEK®

DURAGRID®

DURASHIELD®

SAFPLANK®

SAFPLATE®

SAFRAILTM

R.T. (< 100OF)

VINYL ESTERCOMPOSOLITE®

EXTREN®

DURADEK®

DURAGRID®

DURASHIELD®

SAFPLANK®

SAFPLATE®

SAFRAILTM

160OF

POLYESTERCOMPOSOLITE®

EXTREN®

DURADEK®

DURAGRID®

DURASHIELD®

SAFPLANK®

SAFPLATE®

SAFRAILTM

R.T. (< 100OF)

POLYESTERCOMPOSOLITE®

EXTREN®

DURADEK®

DURAGRID®

DURASHIELD®

SAFPLANK®

SAFPLATE®

SAFRAILTM

150OF

D Diesel Fuel R R R NR D Diesel Fuel R R R R R 120Diethylene Glycol R R R R Diethylene Glycol R R R R R RDimenthyl Phthalate R R NR NR Dimenthyl Phthalate R R R R NR NRDioctyl Phthalate R R NR NR Dioctyl Phthalate R R R R NR NRDipropylene Glycol R R R R Dipropylene Glycol R R R R R RDodecyl Alcohol R R NR NR Dodecyl Alcohol R R R R NR NR

E Esters, Fatty Acids R R R R E Esters, Fatty Acids R R R R R REthyl Acetate NR NR NR NR Ethyl Acetate NR NR NR NR NR NREthyl Benzene NR NR NR NR Ethyl Benzene NR NR NR NR NR NREthyl Ether NR NR NR NR Ethyl Ether NR NR NR NR NR NREthylene Dichloride NR NR NR NR Ethylene Dichloride NR NR NR NR NR NREthylene Glycol R R R R Ethylene Glycol R R R R R R

F Fatty Acids R R R R F Fatty Acids R R R R R RFerric Chloride R R R R Ferric Chloride R R R R R RFerric Nitrate R R R R Ferric Nitrate R R R R R RFerric Sulfate R R R R Ferric Sulfate R R R R R RFerrous Chloride R R R R Ferrous Chloride R R R R R RFerrous Nitrate R R R R Ferrous Nitrate R R R R R RFerrous Sulfate R R R R Ferrous Sulfate R R R R R R8-8-8 Fertilizer R R R R 8-8-8 Fertilizer R 120 R R R R

Fertilizer: Urea Ammonium Nitrate R 120 NR NR Fertilizer:

Urea Ammonium Nitrate R 120 R 120 NR NR

Flue Gas R R NR NR Flue Gas R R R R NR NRFormaldehyde R R R NR Formaldehyde R R R R R NRFormic Acid 10% R R R NR Formic Acid 10% C C R R R NRFuel Oil R R R NR Fuel Oil R R R R R NR

G Gas, Natural R R R NR G Gas, Natural R R R R R NRGasoline, Auto R R R NR Gasoline, Auto R R R 120 R NRGasoline, Aviation R R R NR Gasoline, Aviation R R R 120 R NRGasoline, Ethyl R R R NR Gasoline, Ethyl R R R 120 R NRGasoline, Sour R R R NR Gasoline, Sour R R R 120 R NRGlyconic Acid R R R NR Glyconic Acid R R R R R NRGlucose R R R R Glucose R R R R R RGlycerine R R R R Glycerine R R R R R RGlycol, Propylene R R R R Glycol, Propylene R R R R R RGlycolic Acid 70% R R R NR Glycolic Acid 70% R R R R R NRGold Plating Solution: 63% Potassium Ferrocyanide 2% Potassium Gold Cyanide 8% Sodium Cyanide

R R NR NR

Gold Plating Solution: 63% Potassium Ferrocyanide 2% Potassium Gold Cyanide 8% Sodium Cyanide

R R R R R NR

Page 403: Manual Completo

13

CHEMICAL ENVIRONMENT

FIBREBOLT®

SYSTEM R.T.

(< 100°F)

FIBREBOLT®

SYSTEM 150°F

DURAGRATE® MOLDED GRATINGVINYL ESTER

R.T.(< 100°F)

VINYL ESTER 160°F

PREMIUM ISOPHTHALIC POLYESTER R.T. (<100°F)

PREMIUM ISOPHTHALIC POLYESTER

150°F

D Diesel Fuel R R R NR D Diesel Fuel R R R R R 120Diethylene Glycol R R R R Diethylene Glycol R R R R R RDimenthyl Phthalate R R NR NR Dimenthyl Phthalate R R R R NR NRDioctyl Phthalate R R NR NR Dioctyl Phthalate R R R R NR NRDipropylene Glycol R R R R Dipropylene Glycol R R R R R RDodecyl Alcohol R R NR NR Dodecyl Alcohol R R R R NR NR

E Esters, Fatty Acids R R R R E Esters, Fatty Acids R R R R R REthyl Acetate NR NR NR NR Ethyl Acetate NR NR NR NR NR NREthyl Benzene NR NR NR NR Ethyl Benzene NR NR NR NR NR NREthyl Ether NR NR NR NR Ethyl Ether NR NR NR NR NR NREthylene Dichloride NR NR NR NR Ethylene Dichloride NR NR NR NR NR NREthylene Glycol R R R R Ethylene Glycol R R R R R R

F Fatty Acids R R R R F Fatty Acids R R R R R RFerric Chloride R R R R Ferric Chloride R R R R R RFerric Nitrate R R R R Ferric Nitrate R R R R R RFerric Sulfate R R R R Ferric Sulfate R R R R R RFerrous Chloride R R R R Ferrous Chloride R R R R R RFerrous Nitrate R R R R Ferrous Nitrate R R R R R RFerrous Sulfate R R R R Ferrous Sulfate R R R R R R8-8-8 Fertilizer R R R R 8-8-8 Fertilizer R 120 R R R R

Fertilizer: Urea Ammonium Nitrate R 120 NR NR Fertilizer:

Urea Ammonium Nitrate R 120 R 120 NR NR

Flue Gas R R NR NR Flue Gas R R R R NR NRFormaldehyde R R R NR Formaldehyde R R R R R NRFormic Acid 10% R R R NR Formic Acid 10% C C R R R NRFuel Oil R R R NR Fuel Oil R R R R R NR

G Gas, Natural R R R NR G Gas, Natural R R R R R NRGasoline, Auto R R R NR Gasoline, Auto R R R 120 R NRGasoline, Aviation R R R NR Gasoline, Aviation R R R 120 R NRGasoline, Ethyl R R R NR Gasoline, Ethyl R R R 120 R NRGasoline, Sour R R R NR Gasoline, Sour R R R 120 R NRGlyconic Acid R R R NR Glyconic Acid R R R R R NRGlucose R R R R Glucose R R R R R RGlycerine R R R R Glycerine R R R R R RGlycol, Propylene R R R R Glycol, Propylene R R R R R RGlycolic Acid 70% R R R NR Glycolic Acid 70% R R R R R NRGold Plating Solution: 63% Potassium Ferrocyanide 2% Potassium Gold Cyanide 8% Sodium Cyanide

R R NR NR

Gold Plating Solution: 63% Potassium Ferrocyanide 2% Potassium Gold Cyanide 8% Sodium Cyanide

R R R R R NR

Page 404: Manual Completo

14

CHEMICALENVIRONMENT

VINYL ESTERCOMPOSOLITE®

EXTREN®

DURADEK®

DURAGRID®

DURASHIELD®

SAFPLANK®

SAFPLATE®

SAFRAILTM

R.T. (< 100OF)

VINYL ESTERCOMPOSOLITE®

EXTREN®

DURADEK®

DURAGRID®

DURASHIELD®

SAFPLANK®

SAFPLATE®

SAFRAILTM

160OF

POLYESTERCOMPOSOLITE®

EXTREN®

DURADEK®

DURAGRID®

DURASHIELD®

SAFPLANK®

SAFPLATE®

SAFRAILTM

R.T. (< 100OF)

POLYESTERCOMPOSOLITE®

EXTREN®

DURADEK®

DURAGRID®

DURASHIELD®

SAFPLANK®

SAFPLATE®

SAFRAILTM

150OF

H Heptane R R R NR H Heptane R R R R R NRHexane R R R NR Hexane R R R R R NRHexalene Glycol R R R R Hexalene Glycol R R R R R RHydraulic Fluid R R R NR Hydraulic Fluid R R R R R NRHydrobromic Acid 0-25% R R R NR Hydrobromic Acid 0-25% NR NR R R R NRHydrochloric Acid 0-37% R R NR NR Hydrochloric Acid 0-37% NR NR R R NR NRHydrocyanic Acid R R R NR Hydrocyanic Acid R R R R R NRHydrofluoric Acid NR NR NR NR Hydrofluoric Acid NR NR NR NR NR NRHydrofluorosilic Acid(Hydroflurosilicic Acid or Fluosilicic Acid)

NR NR NR NR Hydrofluorosilic Acid(Hydroflurosilicic Acid or Fluosilicic Acid)

NR NR NR NR NR NR

Hydrogen Bromide, Wet Gas R R NR NR Hydrogen Bromide, Wet Gas NR NR R R NR NRHydrogen Chloride, Dry Gas R R NR NR Hydrogen Chloride, Dry Gas NR NR R R NR NRHydrogen Chloride, Wet Gas R 120 NR NR Hydrogen Chloride, Wet Gas NR NR R 120 NR NRHydrogen Fluoride, Vapor NR NR NR NR Hydrogen Fluoride, Vapor NR NR NR NR NR NRHydrogen Peroxide 35% R 120 NR NR Hydrogen Peroxide 35% C C R 120 R 120Hydrogen Sulfide Dry R R R 120 Hydrogen Sulfide Dry R 120 R R R 120Hydrogen Sulfide, Aqueous R R R NR Hydrogen Sulfide, Aqueous R R R R NR NRHydrosulfite Bleach R 120 NR NR Hydrosulfite Bleach C C R 120 NR NRHypochlorous Acid 0-10% R 120 NR NR Hypochlorous Acid 0-10% C C R 120 NR NR

I

Iron Plating Solution: 45% FeCl2; 15% CaCl2 20% FeSo4; 11% (NH4)2 SO4

R R NR NR I

Iron Plating Solution: 45% FeCl2; 15% CaCl2 20% FeSo4; 11% (NH4)2 SO4

R R R R NR NR

Iron and Steel Cleaning Bath: 9% Hydrochloric, 23% Sulfuric

R R NR NRIron and Steel Cleaning Bath: 9% Hydrochloric, 23% Sulfuric

C C R R NR NR

Isopropyl Amine R NR NR NR Isopropyl Amine R NR R NR NR NRIsopropyl Palmitate R R R R Isopropyl Palmitate R R R R R R

J Jet Fuel R R R NR J Jet Fuel R R R R NR NR

K Kerosene R R R NR K Kerosene R R R R R 120

L Lactic Acid R R R NR L Lactic Acid R R R R R RLauroyl Chloride R R NR NR Lauroyl Chloride R R R R NR NRLauric Acid R R R NR Lauric Acid R R R R NR NRLead Acetate R R R NR Lead Acetate R R R R R RLead Chloride R R R R Lead Chloride R R R R R RLead Nitrate R R R R Lead Nitrate R R R R R RLead Plating Solution: 0.8% Fluoboric Acid 0.4% Boric Acid

R 120 NR NRLead Plating Solution: 0.8% Fluoboric Acid 0.4% Boric Acid

R NR R 120 NR NR

Levulinic Acid R R R NR Levulinic Acid R R R R NR NR

Page 405: Manual Completo

15

CHEMICAL ENVIRONMENT

FIBREBOLT®

SYSTEM R.T.

(< 100°F)

FIBREBOLT®

SYSTEM 150°F

DURAGRATE® MOLDED GRATINGVINYL ESTER

R.T.(< 100°F)

VINYL ESTER 160°F

PREMIUM ISOPHTHALIC POLYESTER R.T. (<100°F)

PREMIUM ISOPHTHALIC POLYESTER

150°F

H Heptane R R R NR H Heptane R R R R R NRHexane R R R NR Hexane R R R R R NRHexalene Glycol R R R R Hexalene Glycol R R R R R RHydraulic Fluid R R R NR Hydraulic Fluid R R R R R NRHydrobromic Acid 0-25% R R R NR Hydrobromic Acid 0-25% NR NR R R R NRHydrochloric Acid 0-37% R R NR NR Hydrochloric Acid 0-37% NR NR R R NR NRHydrocyanic Acid R R R NR Hydrocyanic Acid R R R R R NRHydrofluoric Acid NR NR NR NR Hydrofluoric Acid NR NR NR NR NR NRHydrofluorosilic Acid(Hydroflurosilicic Acid or Fluosilicic Acid)

NR NR NR NR Hydrofluorosilic Acid(Hydroflurosilicic Acid or Fluosilicic Acid)

NR NR NR NR NR NR

Hydrogen Bromide, Wet Gas R R NR NR Hydrogen Bromide, Wet Gas NR NR R R NR NRHydrogen Chloride, Dry Gas R R NR NR Hydrogen Chloride, Dry Gas NR NR R R NR NRHydrogen Chloride, Wet Gas R 120 NR NR Hydrogen Chloride, Wet Gas NR NR R 120 NR NRHydrogen Fluoride, Vapor NR NR NR NR Hydrogen Fluoride, Vapor NR NR NR NR NR NRHydrogen Peroxide 35% R 120 NR NR Hydrogen Peroxide 35% C C R 120 R 120Hydrogen Sulfide Dry R R R 120 Hydrogen Sulfide Dry R 120 R R R 120Hydrogen Sulfide, Aqueous R R R NR Hydrogen Sulfide, Aqueous R R R R NR NRHydrosulfite Bleach R 120 NR NR Hydrosulfite Bleach C C R 120 NR NRHypochlorous Acid 0-10% R 120 NR NR Hypochlorous Acid 0-10% C C R 120 NR NR

I

Iron Plating Solution: 45% FeCl2; 15% CaCl2 20% FeSo4; 11% (NH4)2 SO4

R R NR NR I

Iron Plating Solution: 45% FeCl2; 15% CaCl2 20% FeSo4; 11% (NH4)2 SO4

R R R R NR NR

Iron and Steel Cleaning Bath: 9% Hydrochloric, 23% Sulfuric

R R NR NRIron and Steel Cleaning Bath: 9% Hydrochloric, 23% Sulfuric

C C R R NR NR

Isopropyl Amine R NR NR NR Isopropyl Amine R NR R NR NR NRIsopropyl Palmitate R R R R Isopropyl Palmitate R R R R R R

J Jet Fuel R R R NR J Jet Fuel R R R R NR NR

K Kerosene R R R NR K Kerosene R R R R R 120

L Lactic Acid R R R NR L Lactic Acid R R R R R RLauroyl Chloride R R NR NR Lauroyl Chloride R R R R NR NRLauric Acid R R R NR Lauric Acid R R R R NR NRLead Acetate R R R NR Lead Acetate R R R R R RLead Chloride R R R R Lead Chloride R R R R R RLead Nitrate R R R R Lead Nitrate R R R R R RLead Plating Solution: 0.8% Fluoboric Acid 0.4% Boric Acid

R 120 NR NRLead Plating Solution: 0.8% Fluoboric Acid 0.4% Boric Acid

R NR R 120 NR NR

Levulinic Acid R R R NR Levulinic Acid R R R R NR NR

Page 406: Manual Completo

16

CHEMICALENVIRONMENT

VINYL ESTERCOMPOSOLITE®

EXTREN®

DURADEK®

DURAGRID®

DURASHIELD®

SAFPLANK®

SAFPLATE®

SAFRAILTM

R.T. (< 100OF)

VINYL ESTERCOMPOSOLITE®

EXTREN®

DURADEK®

DURAGRID®

DURASHIELD®

SAFPLANK®

SAFPLATE®

SAFRAILTM

160OF

POLYESTERCOMPOSOLITE®

EXTREN®

DURADEK®

DURAGRID®

DURASHIELD®

SAFPLANK®

SAFPLATE®

SAFRAILTM

R.T. (< 100OF)

POLYESTERCOMPOSOLITE®

EXTREN®

DURADEK®

DURAGRID®

DURASHIELD®

SAFPLANK®

SAFPLATE®

SAFRAILTM

150OF

L Linseed Oil R R NR NR L Linseed Oil R R R R NR NRLithium Bromide R R R R Lithium Bromide R R R R R RLithium Sulfate R R R R Lithium Sulfate R R R R R R

M Magnesium Bisulfite R R NR NR M Magnesium Bisulfite R R R R NR NRMagnesium Chloride R R R R Magnesium Chloride R R R R R RMagnesium Hydroxide R 140 NR NR Magnesium Hydroxide R 140 R 140 NR NRMagnesium Nitrate R R R R Magnesium Nitrate R R R R R RMagnesium Sulfate R R R R Magnesium Sulfate R R R R R RMaleic Acid R R NR NR Maleic Acid R R R R NR NRMercuric Chloride R R R R Mercuric Chloride R R R R R RMercurous Chloride R R R R Mercurous Chloride R R R R R RMethanol 10% (see Alcohol, Methyl 10%) R NR NR NR Methanol 10%

(see Alcohol, Methyl 10%) R NR R NR NR NR

Methylene Chloride NR NR NR NR Methylene Chloride NR NR NR NR NR NRMethyl Ethyl Ketone NR NR NR NR Methyl Ethyl Ketone NR NR NR NR NR NRMethyl Isobutyl Carbitol NR NR NR NR Methyl Isobutyl Carbitol NR NR NR NR NR NRMethyl Isobutyl Ketone NR NR NR NR Methyl Isobutyl Ketone NR NR NR NR NR NRMethyl Styrene NR NR NR NR Methyl Styrene NR NR NR NR NR NRMineral Oils R R R R Mineral Oils R R R R R RMolybdenum Disulfide R R NR NR Molybdenum Disulfide R R R R NR NRMonochloric Acetic Acid NR NR NR NR Monochloric Acetic Acid NR NR NR NR NR NRMonoethanolamine NR NR NR NR Monoethanolamine NR NR NR NR NR NRMotor Oil R R R R Motor Oil R R R R R RMyristic Acid R R NR NR Myristic Acid R R R R NR NR

N Naphtha R R R R N Naphtha R R R R R RNaphthalene R R R NR Naphthalene R R R R R NRNickel Chloride R R R R Nickel Chloride R R R R R RNickel Nitrate R R R R Nickel Nitrate R R R R R RNickel Plating: 8% Lead, 0.8% Fluoboric Acid 0.4% Boric Acid

R R NR NR

Nickel Plating: 8% Lead, 0.8% Fluoboric Acid 0.4% Boric Acid

R R R R NR NR

Nickel Plating: 11% Nickel Sulfate 2% Nickel Chloride 1% Boric Acid

R R R NR

Nickel Plating: 11% Nickel Sulfate 2% Nickel Chloride 1% Boric Acid

R R R R R NR

Nickel Plating: 44% Nickel Sulfate 4% Ammonium Chloride 4% Boric Acid

R R R NR

Nickel Plating: 44% Nickel Sulfate 4% Ammonium Chloride 4% Boric Acid

R R R R R NR

Nickel Sulfate R R R R Nickel Sulfate R R R R R RNitric Acid 0-5% R R R NR Nitric Acid 0-5% NR NR R R R NR

Page 407: Manual Completo

17

CHEMICAL ENVIRONMENT

FIBREBOLT®

SYSTEM R.T.

(< 100°F)

FIBREBOLT®

SYSTEM 150°F

DURAGRATE® MOLDED GRATINGVINYL ESTER

R.T.(< 100°F)

VINYL ESTER 160°F

PREMIUM ISOPHTHALIC POLYESTER R.T. (<100°F)

PREMIUM ISOPHTHALIC POLYESTER

150°F

L Linseed Oil R R NR NR L Linseed Oil R R R R NR NRLithium Bromide R R R R Lithium Bromide R R R R R RLithium Sulfate R R R R Lithium Sulfate R R R R R R

M Magnesium Bisulfite R R NR NR M Magnesium Bisulfite R R R R NR NRMagnesium Chloride R R R R Magnesium Chloride R R R R R RMagnesium Hydroxide R 140 NR NR Magnesium Hydroxide R 140 R 140 NR NRMagnesium Nitrate R R R R Magnesium Nitrate R R R R R RMagnesium Sulfate R R R R Magnesium Sulfate R R R R R RMaleic Acid R R NR NR Maleic Acid R R R R NR NRMercuric Chloride R R R R Mercuric Chloride R R R R R RMercurous Chloride R R R R Mercurous Chloride R R R R R RMethanol 10% (see Alcohol, Methyl 10%) R NR NR NR Methanol 10%

(see Alcohol, Methyl 10%) R NR R NR NR NR

Methylene Chloride NR NR NR NR Methylene Chloride NR NR NR NR NR NRMethyl Ethyl Ketone NR NR NR NR Methyl Ethyl Ketone NR NR NR NR NR NRMethyl Isobutyl Carbitol NR NR NR NR Methyl Isobutyl Carbitol NR NR NR NR NR NRMethyl Isobutyl Ketone NR NR NR NR Methyl Isobutyl Ketone NR NR NR NR NR NRMethyl Styrene NR NR NR NR Methyl Styrene NR NR NR NR NR NRMineral Oils R R R R Mineral Oils R R R R R RMolybdenum Disulfide R R NR NR Molybdenum Disulfide R R R R NR NRMonochloric Acetic Acid NR NR NR NR Monochloric Acetic Acid NR NR NR NR NR NRMonoethanolamine NR NR NR NR Monoethanolamine NR NR NR NR NR NRMotor Oil R R R R Motor Oil R R R R R RMyristic Acid R R NR NR Myristic Acid R R R R NR NR

N Naphtha R R R R N Naphtha R R R R R RNaphthalene R R R NR Naphthalene R R R R R NRNickel Chloride R R R R Nickel Chloride R R R R R RNickel Nitrate R R R R Nickel Nitrate R R R R R RNickel Plating: 8% Lead, 0.8% Fluoboric Acid 0.4% Boric Acid

R R NR NR

Nickel Plating: 8% Lead, 0.8% Fluoboric Acid 0.4% Boric Acid

R R R R NR NR

Nickel Plating: 11% Nickel Sulfate 2% Nickel Chloride 1% Boric Acid

R R R NR

Nickel Plating: 11% Nickel Sulfate 2% Nickel Chloride 1% Boric Acid

R R R R R NR

Nickel Plating: 44% Nickel Sulfate 4% Ammonium Chloride 4% Boric Acid

R R R NR

Nickel Plating: 44% Nickel Sulfate 4% Ammonium Chloride 4% Boric Acid

R R R R R NR

Nickel Sulfate R R R R Nickel Sulfate R R R R R RNitric Acid 0-5% R R R NR Nitric Acid 0-5% NR NR R R R NR

Page 408: Manual Completo

18

CHEMICALENVIRONMENT

VINYL ESTERCOMPOSOLITE®

EXTREN®

DURADEK®

DURAGRID®

DURASHIELD®

SAFPLANK®

SAFPLATE®

SAFRAILTM

R.T. (< 100OF)

VINYL ESTERCOMPOSOLITE®

EXTREN®

DURADEK®

DURAGRID®

DURASHIELD®

SAFPLANK®

SAFPLATE®

SAFRAILTM

160OF

POLYESTERCOMPOSOLITE®

EXTREN®

DURADEK®

DURAGRID®

DURASHIELD®

SAFPLANK®

SAFPLATE®

SAFRAILTM

R.T. (< 100OF)

POLYESTERCOMPOSOLITE®

EXTREN®

DURADEK®

DURAGRID®

DURASHIELD®

SAFPLANK®

SAFPLATE®

SAFRAILTM

150OF

N Nitric Acid 15% R 120 NR NR N Nitric Acid 15% NR NR R 120 NR NRNitric Acid Fumes NR NR NR NR Nitric Acid Fumes NR NR NR NR NR NRNitrobenzene NR NR NR NR Nitrobenzene NR NR NR NR NR NR

O Octanoic Acid R R R NR O Octanoic Acid R R R R R NROil, Sour Crude R R R R Oil, Sour Crude R R R R R ROil, Sweet Crude R R R R Oil, Sweet Crude R R R R R ROleic Acid R R R R Oleic Acid R R R R R ROleum (Fuming Sulfuric) NR NR NR NR Oleum (Fuming Sulfuric) NR NR NR NR NR NROlive Oil R R R R Olive Oil R R R R R ROxalic Acid R R R R Oxalic Acid R R R R R ROzone NR NR NR NR Ozone NR NR NR NR NR NR

P

Peroxide Bleach: 2% Sodium Peroxide 96% 0.025% Epsom Salts, 5% Sodium Silicate 42o Be, 1.4% Sulfuric Acid 66o Be

R R R R P

Peroxide Bleach: 2% Sodium Peroxide 96% 0.025% Epsom Salts, 5% Sodium Silicate 42o Be, 1.4% Sulfuric Acid 66o Be

R R R R R R

Phenol NR NR NR NR Phenol NR NR NR NR NR NRPhenol Sulfonic Acid NR NR NR NR Phenol Sulfonic Acid NR NR NR NR NR NRPhosphoric Acid 85% R R R R Phosphoric Acid 85% C C R R R RPhosphoric Acid Fumes R R R R Phosphoric Acid Fumes C C R R R RPhosphorous Pentoxide R R R NR Phosphorous Pentoxide C C R R R NRPhosphorous Trichloride NR NR NR NR Phosphorous Trichloride NR NR NR NR NR NRPhthalic Acid R R R R Phthalic Acid R R R R R RPickling Acids: Sulfuric and Hydrochloric NR NR NR NR Pickling Acids:

Sulfuric and Hydrochloric NR NR NR NR NR NR

Picric Acid, Alcoholic R R R NR Picric Acid, Alcoholic NR NR R R R NRPolyvinyl Acetate Latex R R R NR Polyvinyl Acetate Latex R R R R R NRPolyvinyl Alcohol R R R NR Polyvinyl Alcohol R NR R NR R NRPolyvinyl Chloride Latex (with 35 Parts DOP) R 120 NR NR Polyvinyl Chloride Latex

(with 35 Parts DOP) R 120 R 120 NR NR

Potassium Aluminum Sulfate R R R R Potassium Aluminum Sulfate R R R R R RPotassium Bicarbonate R R R NR Potassium Bicarbonate R R R R R NRPotassium Bromide R R R NR Potassium Bromide R R R R NR NRPotassium Chloride R R R R Potassium Chloride R R R R R RPotassium Dichromate R 140 NR NR Potassium Dichromate R 120 R 140 NR NRPotassium Ferricyanide R R R R Potassium Ferricyanide R R R R R RPotassium Ferrocyanide R R R R Potassium Ferrocyanide R R R R R RPotassium Nitrate R R R R Potassium Nitrate R R R R R RPotassium Permanganate R 140 NR NR Potassium Permanganate R 140 R 140 NR NRPotassium Persulfate R R R NR Potassium Persulfate R R R R R NRPotassium Sulfate R R R R Potassium Sulfate R R R R R RPropionic Acid 1-50% R 120 NR NR Propionic Acid 1-50% R 120 R 120 NR NR

Page 409: Manual Completo

19

CHEMICAL ENVIRONMENT

FIBREBOLT®

SYSTEM R.T.

(< 100°F)

FIBREBOLT®

SYSTEM 150°F

DURAGRATE® MOLDED GRATINGVINYL ESTER

R.T.(< 100°F)

VINYL ESTER 160°F

PREMIUM ISOPHTHALIC POLYESTER R.T. (<100°F)

PREMIUM ISOPHTHALIC POLYESTER

150°F

N Nitric Acid 15% R 120 NR NR N Nitric Acid 15% NR NR R 120 NR NRNitric Acid Fumes NR NR NR NR Nitric Acid Fumes NR NR NR NR NR NRNitrobenzene NR NR NR NR Nitrobenzene NR NR NR NR NR NR

O Octanoic Acid R R R NR O Octanoic Acid R R R R R NROil, Sour Crude R R R R Oil, Sour Crude R R R R R ROil, Sweet Crude R R R R Oil, Sweet Crude R R R R R ROleic Acid R R R R Oleic Acid R R R R R ROleum (Fuming Sulfuric) NR NR NR NR Oleum (Fuming Sulfuric) NR NR NR NR NR NROlive Oil R R R R Olive Oil R R R R R ROxalic Acid R R R R Oxalic Acid R R R R R ROzone NR NR NR NR Ozone NR NR NR NR NR NR

P

Peroxide Bleach: 2% Sodium Peroxide 96% 0.025% Epsom Salts, 5% Sodium Silicate 42o Be, 1.4% Sulfuric Acid 66o Be

R R R R P

Peroxide Bleach: 2% Sodium Peroxide 96% 0.025% Epsom Salts, 5% Sodium Silicate 42o Be, 1.4% Sulfuric Acid 66o Be

R R R R R R

Phenol NR NR NR NR Phenol NR NR NR NR NR NRPhenol Sulfonic Acid NR NR NR NR Phenol Sulfonic Acid NR NR NR NR NR NRPhosphoric Acid 85% R R R R Phosphoric Acid 85% C C R R R RPhosphoric Acid Fumes R R R R Phosphoric Acid Fumes C C R R R RPhosphorous Pentoxide R R R NR Phosphorous Pentoxide C C R R R NRPhosphorous Trichloride NR NR NR NR Phosphorous Trichloride NR NR NR NR NR NRPhthalic Acid R R R R Phthalic Acid R R R R R RPickling Acids: Sulfuric and Hydrochloric NR NR NR NR Pickling Acids:

Sulfuric and Hydrochloric NR NR NR NR NR NR

Picric Acid, Alcoholic R R R NR Picric Acid, Alcoholic NR NR R R R NRPolyvinyl Acetate Latex R R R NR Polyvinyl Acetate Latex R R R R R NRPolyvinyl Alcohol R R R NR Polyvinyl Alcohol R NR R NR R NRPolyvinyl Chloride Latex (with 35 Parts DOP) R 120 NR NR Polyvinyl Chloride Latex

(with 35 Parts DOP) R 120 R 120 NR NR

Potassium Aluminum Sulfate R R R R Potassium Aluminum Sulfate R R R R R RPotassium Bicarbonate R R R NR Potassium Bicarbonate R R R R R NRPotassium Bromide R R R NR Potassium Bromide R R R R NR NRPotassium Chloride R R R R Potassium Chloride R R R R R RPotassium Dichromate R 140 NR NR Potassium Dichromate R 120 R 140 NR NRPotassium Ferricyanide R R R R Potassium Ferricyanide R R R R R RPotassium Ferrocyanide R R R R Potassium Ferrocyanide R R R R R RPotassium Nitrate R R R R Potassium Nitrate R R R R R RPotassium Permanganate R 140 NR NR Potassium Permanganate R 140 R 140 NR NRPotassium Persulfate R R R NR Potassium Persulfate R R R R R NRPotassium Sulfate R R R R Potassium Sulfate R R R R R RPropionic Acid 1-50% R 120 NR NR Propionic Acid 1-50% R 120 R 120 NR NR

Page 410: Manual Completo

20

CHEMICALENVIRONMENT

VINYL ESTERCOMPOSOLITE®

EXTREN®

DURADEK®

DURAGRID®

DURASHIELD®

SAFPLANK®

SAFPLATE®

SAFRAILTM

R.T. (< 100OF)

VINYL ESTERCOMPOSOLITE®

EXTREN®

DURADEK®

DURAGRID®

DURASHIELD®

SAFPLANK®

SAFPLATE®

SAFRAILTM

160OF

POLYESTERCOMPOSOLITE®

EXTREN®

DURADEK®

DURAGRID®

DURASHIELD®

SAFPLANK®

SAFPLATE®

SAFRAILTM

R.T. (< 100OF)

POLYESTERCOMPOSOLITE®

EXTREN®

DURADEK®

DURAGRID®

DURASHIELD®

SAFPLANK®

SAFPLATE®

SAFRAILTM

150OF

P Propylene Glycol R R R R P Propylene Glycol R R R R R RPulp Paper Mill Effluent R R NR NR Pulp Paper Mill Effluent R R R R NR NRPyridine NR NR NR NR Pyridine NR NR NR NR NR NR

S Salicylic Acid R 140 NR NR S Salicylic Acid R 140 R 140 NR NRSebacic Acid R R NR NR Sebacic Acid R R R R NR NRSelenious Acid R R NR NR Selenious Acid R R R R NR NRSilver Nitrate R R R R Silver Nitrate R R R R R RSilver Plating Solution: 4% Silver Cyanide 7% Potassium Cyanide 5% Sodium Cyanide 2% Potassium Carbonate

R R NR NR

Silver Plating Solution: 4% Silver Cyanide 7% Potassium Cyanide 5% Sodium Cyanide 2% Potassium Carbonate

R R R R NR NR

Sodium Acetate R R R NR Sodium Acetate R R R R R NRSodium Benzoate R R R NR Sodium Benzoate R R R R R NRSodium Bicarbonate R R NR NR Sodium Bicarbonate R R R R NR NRSodium Bifluoride R 120 R NR Sodium Bifluoride R 120 R 120 R NRSodium Bisulfate R R R R Sodium Bisulfate R R R R R RSodium Bisulfite R R R R Sodium Bisulfite R R R R R RSodium Bromate R 140 R R Sodium Bromate R 140 R 140 R NRSodium Bromide R R R R Sodium Bromide R R R R R RSodium Chlorate R R R NR Sodium Chlorate R R R R R NRSodium Chloride R R R R Sodium Chloride R R R R R RSodium Chlorite 25% R R R NR Sodium Chlorite 25% R R R R R NRSodium Chromate R R NR NR Sodium Chromate R R R R NR NRSodium Cyanide R R R NR Sodium Cyanide R R R R R NRSodium Dichromate R R NR NR Sodium Dichromate R R R R NR NRSodium Di-Phosphate R R R R Sodium Di-Phosphate R R R R R RSodium Ferricyanide R R R R Sodium Ferricyanide R R R R R RSodium Fluoride R 120 NR NR Sodium Fluoride R 120 R 120 NR NRSodium Fluoro Silicate R 120 NR NR Sodium Fluoro Silicate R 120 R 120 NR NRSodium Hexametaphosphates R NR NR NR Sodium Hexametaphosphates R NR R NR NR NRSodium Hydroxide 0-5% R 150 NR NR Sodium Hydroxide 0-5% R 150 R 150 NR NRSodium Hydroxide 5-50% R 120 NR NR Sodium Hydroxide 5-50% R 120 R 120 NR NRSodium Hydrosulfide R R R NR Sodium Hydrosulfide R R R R R NRSodium Hypochlorite (5% bleach) R 120 NR NR Sodium Hypochlorite (5% bleach) R 120 R 120 NR NRSodium Hypochlorite 5-15% Commercial Grade R NR NR NR Sodium Hypochlorite

5-15% Commercial Grade R NR R NR NR NR

Sodium Lauryl Sulfate R R R R Sodium Lauryl Sulfate R R R R R RSodium Mono-Phosphate R R R R Sodium Mono-Phosphate R R R R R RSodium Nitrate R R R R Sodium Nitrate R R R R R RSodium Silicate R R R R Sodium Silicate R R R R R RSodium Sulfate R R R R Sodium Sulfate R R R R R RSodium Sulfide R R R R Sodium Sulfide R R R R R R

Page 411: Manual Completo

21

CHEMICAL ENVIRONMENT

FIBREBOLT®

SYSTEM R.T.

(< 100°F)

FIBREBOLT®

SYSTEM 150°F

DURAGRATE® MOLDED GRATINGVINYL ESTER

R.T.(< 100°F)

VINYL ESTER 160°F

PREMIUM ISOPHTHALIC POLYESTER R.T. (<100°F)

PREMIUM ISOPHTHALIC POLYESTER

150°F

P Propylene Glycol R R R R P Propylene Glycol R R R R R RPulp Paper Mill Effluent R R NR NR Pulp Paper Mill Effluent R R R R NR NRPyridine NR NR NR NR Pyridine NR NR NR NR NR NR

S Salicylic Acid R 140 NR NR S Salicylic Acid R 140 R 140 NR NRSebacic Acid R R NR NR Sebacic Acid R R R R NR NRSelenious Acid R R NR NR Selenious Acid R R R R NR NRSilver Nitrate R R R R Silver Nitrate R R R R R RSilver Plating Solution: 4% Silver Cyanide 7% Potassium Cyanide 5% Sodium Cyanide 2% Potassium Carbonate

R R NR NR

Silver Plating Solution: 4% Silver Cyanide 7% Potassium Cyanide 5% Sodium Cyanide 2% Potassium Carbonate

R R R R NR NR

Sodium Acetate R R R NR Sodium Acetate R R R R R NRSodium Benzoate R R R NR Sodium Benzoate R R R R R NRSodium Bicarbonate R R NR NR Sodium Bicarbonate R R R R NR NRSodium Bifluoride R 120 R NR Sodium Bifluoride R 120 R 120 R NRSodium Bisulfate R R R R Sodium Bisulfate R R R R R RSodium Bisulfite R R R R Sodium Bisulfite R R R R R RSodium Bromate R 140 R R Sodium Bromate R 140 R 140 R NRSodium Bromide R R R R Sodium Bromide R R R R R RSodium Chlorate R R R NR Sodium Chlorate R R R R R NRSodium Chloride R R R R Sodium Chloride R R R R R RSodium Chlorite 25% R R R NR Sodium Chlorite 25% R R R R R NRSodium Chromate R R NR NR Sodium Chromate R R R R NR NRSodium Cyanide R R R NR Sodium Cyanide R R R R R NRSodium Dichromate R R NR NR Sodium Dichromate R R R R NR NRSodium Di-Phosphate R R R R Sodium Di-Phosphate R R R R R RSodium Ferricyanide R R R R Sodium Ferricyanide R R R R R RSodium Fluoride R 120 NR NR Sodium Fluoride R 120 R 120 NR NRSodium Fluoro Silicate R 120 NR NR Sodium Fluoro Silicate R 120 R 120 NR NRSodium Hexametaphosphates R NR NR NR Sodium Hexametaphosphates R NR R NR NR NRSodium Hydroxide 0-5% R 150 NR NR Sodium Hydroxide 0-5% R 150 R 150 NR NRSodium Hydroxide 5-50% R 120 NR NR Sodium Hydroxide 5-50% R 120 R 120 NR NRSodium Hydrosulfide R R R NR Sodium Hydrosulfide R R R R R NRSodium Hypochlorite (5% bleach) R 120 NR NR Sodium Hypochlorite (5% bleach) R 120 R 120 NR NRSodium Hypochlorite 5-15% Commercial Grade R NR NR NR Sodium Hypochlorite

5-15% Commercial Grade R NR R NR NR NR

Sodium Lauryl Sulfate R R R R Sodium Lauryl Sulfate R R R R R RSodium Mono-Phosphate R R R R Sodium Mono-Phosphate R R R R R RSodium Nitrate R R R R Sodium Nitrate R R R R R RSodium Silicate R R R R Sodium Silicate R R R R R RSodium Sulfate R R R R Sodium Sulfate R R R R R RSodium Sulfide R R R R Sodium Sulfide R R R R R R

Page 412: Manual Completo

22

CHEMICALENVIRONMENT

VINYL ESTERCOMPOSOLITE®

EXTREN®

DURADEK®

DURAGRID®

DURASHIELD®

SAFPLANK®

SAFPLATE®

SAFRAILTM

R.T. (< 100OF)

VINYL ESTERCOMPOSOLITE®

EXTREN®

DURADEK®

DURAGRID®

DURASHIELD®

SAFPLANK®

SAFPLATE®

SAFRAILTM

160OF

POLYESTERCOMPOSOLITE®

EXTREN®

DURADEK®

DURAGRID®

DURASHIELD®

SAFPLANK®

SAFPLATE®

SAFRAILTM

R.T. (< 100OF)

POLYESTERCOMPOSOLITE®

EXTREN®

DURADEK®

DURAGRID®

DURASHIELD®

SAFPLANK®

SAFPLATE®

SAFRAILTM

150OF

S Sodium Sulfite R R R NR S Sodium Sulfite R R R R R NRSodium Tetra Borate R R R R Sodium Tetra Borate R R R R R RSodium Thiocyanate R R NR NR Sodium Thiocyanate R R R R NR NRSodium Thiosulfate R R R NR Sodium Thiosulfate R R R R R NRSodium Tripolyphosphate R R R NR Sodium Tripolyphosphate R R R R R NRSodium Xylene Sulfonate R R R NR Sodium Xylene Sulfonate R R R R R NRSoya Oil R R R R Soya Oil R R R R R RStannic Chloride R R R R Stannic Chloride R R R R R RStannous Chloride R R R R Stannous Chloride R R R R R RStearic Acid R R R R Stearic Acid R R R R R RStyrene NR NR NR NR Styrene NR NR NR NR NR NRSugar, Beet and Cane Liquor R R R NR Sugar, Beet and Cane Liquor R R R R R NRSugar, Sucrose R R R R Sugar, Sucrose R R R R R RSulfamic Acid R R R NR Sulfamic Acid R R R R R NRSulfanilic Acid 50% R R NR NR Sulfanilic Acid 50% R R R R NR NRSulfated Detergents R R R NR Sulfated Detergents R R R R R NRSulfur Dioxide, Dry or Wet R R NR NR Sulfur Dioxide, Dry or Wet R R R R NR NRSulfur, Trioxide/Air R R NR NR Sulfur, Trioxide/Air R R R R NR NRSulfuric Acid 0-30% R R R NR Sulfuric Acid 0-30% R C R R R RSulfuric Acid 30-50% R R NR NR Sulfuric Acid 30-50% C C R R NR NRSulfuric Acid 50-70% R NR NR NR Sulfuric Acid 50-70% C C R NR NR NRSulfurous Acid 10% R NR NR NR Sulfurous Acid 10% R NR R NR NR NR

Superphosphoric Acid (76% P2O5) R R NR NR Superphosphoric Acid (76% P2O5)

C C R R NR NR

T Tall Oil R 150 R NR T Tall Oil R 140 R 150 R NRTannic Acid R 120 R NR Tannic Acid R 150 R 120 R NRTartaric Acid R R R R Tartaric Acid R R R R R RThionyl Chloride NR NR NR NR Thionyl Chloride NR NR NR NR NR NRTin Plating: 18% Stannous Fluoborate 7% Tin 9% Fluoboric Acid 2% Boric Acid

R 120 NR NR

Tin Plating: 18% Stannous Fluoborate 7% Tin 9% Fluoboric Acid 2% Boric Acid

R R R 120 NR NR

Toluene NR NR NR NR Toluene NR NR NR NR NR NRToluene Sulfonic Acid R R NR NR Toluene Sulfonic Acid R R R R NR NRTransformer Oils: Transformer Oils: Mineral Oil Types R R R R Mineral Oil Types C C R R R R Chloro-Phenyl Types NR NR NR NR Chloro-Phenyl Types NR NR NR NR NR NRTrichloro Acetic Acid NR NR NR NR Trichloro Acetic Acid C C NR NR NR NRTrichlorethylene NR NR NR NR Trichlorethylene NR NR NR NR NR NRTrichloropenol NR NR NR NR Trichloropenol NR NR NR NR NR NR

Page 413: Manual Completo

23

CHEMICAL ENVIRONMENT

FIBREBOLT®

SYSTEM R.T.

(< 100°F)

FIBREBOLT®

SYSTEM 150°F

DURAGRATE® MOLDED GRATINGVINYL ESTER

R.T.(< 100°F)

VINYL ESTER 160°F

PREMIUM ISOPHTHALIC POLYESTER R.T. (<100°F)

PREMIUM ISOPHTHALIC POLYESTER

150°F

S Sodium Sulfite R R R NR S Sodium Sulfite R R R R R NRSodium Tetra Borate R R R R Sodium Tetra Borate R R R R R RSodium Thiocyanate R R NR NR Sodium Thiocyanate R R R R NR NRSodium Thiosulfate R R R NR Sodium Thiosulfate R R R R R NRSodium Tripolyphosphate R R R NR Sodium Tripolyphosphate R R R R R NRSodium Xylene Sulfonate R R R NR Sodium Xylene Sulfonate R R R R R NRSoya Oil R R R R Soya Oil R R R R R RStannic Chloride R R R R Stannic Chloride R R R R R RStannous Chloride R R R R Stannous Chloride R R R R R RStearic Acid R R R R Stearic Acid R R R R R RStyrene NR NR NR NR Styrene NR NR NR NR NR NRSugar, Beet and Cane Liquor R R R NR Sugar, Beet and Cane Liquor R R R R R NRSugar, Sucrose R R R R Sugar, Sucrose R R R R R RSulfamic Acid R R R NR Sulfamic Acid R R R R R NRSulfanilic Acid 50% R R NR NR Sulfanilic Acid 50% R R R R NR NRSulfated Detergents R R R NR Sulfated Detergents R R R R R NRSulfur Dioxide, Dry or Wet R R NR NR Sulfur Dioxide, Dry or Wet R R R R NR NRSulfur, Trioxide/Air R R NR NR Sulfur, Trioxide/Air R R R R NR NRSulfuric Acid 0-30% R R R NR Sulfuric Acid 0-30% R C R R R RSulfuric Acid 30-50% R R NR NR Sulfuric Acid 30-50% C C R R NR NRSulfuric Acid 50-70% R NR NR NR Sulfuric Acid 50-70% C C R NR NR NRSulfurous Acid 10% R NR NR NR Sulfurous Acid 10% R NR R NR NR NR

Superphosphoric Acid (76% P2O5) R R NR NR Superphosphoric Acid (76% P2O5)

C C R R NR NR

T Tall Oil R 150 R NR T Tall Oil R 140 R 150 R NRTannic Acid R 120 R NR Tannic Acid R 150 R 120 R NRTartaric Acid R R R R Tartaric Acid R R R R R RThionyl Chloride NR NR NR NR Thionyl Chloride NR NR NR NR NR NRTin Plating: 18% Stannous Fluoborate 7% Tin 9% Fluoboric Acid 2% Boric Acid

R 120 NR NR

Tin Plating: 18% Stannous Fluoborate 7% Tin 9% Fluoboric Acid 2% Boric Acid

R R R 120 NR NR

Toluene NR NR NR NR Toluene NR NR NR NR NR NRToluene Sulfonic Acid R R NR NR Toluene Sulfonic Acid R R R R NR NRTransformer Oils: Transformer Oils: Mineral Oil Types R R R R Mineral Oil Types C C R R R R Chloro-Phenyl Types NR NR NR NR Chloro-Phenyl Types NR NR NR NR NR NRTrichloro Acetic Acid NR NR NR NR Trichloro Acetic Acid C C NR NR NR NRTrichlorethylene NR NR NR NR Trichlorethylene NR NR NR NR NR NRTrichloropenol NR NR NR NR Trichloropenol NR NR NR NR NR NR

Page 414: Manual Completo

24

CHEMICALENVIRONMENT

VINYL ESTERCOMPOSOLITE®

EXTREN®

DURADEK®

DURAGRID®

DURASHIELD®

SAFPLANK®

SAFPLATE®

SAFRAILTM

R.T. (< 100OF)

VINYL ESTERCOMPOSOLITE®

EXTREN®

DURADEK®

DURAGRID®

DURASHIELD®

SAFPLANK®

SAFPLATE®

SAFRAILTM

160OF

POLYESTERCOMPOSOLITE®

EXTREN®

DURADEK®

DURAGRID®

DURASHIELD®

SAFPLANK®

SAFPLATE®

SAFRAILTM

R.T. (< 100OF)

POLYESTERCOMPOSOLITE®

EXTREN®

DURADEK®

DURAGRID®

DURASHIELD®

SAFPLANK®

SAFPLATE®

SAFRAILTM

150OF

T Tricresyl Phosphate R 120 NR NR T Tricresyl Phosphate R 120 R 120 NR NRTridecylbenzene Sulfonate R R NR NR Tridecylbenzene Sulfonate R R R R R NRTrisodium Phosphate R R R NR Trisodium Phosphate R R R R R NRTurpentine R NR NR NR Turpentine R NR R NR NR NR

U Urea R 140 R NR U Urea R NR R 140 R NR

V Vegetable Oils R R R R V Vegetable Oils R R R R R RVinegar R R R R Vinegar R R R R R RVinyl Acetate NR NR NR NR Vinyl Acetate NR NR NR NR NR NR

W Water: W Water: Deionized R R R R Deionized R R R R R R Demineralized R R R R Demineralized R R R R R R Distilled R R R R Distilled R R R R R R Fresh R R R R Fresh R R R R R R Salt R R R R Salt R R R R R R Sea R R R R Sea R R R R R RWhite Liquor (Pulp Mill) R R NR NR White Liquor (Pulp Mill) R R R R NR NR

X Xylene NR NR NR NR X Xylene NR NR NR NR NR NR

Z Zinc Chlorate R R R R Z Zinc Chlorate R R R R R RZinc Nitrate R R R R Zinc Nitrate R R R R R RZinc Plating Solution: 9% Zinc Cyanide 4% Sodium Cyanide 9% Sodium Hydroxide

R 120 NR NR

Zinc Plating Solution: 9% Zinc Cyanide 4% Sodium Cyanide 9% Sodium Hydroxide

R 120 R 120 NR NR

Zinc Plating Solution: 49% Zinc Fluoborate 5% Ammonium Chloride 6% Ammonium Fluoborate

R 120 NR NR

Zinc Plating Solution: 49% Zinc Fluoborate 5% Ammonium Chloride 6% Ammonium Fluoborate

R R R 120 NR NR

Zinc Sulfate R R R R Zinc Sulfate R R R R R R

Page 415: Manual Completo

25

CHEMICAL ENVIRONMENT

FIBREBOLT®

SYSTEM R.T.

(< 100°F)

FIBREBOLT®

SYSTEM 150°F

DURAGRATE® MOLDED GRATINGVINYL ESTER

R.T.(< 100°F)

VINYL ESTER 160°F

PREMIUM ISOPHTHALIC POLYESTER R.T. (<100°F)

PREMIUM ISOPHTHALIC POLYESTER

150°F

T Tricresyl Phosphate R 120 NR NR T Tricresyl Phosphate R 120 R 120 NR NRTridecylbenzene Sulfonate R R NR NR Tridecylbenzene Sulfonate R R R R R NRTrisodium Phosphate R R R NR Trisodium Phosphate R R R R R NRTurpentine R NR NR NR Turpentine R NR R NR NR NR

U Urea R 140 R NR U Urea R NR R 140 R NR

V Vegetable Oils R R R R V Vegetable Oils R R R R R RVinegar R R R R Vinegar R R R R R RVinyl Acetate NR NR NR NR Vinyl Acetate NR NR NR NR NR NR

W Water: W Water: Deionized R R R R Deionized R R R R R R Demineralized R R R R Demineralized R R R R R R Distilled R R R R Distilled R R R R R R Fresh R R R R Fresh R R R R R R Salt R R R R Salt R R R R R R Sea R R R R Sea R R R R R RWhite Liquor (Pulp Mill) R R NR NR White Liquor (Pulp Mill) R R R R NR NR

X Xylene NR NR NR NR X Xylene NR NR NR NR NR NR

Z Zinc Chlorate R R R R Z Zinc Chlorate R R R R R RZinc Nitrate R R R R Zinc Nitrate R R R R R RZinc Plating Solution: 9% Zinc Cyanide 4% Sodium Cyanide 9% Sodium Hydroxide

R 120 NR NR

Zinc Plating Solution: 9% Zinc Cyanide 4% Sodium Cyanide 9% Sodium Hydroxide

R 120 R 120 NR NR

Zinc Plating Solution: 49% Zinc Fluoborate 5% Ammonium Chloride 6% Ammonium Fluoborate

R 120 NR NR

Zinc Plating Solution: 49% Zinc Fluoborate 5% Ammonium Chloride 6% Ammonium Fluoborate

R R R 120 NR NR

Zinc Sulfate R R R R Zinc Sulfate R R R R R R

Page 416: Manual Completo

®

www.strongwell.com

ISO-9001:2008 Quality Certified and ISO-14001:2004 Environmentally Certified Manufacturing Plants

ST1014© 2014 Strongwell

Corporate Offices | Bristol Location400 Commonwealth Ave., P. O. Box 580

Bristol, Virginia 24203-0580 [email protected]

Phone: +1 276.645.8000Fax: +1 276.645.8132

Chatfield Location1610 Highway 52 South

Chatfield, Minnesota 55923-9799 USA

Phone: +1 507.867.3479Fax: +1 507.867.4031

Highlands Location26770 Newbanks Road

Abingdon, VA 24210 USA

Phone: +1 276.645.8000Fax: +1 276.645.8132

Page 417: Manual Completo

SECTION 23 - METRIC DESIGN INFORMATION

Table of Contents

Metric System Conversions and Abbreviations ............... 23-3

EXTREN® Availability List ................................................ 23-4

EXTREN® vs. Traditional Materials ................................. 23-6

Page 418: Manual Completo

23-1

Section 23Metric Design Information

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.0511

SECTION 23

METRIC DESIGN INFORMATION

NOTE:The METRIC DESIGN INFORMATION is structured to be used in conjunction with the information in the Strongwell Design Manual. This is not stand alone data and should not be treated as such.

Look for this blue line in the left margin of the Design Manual documents. This line shows you where the latest update has been made.

Page 419: Manual Completo

23-2

Section 23Metric Design Information

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.0511

(This page left blank intentionally)

Page 420: Manual Completo

23-3

Section 23Metric Design Information

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.0511

METRIC SYSTEM CONVERSIONS AND ABBREVIATIONS

ABBREVIATIONS

mm = millimeters cm = centimeters m = meter in = inch ft = foot (feet) yd = yard psi = pounds per square inch N = unit of force; Newton Pa = Pascal; N/m2 (one Newton per square meter) N/mm2 = Newton per millimeter squared lb = pound dyne = unit of force g = gram kg = kilogram ml = milliliter cc = cubic centimeter

CONVERSIONS

1 ft = 12 in 1 ft = 0.3048 m 1 in = 25.4 mm 1 in = 2.54 cm 1 in3 = 16.4 ml 1 Pa = 10 dynes/cm2

1 Pa = 1 N/m2

1 lb = 0.4536 kg 1 kg = 2.206 lb 1 yd = 0.914 m 1 psi = 6.895 x 103 N/m2

1 psi = 6.895 x 10-3 N/mm2

1 N/mm2 = 145 psi 1 kg/cm2 = 14.2 psi 1 ft-lb/in = 5.35 N-m/m 1 dyne = 10-5 Newtons 1 lb/in3 = 2.768 kg/m3

1 kgf/mm2 = 1.42 ksi 1 ft-lb = 1.36 N-m

NOTE:See “Weights and Measures” and “SI Conversion Factors” in the APPENDIX of the Strongwell Design Manual for more complete information.

Page 421: Manual Completo

23-4

Section 23Metric Design Information

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.0511

EXTREN® AVAILABILITY LISTSTOCKED NONSTOCKED

FIBREBOLT®

Studs and Nuts9.53 S12.7 S47.63 S19.05 S25.4 SNOTE: All FIBREBOLT® is stocked in 1.22 m lengths.

NOTES: All sizes are metric conversions of standard Imperial dimensions (inches to millimeters. Parts are sold in standard Imperial dimensions only.

Unless otherwise noted, all dimensions are in inches and stocked lengths are 6.1 m long.

All EXTREN® Series 500 products can be produced to meet NSF potable water standards in minimum mill run quantities. Only products bearing the NSF logo are certified.

Equal Leg Angles

Series500

Series525

Series625

25.4 x 3.18 S S S31.8 x 3.18 N N N31.8 x 4.76 S S N38.1 x 4.76 S S S38.1 x 3.18 N S N38.1 x 6.35 S S S50.8 x 3.18 N N N50.8 x 4.76 S S N50.8 x 6.35 S S S76.2 x 6.35 S S S76.2 x 9.53 S S S101.6 x 6.35 S S S101.6 x 9.53 S S S101.6 x 12.7 S S S127 x 12.7 N N N152.4 x 6.35 N S N152.4 x 9.53 N N N152.4 x 12.7 S S S

ChannelsSeries

500Series

525Series

625

38.1 x 25.4 x 4.76 N N N38.1 x 38.1 x 6.35 N S N50.8 x 14.3 x 3.18 S S N50.8 x 22.2 x 6.35 N N N66.7 x 3.18 x 31.8 x 4.76 N N N76.2 x 25.4 x 4.76 N N N76.2 x 38.1 x 6.35 N S N76.2 x 22.2 x 6.35 S S S88.9 x 38.1 x 4.76 N S N101.6 x 27.0 x 3.18 N N N101.6 x 34.9 x 4.76 S S S101.6 x 28.6x 6.35* S S S127 x 34.9 x 6.35 S S N139.7 x 38.1 x 4.76 N S N152.4 x 41.3 x 6.35 S S S152.4 x 42.9 x 9.53 N S N203.2 x 55.6 x 6.35 N S N203.2 x 55.6 x 9.53 S S S254 x 69.9 x 12.7** N S S304.8 x 76.2 x 12.7*** N S N355.6 x 88.9 x 19.1 N N N457.2 x 55.6 x 4.76 N N N609.6 x 76.2 x .260 N N N

I-BeamsSeries

500Series

525Series

625

50.8 x 25.4 x 3.18 N N N76.2 x 38.1 x 6.35 S S S101.6 x 50.8 x 6.35 S S S140 x 63.5 x 6.35 N S N152.4 x 76.2 x 6.35 N S N152.4 x 76.2 x 9.53 N N N152.4 x 101.6 x 6.35 N N N203.2 x 101.6 x 9.53 S S N203.2 x 101.6 x 12.7 N N N254 x 127 x 9.53 N N N254 x 127 x 12.7 N N N304.8 x 152.4 x 12.7 N S** S**

457.2 x 9.53 x 114.3 x 12.7 N N N609.6 x 9.53 x 190.5 x 19.1 N N N

Wide FlangeBeams

Series500

Series525

Series625

50.8 x 3.18 N N N76.2 x 6.35 S S N101.6 x 6.35 S S S152.4 x 6.35 S S S152.4 x 9.53 S S S203.2 x 9.53 S S S203.2 x 12.7 N N N254 x 9.53*** N S N254 x 12.7 N N N304.8 x 12.7 N N N

Square TubeSeries

500Series

525Series

625

25.4 x 3.18 S S N31.8 x 3.18 N N N38.1 x 3.18 S S N38.1 x 6.35 N N N44.5 x 3.18 N N N44.5 x 6.35 N N N50.8 x 3.18 S S N50.8 x 6.35* S S S63.5 x 6.35**** N S N76.2 x 3.18 N N N76.2 x 6.35 S S S76.2 x 9.53 N S N88.9 x 6.35 N S S101.6 x 6.35 S S S101.6 x 9.53 N N N152.4 x 9.53 N N N

Round TubeSeries

500Series

525Series

625

25.4 x 3.18 S S S31.8 x 3.18 S S N38.1 x 3.18 S S N38.1 x 6.35 S S N44.5 x 3.18 N N N44.5 x 6.35 N S N50.8 x 3.18 S S N50.8 x 6.35 S S N63.5 x 6.35 S S N76.2 x 6.35 N N N88.9 x .140 N N N101.6 x 6.35 N N N127 x 6.35 N N N152.4 x 3.18 N N N152.4 x 6.35 N N N

1 Special Composite Design - Not EXTREN® Composites; Thermal cure bars and rods were not designed to be machined.

Round Rod - Thermal Cure1

12.7 S7.94 N9.53 S12.7 S15.88 S19.05 S20.64 N20.64 N25.4 S28.58 N31.75 S38.1 S50.8 N

Square Bar - Thermal Cure1

12.7 S15.88 S19.05 S25.4 S31.75 N38.1 S

PlateSeries

500Series

525Series

625

3.17 S S S4.76 S S N6.35 S S S9.53 S S S12.7 S S S15.9 N N N19.1 N S N25.4 N N N

RectangularTube

Series500

Series525

Series625

63.5 x 41.3 x 3.18 N N N101.6 x 3.18 x 50.8 x 6.35 S S N165.1 x 6.35 x 50.8 x 12.7 N N N177.8 x 101.6 x 6.35 N N N228.6 x 152.4 x 7.94 N N N228.6 x 152.4 x 11.12 N N N

* Also stocked in 525 yellow** Stocked in 7.32 m only*** Stocked in 9.75 m only**** Stocked in 525 yellow only

NOTE: USDA approved plate available (non-stocked) in all sizes except 12.7 mm and 9.25 mm. EXTREN® plate is stocked in 1.22 m x 2.44 m sheets.

Measurements are in millimeters (mm) unless otherwise noted.

Page 422: Manual Completo

23-5

Section 23Metric Design Information

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.0511

EXTREN® AVAILABILITY LIST

Special Pultruded Shapes*

STOCKED NONSTOCKED

Measurements are in millimeters (mm) unless otherwise noted.

Custom PultrusionsStrongwell produces custom pultrusions in many shapes and materials for hundreds of customers. The special pultruded shapes listed on this page are only a partial listing of dies owned by Strongwell.

PE PE/FR VE/FR

Fluted Tube31.75 (Stock Yellow - 6.15 m lengths) N

Rectangular Tubes330.2 x 215.9 x 9.53 N N N

381 x 152.4 x 9.53 N N N

406.4 x 215.9 x 9.53 N N N

457.2 x 152.4 x 9.53 N N N

523.9 x 152.4 x 6.35 N N N

574.7 x 152.4 x 9.53 N N N

Slide Guide63.5 x 57.15 x 6.35 (Stock White) S

Square Tube w/ Rd. Hole25.4 sq. with 19.05 rd. hole N N N

Strut41.3 x 41.3 x 3.97 (Stock Gray) N S N

Top Rail50.8 x 6.35 modified rd. tube N N N

Unequal Leg Angles44.5 x 31.75 x 6.35 N N N

Z-Section31.75 x 63.5 x 3.18 N N N

PE PE/FR VE/FR

Channel88.9 x 50.8 x 5.56 N S N266.7 x 38.1 x 19.1 x 4.8 N N N

Channel (Ladder Rail)**43.2 x 2.54 x 27.9 x 2.54 N47.63 x 3.18 x 28.58 x 4.78 N80.0 x 3.05 x 29.85 x 3.05 N83.57 x 3.25 x 29.97 x 4.83 N84.07 x 3.43 x 30.15 x 5.33 N101.6 x 3.175 x 44.45 x 4.75 N

Corner Post82.55 x 161.29 N N N

Curb Angle***25.4 x 38.1 N N N38.1 x 38.1 N N N50.8 x 38.1 N N N

F-Section139.7 x 25.4 x 6.35 N N N152.4 x 38.1 x 6.35 N N N

Flat Strips50.8 x 4.76**** N S S50.8 x 6.35 N N N76.2 x 4.76 N N N76.2 x 6.35 N S N76.2 x 9.53 N N N76.2 x 12.7 N S N101.6 x 12.7 N N N152.4 x 6.35 N N N

Flight Channel139.7 x 3.18 x 63.5 x 4.76 N181.0 x 3.18 x 63.5 x 4.76 N

* Not necessarily EXTREN® specifications.** Standard color - orange *** Stocked at Chatfield Division**** Stocked in 7.32 m only

NOTES: All sizes are metric conversions of standard Imperial dimensions. Parts are sold in standard Imperial dimensions only.

Unless otherwise noted, all dimensions are in inches and stocked lengths are 6.1 m long.

All EXTREN® Series 500 products can be produced to meet NSF potable water standards in minimum mill run quantities. Only products bearing the NSF logo are certified.

Page 423: Manual Completo

23-6

Section 23Metric Design Information

Copyright © 2013 Strongwell CorporationAll Rights Reserved Rev.0511

Tensile Strength LW 207 207 689 414 552 689(N/mm2) CW 48.3 48.3 — 414 552 689

Tensile Modulus LW 17.2 17.9 41.4 207 193 179(x 103 N/mm2) CW 5.52 6.89 — 207 193 179

Flexural Strength LW 207 207 689 414 552 689(N/mm2) CW 68.9 68.9 — 414 552 —

Flexural Modulus LW 13.8 15.2 41.4 207 193 179(x 103 N/mm2) CW 5.52 5.52 — 207 193 179

Izod Impact LW 1.33 1.33 2.14 N/A .454-.587 —(J/mm ) CW 0.214 0.214 — N/A — —

Specific Gravity 1.7 1.7 2.0 7.8 7.92 8.96

PHYSICAL

Density (x 10-3 g/mm3) 1.72-1.94 1.72-1.94 1.99-2.10 7.86 8.03 8.97

Thermal Conductivity (W-m/m-2/C°) 83.1 83.1 104 5400-9554 1994-3842 1475

Coefficient of ThermalExpansion 1.2 1.2 0.9 10.9-14.5 16.4-18.2(x 10-5 mm/mm/C°)

FIBERGLASS PULTRUSION THICKNESS RELATIVE TO STEEL, ALUMINUM OR WOOD

*STEEL FIBERGLASS PULTRUSION CONSTRUCTION Tensile Rigidity Flexural Strength Strength

50% Mat & Roving (EXTREN®) 2.5 2.15 1.82

70% Roving only 1.0 1.71 1.12 (Thermal Cure Rod & Bar)

* Copied from Engineered Materials Handbook, Vol. 1, “Composites”, pg. 541 As an example, a 50% mat & roving fiberglass pultrusion would need to be 1.16 times as thick as

an aluminum part to achieve the same 'flexural strength'.

EXTREN® VS. TRADITIONAL MATERIALS (PROPERTY COMPARISON)

EXTREN THERMAL CARBON 316 HASTELLOY 500/525 EXTREN 625 CURE ROD STEEL STAINLESS C-276 SHAPES SHAPES & BAR (M1020) STEEL (ANNLD.)

MECHANICAL

Values Are Minimum Ultimate Properties From Coupons.

Page 424: Manual Completo

23-7

Section 23Metric Design Information

Copyright © 2013 Strongwell CorporationAll Rights ReservedRev.0511

Tensile Strength LW 310 2.90 42.7 53.8 55.2-138 62.1-124(N/mm2) CW 310 — 42.7 53.8 55.2-138 62.1-124

Tensile Modulus LW 68.9 — 2.69 3.10 11.0-17.2 5.52-12.4(x 103 N/mm2) CW 68.9 — 2.69 3.10 11.0-17.2 5.52-12.4

Flexural Strength LW 310 106 75.8 80.7 124-207 110-193(N/mm2) CW 310 64.8 75.8 80.7 124-207 110-193

Flexural Modulus LW 68.9 6.89 2.41 3.10 9.02-12.4 6.89-8.30(x 103 N/mm2) CW 68.9 — 2.41 3.10 9.02-12.4 6.89-8.30

Izod Impact LW — — 0.085 0.085 .534-1.07 .214-.641(J/mm ) CW — — 0.085 0.085 .534-1.07 .214-.641

Specific Gravity 2.50 0.520 1.38 1.39 1.5-1.7 1.4-1.6

PHYSICAL

Density (x 10-3 g/mm3) 2.55 0.526 1.44 1.44 1.49-1.69 1.39-1.63

Thermal Conductivity (W-m/m-2/C°) 24923 1.66 27.0 –— 1.12-1.27 1.04-1.23

Coefficient of LinearExpansion 24.5 3.09 67.3 41.8 18.2-32.7 21.8-36.4(x 10-6 mm/mm/C°)

EXTREN® VS. TRADITIONAL MATERIALS (PROPERTY COMPARISON)

FIBERGLASS ALUMINUM PONDEROSA RIGID PVC COMPRESSION SPRAY-UP 6061-T61 T651 PINE RIGID PVC 10% GLASS MOLDING (SMC) (30-50% GLASS)

MECHANICAL

FIBERGLASS PULTRUSION THICKNESS RELATIVE TO STEEL, ALUMINUM OR WOOD

*ALUMINUM *WOOD➁ FIBERGLASS PULTRUSION CONSTRUCTION Tensile Flexural Tensile Flexural Strength Rigidity Strength Strength Rigidity Strength

50% Mat & Roving (EXTREN®) 1.0 1.49 1.16 .25 .79 .45

70% Roving only .4 1.19 .71 .10 .63 .27(Thermal Cure Rod & Bar)

* Copied from Engineered Materials Handbook, Vol. 1, “Composites”, pg. 541 As an example, a 50% mat & roving fiberglass pultrusion would need to be 1.16 times as thick as an

aluminum part to achieve the same 'flexural strength'.

Page 425: Manual Completo

APPENDIX

Table of Contents

Integrated Design Example:

10% Sulfuric Acid Tank Platform ..................................... A-2

Recommended Minimum Live Loads ................................ A-6

Special Loads .................................................................... A-8

Weights and Measures:

International System of Units ......................................... A-10

United States System .................................................... A-11

SI Conversion Factors ..................................................... A-12

Bracing Formulas ............................................................ A-14

Decimals of an Inch ......................................................... A-15

Decimals of a Foot ........................................................... A-16

Page 426: Manual Completo

A-1

Appendix

Copyright © 2013 Strongwell CorporationAll Rights Reserved

APPENDIX

Rev.0502

Page 427: Manual Completo

A-2

Appendix

Copyright © 2013 Strongwell CorporationAll Rights Reserved

INTEGRATED DESIGN EXAMPLE

DESIGN CRITERIA OSHA for Safety - fire retardant Platform Live Load = 100 psf (Work Platform) Indoor Application ( 75o F) ∆ Max – grating ~ 1/4” ; ∆ Max – structurals ~ L/180 All connections to be bolted and epoxied

10% SULFURIC ACID TANK PLATFORM

SULFURICACIDTANK

OPEN TO TANK

10'-0"

PLANT.O. FRP EL 9'-11"

C6x1-5/8x1/4 w/ONE (1) CLIP EA. END (TYPE 2)

KNEE BRACE12

12

T.O. RUNG

9 R

UN

GS

@ 1

'-0 =

9'-0

1'-0

3'-6

"

WA

LKT

HR

U(O

SH

A M

IN.)

REF. EL. 0'-0

ELEVATION

10'-0

"

5'-0

"

END VIEW

SWAYBRACING

2'-6"

T.O.G.

7OSHAMIN.

3'-0

"

Rev.0502

Page 428: Manual Completo

A-3

Appendix

Copyright © 2013 Strongwell CorporationAll Rights Reserved

10% SULFURIC ACID TANK PLATFORM

DESIGN GRATING According to Section 23 - CORROSION RESISTANCE GUIDE of the Strongwell

Design Manual, standard fire retardant grating is acceptable. (10% Sulfuric to 150°F)

Assume W-6 members, grating clear span is 36”-6”=30” (grating spans short direction)

1” DURADEK® I-6000 will support 160 PSF on 30” span deflect only 3/32”

USE→ 1” DURADEK I-6000 (WT = 2.4 PSF)

PLATFORM BEAMS (10’ SPAN)

LL = (100 PSF) = 150 lbs./LF DL = (2.4 PSF) + 3.19 lbs./1 + 5.5 lbs./1 = 12.29 ASSUME → 15 lbs./LF (GTG) (BM) (HR)

Therefore: Total Beam Load = 150 + 15 = 165 lbs./LF; R = = 825 lbs.

Referencing STRONGWELL Corrosion Resistance Guide, EXTREN® 525 series will be used.

From the EXTREN® allowable load tables, a W-6 x 6 x 1/4 will support 171 lbs./FT @ ∆ = L/180 when the beam is laterally supported.

Our beam is laterally braced @ LU = 5

As can be seen in the laterally unsupported column of the table, W (unbraced) @ 10’-0 = 158 lbs./LF < 165 lbs./LF actual @ 5’-0 = OK / by inspection

USE→ W-6 x 6 x 1/4 w/ type 2 connections

COLUMNS PMAX = 825 lbs. + 75 lbs. = 900 lbs. Assume KX = KY = 1.0 (Both ends pinned) Try W-6 x 6 x 1/4 Column

Going into column table for W & I Shapes: Fa = 6318 psi for short column mode : Fa = 3543 psi → controls

USE→ W-6 x 6 x 1/4 EXTREN® 525 COLUMNS

(NOTE: Although W-4 x 1/4 or I-6 x 3 x 1/4 is adequate, connections will be easier with a W-6.)

INTEGRATED DESIGN EXAMPLE

3’ 2

3’ 2

DL COL + BRACING

= 1.0 x [10’ x 12 - ( 1” + 3” )] = 45.7 → controls GTG BM

rx

Kl2.54

Kl 1.0 x 5’ x 12ry

= 1.44

= 41.7

900 lbs.AW6 x 1/4

900 lbs. 4.388

2165 x 10

4

N.A.

TO N.A.

fa = = = 205 psi OK < 3543 psi

Rev.0502

Page 429: Manual Completo

A-4

Appendix

Copyright © 2013 Strongwell CorporationAll Rights Reserved

DESIGN SWAY BRACING Since wind is not a problem, design sway bracing to provide stiffening of the frame in the transverse direction. Assume sway bracing to resist 2% of column loads = 2% x 900 lbs. x 2 COLS . 36 lbs. (minimal)

For ease of connection, TRY L 2 x 2 x 1/4 L . /2.52 + 52 = 5.59’ = 67” (@ 63.4°)

From Elements of Section, rx = .609 ; Ry = .95

Kl /rx = 67/.609 = 110 → Fa = 1167 psi

Axial Load in Brace P = = 80 lbs.

fa = < 1167 psi OK

USE→ 2 x 2 x 1/4 Sway Bracing

By Inspection,

USE→ 2 x 2 x 1/4 Knee Braces Also

INTEGRATED DESIGN EXAMPLE10% SULFURIC ACID TANK PLATFORM

L

80 lbs. 1.84

36 lbs. COS 63.4°

LL

LL

Rev.0502

Page 430: Manual Completo

A-5

Appendix

Copyright © 2013 Strongwell CorporationAll Rights Reserved

INTEGRATED DESIGN EXAMPLE10% SULFURIC ACID TANK PLATFORM

LL 2x

2x1/

4

W6x

1/4

CO

L

WT3x5x1/4 (FM W6x1/4)

SWAY BRACING

W.P.

LL 2x

2x1/

4

ALTERNATE W.P.

W6x

1/4

CO

L

LL 2x2x1/4

WT3x5x1/4 (FM W6x1/4)

W6 (USED TO TIE

OFF LADDER ON

WEST SIDE)

(KNEE BRACING - SIM.)SWAY BRACING - EAST SIDE

ASSEMBLYBOLTS REMAIN( IN GROUT )

GROUT

W6x

1/4

CO

L.

ASSEMBLYBOLTS AREREMOVED(FOR A. BOLTS)

GROUT

W6x

1/4

CO

L.

TYPICAL BASE PLATE DETAILS

OR

TYPICAL BRACING DETAILS

Rev.0502

Page 431: Manual Completo

A-6

Appendix

Copyright © 2013 Strongwell CorporationAll Rights Reserved

The live loads listed below are typical of minimums given in the Uniform Building Code and similar model codes for general construction. In the absence of local laws, building codes, or other project specifications, these loads may be used for the engineering design. Otherwise, check applicable requirements. UNIFORM LOAD is given in pounds per square foot (psf) and CONCENTRATED LOAD is given in pounds.

A live load is defined as the weight resulting from furniture, persons, or other movable and varying loads that are not a permanent part of the structure. NOTE: Wind, snow, earthquake, impact, dead and other loads are not considered a part of the live load of a structure.

RECOMMENDED MINIMUM UNIFORM AND CONCENTRATED LOADS

RECOMMENDED MINIMUM LIVE LOADS

USE OR OCCUPANCY UNIFORM CONCENTRATED CATEGORY DESCRIPTION LOAD LOAD

1. Access floor systems Office 50 2000 Computer use 100 2000 2. Armories 150 0 3. Assembly areas and Fixed seating areas 50 0 auditoriums and Movable seating and balconies therewith other areas 100 0 Stage areas and enclosed platforms 125 0 4. Cornices, marquees and residential balconies 60 0 5. Exit facilities 100 0 6. Garages General storage and/or repair 100 Private or pleasure-type motor vehicle storage 50

7. Hospitals Wards and rooms 40 1000

8. Libraries Reading rooms 60 1000 Stack rooms 125 1500 9. Manufacturing Light 75 2000 Heavy 125 3000 10. Offices 50 2000 11. Printing plants Press rooms 150 2500 Composing and linotype rooms 100 2000 12. Residence 40 0 13. Rest rooms 14. Reviewing stands, grandstands and 100 0 bleachers 15. Roof deck Same as area served or for the type of occupancy accommodated

16. Schools Classrooms 40 1000 17. Sidewalks and Public access 250 driveways 18. Stairways Stringer Design 100 — Stairtread — 300 19. Storage Light 125 Heavy 250 20. Stores Retail 75 2000 Wholesale 100 3000

Rev.0502

Page 432: Manual Completo

A-7

Appendix

Copyright © 2013 Strongwell CorporationAll Rights Reserved

FOOTNOTES FOR TABLE OF RECOMMENDEDMINIMUM UNIFORM & CONCENTRATED LOADS

In some cases, the Uniform Building Code allows for a reduction of the uniform live load for members supporting 150 sq. ft. or more area. Consult the UBC or other applicable codes for any reductions that may be taken.

“Concentrated loads shall be placed upon any space 2-1/2 feet square, wherever this load upon an otherwise unloaded floor would produce stresses greater than those caused by the uniform load required thereof.” UBC - 85, section 2304 (c).

Assembly areas include such occupancies as dance halls, drill rooms, gymnasiums, playgrounds, plazas, terraces and similar occupancies which are generally accessible to the public.

Exit facilities shall include such uses as corridors serving an occupant load of 10 or more persons, exterior exit balconies, stairways, fire escapes, and similar uses.

Individual stair treads shall be designed to support a 300 pound concentrated load placed in a position which would cause maximum stress. Stair stringers may be designed for the uniform load set forth in the table.

Provisions shall be made in areas where vehicles are used or stored for concentrated loads consisting of two or more loads spaced 5 feet nominally on center without uniform live loads. Each load shall be 40% of the gross weight of the maximum size vehicle to be accommodated. The condition of concentrated or uniform live load producing the greater stress shall govern.

Parking garages for the storage of private or pleasure-type motor vehicles with no repair or fueling shall have a floor system designed for a concentrated wheel load of not less than 2000 pounds without uniform live load. The condition of concentrated or uniform live load producing the greatest stress shall govern.

Residential occupancies include private dwellings, apartments and hotel guest rooms.

Rest room loads shall be not less than the load for the occupancy with which they are associated, but need not exceed 50 psf.

Roof loads are in pounds per square foot of horizontal projection.

RECOMMENDED MINIMUM UNIFORM ROOF LIVE LOADS

USE OR OCCUPANCY UNIFORM CONCENTRATED CATEGORY DESCRIPTION LOAD LOAD 1. Roof Loads Rise 4” or less per foot 20

Rise 4” to 12” per foot 16

Rise over 12” per foot 12

Rev.0502

Page 433: Manual Completo

A-8

Appendix

Copyright © 2013 Strongwell CorporationAll Rights Reserved

VERTICAL LATERAL LOAD LOAD (Pounds Per Square Foot Unless Otherwise Noted) 1. Construction, public Walkway, min. 4 ft. wide 150 access at site (live load) Canopy, 8 ft. clear height 150 2. Grandstands, reviewing Seats and See stands and bleachers footboards 120 Footnote (live load) 3 3. Stage accessories, Gridirons and live load fly galleries 75 Loft block wells 250 250 Head block wells and sheave beams 250 250 4. Ceiling framing Over Stages 20 All uses except over stages 10

5. Partitions and Permanent and temporary All live loads interior walls Exceeding 6 ft. in height on them 5

6. Elevator and dumb- 2 x total waiters (dead and loads live load) 7. Mechanical and electrical equipment (dead load) Total loads 8. Cranes (dead Total load including 1.25 x Total 0.10 x Total and live load) impact increase load load 9. Balcony railings, Exit facilities serving guard rails and an occupant load handrails greater than 50 50 (U.B.C.) Other 20 10. Balcony railings, At least 200 lbs. applied guard rails and in any direction at any (OSHA) point on top rail 11. Storage racks Over 8 feet high Total loads In Earthquake zones, see U.B.C. 12. Walkways & Platforms Accessways 75 Industrial Applications Operating Platforms and Walkways 100

SPECIAL LOADS

The tabulated loads are minimum loads. Where other vertical loads required by codes or by design would cause greater stresses, they shall be used.

Pounds per lineal foot

Lateral sway bracing loads of 24 pounds per foot parallel and 10 pounds per foot perpendicular to seat and footboards.

11

CATEGORY DESCRIPTION

USE

Rev.0502

Page 434: Manual Completo

A-9

Appendix

Copyright © 2013 Strongwell CorporationAll Rights Reserved

All loads are in pounds per lineal foot. Head block wells and sheave beams shall be designed for all loft block well loads tributary thereto. Sheave blocks shall be designed with a factor of safety of five.

Does not apply to ceilings which have sufficient total access from below, such that access is not required within the space above the ceiling. Does not apply to ceilings if the attic areas above the ceiling are not provided with access. This live load need not be considered acting simultaneously with other live loads imposed upon the ceiling framing or its supporting structure.

Where Appendix Chapter 51 of the U.B.C. has been adopted, see reference standard cited therein for additional design requirements.

The impact factors included are for cranes with steel wheels riding on steel rails. They may be modified if substantiating technical data acceptable to the building official is submitted. Live loads on crane support girders and their connections shall be taken as the maximum crane wheel loads. For pendant-operated traveling crane support girders and their connections, the impact factors shall be 1.10.

This applies in the direction parallel to the runway rails (longitudinal). The factor for forces perpendicular to the rail is 0.20 x the transverse traveling loads (trolley, cab, hooks and lifted loads). Forces shall be applied at top of rail and may be distributed among rails of multiple rail cranes and shall be distributed with due regard for lateral stiffness of the structures supporting these rails.

A load per lineal foot to be applied horizontally at right angles to the top rail.

Vertical members of storage racks shall be protected from impact forces of operating equipment or racks shall be designed so that failure of one vertical member will not cause collapse of more than the bay or bays directly supported by that member.

Valves for industrial walkways and platforms are commonly used by industry. Check with applicable project specifications.

11

Rev.0502

Page 435: Manual Completo

A-10

Appendix

Copyright © 2013 Strongwell CorporationAll Rights Reserved

WEIGHTS AND MEASURESInternational System of Units (Sl)a

(Metric Practice)

BASE UNITS SUPPLEMENTARY UNITS Quantity Unit Symbol Quantity Unit Symbollength metre m plane angle radian radmass kilogram kg solid angle steradian srtime second selectric current ampere Athermodynamic temperature kelvin Kamount of substance mole molluminous intensity candela cd

DERIVED UNITS (WITH SPECIAL NAMES) Quantity Unit Symbol Formula force newton N kg-m/s2

pressure, stress pascal PA N/m2

energy, work, quantity of heat joule J N-m power watt W J/s

DERIVED UNITS (WITHOUT SPECIAL NAMES) Quantity Unit Formula area square metre m2

volume cubic metre m3

velocity metre per second m/S acceleration metre per second squared m/s2

specific volume cubic metre per kilogram m3/kg density kilogram per cubic metre kg/m3

SI PREFIXES Multiplication Factor Prefix Symbol 1 000 000 000 000 000 000 = 1018 exa E 1 000 000 000 000 000 = 1015 peta P 1 000 000 000 000 = 1012 tera T

1 000 000 000 = 109 giga G

1 000 000 = 106 mega M 1 000 = 103 kilo k 100 = 102 hectob h 10 = 101 dekab da 0.1 = 10-1 decib d 0.01 = 10-2 centib c 0.001 = 10-3 milli m 0.000 001 = 10-6 micro µ 0.000 000 001 = 10-9 nano n 0.000 000 000 001 = 10-12 pico p 0.000 000 000 000 001 = 10-15 femto f 0.000 000 000 000 000 001 = 10-18 atto a

a Refer to ASTM E380-79 for more complete information on SI.b Use is not recommended.

Reprinted with permission of American Insitute of Steel Construction

Rev.0502

Page 436: Manual Completo

A-11

Appendix

Copyright © 2013 Strongwell CorporationAll Rights Reserved

WEIGHTS AND MEASURES

United States System

LINEAR MEASURE

Inches Feet Yards Rods Furlongs Miles 1.0 = .08333 = .02778 = .0050505 = .00012626 = .00001578 12.0 = 1.0 = .33333 = .0606061 = .00151515 = .00018939 36.0 = 3.0 = 1.0 = .1818182 = .00454545 = .00056818 198.0 = 16.5 = 5.5 = 1.0 = .025 = .003125 7920.0 = 660.0 = 220.0 = 40.0 = 1.0 = .125 63360.0 = 5280.0 = 1760.0 = 320.0 = 8.0 = 1.0

SQUARE AND LAND MEASURE

Sq. Inches Square Feet Square Yards Sq. Rods Acres Sq. Miles 1.0 = .006944 = .000772 144.0 = 1.0 = .111111 1296.0 = 9.0 = 1.0 = .03306 = .000207 39204.0 = 272.25 = 30.25 = 1.0 = .00625 = .0000098 43560.0 = 4840.0 = 160.0 = 1.0 = .00015625 3097600.0 = 102400.0 = 640.0 = 1.0

AVOIRDUPOIS WEIGHTS

Grains Drams Ounces Pounds Tons 1.0 = .03657 = .002286 = .000143 = .0000000714 27.34375 = 1.0 = .0625 = .003906 = .00000195 437.5 = 16.0 = 1.0 = .0625 = .00003125 7000.0 = 256.0 = 16.0 = 1.0 = .0005 14000000.0 = 512000.0 = 32000.0 = 2000.0 = 1.0

DRY MEASURE

Pints Quarts Pecks Cubic Feet Bushels 1.0 = .5 = .0625 = .01945 = .01563 2.0 = 1.0 = .125 = .03891 = .03125 16.0 = 8.0 = 1.0 = .31112 = .25 51.42627 = 25.71314 = 3.21414 = 1.0 = .80354 64.0 = 32.0 = 4.0 = 1.2445 = 1.0

LIQUID MEASURE

Gills Pints Quarts U.S. Gallons Cubic Feet 1.0 = .25 = .125 = .03125 = .00418 4.0 = 1.0 = .5 = .125 = .01671 8.0 = 2.0 = 1.0 = .250 = .03342 32.0 = 8.0 = 4.0 = 1.0 = .1337 7.48052 = 1.0

Reprinted with permission of American Insitute of Steel Construction

Rev.0502

Page 437: Manual Completo

A-12

Appendix

Copyright © 2013 Strongwell CorporationAll Rights Reserved

SI CONVERSION FACTORSa

a Refer to ASTM E380-79 for more complete information on SI. b Indicates exact value.

Reprinted with permission of American Insitute of Steel Construction

Quantity Multiply by to obtain

Length Inch b 25.400 Millimetre mm Foot b 0.304 800 Metre m Yard b 0.914 400 Metre m Mile (U.S. Statute) 1.609 347 Kilometre km Millimetre 39.370 079 x 10-3 Inch in Metre 3.280 840 Foot ft Metre 1.093 613 Yard yd Kilometre 0.621 370 Mile mi Area Square inch b 0.645 160 x 103 Square millimetre mm2

Square foot b 0.092 903 Square metre m2

Square yard 0.836 127 Square metre m2

Square mile (U.S. Statute) 2.589 998 Square kilometre km2

Acre 4.046 873 x 103 Square metre m2

Acre 0.404 687 Hectare Square millimetre 1.550 003 x 10-3 Square inch in2

Square metre 10.763 910 Square foot ft2

Square metre 1.195 990 Square yard yd2

Square kilometre 0.386 101 Square mile mi2 Square metre 0.247 104 x 10-3 Acre Hectare 2.471 044 Acre

Volume Cubic inch b16.387 06 x 103 Cubic millimetre mm3

Cubic foot 28.316 85 x 10-3 Cubic metre m3

Cubic yard 0.764 555 Cubic metre m3

Gallon (U.S. liquid) 3.785 412 Litre l Quart (U.S. liquid) 0.946 353 Litre l

Cubic millimetre 61.023 759 x 10-6 Cubic inch in3

Cubic metre 35.314 662 Cubic foot ft3

Cubic metre 1.307 951 Cubic yard yd3

Litre 0.264 172 Gallon (U.S. liquid) gal Litre 1.056 688 Quart (U.S. liquid) qt

Mass Ounce (avoirdupois) 28.349 52 Gram g Pound (avoirdupois) 0.453 592 Kilogram kg Short ton 0.907 185 x 103 Kilogram kg Gram 35.273 966 x 10-3 Ounce (avoirdupois) oz av Kilogram 2.204 622 Pound (avoirdupois) lb av Kilogram 1.102 311 x 10-3 Short ton lb av

Rev.0502

Page 438: Manual Completo

A-13

Appendix

Copyright © 2013 Strongwell CorporationAll Rights Reserved

SI CONVERSION FACTORSa

Quantity Multiply by to obtain

Force ounce-force 0.278 014 newton N pound-force 4.448 222 newton N

newton 3.596 942 ounce-force newton 0.224 809 pound-force lbf

Bending pound-force-inch 0.112 985 newton-metre N-m Moment pound-force-foot 1.355 818 newton-metre N-m

newton-metre 8.850 748 pound-force-inch lbf-in newton-metre 0.737 562 pound-force-foot lbf-ft

Pressure pound-force per square inch 6.894 757 kilopascal kPa Stress foot of water (39.2 F) 2.988 98 kilopascal kPa inch of mercury (32 F) 3.386 38 kilopascal kPa

kilopascal 0.145 038 pound-force per lbf/in2

square inch kilopascal 0.334 562 foot of water (39.2 F) kilopascal 0.295 301 inch of mercury (32 F)

Energy, foot-pound-force 1.355 818 joule J Work, c British thermal unit 1.055 056 x 103 joule J Heat c calorie b 4.186 800 joule J kilowatt hour b 3.600 000 x 106 joule J joule 0.737 562 foot-pound-force ft-lbf joule 0.947 817 x 10-3 c British thermal unit BTU joule 0.238 846 c calorie joule 0.277 778 x 10-6 kilowatt hour kW-h Power foot-pound-force/second 1.355 818 watt W c British thermal units per hour 0.293 071 watt W horsepower (550 ft. lb f/s) 0.745 700 kilowatt KW watt 0.737 562 ft. lb.– force/second ft-lbf/s watt 3.412 141 c British thermal unit BTU/h per hour kilowatt 1.341 022 horsepower hp (550 ft.-lbf/s) Angle degree 17.453 29 x 10-3 radian rad radian 57.295 788 degree Temper- degree Fahrenheit toC=(toF-32)/1.8 degree Celsius ature degree Celsius toF= 1.8 x toC+32 degree Fahrenheit

a Refer to ASTM E380-79 for more complete information on SI. b Indicates exact value. c International Table.

Reprinted with permission of American Insitute of Steel Construction

Rev.0502

Page 439: Manual Completo

A-14

Appendix

Copyright © 2013 Strongwell CorporationAll Rights Reserved

BRACING FORMULAS

PARALLEL BRACING

The above method can be used for any number of panels.In the formulas for “a” and “b” the sum in parenthesis, which in the case shown is (T + e + p), is always composed of all the horizontal distances except the base.

Given To Formula Find

bpw f √(b + p)2 + w2

bkv m √(b + k)2 + v2

bkpvw d bw (b + k) ÷ [v(b + p) + w(b + k)]

bkpvw e bv(b + p) ÷ [v(b + p)+ w(b + k)]

bfkpvw a fbv ÷ [v(b + p) + w(b + k)]

bkmpvw c bmw ÷ [v(b + p) + w(b + k)]

bkpvw h bvw ÷ [ v(b + p) + w(b + k)]

afw h aw ÷ f

cmv h cv ÷ m

k = (log B - log T) ÷ No. of panels. Constant k plus the logarithm of any line equals the log of the cor-respnding line in the next panel below.

a = TH ÷ (T + e + p)

b = Th ÷ (T + e + p)c = √(1/2T + 1/2e)2 + a2

d = ce ÷ (T + e)

log e = k + log T log f = k + log a log g = k + log b log m = k + log c log n = k + log d log p = k + log e

Reprinted with permission of American Insitute of Steel Construction

To Given Find Formula

bpw f √(b + p)2 + w2

bnw m √(b – n)2 + w2

bnp d b (b – n) ÷ (2b + p – n) bnp e b (b + p) ÷ (2b + p – n) bfnp a bf ÷ (2b + p – n) bmnp c bm ÷ (2b + p – n) bnpw h bw ÷ (2b + p – n) afw h aw ÷ f cmw h cw ÷ m

To Given Find Formula

bpw f √(b + p)2 + w2

bw m √b2 + w2

bp d b2 ÷ (2b + p) bp e b (b + p) ÷ (2b + p) bfp a bf ÷ (2b + p) bmp c bm ÷ (2b + p) bpw h bw ÷ (2b + p) afw h aw ÷ f cmw h cw ÷ m

m

ca

f

e d

b

ww

p

h

mca

f

e d

b

ww

p

h

n

m

ca

f

e d

b

w

p

h

k

v

B

T

Hf

a

e

p

g

b d

nm

c

h

A

A

A

Rev.0502

Page 440: Manual Completo

A-15

Appendix

Copyright © 2013 Strongwell CorporationAll Rights Reserved

DECIMALS OF AN INCH

Reprinted with permission of American Insitute of Steel Construction

For Each 64th of an inchWith Millimeter Equivalents

Fraction 1/64ths Decimal Millimeters Fraction 1/64ths Decimal Millimeters (Approx.) (Approx.)

… 1 .015625 0.397 … 33 .515625 13.097 1/32 2 .03125 0.794 17/32 34 .53125 13.494 … 3 .046875 1.191 … 35 .546875 13.891 1/16 4 .0625 1.588 9/16 36 .5625 14.288

… 5 .078125 1.984 … 37 .578125 14.684 3/32 6 .09375 2.381 19/32 38 .59375 15.081 … 7 .109375 2.778 … 39 .609375 15.478 1/8 8 .125 3.175 5/8 40 .625 15.875

… 9 .140625 3.572 … 41 .640625 16.272 5/32 10 .15625 3.969 21/32 42 .65625 16.669 … 11 .171875 4.366 … 43 .671875 17.066 3/16 12 .1875 4.763 11/16 44 .6875 17.463

… 13 .203125 5.159 … 45 .703125 17.859 7/32 14 .21875 5.556 23/32 46 .71875 18.256 … 15 .234375 5.953 … 47 .734375 18.653 1/4 16 .250 6.350 3/4 48 .750 19.050

… 17 .265625 6.747 … 49 .765625 19.447 9/32 18 .28125 7.144 25/32 50 .78125 19.844 … 19 .296875 7.541 … 51 .796875 20.241 5/16 20 .3125 7.938 13/16 52 .8125 20.638

… 21 .328125 8.334 … 53 .828125 21.034 11/32 22 .34375 8.731 27/32 54 .84375 21.431 … 23 .359375 9.128 … 55 .859375 21.828 3/8 24 .375 9.525 7/8 56 .875 22.225

… 25 .390625 9.922 … 57 .890625 22.622 13/32 26 .40625 10.319 29/32 58 .90625 23.019 … 27 .421875 10.716 … 59 .921875 23.416 7/16 28 .4375 11.113 15/16 60 .9375 23.813

… 29 .453125 11.509 … 61 .953125 24.209 15/32 30 .46875 11.906 31/32 62 .96875 24.606 … 31 .484375 12.303 … 63 .984375 25.003 1/2 32 .500 12.700 1 64 1.000 25.400

Rev.0502

Page 441: Manual Completo

A-16

Appendix

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Inch 0 1 2 3 4 5

0 0 .0833 .1667 .2500 .3333 .4167 1/32 .0026 .0859 .1693 .2526 .3359 .4193 1/16 .0052 .0885 .1719 .2552 .3385 .4219 3/32 .0078 .0911 .1745 .2578 .3411 .4245 1/8 .0104 .0938 .1771 .2604 .3438 .4271 5/32 .0130 .0964 .1797 .2630 .3464 .4297 3/16 .0156 .0990 .1823 .2656 .3490 .4323 7/32 .0182 .1016 .1849 .2682 .3516 .4349 1/4 .0208 .1042 .1875 .2708 .3542 .4375 9/32 .0234 .1068 .1901 .2734 .3568 .4401 5/16 .0260 .1094 .1927 .2760 .3594 .4427 11/32 .0286 .1120 .1953 .2786 .3620 .4453

3/8 .0313 .1146 .1979 .2812 .3646 .4479 13/32 .0339 .1172 .2005 .2839 .3672 .4505 1/17 .0365 .1198 .2031 .2865 .3698 .4531 15/32 0391 .1224 .2057 .2891 .3724 .4557 1/2 .0417 .1250 .2083 .2917 .3750 .4583 17/32 .0443 .1276 .2109 .2943 .3776 .4609 9/16 .0469 .1302 .2135 .2969 .3802 .4635 19/32 .0495 .1328 .2161 .2995 .3828 .4661 5/8 .0521 .1354 .2188 .3021 .3854 .4688 21/32 .0547 .1380 .2214 .3047 .3880 .4714 11/16 .0573 .1406 .2240 .3073 .3906 .4740 23/32 .0599 .1432 .2266 .3099 .3932 .4766

3/4 .0625 .1458 .2292 .3125 .3958 .4792 25/32 .0651 .1484 .2318 .3151 .3984 .4818 13/16 .0677 .1510 .2344 .3177 .4010 .4844 27/32 .0703 .1536 .2370 .3203 .4036 .4870 . 7/8 .0729 .1563 .2396 .3229 .4063 .4896 29/32 .0755 .1589 .2422 .3255 .4089 .4922 15/16 .0781 .1615 .2448 .3281 .4115 .4948 31/32 .0807 .1641 .2474 .3307 .4141 .4974

DECIMALS OF A FOOT

Reprinted with permission of American Insitute of Steel Construction

For Each 32nd of an inch

Rev.0502

Page 442: Manual Completo

A-17

Appendix

Copyright © 2013 Strongwell CorporationAll Rights Reserved

Inch 6 7 8 9 10 11

0 .5000 .5833 .6667 .7500 .8333 .9167 1/32 .5026 .5859 .6693 .7526 .8359 .9193 1/16 .5052 .5885 .6719 .7552 .8385 .9219 3/32 .5078 .5911 .6745 .7578 .8411 .9245 1/8 .5104 .5938 .6771 .7604 .8438 .9271 5/32 .5130 .5964 .6797 .7630 .8464 .9297 3/16 .5156 .5990 .6823 .7656 .8490 .9323 7/32 .5182 .6016 .6849 .7682 .8516 .9349 1/4 .5208 .6042 .6875 .7708 .8542 .9375 9/32 .5234 .6068 .6901 .7734 .8568 .9401 5/16 .5260 .6094 .6927 .7760 .8594 .9427 11/32 .5286 .6120 .6953 .7786 .8620 .9453

3/8 .5313 .6146 .6979 .7813 .8646 .9479 13/32 .5339 .6172 .7005 .7839 .8672 .9505 7/16 .5365 .6198 .7031 .7865 .8698 .9531 15/32 .5391 .6224 .7057 .7891 .8724 .9557 1/2 .5417 .6250 .7083 .7917 .8750 .9583 17/32 .5443 .6276 .7109 .7943 .8776 .9609 9/16 .5469 .6302 .7135 .7969 .8802 .9635 19/32 .5495 .6328 .7161 .7995 .8828 .9661 5/8 .5521 .6354 .7188 .8021 .8854 .9688 21/32 .5547 .6380 .7214 .8047 .8880 .9714 11/16 .5573 .6406 .7240 .8073 .8906 .9740 23/32 .5599 .6432 .7266 .8099 .8932 .9766

3/4 .5625 .6458 .7292 .8125 .8958 .9792 25/32 .5651 .6484 .7318 .8151 .8984 .9818 13/16 .5677 .6510 .7344 .8177 .9010 .9844 27/32 .5703 .6536 .7370 .8203 .9036 .9870 . 7/8 .5729 .6563 .7396 .8229 .9063 .9896 29/32 .5755 .6589 .7422 .8255 .9089 .9922 15/16 .5781 .6615 .7448 .8281 .9115 .9948 31/32 .5807 .6641 .7474 .8307 .9141 .9974

DECIMALS OF A FOOT

Reprinted with permission of American Insitute of Steel Construction

For Each 32nd of an inch

Rev.0502