manta ray gill inspired radially distributed nanofibrous

9
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. Manta ray gill inspired radially distributed nanofibrous membrane for efficient and continuous oil–water separation Li, Zhengtao; Tan, Carl M.; Tio, Wee; Ang, Jeremy; Sun, Darren Delai 2018 Li, Z., Tan, C. M., Tio, W., Ang, J., & Sun, D. D. (2018). Manta ray gill inspired radially distributed nanofibrous membrane for efficient and continuous oil–water separation. Environmental Science: Nano, 5(6), 1466‑1472. doi:10.1039/C8EN00258D https://hdl.handle.net/10356/107522 https://doi.org/10.1039/C8EN00258D © 2018 The Royal Society of Chemistry. All rights reserved. This paper was published in Environmental Science: Nano and is made available with permission of The Royal Society of Chemistry. Downloaded on 12 Nov 2021 17:32:54 SGT

Upload: others

Post on 12-Nov-2021

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Manta ray gill inspired radially distributed nanofibrous

This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)Nanyang Technological University, Singapore.

Manta ray gill inspired radially distributednanofibrous membrane for efficient andcontinuous oil–water separation

Li, Zhengtao; Tan, Carl M.; Tio, Wee; Ang, Jeremy; Sun, Darren Delai

2018

Li, Z., Tan, C. M., Tio, W., Ang, J., & Sun, D. D. (2018). Manta ray gill inspired radiallydistributed nanofibrous membrane for efficient and continuous oil–water separation.Environmental Science: Nano, 5(6), 1466‑1472. doi:10.1039/C8EN00258D

https://hdl.handle.net/10356/107522

https://doi.org/10.1039/C8EN00258D

© 2018 The Royal Society of Chemistry. All rights reserved. This paper was published inEnvironmental Science: Nano and is made available with permission of The Royal Societyof Chemistry.

Downloaded on 12 Nov 2021 17:32:54 SGT

Page 2: Manta ray gill inspired radially distributed nanofibrous

EnvironmentalScience:Nano

COMMUNICATION

Thisjournalis©TheRoyalSocietyofChemistry20xx J.Name.,2013,00,1-3|1

Pleasedonotadjustmargins

Received00thJanuary20xx,Accepted00thJanuary20xx

DOI:10.1039/x0xx00000x

www.rsc.org/

MantaRayGillsInspiredRadiallyDistributedNano-fibrousMembraneforEfficientandContinuousOil-WaterSeparationZhengtaoLia,CarlM.Tana,WeeTioa,JeremyAngaandDarrenD.Sun*a

Tableofcontentsentry

Manta ray gills inspired super-hydrophilic membrane for efficient and continuous oil-water separation

Suspension feeding animals such as manta rays can separatewater and food particles quickly and continuously through theirspecialstructuredgillrakersviacrossflowfiltration.Inspiredbythisecosystemengineeringfromnature,afacilemembranebasedset-upforoil-waterseparationmimickingthemantaraygillrakerswasproposedinthispaper.Thiscrossflowprocesswasfabricatedusingaligned electrospun nano-fibrous silk fibroin membrane. In thisprocess,astheoil-watermixturetravel inparallelmanneracrossthemembranesurface,waterpermeatedthroughthemembranewhileoilwasrejectedbythemembraneandcollectedinthemiddlepipe. Compared to traditional super-hydrophilic membraneseparation conducted by gravity-driven dead-end approach, thismethod can avoid fouling issues and function continuously.Therefore, this nature-inspiredmethod creates new opportunityfor efficient oil-water separation.As an environmentally friendly

material, silk fibroin is naturally super-hydrophilic whichdemonstrateditspotentialinwatertreatment.

EnvironmentalSignificanceStatementOil spill and oily wastewater have become great threats toecosystem and human beings. Bio-inspired super-wetting surfaceshave shown great potential in oil-water separation. Super-hydrophilic and underwater super-oleophobic membrane isdevelopedwidely foroil removal fromwater.However, traditionaldead-endfiltrationset-upforoil-waterseparationissufferingfrompore-blockingduetotheaccumulationofoil.Inspiredbysuspensionfeedinganimalslikemantaray,afacilecrossflowmembraneset-upisdesignedforefficientandcontinuousfiltration.Withthisset-up,waterisabletopassthroughthemembrane,andoilwillbecollected.Silk fibroin as natural super-hydrophilic material is utilized formembranefabrication.

Page 3: Manta ray gill inspired radially distributed nanofibrous

COMMUNICATION JournalName

2 |J.Name.,2012,00,1-3 Thisjournalis©TheRoyalSocietyofChemistry20xx

Pleasedonotadjustmargins

Pleasedonotadjustmargins

1.Introduction

Mantaraysarelargeseacreatureswhichfeedonsuspendedfood particles in the ocean by filtering water rapidly andcontinuously[1]. Manta rays have never suffered from thecloggingoffoodparticles,evenalthoughtheyhavetofilterlargeamountofwaterallthetime,andthisphenomenonisowingtotheir special structured gill rakers[2]. As illustrated in Figure1(a),mantaraysseparatethefoodparticlesfromseawaterviaa crossflow filtration instead of dead-end filtration whichpreventsthecloggingoftheirgillrakers[3-5].Asseawaterandthe suspended food particles enter its mouth, the streamtravelsacrossgill rakers. These rakersallowseawater topassthrough but retains the suspended food particles. Thesesuspendedfoodparticlesarewashedoffthegillrakerstoavoidclogging. Thereafter, the stream of seawater becomes moreconcentratedwithsuspendedfoodparticlesandtravelsintotheesophagusofmantarays.Thiscrossflowfiltrationisbeneficialastheparticlesandcontaminantsarelesslikelytobeattachedto thegill rakersofmanta rays, comparedwith thedead-endfiltration[6]. This unique filtering structure from nature isinspiringforwatertreatment,especiallyinoil-waterseparation.

The increasing consumption of fossil fuels and frequent oilspillproducedoilywastewaterhasbecomeagreatthreattotheecosystemandsustainabledevelopmentofhumanbeings[7-9].Traditional oil-water separation technologies, such asskimmers[10], absorbents[11], controlled burning[12] andbiodegradation[13, 14], are suffering from low removalefficiencyorsecondarypollution[15].Thus,facilematerialswithspecial wettability, especially material which enables theeffectiveseparationofwaterandoil,arewidelystudied[16-19].Inspired from natural surfaces with special wetting behavior,materials are synthesized by manipulating the micro-/nano-structure or surface composition with the development ofcolloid and interface science[20-24]. Among them, super-hydrophilicandunderwatersuper-oleophobicmembraneshavebeen widely investigated and effectively employed for thegravity-drivendead-endoil-waterseparation[25-28].However,thismethodhasintrinsiclimitations,thesemembranescanbeeasily clogged by oil and the water flux will decreasesignificantly. Furthermore, the accumulation of oil on themembrane surface renders the separation process cannot beconductedcontinuously.

Inspiredbythecrossflowfiltrationofmantarays,wecansolvethis problem by combining membrane technology and thestructureofmantaraygillrakers.Bymimickingmantaraygills,a membrane based oil-water separation set-up was created.The membrane with aligned nanofiber was fabricated byelectrospinningona speciallydesignedcollector, as shown inFigure 1(c-d). During the oil-water separation process, waterpermeatesthroughthemembranerapidly,whileoilisrepelledandcollectedintheinnerironpipe.Silkfibroinwaschosenastherawmaterialtofabricatethenano-fibrousmembranedueto its naturally super-hydrophilicity and underwater super-oleophobicity.

The laboratory scale experiments have verified that themembrane exhibits the ability to separate oil and watercontinuouslyandefficiently.Moreover,silkfibroinisanaturalmaterial which exhibits no hazard to the environment. Thiswork provides a new perspective to achieve efficient andcontinuous oil-water separation. Additionally, silk fibroin hasexhibited great potential as a novel material for watertreatment.

2.MaterialsandMethods

2.1Materials

Iron pipe (diameter 5 mm) were used as the electrodeconnecting to earth for electrospinning. Chemicals usedincludes sodiumcarbonate (Na2CO3), calciumchloride (CaCl2),formicacid(FA)werepurchasedfromSigma-Aldrich.Deionizedwater (DI water, 18.4 MΩ·cm-1 resistivity), ethanol (Chem-Supply Pty. Ltd., absolute) were used for posttreatment andcleaning.Oliveoil,cookingoil,andsiliconoilwereusedastestliquids.

2.2PreparationofSilkFibroin

Afterdegummingin5%Na2CO3aqueoussolutionat100°Cfor1 hour, silk was dissolved in formic acid-CaCl2 solution.Subsequently,thedissolvedmixtureisdriedandwashedbyDIwatertoobtaintheregeneratedsilkfibroinfilm.

2.3PreparationofElectrospunSilkFibroinMembrane

According to the results of our preliminary experiments, asshowninFigureS1,lowconcentrationofsilkfibroin(<10%)leadto the“beads-on-string” structureofelectrospunnano-fibers,which influenced the quality of membrane. When theconcentrationreached10%,uniformno-beadnano-fiberswereobtained successfully, and therefore 10%was chosen for thefabrication our membrane in this research. 10% silk fibroinsolutionwasproducedbyadding1.0gofsolidsilkfibroininto7.54mLofformicacidandwasstirredfor6hoursuntilthesolidsilkfibroinwasfullydissolved.Theelectrospinningwascarriedoutatroomtemperatureinaclosedchamber.A5mmironpipeisusedastheelectricallyconductedcollector,withaplasticpipesurrounding the iron pipe for the silk fibroin fibers to attachitself. The silk fibroin fibers were then electrospun. The tipcollectordistancewaskeptat20cmandavoltageof24kVwassupplied.Thesilkfibroinsolutionwasplacedinasyringewithablunt-tip needle (nozzle diameter of 0.7mm).Using amicro-syringe pump, the spinning solutionwas pushed through theneedleatafeedingrateof0.2mL/h,6hourswererequiredtoproducethemembranebyelectrospinning.

Thereafter,theelectrospunmembranewasdippedinethanolfor1htoensurethatthefibersdonotclumptogetherwhenitcomeincontactwithwater.AsshowninFigureS2,withoutanytreatment,nano-fiberstructureofthemembranewasdamaged

Page 4: Manta ray gill inspired radially distributed nanofibrous

JournalName COMMUNICATION

Thisjournalis©TheRoyalSocietyofChemistry20xx J.Name.,2013,00,1-3|3

Pleasedonotadjustmargins

Pleasedonotadjustmargins

afterimmersinginwaterfor3hrs,whileafterethanoltreatment,nano-fiber structure was not influenced even immersing inwaterfor1week.

2.4Characterizations

Themicrostructuresofpreparedsilk fibroinmembranewerecharacterizedbyfieldemissionscanningelectronicmicroscopy(FESEM, JEOL JSM-7600F). The surface wettability of themembrane was tested by Video Contact Angle (VCA) device(ASTProduct Inc.Optimaseries).Avideocamerawasusedtodetermine the contact angle of each test. Thermogravimetricanalyzer (TGA, Perkin Elmer TGA-7) measurement wasperformedfrom30°Cto700°C,ataheatingrateof10°Cmin-1 inN2atmosphere.Fourier transforminfrared(FTIR)spectraof the sampleswas recordedon a Perkin Elmer spectrumGXFTIRspectrometer.

2.4Oil-waterseparation

Inorder to investigate theoil-waterseparationabilityof themembrane, several typesof oil-watermixturewerepreparedusingvegetableoil,oliveoilandsiliconoil.Theoil/watervolumeratiowas1:9.Totalorganiccarbon(TOC,ShimadzuVCSH)wasused to analyze oil concentration. The membrane was pre-wettedbywateratthebeginning.Thereafter,oil-watermixturewas continuously discharged into the filtration setup.Subsequently, water permeate through the membrane bygravitywhileconcentratedoil-watermixturewascollectedviatheironpipeinthecenter.

The separation efficiency can be calculated by oil rejectionratio(R%):

R = 1 −C&C'

×100%

whereC'andC&aretheoilconcentrationofthefeedoil-watermixtureandthepermeatewater.

3ResultsandDiscussions

3.1SurfaceMorphology

By specially designing the collector of electrospinning asillustratedabove, thenano-fibrousmembranesetupcouldbeobtained easily. Field emission scanning microscopy (FESEM)wasutilizedforthecharacterizationofthemicrostructureoftheas-preparedmembrane.Theradiatedistributionofnano-fiberswasprovedbytheFESEMimageasshowninFigure2(a).Thisfiber-radiatemembranewasdesignedtomimicthemantaraygills for continuous oil-water separation. Figure 2(b) is theenlargedimageofthenanofibers.Itisclearlyobservedthatthediameter of the fibers was around 100 nm. The averagediameter of the fiberswas 106 nm. The largestwas 198 nm,whilethesmallestwas40.3nm.Thefiberdiameterdistribution

isshowninFigureS4.Therefore,amantaraygillsinspirednano-fibrousmembranewasobtainedbysilkfibroinelectrospinning.

3.2FTIRandTGA

Figure 2(c) shows the FTIR spectrum of the silk fibroinmembrane. Peaks were observed at 3300 cm-1, 1630 cm-1,1530cm-1and1265cm-1.Thepointwherethevibrationis3300cm-1depictsadsorbedwaterinthesilkfibroinmembrane.Theother three notable peaks or troughs are consistentwith silkfibroin fibers thathaveundergoneethanol treatment[29,30].The thermogravimetric curve of as-prepared membrane isshowninFigure2(d).Thefirststageofweightlossbelow150˚Cisduetotheevaporationofwater,whilethesecondstagefrom300˚Cisassociatedwiththedegradationofsilkfibroin[31,32].Silk fibroin fiberswith theseprofilesexhibitbetter stability inwater and better mechanical properties as compared to silkfibroinfibersthathavenotundergoneethanoltreatment[33].

3.3WettingBehavior

WettingBehaviorofthemembraneplaysanimportantroleinoil-waterseparation.AsshowninFigure3(a),duringthecontactangletestingprocess,whenawaterdropletcontactedwiththemembrane surface, it quickly spread, and the water contactangleinairwas0°,whichillustratedthesuper-hydrophilicityofthe membrane. When the membrane was underwater, asshown in Figure 3(b), the oil contact angle was 154° , whichillustrated the underwater super-oleophobicity of themembrane.

This wettability of the membrane is naturally from theabundant hydroxyl and amino groups on the surface of silkfibroin fiber. According to Wenzel model and Cassie-Baxtermodel,ahydrophilic surfacecanbecomemorehydrophilicorsuper-hydrophilicwiththe increaseofroughness[34,35].Dueto themicro-/nano-structure of electrospun nano-fibers, thismembrane possesses great roughness and thus super-hydrophilicity.Meanwhile,withtheaccordanceofthewettingtheories, the in-air-hydrophilic surface always showsoleophobicity underwater[36, 37], which is the same as theresult of our test.With super-hydrophilicity in air and super-oleophobicity underwater, this membrane exhibits greatpotentialinoil-waterseparation.

3.4SeparationofOilandWaterMixtures

Continuous oil-water separation was conducted to test theefficiency of the membrane. The separation efficiency wasevaluatedusingthreetypesofoil,andtheoilconcentrationwasmeasuredbasedonthetotalorganiccarbon.Acertainvolumeof oil-water mixture was discharged into the set-upcontinuously.Waterpassedthroughthemembranequicklybygravityandwascollectedbytheplastictube,whilerejectedoilwascollectedthroughtheinnerpipebyabeakerasshowninFigure4(a).Figure4(d)illustratedthattheseparationefficiency

Page 5: Manta ray gill inspired radially distributed nanofibrous

COMMUNICATION JournalName

4 |J.Name.,2012,00,1-3 Thisjournalis©TheRoyalSocietyofChemistry20xx

Pleasedonotadjustmargins

Pleasedonotadjustmargins

for three types of oil was at least 99.9%, showing efficientseparationbehavior(99.96%foroliveoil-watermixture,99.92%forsiliconeoil-watermixture,99.96%forhexane-watermixture,99.97%forvegetableoil-watermixture,99.91fordiesel-watermixtureand99.91%forengineoil-watermixture).

Due to the super-hydrophilicity and underwater super-oleophobicityof themembrane, therewillbeawater filmonthemembrane surface, which is a stable underwater Cassie-Baxter wetting mode and can help achieve a robust watercushionbetweenoildropletsandthemembranetopreventoilfrompermeatingthrough[37-40].Meanwhile,theradialarraysofnanofibersandthecrossflowofoil-watermixturecreatesacontinuouslydecreasingoil-watercontactfriction[41-43].Asaresult,whenanoildropletisdepositedonthesurface,itwillbedriventothecenterbyboththewettabilitygradientandgravityasshowninFigure5(a),ratherthanattachingonthemembranesurface and blocking the pores. At the same time, when oildroplets are accumulated to the center, small droplets willconvergetoformbigonesandfinallybecollectedinthecentralpipe,justlikethefeedingprocessofmantarays.Therefore,thismembranesetupisabletoachieveefficientandcontinuousoil-waterseparation.

3.5Longtermfiltrationtests

Inordertoquantifythesuitabilityofthemembranefor longtermfiltration,separationtestswerealsoconductedovertimeandpermeatevolume.

Firstly,totesttheeffectivenessofthemembraneperformanceover a long period of time, the electrospun silk fibroinmembrane subjected to constant filtration of a 1:9 oil-watermixturebyvolume.Samplesaretakeneveryhouroveraperiodof 8 hours. These samples are then tested for its TOCconcentrationtocalculateitsseparationefficiencyover8hours.AsseenfromFigure5(b),themembranerejectionperformanceremains high over a period of eight hours. This showed theeffectivenessofthecrossflowfiltrationthatwasadoptedinthemembranesetup.Thisensuresthemembraneperformanceforoil water separation can be maintained at a high level afterextendedperiodsoftime.

Secondly,themembranewastestedfor itspermeatequalityafter producing certain amountsof permeatewater. Samplesaretakenfrom50mLto700mLofpermeatewaterproduced.AsshowninFigure5(c),thepermeatequalityremainshighevenafter producing 700mL of permeate. This demonstrated theeffectivenessofthecrossflowfiltrationthatwasutilizedinthemembranesetup.Thisensuresthatpermeatequality fromoilwater separation can be maintained at a high level afterproducingasubstantialamountofpermeate.

ConclusionsInspired by the manta ray gill rakers, a novel silk fibroinmembrane was successfully fabricated for the efficient oil-

water separation. By specially designing the collector ofelectrospinning, the crossflow nano-fibrous membrane setupcould be obtained easily,whichwas able to achieve efficientandcontinuousoil-waterseparation.Waterwascollectedintheoutercylinder,whileoilwascollectedviathemiddleironpipe.Themembranepossessedsuper-hydrophilicityandunderwatersuper-oleophobicity, which enabled the efficient oil-waterseparation, and the cross-flow design of the membrane alsoallowed continuous separation process. This investigation ofbio-mimicdesigningandfabricatingofnano-fibrousmembraneforcontinuousandefficientoil-waterseparationprovidedgreatinsightsforwaterpurificationandwatercollectionindifferentareas.

AcknowledgementTheauthorwouldliketothankthestaffofEnvironmentalLabandCentralEnvironmentalScienceandEngineeringLaboratory(CESEL)atSchoolofCivilandEnvironmentalEngineering(CEE),NanyangTechnologicalUniversity(NTU)fortheirassistanceintheuseofequipment.Inaddition,thescholarshipprovidedbyNTUisalsoappreciated.

ConflictsofinterestTherearenoconflictstodeclare.

Reference1. MistyPaig‐Tran,E.andA.Summers,Comparisonofthe

structureandcompositionofthebranchialfiltersinsuspensionfeedingelasmobranchs.TheAnatomicalRecord,2014.297(4):p.701-715.

2. Stewart,J.D.,etal.,SpatialecologyandconservationofMantabirostrisintheIndo-Pacific.BiologicalConservation,2016.200:p.178-183.

3. Brainerd,E.L.,Caughtinthecrossflow.Nature,2001.412(6845):p.387-388.

4. Paig-Tran,E.W.,T.Kleinteich,andA.P.Summers,Thefilterpadsandfiltrationmechanismsofthedevilrays:Variationatmacroandmicroscopicscales.JMorphol,2013.274(9):p.1026-43.

5. Sanderson,S.L.,etal.,Crossflowfiltrationinsuspension-feedingfishes.Nature,2001.412(6845):p.439-441.

6. Dou,Y.,etal.,FishGillInspiredCrossflowforEfficientandContinuousCollectionofSpilledOil.ACSNano,2017.11(3):p.2477-2485.

7. McNutt,M.K.,etal.,ReviewofflowrateestimatesoftheDeepwaterHorizonoilspill.ProcNatlAcadSciUSA,2012.109(50):p.20260-7.

8. Crone,T.J.andM.Tolstoy,Magnitudeofthe2010GulfofMexicooilleak.Science,2010.330(6004):p.634-634.

9. Larsen,T.A.,etal.,Emergingsolutionstothewaterchallengesofanurbanizingworld.Science,2016.352(6288):p.928-933.

10. Broje,V.andA.A.Keller,Improvedmechanicaloilspillrecoveryusinganoptimizedgeometryfortheskimmersurface.Environmentalscience&technology,2006.40(24):p.7914-7918.

Page 6: Manta ray gill inspired radially distributed nanofibrous

JournalName COMMUNICATION

Thisjournalis©TheRoyalSocietyofChemistry20xx J.Name.,2013,00,1-3|5

Pleasedonotadjustmargins

Pleasedonotadjustmargins

11. Ge,J.,etal.,AdvancedSorbentsforOil-SpillCleanup:RecentAdvancesandFuturePerspectives.AdvMater,2016.28(47):p.10459-10490.

12. Mullin,J.V.andM.A.Champ,Introduction/overviewtoinsituburningofoilspills.SpillScience&TechnologyBulletin,2003.8(4):p.323-330.

13. King,G.M.,etal.,MicrobialresponsestotheDeepwaterHorizonoilspill:fromcoastalwetlandstothedeepsea.AnnRevMarSci,2015.7:p.377-401.

14. Bragg,J.R.,etal.,EffectivenessofbioremediationfortheExxonValdezoilspill.Nature,1994.368(6470):p.413-418.

15. Whitfield,J.,Howtocleanabeach.Nature,2003.422(6931):p.464-466.

16. Liu,T.andC.Kim,Turningasurfacesuperrepellenteventocompletelywettingliquids.Science,2014.346(6213).

17. Wong,T.S.,etal.,Bioinspiredself-repairingslipperysurfaceswithpressure-stableomniphobicity.Nature,2011.477(7365):p.443-7.

18. Tian,Y.,B.Su,andL.Jiang,Interfacialmaterialsystemexhibitingsuperwettability.AdvMater,2014.26(40):p.6872-97.

19. Tuteja,A.,etal.,Designingsuperoleophobicsurfaces.Science,2007.318(5856):p.1618-1622.

20. Wang,B.,etal.,Biomimeticsuper-lyophobicandsuper-lyophilicmaterialsappliedforoil/waterseparation:anewstrategybeyondnature.ChemSocRev,2015.44(1):p.336-61.

21. Darmanin,T.andF.Guittard,Recentadvancesinthepotentialapplicationsofbioinspiredsuperhydrophobicmaterials.J.Mater.Chem.A,2014.2(39):p.16319-16359.

22. Wang,S.,etal.,BioinspiredSurfaceswithSuperwettability:NewInsightonTheory,Design,andApplications.ChemRev,2015.115(16):p.8230-93.

23. Lu,Y.,etal.,Robustself-cleaningsurfacesthatfunctionwhenexposedtoeitherairoroil.Science,2015.347(6226):p.1132-1135.

24. Savage,N.,Syntheticcoatings:Supersurfaces.Nature,2015.519(7544):p.S7-S9.

25. Field,R.W.,Surfacescience:separationbyreconfiguration.Nature,2012.489(7414):p.41-42.

26. Kota,A.K.,etal.,Hygro-responsivemembranesforeffectiveoil-waterseparation.NatCommun,2012.3:p.1025.

27. Zhang,F.,etal.,Nanowire-hairedinorganicmembraneswithsuperhydrophilicityandunderwaterultralowadhesivesuperoleophobicityforhigh-efficiencyoil/waterseparation.AdvMater,2013.25(30):p.4192-8.

28. Zhang,W.,etal.,Salt-inducedfabricationofsuperhydrophilicandunderwatersuperoleophobicPAA-g-PVDFmembranesforeffectiveseparationofoil-in-water

emulsions.AngewChemIntEdEngl,2014.53(3):p.856-60.

29. Zhang,F.,etal.,FacilefabricationofrobustsilknanofibrilfilmsviadirectdissolutionofsilkinCaCl2-formicacidsolution.ACSApplMaterInterfaces,2015.7(5):p.3352-61.

30. Liu,Z.,etal.,Preparationofelectrospunsilkfibroinnanofibersfromsolutionscontainingnativesilkfibrils.JournalofAppliedPolymerScience,2015.132(1):p.n/a-n/a.

31. Kweon,H.,I.Um,andY.Park,ThermalbehaviorofregeneratedAntheraeapernyisilkfibroinfilmtreatedwithaqueousmethanol.Polymer,2000.41(20):p.7361-7367.

32. Zhou,J.,etal.,Regeneratedsilkfibroinfilmswithcontrollablenanostructuresizeandsecondarystructurefordrugdelivery.ACSApplMaterInterfaces,2014.6(24):p.21813-21.

33. Zhang,F.,etal.,Silkdissolutionandregenerationatthenanofibrilscale.JournalofMaterialsChemistryB,2014.2(24):p.3879.

34. Gao,X.andL.Jiang,Biophysics:water-repellentlegsofwaterstriders.Nature,2004.432(7013):p.36-36.

35. Feng,X.J.andL.Jiang,DesignandCreationofSuperwetting/AntiwettingSurfaces.AdvancedMaterials,2006.18(23):p.3063-3078.

36. Jung,Y.C.andB.Bhushan,Wettingbehaviorofwaterandoildropletsinthree-phaseinterfacesforhydrophobicity/philicityandoleophobicity/philicity.Langmuir,2009.25(24):p.14165-73.

37. Cassie,A.andS.Baxter,Wettabilityofporoussurfaces.TransactionsoftheFaradaysociety,1944.40:p.546-551.

38. Chu,Z.,Y.Feng,andS.Seeger,Oil/waterseparationwithselectivesuperantiwetting/superwettingsurfacematerials.AngewChemIntEdEngl,2015.54(8):p.2328-38.

39. Xue,Z.,etal.,ANovelSuperhydrophilicandUnderwaterSuperoleophobicHydrogel-CoatedMeshforOil/WaterSeparation.AdvancedMaterials,2011.23(37):p.4270-4273.

40. Yong,J.,etal.,Oil-WaterSeparation:AGiftfromtheDesert.AdvancedMaterialsInterfaces,2016.3(7):p.1500650.

41. Li,J.,etal.,Oildropletself-transportationonoleophobicsurfaces.Scienceadvances,2016.2(6):p.e1600148.

42. Bliznyuk,O.,etal.,Directionalliquidspreadingoverchemicallydefinedradialwettabilitygradients.ACSApplMaterInterfaces,2012.4(8):p.4141-8.

43. Du,M.,etal.,ElectrospunMultiscaleStructuredMembraneforEfficientWaterCollectionandDirectionalTransport.Small,2016.12(8):p.1000-5.

Page 7: Manta ray gill inspired radially distributed nanofibrous

EnvironmentalScience:Nano

COMMUNICATION

Thisjournalis©TheRoyalSocietyofChemistry20xx J.Name.,2013,00,1-3|6

Pleasedonotadjustmargins

Figure1Crossflowfiltrationinmantaraygillsandbioinspiredsilkfibroinmembrane.(a)Illustrationofcrossflowfiltrationinfishgills.(b)Gillstructureofthemantarays.(c)Bioinspiredelectrospunsilkfibroinmembrane.(d)Illustraitonofbioinspiredcrossflowoil-waterseparation.

Page 8: Manta ray gill inspired radially distributed nanofibrous

JournalName COMMUNICATION

Thisjournalis©TheRoyalSocietyofChemistry20xx J.Name.,2013,00,1-3|7

Pleasedonotadjustmargins

Pleasedonotadjustmargins

Figure2Characterizationofelectrospunsilkfibroinmembrane.(a)(b)FESEMimagesofnano-fibroussilkfibroinmembrane.(c)FTIRimageofthemembrane.(d)TGAimageofthemembrane.

Figure3Contactangleofnano-fibroussilkfibroinmembrane.(a)Watercontactangleinair.(b)Oilcontactangleinwater.

Page 9: Manta ray gill inspired radially distributed nanofibrous

COMMUNICATION JournalName

8 |J.Name.,2012,00,1-3 Thisjournalis©TheRoyalSocietyofChemistry20xx

Pleasedonotadjustmargins

Pleasedonotadjustmargins

Figure4Oil-water separation test of nano-fibrous silk fibroinmembrane. (a) Separation setup. (b) Feedoil-watermixture. (c)Permeatewater. (d) Separation efficiency of six types of oil (99.96% for olive oil-watermixture, 99.92% for siliconeoil-watermixture,99.96%forhexane-watermixture,99.97%forvegetableoil-watermixture,99.91fordiesel-watermixtureand99.91%forengineoil-watermixture).

Figure5(a)Schematicoftheradiallyarrayednanofibersforoildropletself-transportation.(b)Separationefficiencyovertime.(c)Separationefficiencyoverpermeatevolume.