major and trace element geochemistry of ilmenite suites ... · university of toronto. the la-icp-ms...

98
Major and trace element geochemistry of ilmenite suites from the Kimberley diamond mines, South Africa by Vlad-Victor Ene A thesis submitted in conformity with the requirements for the degree of Master of Applied Sciences Department Of Earth Sciences University Of Toronto © Copyright by Vlad Victor Ene, 2014

Upload: others

Post on 19-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

Major and trace element geochemistry of ilmenite suites from the

Kimberley diamond mines, South Africa

by

Vlad-Victor Ene

A thesis submitted in conformity with the requirements

for the degree of Master of Applied Sciences

Department Of Earth Sciences

University Of Toronto

© Copyright by Vlad Victor Ene, 2014

Page 2: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

ii

Major and trace element geochemistry of ilmenite suites from the

Kimberley diamond mines, South Africa

Vlad-Victor Ene

Master of Applied Science

Department of Earth Sciences

University of Toronto

2014

Abstract A method was developed to distinguish between ilmenites from different mantle xenoliths found

at Kimberley, South Africa: Granny Smith, dunites, orthopyroxenites, MARID and rutile-ilmenite

intergrowths. The method employs a number of oxide screens based on MgO, TiO2 and Cr2O3 and

systematically eliminating whole fields defined by mathematical equations. The classification

scheme is useful to better understand the source of the ilmenite and has been applied to ilmenite

xenocrysts from four diamond mines in the Kimberley area: Bultfontein, Kamfersdam, Otto’s

Kopje and Wesselton. A relationship between ilmenite chemistry and its paragenesis exists, but it

is not as clear as in the Cr-poor megacrysts. A more complex process is responsible for the

crystallization of ilmenite in the five different suites at Kimberley, and metasomatim by a Fe-Ti

rich magma or melt, similar in composition to the parent magma of the South African megacrysts,

plays an important role in ilmenite formation.

Page 3: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

iii

Table of Contents

1. INTRODUCTION ..................................................................................................................................... 1

2. ANALYTICAL METHODS ................................................................................................................... 2 2.1 Microprobe analysis ................................................................................................................................... 3 2.2 Laser Ablation Inductively-Coupled Plasma Mass Spectrometry ............................................................. 3 2.3 Scanning Electron Microscope ................................................................................................................... 6

3. LOCALITY AND SAMPLES .......................................................................................................................... 7

3.1 Granny Smith .............................................................................................................................................. 8

3.2 MARID Xenoliths ....................................................................................................................................... 10

3.3 Dunites ...................................................................................................................................................... 11

3.4 Rutile-ilmenite intergrowths .................................................................................................................... 12

3.5 Orthopyroxenites ..................................................................................................................................... 14

4. RESULTS .................................................................................................................................................. 15

4.1 Ilmenite compositions .............................................................................................................................. 15 4.1.1 Major elements ..................................................................................................................................... 16 4.1.2 Trace elements ...................................................................................................................................... 24 4.2. Granny Smith clinopyroxene ............................................................................................................... 34

5. CLASSYFING THE ILMENITES ........................................................................................ 35

6. DISCUSSION ....................................................................................................................................... . 48

6.1 The classification of ilmenites .................................................................................................................. 48

6.2 Ilmenite genesis ........................................................................................................................................ 48

7. CONCLUSIONS ............................................................................................................................................... 52

References ..................................................................................................................................................... 54 Appendix ......................................................................................................................................................... 60

Page 4: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

iv

Acknowledgements I want to thank my supervisor Dan Schulze for giving me the opportunity to carry out this research

project and showing me a part of geology that I wasn’t exposed to before. Thank you for the fruitful

discussions and encouragements and for having your full support throughout the whole project.

I also want to thank James Brenan, Mike Gorton and Mike Hamilton for their thoughtful insights,

suggestions and answers to my questions. I appreciate the technical assistance I received from

Colin Bray, Yanan Liu and George Kretschman.

Funding for the project was provided through NSERC and the KEEVIL/Miller Scholarship and

samples were provided by De Beers.

Page 5: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

1

1. Introduction In Earth’s upper mantle diamonds are associated with peridotitic (olivine ± orthopyroxene ±

clinopyroxene ± garnet ± chrome spinel) and eclogitic (clinopyroxene + garnet) parageneses.

Diamonds are brought to Earth’s surface as accidental inclusions by alkaline magmas such as

kimberlites and lamproites which have sampled the diamond stability field in Earth’s upper mantle.

As a kimberlitic magma passes through the continental litosphere it also incorporates other upper

mantle materials as, xenoliths and xenocrysts within the kimberlite (Pearson et al., 2003). One

such important component in kimberlites is magnesian ilmenite which occurs as megacrysts

(>1cm), xenocrysts, part of the ground mass and in a variety of ultramafic xenoliths (Schulze et

al., 1995). The chemical and physical stability of ilmenite in the sedimentary environment makes

it an important an important kimberlite exploration tool. However, as ilmenite occurs in other

metamorphic and igneous rocks, a method for separating mantle and crustal ilmenites was devised

to permit the identification of ilmenite from mantle sources (Wyatt et al., 2014). Some workers

suggest that the chemistry of ilmenite can also provide information regarding the diamond content

of a kimberlite. Two methods are proposed – the Fe3+/Fe2+ ratio (Gurney et al., 1993) which may

contain information about the oxidation state of the kimberlite and the Zr/Nb ratio (Carmody et

al., 2014).

Worldwide, most ilmenite from kimberlite belongs to the Cr-poor megacryst suite

(Schulze et al., 1995). This is a co-magmatic suite of silicates and ilmenites that is the product of

fractional crystallization of a deep-seated magma, possibly the kimberlite itself (Schulze, 1987) in

which ilmenite occurs late in the fractional crystallization sequence as single crystals or intergrown

with Cr-poor suite silicates (e.g., garnet, clinopyroxene, orthopyroxene, olivine). Thus, by using

Page 6: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

2

trace element contents, ilmenite can be used to pinpoint the start of crystallization for different co-

genetic phases. Details of geochemical trends within suites differ between localities (e.g., Schulze,

1987; Moore et al., 1992; Griffin et al., 1997). In general, early formed silicates are more

magnesian and Cr-rich than those formed later in the sequence and ilmenite, which joins the

sequence in the later stages of crystallization, behaves in a similar way. In many suites, the very

latest ilmenite reverts to higher Cr and Mg contents, possibly due to contamination of the

megacryst magma by peridotitic wallrock.

Although Cr-poor suite ilmenites appear to be the most common variety world-wide, some

kimberlites with ilmenite have no intergrowths of ilmenite and silicate members of the Cr-poor

suite. Ilmenites from these kimberlites apparently have other mantle sources. The kimberlites

from the Kimberley, South Africa area are one such case. In the present investigation I have

analyzed ilmenites from a variety of mantle xenoliths from Kimberley that do not belong to the

Cr-poor megacryst suite and compared those data with the compositions of ilmenite xenocrysts

from four Kimberley diamond mines in an effort to determine the mantle xenolith sources for the

kimberlite ilmenite xenocrysts.

2. Analytical methods Ilmenites from xenoliths were analyzed in polished or polished thin sections of rocks or in polished

sections of individual ilmenite grains plucked from hand samples. Ilmenite xenocrysts from the

four mines were analyzed in polished sections prepared from grains selected from heavy mineral

concentrates (1-3 mm). Clinopyroxene analyses were performed on polished thin-sections of

Granny Smith xenoliths.

Page 7: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

3

2.1 Microprobe analysis

All samples were analyzed using a Cameca SX50 wavelength dispersive electron microprobe

equipped with three WDS detectors in the Department of Geology at the University of Toronto.

An accelerating voltage of 15 kV, beam current of 30/50nA for ilmenites and clinopyroxene, and

a 1 µm beam diameter was used. Two or three analyses were performed on each sample. The

standards used for calibration and counting times are provided in tables 2 and 3. Fe2O3 was

determined from stoichiometry.

2.2 Laser Ablation Inductively-Coupled Plasma Mass Spectrometry

Samples were analyzed in situ using the LA-ICP-MS in the Department of Geology at the

University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad

PQ ExCell ICP-MS coupled to a Nu-Wave UP-213 Laser Ablation Microscope. The NIST 610

glass standard was used for calibration of all measured elements. For the ablation of ilmenite

a 55 µm beam size was used operating at 45% output and 10 Hz. Helium was used as a carrier

gas. Data reduction was done using Glitter version 4 and Cr was used as the internal standard

for all ilmenite analysis. For samples containing fine rutile-ilmenite intergrowths special

attention was ensured so that only ilmenite was analyzed. Standards P-MT glass and HF-12

Glass (Dalpe et al., 1995) have also been analysed to verify that our analyses are accurate and

no interference occurs. (table 1). Fig.1 a and b represents EDS vs ICP-MS graphs for Nb and

Cr.

In addition to the elements analyzed by electron microprobe 23Na, 39K, 45Sc, 51V, 59Co,

60Ni, 65Cu, 66Zn, 69Ga, 72Ge 88Sr, 89Y, 90Zr, 93Nb,118 Sn, 137Ba, 139La, 140Ce, 141Pr, 146Nd, 147Sm,

153Eu, 157Gd, 159Tb, 163Dy, 166Er, 169Tm, 172Yb, 175Lu, 178Hf, 181Ta, 182W, 208Pb, 232Th and 238U were

also measured by LA-ICP-MS.

Page 8: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

4

P-MT Glass HF-13 Glass

Personal

analysis

Dalpe et. Al., 1995 Sol

ICP-MS

Personal

analysis

Dalpe et al, 1995

Sol ICP-MS XRF+ICP+INA

Sr88 622.175 461.7 474.6 2038.52 1532 1485 1498

Y89 13.645 12 9.73 28.695 30.46 23.89 27.4

Zr90 55.085 53.08 52.35 302.1 301.9 292.7 299.9

Nb93 17.88 13.25 16.62 100.24 103.6 114.6 90.78

Ba137 370.3 360.4 365.9 349.96 320.9 337.1 391.4

Hf178 2.585 2.14 2.35 6.305 6.05 6.54 5.99

Ta181 0.823 0.96 1.02 4.23 5.79 5.87 4.68

Pb208 2.9 3.83 4.5 0.3235 0.61 0.45 nd

Th232 0.193 0.17 0.21 6.925 9.13 9.21 9.61

U238 0.0693 0.05 0.06 2.38 2.84 2.81 2.47

La139 5.86 5.77 5.78 86.755 82.82 83.73 77.87

Ce140 18.4 17.01 18.07 152.725 159.18 167.76 139

Pr141 3.185 3.11 2.89 17.385 20.03 18.76 n.d

Nd146 16.04 14.53 15.31 79.875 73.35 76.91 67.17

Sm147 4.9 3.74 3.91 15.34 14.06 14.42 13.85

Eu153 1.6 1.29 1.36 5.245 4.48 4.49 4.08

Gd157 4.465 3.41 4.4 11.19 11.31 11.76 10.88

Tb159 0.506 0.48 0.52 1.1305 1.53 1.47 1.4

Dy163 3.04 2.53 2.62 7.02 6.97 7.04 6.71

Ho165 0.4655 0.43 0.45 0.9135 1.06 1.11 1.18

Er166 1.219 1.08 1.05 2.01 2.72 2.45 n.d

Tm169 0.1391 0.13 0.12 0.2115 0.3 0.27 0.27

Table 1 – Analysis of P-MT and HF-13 standards

Page 9: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

5

93N

b

52C

r

18000

16000

14000

12000

10000

8000

6000

4000

Dunites

Granny Smith

MARID

Rut-ilm

Opxite

2000

0

0.000 0.500 1.000 1.500 2.000

Nb2O5

60000

50000

40000

30000

20000

10000

Dunites

Granny Smith

MARID

Rut-ilm

Opxite

0

0.000 2.000 4.000 6.000 8.000 10.000

Cr2O3

Fig. 1 –EDS vs ICP_MS graphs for Cr and Nb

Page 10: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

6

2.3 Scanning Electron Microscope

SEM work was performed on carbon coated polished thin sections of Granny Smith

xenoliths, at the University of Toronto, Department of Earth Sciences, using a JEOL JSM-6610LV

equipped with an OXFORD INCA energy-dispersive X-ray spectrometer (EDS).

Element Standard Counting times (s)

Ti TiO2 40

Si

Ti-Al pyroxene

20

Ca

Ti-Al pyroxene

20

Al

Chromite

20

Fe

Ilmenite

20

Mg

Chromite

60

Nb

NaNbO3

40

Cr

Chromite

40

Mn

Ilmenite

30

Ni

Pentlandite

30

Table 2: Standards used for calibration, and counting times for electron microprobe analysis of ilmenite.

Page 11: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

7

Element Standard Counting times (s)

Ti TiO2 12

Si

Cr-augite

11

Ca

Cr-augite

12

Al

Cr-augite

12

Fe

Hematite

12

Mg

Cr-augite

12

Na

Albite

12

Cr

Chromite

12

Mn

Bustamite

12

K

Sanidine

60

Table 3 : Standards used for calibration, and counting times for electron microprobe analysis of clinopyroxene.

3. Locality and samples

As a result of early mining practices at the kimberlite-hosted diamond mines in Kimberley, South

Africa,(Fig. 2) an extraordinary quantity and variety of mantle-derived ultramafic xenoliths exist in

the waste dumps of the Kimberley mines. Xenoliths were separated from the mined kimberlite by

hand and dumped in piles, now known as the Kimberley Dumps (Viljoen, 1988). The ilmenite-bearing

samples in the present study were collected from the Boshof Road, Kenilworth and Kamfersdam

Dumps. The sources of these dumps are, respectively, the Bultfontein Mine, the De Beers Mine and

the Kamfersdam Mine (Viljoen, 1988). Xenoliths were also studied from the Pulsator Dump which

consists of xenoliths and xenocrysts from the “De Beer’s Pool”, a mixture of material from the

Bultfontein, De Beers, Wesselton and Du Toit’s Pan Mines (J Robey, personal communication in

Schulze, 1995 JGR).

Page 12: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

8

Fig. 2 – Location of kimberlite pipes in the Kimberley area, from White et al., 2012

Ilmenite xenocrysts were also studied from heavy mineral concentrates from the Wesselton and

Bultfontein mines (supplied by De Beer’s Consolidated Mining Corporation) and from the

Kamfersdam and Otto’s Kopje mines, collected on site by D.J. Schulze.

3.1. Granny Smith

Xenoliths in this suite (abbreviated GS) are dominated by apple green diopside with minor

ilmenite, phlogopite and uncommon rutile. They were named by Boyd et al. (1983) because of

their similarity in colour and general appearance to Granny Smith apples. They are also referred

to as Phlogopite Ilmenite Clinopyroxene (PIC) rocks by Gregoire et al. (2001). Modal variants are

dominated by phlogopite (Fig. 3D) with accessory ilmenite and diopside. Single undeformed

crystals range up to 10 cm in maximum dimension, though such large crystals are not common.

More commonly, the clinopyroxene is variably deformed with porphyroblastic clinopyroxene

Page 13: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

9

surrounded by a groundmass of neoblastic clinopyroxene (Fig. 3B). Exsolution lamellae are

common in the porphyroclastic clinopyroxene and in some neoblasts. Ilmenite is anhedral, mosaic

(Fig.3A) and is present around the deformed porphyroblasts or within the neoblastic clinopyroxene

matrix as blebs or lenticles (Fig.3C). Rutile, observed by Boyd et al. (1983) and Zhao et al. (1999)

was not found in the present study. Phlogopite occurs as flakes up to several millimeters in length

and it is either deformed or undeformed. One sample also contained, orthopyroxene alongside the

clinopyroxene and ilmenite.

A B

Cpx neoblasts

0.5 mm Cpx porphyroclast

0.5 mm

C D

Clinopyroxene

Phlogopite

Ilmenite 0.5 cm 0.5 mm

Fig. 3 Textures of Granny Smith xenoliths A – mosaic ilmenite, reflected light; B – clinopyroxene neoblasts and

porprhyroclasts, tranmisted light; C – polished hand sample of Granny Smith rock with vein-like ilmenite, D –

phlogopite rich GS xenoliths with deformed phlogopite porphyroclasts and neoblasts, transmitted light

Page 14: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

10

3.2 MARID Xenoliths

MARID suite xenoliths (Dawson et al., 1977) consist of various proportions of Mica,

Amphibole, Rutile, Ilmenite, and Diopside, hence the name. As noted by Gregoire et al. (2002),

K-richterite is the key mineral that allows distinction between MARID and a variety of other

phlogopite-bearing xenoliths and all of the MARID rocks in this study contain K-richterite. Minor

phases, such as apatite, calcite or zircon occur. Textures and grain sizes in the MARID rocks are

quite diverse, ranging from a pegmatitic K-richterite crystal 7.5 cm in length, with accessory

millimeter sized ilmenite, rutile and phlogopite to equigranular fine-grained polycrystalline rocks.

Variants dominated by phlogopite or k-richterite occur. Rutile and ilmenite are commonly

intergrown, either as patchy inclusions of rutile or ilmenite in the other, or as coarse lamellae, blebs

and veins of ilmenite inside the rutile (Fig. 4D). The amphiboles are typically euhedral to subhedral

(Fig 4A) and the pyroxenes are usually anehdral. Exsolution features are common in the

amphiboles and the pyroxenes whereas in the rutile fine ilmenite lamellae, smaller than 5 um are

present (as is typical in rutiles in kimberlite-borne xenoliths). The majority of the samples in this

study have deformed silicates and some of the phlogopite-rich rocks are layered, interpreted as a

magmatic banding (Dawson et al., 1977). Rutile and ilmenite are finely intergrown with each other

and with phlogopite. One sample contains a symplectitic intergrowth between an altered silicate,

possibly phlogopite or olivine, and rutile-ilmenite intergrowths (Fig. 4B). A similar texture occurs

in a rutile-ilmenite intergrowth sample (Fig. 6C).

Page 15: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

11

Amph A B

Ilm

Rut

Ilm

Phl 0.5 mm 0.5 mm

C D

0.5 mm

Fig. 4 MARID xenolith textures: A - amphibole, rutile-ilmenite and phlogopite, plane polarized transmitted

light, , B - rutile and ilmenite reflected light, C - symplectitic intergrowth between rutile, ilmenite and silicate, reflected

light; D – K-richtericte megacryst

3.3 Dunites (Dun) Most of these samples are fine-grained (0.05 mm - 5 mm) dominated by olivine porphyroclasts,

olivine neoblasts (Fig. 5A), phlogopite and ilmenite (Fig. 5B) with rare spinel. Calcite, most likely

of secondary origin, is also present as a minor phase. Rare iron sulphides also occur. The ratio

between olivine neoblasts and porphyroclasts differs between samples but the majority are

neoblast-rich. One sample (13-74-49) is a single, unrecrystallized olivine porphyroclast and

contains euhedral ilmenite. The size of the neoblasts ranges from 0.05 mm to 3 mm. The ilmenite

is typically anhedral, mosaic-textured and in some occurrences appears as veins rimmed by

phlogopite or serpentinite (Fig. 5D). Some very fine ilmenite is intergrown with the olivne

Page 16: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

12

neoblasts, giving them a mottled appearance. In sample 13-69-2 ilmenite borders a Cr-rich spinel

with fine ilmenite lamellae extending into the spinel (Fig.5C)

Ol porphyroclast 0.5 mm

A B

Ol

Phl

Ol neoblasts 0.5 mm Ilm

C D

0.5 mm 0.5 mm

Fig 5 Dunite textures A – olivine neoblasts and porphyroclast with ilmenit, transmitted light crossed polars; B –

olivine neoblasts and porphyroclast with ilmenite, phlogopite and serpentine, plane polarized transmitted light; C –

ilmenite replacing chromian spinel, reflected light; D – vein-like ilmenite in mosaic olivine, reflected light

3.4 Rutile-ilmenite intergrowths (Rut-ilm) These rocks are dominated by rutile and ilmenite with minor phlogopite or altered olivine.

Macroscopically they are rounded nodules, black or reddish brown in colour. The rutile is

polygranular and has red internal reflections on the crystal margins or near cracks. The rutile and

ilmenite are finely intergrown and the ratio of ilmenite to rutile is not consistent between samples.

Several types of intergrowth textures occur, similar to those described by Tollo et al. (1987). The

most common texture is represented by vein-like ilmenite protruding into the rutiles (Fig. 6A). The

Page 17: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

13

boundary between the two phases is sharp. Coarse grained ilmenite lamellae (1 – 3 mm in length

and ~ 10 microns in width) are also present inside the rutile. They are usually lensed shaped and

appear to occur in distinct crystallographic directions, similar to exsolution lamellae inside

titanomagnetite. Irregular mosaic blebs of ilmenite that Tollo et al. (1982) called atoll structures

(Fig. 6B) are not common and seem to be related to coarser grained lamellae. Extremely fine

ilmenite lamellae (<5 microns) appear in almost all of the rutiles in these samples, regardless of other

textures. Except for their size, they are similar to the coarser ones described above. Only two other

mineral phases are present – phlogopite in several rocks and one sample contains an altered silicate,

possibly olivine.

Ilm

A B

Ilm

Rut

Rut

0.5 mm

0.5 mm

C

0.5 mm

Fig. 6. Textures in rutile-ilmenite xenoliths A – vein-

like ilmenite inside rutile, reflected light; B – patchy

and atoll-shaped intergrowths ilmenites at rutile

boundaries, reflected light; C – symplectitic

intergrowth between rutile, ilmenite and silicate,

reflected light

Page 18: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

14

3.5 Orthopyroxenites (Opxite)

Composed of orthopyroxene, phlogopite, ilmenite, rutile with or without diopside these

rocks range from fine to coarse grained (0.05 mm – 0.3 cm). Modally the orthopyroxenites range

from phlogopite-rich to orthopyroxene rich or ilmenite/rutile rich. Orthopyroxene is usually

anhedral and rounded (Fig. 7C) with grain sizes in the range ~ 50 um to 1-2 millimetres. Ilmenite

and rutile are anehdral, mosaic and lobate/ameoidal and some occur as veins but are typically

scattered throughout the sample (Fig. 7B, 7D). The two phases are typically finely intergrown with

each other or with the silicates. Fine ilmenite exsolution-type lamellae are common in rutiles and

the ilmenite to rutile ratio is not consistent between samples. One sample contains a mosaic

ilmenite ~0.5 cm in diameter. Phlogopite is anehdral and typically deformed with sizes in the range

<1 mm to grains a couple of centimeters in maximum dimension. Garnet does not occur in the

Kimberley samples, though it has been described elsewhere (Boyd et al., 1984; Doyle et al., 2004).

In many samples, acicular ilmenite, rutile and orthopyroxenite are finely intergrown in fasciculate

texture that is considered to be the result of quenching due to fast crystallization (Boyd et al., 1984)

(Fig 7A, 7B). In sample 13-67-54 fine grained altered phlogopite-rich orthopyroxenite is in contact

with an ilmenite bearing dunite (Fig. 7E). Altered olivine, phlogopite and extremely fine-grained

oxide phases occur at the contact of these two domains

A B

Phl

Opx

0.5 mm

0.5 mm

Page 19: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

15

C D

Phl

Opx

Ilm+Rut

0.5 mm

0.5 mm

Ol

Opx

E 0.5 mm

Fig. 7 Textures in orthopyroxenite xenoliths A –

acicular opx in fine-grained quench-like texture

intergrown with phlogopite and rutile and ilmenite,

plane polarized transmitted light, B- acicular ilmenite

and rutile intergrown with orthopyroxene in quench-

like texture, reflected light C –acicular rutile and/or

ilmenite with orthopyroxene and phlogopite, plane

polarized transmitted light D – intergrown ilmenite and

rutile with silicates, reflected light, E – serpentinized

boundary between orthopyroxenite (right) and dunite

(left) in sample 13-67-54, plane polarized transmitted

light.

4. Results

4.1 Ilmenite compositions (table 5, appendix) Based on our electron microprobe and laser ablation ICP-MS analyses a basic chemical

characterization of ilmenites from all the different suites in the present study can be devised.

Page 20: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

16

4.1.1 Major elements

Granny Smith suite Granny Smith ilmenites have narrow ranges of values for almost all of the elements analyzed.

They have high MgO (11.0 - 14.7 wt %) (Fig. 7, 8) and moderate Cr2O3 (1.0 – 3.2 wt%) (Fig. 8,

10, 11, 12) and Fe2O3 (5.6 - 7.9 wt%).), Al2O3 ranges from 0.01 to 0.5 wt% (Fig. 8,9), TiO2 from 52.6 to 55 wt% (Fig. 10) Nb2O5 from 0.05 to 0.53 wt% (Fig. 11). The sample with the lowest

MgO content (13-74-72) also has the lowest Al2O3 and TiO2 and highest Fe2O3 and Nb2O5 content,

and resembles MARID or orthopyroxenite ilmenites.

Dunites Ilmenites in dunites have MgO values ranging from 6.1 to 14.9 wt% (Fig. 8, 9), Cr2O3 from 0.08

to 6.5 wt% (Fig. 8, 10, 11, 12), MnO from 0.2 to 0.4 wt% and Fe2O3 values ranging from 4.8 to

21.7 wt%), Al2O3 (Fig. 9, 10), TiO2 (Fig. 11) and Nb2O5 (Fig. 12) contents are between 41.6 and 55.5 wt%, 0.01 and 0.6 wt% and 0.07 and 1.7 wt%, respectively.

Rutile-ilmenite intergrowths In rutile-ilmenite intergrowths the ilmenite has MgO values similar to those of the Granny Smith

ilmenites in Fig. 7, 8 (12.2 – 14.9 wt%) with higher Cr2O3 values (1.3 – 9.1 wt%) (Fig. 8, 10, 11,

12), and Fe2O3 contents (6.0 – 11.0 wt%) ,TiO2 (Fig. 11) values are also similar to those found in Granny Smith ilmenites (50.0 – 54.8 wt%) with Al2O3 (Fig. 9, 10) and Nb2O5 (Fig. 12) values of

0.2 – 1.2 and 0.06 – 0.15 wt% respectively.

Orthopyroxenites

Page 21: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

17

Ilmenites in orthopyroxenites are more chemically diverse than those in most of the other suites,

with MgO (Fig. 8, 9) values ranging from 6 to 14.8 wt%, Cr2O3 (Fig. 8, 10, 11, 12) values from

0.15 to 7.9 wt% and Al2O3 (Fig. 9, 10) values from 0.01 to 0.4 wt%. TiO2 (Fig. 11) and Nb2O5

(Fig. 12) also vary with values in the range 41.7 to 55.9 wt% and 0.02 to 1.4 wt%, respectively.

MARID xenoliths Ilmenites in MARID rocks have MgO values that range widely (Fig. 8, 9) (6.5 – 17.5 wt%) and

low Cr2O3 (Fig. 8, 10, 11, 12) values (0.5 – 2 wt%). Al2O3 (Fig. 9, 10) values are extremely low

(0.0 – 0.05 wt%) and Nb2O5 (Fig. 12) (0.008 – 1.2 wt%) and Fe2O3 (3.0 – 17.2 wt%) have a wide

range.

General observations Values of Al2O3 – Cr2O3 and MgO (Fig. 9 and 10) correlate positively for ilmenites in the Granny

Smith, dunite and rutile-ilmenite intergrowth suites and part of the orthopyroxenite suite. In the

rutile-ilmenite intergrowths and Granny Smith suite, TiO2 correlates negatively with Cr2O3 (Fig.

11) whereas the rest of the suites have more complex trends due to the high variance in Cr2O3 and

TiO2 values. A negative correlation also exists between Nb2O5 and MgO in ilmenites from the

Granny Smith suite. A similar trend also occurs in some of the orthopyroxenite ilmenites that

correlate well with the analysis with anomalous high Nb2O5 content, whereas the rest of the

ilmenites follow a somewhat sinusoidal trend with increasing MgO. A similar behaviour is

displayed by MARID ilmenites. Nb2O5 and Cr2O3 (Fig. 12) are negatively correlated for Granny

Smith and rutile-ilmenite intergrowth suites.

Page 22: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

18

Cr 2

O3

wt%

M

gO w

t%

10.000

9.000

8.000

7.000

6.000

5.000

4.000

3.000

2.000

Dun Gs

MARID

Rut-ilm

Opxite

1.000

0.000

0.000 2.000 4.000 6.000 8.000 10.000 12.000 14.000 16.000 18.000

MgO wt%

Fig. 8 – MgO – Cr2O3 plot

18.000

16.000

14.000

12.000

10.000

8.000

6.000

4.000

Dun GS

MARID

Rut-ilm

Opxite

2.000

0.000

0.000 0.200 0.400 0.600 0.800 1.000 1.200 1.400

Al2O3 wt%

Fig. 9 – MgO – Al2O3 plot

Page 23: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

22

Cr 2

O3

wt%

C

r 2O

3 w

t%

10.000

9.000

8.000

7.000

6.000

5.000

4.000

3.000

2.000

Dun GS

MARID

Rut-ilm

Opxite

1.000

0.000

0.000 0.200 0.400 0.600 0.800 1.000 1.200 1.400

Al2O3 wt%

Fig. 10 – Cr2O3 – Al2O3 plot

10.000

9.000

8.000

7.000

6.000

5.000

4.000

3.000

2.000

Dun GS

MARID

Rut-ilm

Opxite

1.000

0.000

40.000 42.000 44.000 46.000 48.000 50.000 52.000 54.000 56.000 58.000 60.000

TiO2 wt%

Fig.11 – Cr2O3 – TiO2 plot

Page 24: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

23

Cr 2

O3

wt%

C

r 2O

3 w

t%

10

9

8

7

6

5 GS 4 Rut-ilm 3

2

1

0

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Nb2O5 wt%

Fig. 12a – Cr2O3 – Nb2O5 plot for GS and Rut-ilm ilmenites

10.000

9.000

8.000

7.000

6.000

5.000

4.000

3.000

Dun

MARID

Opxite

2.000

1.000

0.000

0.000 0.200 0.400 0.600 0.800 1.000 1.200 1.400 1.600 1.800 2.000

Nb2O5 wt%

Fig. 12b – Cr2O3 – Nb2O5 plot without GS and rut-ilm ilmenites

Page 25: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

24

4.1.2 Trace element compositions The ilmenites from the various suites analyzed in the present study are surprisingly similar in their

trace element contents, especially in their high field strength elements (table 5). Dunite, Granny

Smith, rutile-ilmenite intergrowth, orthopyroxenite and two of the MARID ilmenites have high Zr

(224 – 890 ppm) (Fig .13, 14, 18) and Nb (305 – 1316 ppm) (Fig. 15, 16) values and moderate

Hf (7 – 31 ppm) (Fig. 13, 17) and Ta (Fig. 15, 17). Ilmenites from two dunite (4354 ppm and 8975

ppm), two orthopyroxenite (5877 and 10987 ppm) and the rest of the MARID (2009 ppm – 9310

ppm) xenoliths have higher Nb (Fig. 15a, 16a) values. Except for those from the MARID

xenolithss, all the ilmenites with higher Nb contents also have anomalously high Ta (446 –

683ppm). Nb/Ta (Fig. 16) ratios are subchondritic with only four samples exceeding the 17.6

threshold defined by McDonough (1990): three MARIDs (36.8, 29.6, and 19.3) and one

orthopyroxenite (23.5). Zr/Hf (Fig. 14) values are also subchondritic (< 36) for the majority of the

ilmenites with the following exceptions: one dunite ilmenite (41.4), four of the MARID ilmenites

(39.6, 36.6, 39.5, and 39.4) and two orthopyroxenites (40.8, 49.9). All of the ilmenites have

elevated V contents (814 ppm – 2581 ppm) and a wide range for Ni values (250 – 2499 ppm).

Contents of U, Th, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu are small or below

detection limits. Sc (Fig. 12 – 14) is similar for all the samples (9.53 ppm – 30.85 ppm) whereas

Ga values (0.68 – 2.60 ppm) are lower in MARID ilmenites than the rest of the analyzed ilmenites

(7.37 – 15.58 ppm). Two MARID ilmenites also have anomalously low Cu values (5.22 – 7.66

ppm). The ranges for all the other chemical elements analyzed in this study are similar for all the

analyzed samples – Co (133.25 – 279.9 ppm), Zn (95.9 – 204 ppm), Sn (6.69 – 12.3 ppm with a

single MARID ilmenite having a value of 19.7 ppm).

Page 26: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

25

A positive correlation also exists between Hf and Zr (Fig. 13) and Hf and Ta (Fig. 17) for all of

the samples. The Nb-Ta (Fig. 15) relationship is more complex and varies depending on the suites

considered. Positive correlations exist for ilmenites in the orthopyroxenite, rutile-ilmenite

intergrowths and dunite suites whereas the MARID ilmenites define a “sinusoidal” trend. In the

Granny Smith suite two trends exist both having positive correlations between the two elements

but with a different slope – the ilmenites with high Ta produce a steeper slope than ones with lower

Ta values.

Nb/Ta vs Nb (Fig. 16) slopes for ilmenites dunite, MARID, opxites and part of the Granny Smiths

are positive which is in accordance with experimental data that has shown that Ta is preferentially

fractionated by the ilmenite (Klemme et al., 2006). A negative slope is exhibited by ilmenites in

the rutile-ilmenite intergrowths whereas ilmenites from part of the Granny Smith exhibit a slope

that resembles an inverse curve. These anomalies can also be seen in a Zr/Hf vs Zr diagram (Fig.

14) for the rutile-ilmenite intergrowth ilmenites. Sc correlates well with Zn, Zr, Sn, Hf and Ta for

Granny Smith, dunite and rutile-ilmenites (Fig. 18-20), but this relationship isn’t as apparent for

the two other ilmenite suites.

Fig. 21 represents chondritic-normalized ((McDonough and Sun, 1995) spider diagrams of trace

element values of ilmenites from ilmenite-bearing samples from Kimberley. The elements have

been arranged in order to better observe the behaviour of elements with similar chemical

properties. For Nb-Ta and Zr-Hf, two pairs of elements which are enriched compared to the

chondritic value, the data is as expected from experimental work – Ta and Hf are preferentially

incorporated by the ilmenite compared to their chemical parteners. Sn is also enriched whereas V,

W, Zn and Co are only slightly enriched. Ni and Pb have subchondritic values and Ge and Cu are

at chondritic values. For comparison with samples analyzed in this study, maximum and minimum

Page 27: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

26

values for ilmentie megacrysts from South Africa, Grib and Yakutian kimberlites have also been

analyzed

Page 28: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

27

plotted.

Zr/H

f H

f (p

pm

)

GS

GS

40

35

30

25 Dun

20

MARID 15

Rut-ilm

10 Opxite

5

0

0 200 400 600 800 1000 1200 1400 1600

Zr (ppm)

Fig. 13 – Zr – Hf plot

60

50

40

Dun

30

MARID

20 Rut-ilm

Opxite 10

0

0 200 400 600 800 1000 1200 1400 1600

Zr (ppm)

Fig. 14– Zr – Zr/Hf plot

Page 29: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

28

Ta (

pp

m)

Ta (

pp

m)

1400

1200

1000

800

600

400

200

Dun GS

MARID

Rut-ilm

Opxite

0

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Nb (ppm)

Fig. 15a – Nb-Ta plot

300

250

200

150

100

Dun

GS

Rut-ilm

Opxite

50

0

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Nb (ppm)

Fig. 15b – Nb-Ta without MARID and ilmenites with anomalously high values

Page 30: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

29

Nb

/Ta

Nb

/Ta GS

GS

40

35

30

25 Dun

20

MARID 15

Rut-ilm 10 Opxite

5

0

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Nb (ppm)

Fig.16a – Nb-Nb/Ta plot

20

18

16

14

Dun 12

10

8 MARID

6 Rut-ilm

4 Opxite

2

0

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Nb (ppm)

Fig.16b – Nb-Nb/Ta plot wihout anomalously high values

Page 31: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

30

Sc (

pp

m)

Hf

(pp

m)

GS

GS

40

35

30

25 Dun

20

MARID 15

Rut-ilm 10 Opxite

5

0

0 200 400 600 800 1000 1200 1400

Ta (ppm)

Fig. 17 – Hf-Ta plot

100

90

80

70

Dun 60

50

40 MARID

30 Rut-ilm

20 Opxite

10

0

0 200 400 600 800 1000 1200 1400 1600

Zr (ppm)

Fig. 18 – Sc-Zr plot

Page 32: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

Fig. 20 – Sc-Zn plot

31

Sc (

pp

m)

Sc (

pp

m)

GS

GS

100

90

80

70

Dun 60

50

40 MARID

30 Rut-ilm

20 Opxite

10

0

0 200 400 600 800 1000 1200 1400

Ta (ppm)

Fig. 19 – Sc-Ta plot

100

90

80

70

Dun 60

50

40 MARID

30 Rut-ilm

20 Opxite

10

0

0 100 200 300 400 500 600

Zn (ppm)

Page 33: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

32

100000

10000

1000

S Africa

100 Yakutia

Grib 10

Dunite

1

0.1

0.01

Ga Ni Zr Hf Ta Nb Cu Zn Co Sc V Cr Mn Ti Pb Y

100000

10000

1000

100 S Africa

Yakutia

Grib 10

GS

1

0.1

0.01

Ga Ni Zr Hf Ta Nb Cu Zn Co Sc V Cr Mn Ti Pb Y

100000

Dunites

10000

1000

100

10

1

S Africa min

S Africa max

Yakutia min

Yakutia max

Grib min

Grib max

0.1

0.01 Ti Zr Hf Nb Ta V Cr W Ge Sn Pb Ga Ni Cu Zn Co Mn

Fig. 21a– Trace element spider diagram for dunite ilmenites

100000

Granny Smith

10000

1000

100

10

S Africa min

S Africa max

Yakutia min

Yakutia max

Grib min

Grib max

1

0.1 Ti Zr Hf Nb Ta V Cr W Ge Sn Pb Ga Ni Cu Zn Co Mn

Fig. 21b– Trace element spider diagram for Granny Smith ilmenites

Page 34: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

33

100000

10000

1000

100 S Africa

Yakutia

Grib 10

Rut-ilm

1

0.1

0.01

Ga Ni Zr Hf Ta Nb Cu Zn Co Sc V Cr Mn Ti Pb Y

100000

10000

1000

100 S Africa

Yakutia

Grib 10

MARID

1

0.1

0.01

Ga Ni Zr Hf Ta Nb Cu Zn Co Sc V Cr Mn Ti Pb Y

100000

Rutile-ilmenite intergrowths

10000

1000

100

10

S Africa min

S Africa max

Yakutia min

Yakutia max

Grib min

Grib max

1

0.1 Ti Zr Hf Nb Ta V Cr W Ge Sn Pb Ga Ni Cu Zn Co Mn

Fig. 21c– Trace element spider diagram for rutile-ilmenite intergrowths ilmenites

100000

MARIDs

10000

1000

100

10

S Africa min

S Africa max

Yakutia min

Yakutia max

Grib min

Grib max

1

0.1 Ti Zr Hf Nb Ta V Cr W Ge Sn Pb Ga Ni Cu Zn Co Mn

Fig. 21d– Trace element spider diagram for rutile-ilmenite intergrowths ilmenites

Page 35: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

34

100000

10000

1000

100 S Africa

Opxite

Yakutia 10

Grib

1

0.1

0.01

Ga Ni Zr Hf Ta Nb Cu Zn Co Sc V Cr Mn Ti Pb Y

100000

Orthopyroxenite

10000

1000

100

10

1

S Africa min

S Africa max

Yakutia min

Yakutia max

Grib min

Grib max

0.1

0.01 Ti Zr Hf Nb Ta V Cr W Ge Sn Pb Ga Ni Cu Zn Co Mn

Fig. 21e– Trace element spider diagram for orthopyroxenite ilmenites

4.2 Granny Smith clinopyroxene

Fig 22. – BSE image of clinopyroxene neoblasts and

porphyroclasts

The clinopyroxene porphyroclasts analysed

are calcic [Ca/(Ca+Mg)] >0.45 and

magnesian [Mg/(Mg+Fe)] >0.89 and have

moderate TiO2 (0.2 – 0.4 wt%) and Cr2O3

(0.8 – 1.1 wt%). Small chemical differences

exist between the margins and centers of the

neoblasts and porphyroclasts (Fig. 22). The

margins are enriched in MgO, FeOt, CaO

and TiO2 and depleted in NaO, SiO2, Al2O3

and Cr2O3 (table 5 - appendix).

Page 36: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

35

Al 2

O3

wt%

5. Classifying the ilmenites

One of the main goals of this study was to devise a basic classification scheme (Fig. 34) to

distinguish between ilmenites from the different parageneses, based on major and trace elements.

The best way found to separate them is with several oxide screens, systematically eliminating

whole fields defined by a number of mathematical equations.

1.400

1.200

1.000

0.800

0.600

0.400

Opxite

Dun

Rut-ilm

Dun lit

Opxite lit

MARID

0.200

0.000

4.000 6.000 8.000 10.000 12.000 14.000 16.000 18.000

MgO wt%

Fig. 23 – MgO – Al2O3 plot with Al2O3 boundary for MARID ilmenites MARID ilmenites are easily separated from most of the other suites by their low Al2O3 values

(Fig. 23). The boundary between MARID ilmenites and the other suite is a Al2O3 value of 0.05,

which is consistent with the MARID ilmenite core analysis of Dawson et al. (1976). Four low Mg

dunite ilmenites, one Granny Smith ilmenite and one orthopyroxenite ilmenite also have low

Al2O3.

Page 37: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

36

2

IO T

MGO

80

70

60

50

40

30

20

10

0

0 5 1 0 1 5 2 0 2 5

Fig.24 – MgO-TiO2 plot with MARID, Dunite, Orthopyroxenites, Granny Smith ilmenite

Ilmenites can be separated by using the equation: Cr2O2 = 0.0374MgO3 - 1.429MgO2 + 18.211MgO - 24.634, with MARID ilmenites having TiO2 values above the cut off. The four

dunite ilmenites can be separated based on their MgO content, as all the low Al2O3 ilmenites have

MgO values under 10%. The Granny Smith with opx and the orthopyroxenite ilmenites can’t be

separated (Fig. 24).

The second step is separating the Granny Smith ilmenites that plot inside a very narrow field

defined by 12 – 15 wt% MgO and 1 – 3 wt% Cr2O3, with a single exception with lower MgO

content (10 wt%) that mimics the chemistry of a MARID-type ilmenite. On a MgO-Cr2O3 plot,

the boundaries of the Granny Smith field can be defined by four equations for Cr2O3 values >

0.95 wt% (Fig. 25)

Page 38: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

37

Cr 2

O3

wt%

Cr2O3 = -0.8448MgO3 + 35.657 MgO 2 - 500.45 MgO + 2337.12, where 13.3 ≤ MgO ≤ 14.75 Cr2O3 = 0.90267 MgO 3 - 36.729 MgO 2 + 499.22 MgO - 2265.03 13.05≤ MgO ≤14.53

Cr2O3 = 23.333 MgO -342.07 for 14.75≤ MgO ≤ 14.78

Cr2O3 = -2.8929 MgO +45.556 for 14.533≤ MgO ≤ 14.78

6

5

4

3

2

1

0

12 12.5 13 13.5 14 14.5 15 15.5

MgO wt%

Fig.25 – MgO-Cr2O3 plot separating the Granny Smith ilmenite from the rest of the suites

Three dunite ilmenites also plot in the field defined by these four equations and they can’t be

separated from the the Granny Smith ilmenites.

Page 39: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

38

A subset of the ilmenite from the rutile-ilmenite intergrowths plot close to those from the Granny

Smith suite, but don’t overlap. The following three equations are useful in separating the high and

low Cr2O3 rutile-suite ilmenites from the rest of the suites, for Cr2O3 values lower than 10 wt%:

Cr2O3 = -2.4074 MgO 2 + 68.611 MgO - 487.5, where 13. 5≤ MgO ≤15 and the rutile-ilmenite

intergrowth ilmenites plot inside the parabola

Cr2O3 = 2.1049 MgO 2 - 56.711 MgO + 385.35, where 12.36 ≤ MgO

Cr2O3 = 20.927 MgO 2 - 518.58 MgO + 3218.5, for MgO < 12.36 the rutile-ilmenite intergrowth

ilmenites plot inside the parabola defined by these two equations (Fig. 26)

Ilmenites in orthopyroxenites define a very large field of both MgO and Cr2O3 contents. Two

different groups exist based on the MgO content: 5.06 – 7.01 wt% and 10.38 – 14.84 wt% and, to

better constrain these two groups ilmenite data from orthopyroxenites at Gansfontein, South

Africa, Doyle et al. (2004) have also been used. The low magnesium group can just be separated

by taking out all the ilmenites with a MgO value lower than 7.4 wt%, whereas in order to separate

the high MgO ilmenites, the following equations are useful:

Cr2O3 = 1.663 MgO 3-58.497 MgO 2+681.8 MgO -2627

Cr2O3 = -1.1134 MgO 2 + 25.412 MgO - 141.75 (Fig. 27)

Page 40: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

39

Cr 2

O3

wt%

C

r 2O

3 w

t%

12.000

10.000

8.000

6.000

4.000

2.000

0.000

4.000 6.000 8.000 10.000 12.000 14.000 16.000

MgO wt%

Fig.26 – MgO-Cr2O3 plot separating the rutile-ilmenite intergrowths ilmenite from the rest of the suites

12.000

10.000

8.000

6.000

4.000

2.000

0.000

4.000 6.000 8.000 10.000 12.000 14.000 16.000

MgO wt%

Fig.27 – MgO-Cr2O3 plot separating the orthopyroxenite ilmenite from the rest of the suites

Page 41: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

40

Cr 2

O3

wt%

The dunites ilmenites define two different groups and in order to better constrain these two fields

data from Renfeldt et al. (2007) and Dawson et al.(1981) (both studies of ilmenites from Kimberley

dunites) have also been used. The first group is represented by ilmenites with lower MgO values

(6.1 – 8.7 wt%). The low magnesium samples also have low Al2O3 values and are separated by

using the method described in detail for MARID-type ilmenites. The second, high MgO group

plots close to the field defined by Granny Smith ilmenites but they can also have higher Cr2O3

values. The dunite ilmenites plot inside two parabolas defined by the following equations:

Cr2O3 = -0.2063 MgO 2 + 6.2481 MgO - 44.899, where 12.5< MgO <17.1 and

Cr2O3 = 0.2783 MgO 2 - 7.3563 MgO + 51.992

and left of the line defined by Cr2O3 = -4.5215 MgO 2 + 119.06 MgO - 780.43 (Fig. 28)

12

10

8

6

4

2

0

4 6 8 10 12 14 16

MgO wt%

Fig.28 – MgO-Cr2O3 plot separating the dunite ilmenite from the of the suites

Page 42: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

41

Cr 2

O3

wt%

The remaining ilmenites, belonging to the rutile-ilmenite intergrowths and orthopyroxenite suites

can be distinguished using a TiO2 – Cr2O3 plot (Fig 29). The boundary between the two suites is

defined by the equation:

Cr2O3 = 1.0803 MgO 2 - 115.06 MgO + 3065.9

4

3.5

3

2.5

2

1.5

1

0.5

0

52.8 53 53.2 53.4 53.6 53.8 54 54.2 54.4 54.6 54.8

TiO2 wr%

Fig.29 TiO2-Cr2O3 plot separating the orthopyroxenite and rutile-ilmenite intergrowths ilmenites

Classification of ilmenite xenocrysts from Kimberley diamond mines The classification scheme has been applied to ilmenite xenocrysts from four diamond mines in the

Kimberley area: Bultfontein, Kamfersdam, Otto’s Kopje and Wesselton. The results are

summarized in Table 4.

Page 43: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

42

At Bultfontein (Fig 30), 15% of the ilmenites come from the Granny Smith xenoliths, 28% from

orthopyroxenites, 28% from dunites and 23% from MARIDs. In contrast, at Kampfersdam (Fig.

31) the majority of the ilmenite xenocrysts come from Granny Smith (38%) and dunite xenoliths

(34%) whereas ilmenites from orthopyroxenites and MARIDs make up only 15% and 11 %

respectively. Only 1% of the ilmenites belong to the rutile-ilmenite intergrowths.

The majority of the ilmenites analysed from Wesselton (Fig. 32) belong to the Granny Smith

xenoliths (45%) followed by dunites 20%, orthopyroxenites 18%, MARID 12 % and 5% belong

to the rutile-ilmenite intergrowths. At Otto’s Kopje (Fig. 33) 47% of the ilmenites belong to the

dunite suite, 23% come from MARID rocks, 21% from orthopyroxenites whereas only 6% come

from Granny Smith rocks and 1% from rutile-ilmenite intergrowhts. 63% of the ilmenites from

Otto’s Kopje belong to the low Al2O3 group (<0.05%) (Fig 33a). Granny

Smith

Dunite Orthopyroxenite MARID Rut-ilm

intergrowth

Bultfontein 15% 28% 28% 23%

Kamfersdam

38%

34%

11%

15%

1%

Wesselton

45%

20%

18%

12%

5%

Otto’s Kopje

6%

47%

21%

23%

Table 4 – Source rocks of the analysed ilmenite xenocrysts

Page 44: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

43

Al 2

O3

wt%

C

r 2O

3 w

t%

0.8

0.7

0.6

Bultfontein

0.5

0.4

0.3

0.2

0.1

0

4 6 8 10 12 14 16 18

MgO wt%

Fig.30a – MgO-Al2O3 plot for Bultfontein xenocrysts

12.00

10.00

8.00

Bultfontein

6.00

4.00

2.00

0.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00

MgO wt%

Fig.30b– MgO-Cr2O3 plot for Bultfontein xenocrysts

Page 45: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

Fig.31b– MgO-Cr2O3 plot for Wesselton xenocrysts

44

Kampfersdam

Al 2

O3

wt%

C

r 2O

3 w

t%

0.6

0.5

0.4

0.3

0.2

0.1

0

4 6 8 10 MgO wt%

12 14 16 18

Fig.31a – MgO-Al2O3 plot for Bultfontein xenocrysts

12.00

10.00

8.00

6.00

Kamfersdam

4.00

2.00

0.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00

MgO wt%

Page 46: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

Fig.32b– MgO-Cr2O3 plot for Wesselton xenocrysts

45

Al 2

O3

wt%

C

r 2O

3 w

t%

0.7

0.6

0.5 Wesselton

0.4

0.3

0.2

0.1

0

4 6 8 10 MgO wt%

12 14 16 18

Fig.32a – MgO-Al2O3 plot for Wesselton xenocrysts

12.00

10.00

8.00

6.00

Wesselton

4.00

2.00

0.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00

MgO wt%

Page 47: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

46

Al 2

O3

wt%

C

r 2O

3 w

t%

0.7

0.6

0.5 Otto's Kopje

0.4

0.3

0.2

0.1

0

4 6 8 10 MgO wt% 12 14 16 18

Fig.33a – MgO-Al2O3 plot for Otto’s Kopje xenocrysts

12.00

10.00

8.00

6.00

Otto's Kopje

4.00

2.00

0.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00

MgO wt%

Fig.33b– MgO-Cr2O3 plot for Otto’s Kopje xenocrysts

Page 48: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

47

Fig. 34 – Ilmenite classification

scheme

Page 49: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

48

6. Discussion

6.1 The classification of ilmenites As shown in the previous chapter, many of the distinctions and divisions are subtle and the

classification is not robust. Previous analyses of ilmenite megacrysts belonging to the Cr-poor

suite from different localities worldwide have shown a clear connection between the co-existing

phases and the major and trace element chemistry of the ilmenites. This has been interpreted as

sign of co-precipitation of ilmenite and silicate, with ilmenite being a minor phase in a fractional

crystallization process (Moore et al., 1992; Griffin et al., 1997). Thus, by analyzing trace and major

element in ilmenites from a single kimberlite, some workers have traced the onset of crystallization

of different silicates. For example, by using Zr, Ni, Ga, MgO and Cr2O3, Griffin et al. (1997)

pinpointed the start of crystallization of zircon, olivine and other silicates, for Cr-poor megacryst

suites from a variety of South African localities.

In the present study, although there are correlations between the chemistry of the ilmenites and

heir parageneses they are not as clear as those proposed for the Cr-poor megacryst suites.

Therefore, different processes are probably responsible for the crystallization of ilmenites in the

ilmenite-bearing xenoliths from Kimberley. Dunites, orthopyroxenites, Granny Smith rocks,

rutile-ilmenite intergrowths and MARID xenoliths have been previously analyzed by various

workers and in the following section their findings will be compared with the results of this study.

6.2 Ilmenite genesis Analysing the clinopyroxene and ilmenite in Granny Smiths, Boyd et al. (1984) concluded that the

ilmenite and clinopyroxene were not in equilibrium and that ilmenite was introduced during

deformation. On the other hand, according to Gregoire et al. (2001), PIC (GS) rocks are deep

Page 50: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

49

seated segregations of alkaline melts genetically related to type 1 kimberlite magmas (the

kimberlites in Kimberley are Group I) whereas MARID rocks are related to type 2 kimberlites.

This hypothesis is in agreement with the experimental study done by Sweeney et al. (1993) which

also mentions a possible MARID formation due to metasomatism. Another process responsible

for MARID genesis described by Waters (1987) is the high-pressure crystallization of ultra-

potassic magmas, similar to lamproites. Choukroun (2004), analysed Hf isotopes in rutile and

concluded that the Ti-rich parent melt of the MARID xenoliths reacted with ancient harzburgitic

mantle rocks, but his data do not provide any information whether MARID formation is related to

crystallization of the Ti-rich melt or the metasomatism of the harzburgite. The study also suggested

a relation between MARID and PIC rocks and concluded that PIC rocks may represent more

metasomatized versions of MARIDs. An ilmenite with MARID-like chemistry was found in a

Granny Smith sample but it contained orthopyroxene, which was not found in any MARID

xenoliths.

In the single Granny Smith nodule in which clinopyroxenes were analysed with the SEM and

electron microprobe, a difference in chemical compositions was documented between the margins

and centres of the diopside neoblasts and porphyroclasts (Fig. 15). The difference in chemistry

between the margins and centers of the neoblasts and porphyroclasts could be caused by the

infiltration of a melt/fluid causing both cryptic metasomatism (changing the chemistry of the

clinopyroxene) and modal metasomatism, introducing ilmenite.

Analysing olivine porphyroclasts and neoblasts, phlogopite, ilmenite and spinel in Kimberley Fe-

rich dunite xenoliths, Rehfeldt et al. (2007) concluded that ilmenite formation was linked to

metasomatism by a Fe and Ti-rich fluid. The pre-metasomatic olivines were cumulates from large

igneous province magmatism associated with the Karoo flood basalt episode, an idea first proposed

Page 51: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

50

by Dawson et al. (1981). Some of the ilmenites studied by Rehfeldt et al. (2007), their type 1

ilmenites, formed at the expense of Cr-rich spinel. This is in agreement with the relationship

observed in sample 13-69-2 where ilmenite was found bordering a Cr-rich spinel with fine ilmenite

lamellae extending inside the spinel (Fig. 5C). This particular ilmenite has low Cr and Mg and

high Nb, unusual for the dunite ilmenites, and may represent the incipient stage of such a

replacement. Type 1 ilmenites have higher Cr, Sc, V, and Ga and lower Cu and Zn compared to

type 2 ilmenites, but no such differentiation was observed in the samples analysed in this study.

Temporally, the metasomatic process and the deformation seem to be related.

The formation of rutile-ilmenite intergrowths similar to those documented at Kimberley has been

attributed to exsolution of ilmenite/rutile from a previous Ti-rich metasomatic phase (Tollo et al.,

1987) whereas silicate-bearing rutile nodules have been interpreted by Schulze (1990) as magmatic

crystallization products. The fact that a clear relationship between Nb-Ta and Zr-Hf in ilmenite

was not observed in the samples analysed in this study, as would be expected from the

experimental data (Green et al., 1987), does not support the formation of ilmenite as a

crystallization product. Two different possibilities exist: ilmenite formation as exsolution from a

previous and still elusive unknown Ti-rich phase (Tollo et al., 1987) or the replacement of rutile

due to contact with a Fe-rich melt or fluid. The latter mechanism could also explain the presence

of ilmenite vein structures inside the rutile.

The processes that led to the formation of the orthopyroxenites represent another debated topic

due to the presence of fine apparent quench textures. Analysing fine-grained orthopyroxenite

xenoliths from Mzongwana, South Africa, Boyd et al. (1984) concluded that they formed as rapid

crystallization products of a pyroxenitic magma. Another possible genetic process was described

by Doyle et al. (2004) in which a Fe-Ti-rich megacryst parent magma interacted with peridotitic

Page 52: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

51

solid mantle and previously formed megacryst veins or aggregates forming orthopyroxene and

ilmenite, according to the equation:

(Mg,Fe)2SiO4 + TiO2 = (MgFe)TiO3 + (MgFe)SiO3

olivine (magma) ilmenite orthopyroxene

Sample 13-67-54, in which orthopyroxenite occurs in contact with dunite (Fig. 7E) could indicate

the boundary of such a replacement process. Regardless of the process, it must have happened

quite close in time to their entrainment by the kimberlite, otherwise the very fine quench-like

textures wouldn’t have survived.

Formation due to related metasomatic processes could explain the chemical similarity in all of the

Kimberley ilmenite samples and the lack of a clear connection between the co-existing phases and

assemblages and the chemistry of the coexisting ilmenite. Many studies of mantle xenoliths from

Kimberley have invoked metasomatism as an important agent in the development of the chemical

composition of the xenoliths: e.g., metasomatism due to oceanic crust subduction ~ 2.9 Ga ago

(Green, 2000, Griffin et al., 1999, van Achterberg, 2004), the Karoo flood basalt magmatism

(Hawkesworth et al., 1990; Griffin et al., 2003) and the formation and emplacement of kimberlites

(Dawson, 1987; Griffin et al., 2003; Rehfeldt et al., 2007). Furthermore, ilmenite formation due to

metasomatism by a Fe-Ti rich melt has been previously described in literature and is a process

known worldwide (Rehfeldt et al., 2007, Ashchepkov et al., 2013). As stated earlier, the most

common hypothesis is that a Fe-Ti rich melt is responsible for the metasomatism, but the exact

composition and nature of the metasomatic agent is still debated.

In Fig. 14, the Kimberley ilmenite trace element are shown together with the maximum and

minimum trace element values for ilmenite megacrysts from South Africa, Yakutian kimberlites

and Gribb kimberlite (Kostrovitsky et al., 2004). All the ilmenites analysed from Kimberley plot

Page 53: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

52

inside the field defined by South African ilmenite megacrysts whereas the analysis from Gribb

have lower Zr and Hf values and the ones from Yakutia have higher minimum Nb and Ta values.

Thus, a metasomatic overprint by a proto-kimberlitic megacrystic magma, like the one proposed

by Doyle et al. (2004) is entirely possible. Interaction with a megacrystic parent magma is also

considered responsible for the formation of ilmenite-rich polymictic breccias from Kimberley

(Giuliani et al., 2013) through circulation in narrow conduits and entraining fragments of different

lithologies. Ilmenite in the breccia is found as either large microscopically observable ilmenite

laths with minor rutile and with olivine, carbonate, sulphides, phlogopite and LIMA minerals

inclusions or as microscopic ilmenite-rutile intergrowths interstitial to olivine and orthopyroxene.

7. Conclusions Ilmenite is a very important indicator mineral used in the search for kimberlites. Although most

ilmenite from kimberlite, worldwide, belongs to the magmatic suite of Cr-poor megacryst minerals

(e.g., Schulze, 1987), this is not the case in the Kimberley area of South Africa. Members of the

Cr-poor megacryst suite are rare here (Schulze, 1995), but ilmenite is known as a component of

other rock types, such as the Granny Smith suite of diopsides (Boyd et al., 1984) and the MARID

suite (e.g., Dawson et al., 1977).

In this study, I have documented the composition and paragenesis of ilmenites from five

petrographically distinct mantle xenolith suites at Kimberley (Granny Smith, MARID, Fe-rich

dunites, orthopyroxenites and rutile-ilmenite nodules. Using these data, an ilmenite classification

scheme was developed, but more data are needed in order to better constrain and verify all the

defined fields. In an effort to determine the mantle source rock type of ilmenite xenocrysts from

Kimberley, the classification scheme was applied to ilmenite xenocrysts from four mines at

Kimberley (Bultfontein, Otto’s Kopje, Kamfersdam and Wesselton), and it was found that, despite

Page 54: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

53

their close physical proximity to one another, they sampled distinctly different portions of the

mantle, as far as represented by their ilmenite suites.

This classification scheme exploits the differences in ilmenite composition between the different

paragenesis, but the relationship between ilmenite composition and mineral

association/composition is not as clear as in the Cr-poor megacryst suites. This is an indicator that

a process more complex than relatively simple fractional crystallization is responsible for the

crystallization of ilmenite in the five different suites at Kimberley. Most likely, metasomatism

plays an important role and this has been clearly documented in the Granny Smith and the dunite

xenoliths. The exact nature of the metasomatic agent is still elusive but it might be the same or

similar to the magma responsible for the formation of South African ilmenite megacrysts as

suggested for related ilmenite suites from other kimberlite localities.

Page 55: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

54

References

Ashchepkov I. V., Alymova N. V., Logvinova A. M., Vladykin N. V., Kuligin S. S., Mityukhin

S. I., Stegnitsky Y. B., Prokopyev S. A., Salikhov R. F., Palessky V. S., Khmelnikova O. S.

(2013) Picroilmenites in Yakutian kimberlites: variations and genetic models. Solid Earth

Discussion, vol. 5 p 1259-1334

Boyd F.R, Dawson J.B., Smith J.V. (1983). Granny Smith diopside megacrysts from the

kimberlites of the Kimberley area and Jagersfontein, South Africa. Geochimica et

Cosmochimica Acta vol. 48, p. 381-384

Boyd, F. R., Nixon, P. H. and Boctor, N. Z. (1984). Rapidly crystallized garnet pyroxenite xenoliths

possible related to discrete nodules. Contributions to Mineralogy and Petrology vol. 86, p. 119-

130.

Page 56: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

55

Carmody L.,Bodnar, R. J, Pokhilenko L. N, Taylor L. A, Pokhilenko N. P, Thaisen K. G, Tychkov

N., Sobolev N. V. (2014). Ilmenite as a diamond indicator mineral in the Siberian Craton: a tool

to predict diamond potential. Economic Geology, vol. 109, p. 775-783

Choukroun M., O’Reilly S.Y., Griffin W.L., Pearson N.J., Dawson J.B. (2004) Hf isotopes of

MARID (mica-amphibole-rutile-ilmenite-diopside) rutile trace metasomatic processes in the

lithospheric mantle. Geology, vol. 33, p. 45

Dalpe C., Baker D.R., Sutton S.R., (1995) Synchrotron X-ray Fluorescence and laser ablation ICP-

MS microprobes: useful instruments for analysis of experimental run-products. The Canadian

Mineralogist vol 33, p. 481-498

Dawson, J.B., Smith J.V., (1977). The MARID (mica-amphibole-rutile-ilmenite-diopside) suite of

xenoliths in kimberlite. Geochimica et Cosmochimica Acta vol. 41, p. 309-323

Dawson, J. B., Hervig, R. L. & Smith, J. V. (1981). Fertile iron-rich dunite xenoliths from the

Bultfontein kimberlite, South Africa. Fortschritte der Mineralogie vol 59, p. 303 - 324.

Dawson, J. B. (1987). The MARID suite of xenoliths in Kimberlites:relationship to veined and

metasomatised peridotite xenoliths. In: Nixon, P. H. (ed.) Mantle Xenoliths. Chichester: John

Wiley, p. 465-474.

Doyle, P. M, le Roex, A.P, Bell, D. R (2004) Fine-grained pyroxenites from the Gansfontein

kimberlite, South Africa: Evidence for megacryst magma - mantle interaction. South African

Journal Of Geology. vol 107 p. 285-300

Page 57: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

56

Giuliani A., Kamenetsky V.S., Kendrick M.A., Philips D., Wyatt B.A., Maas R. (2013) Oxide,

sulphide and carbonate minerals in a mantle polymict breccia: Metasomatism by proto-kimberlite

magmas, and relationship to the kimberlite megacrystic suite. Chemical Geology, vol 353 p. 4-18

Griffin W.L., Moore R.O., Ryan C.G., Gurney J.J., Win T.T. (1997) Geochemistry of magnesian

ilmenite megacrysts from southern african kimberlites. Russian Geology and Geophysics vol.

38, p. 421-433 Griffin,W. L., O’Reilly, S. Y., Natapov, L. M. & Ryan, C. G. (2003). The evolution of lithospheric

mantle beneath the Kalahari Craton and its margins. Lithos vol 71 p. 215-241.

Griffin, W. L., Shee, S. R., Ryan, C. G., Win, T. T. & Wyatt, B. A. (1999). Harzburgite to lherzolite

and back again: metasomatic processes in ultramafic xenoliths form the Wesselton kimberlite,

Kimberley, South Africa. Contributions to Mineralogy and Petrology, vol. 134, p.232-250.

Gregoire, M., Bell, D.R., Le Roex, A.P. (2002) Trace element geochemistry of phlogopite-rich

mafix xenoliths: Their classification and their relationship to phlogopite-bearing peridotites and

kimberlites revisited. Contributions to Mineralogy and Petrology, vol. 142, p. 603-652

Green T. and Pearson N. (1987) An experimental study of Nb and Ta partitioning between Ti-rich

minerals and silicate liquids at high pressure and temperature. Geochim. Cosmochim. Acta vol

51, p 55-62. Green D. H. (2000) Magmatism Originating in the Upper Mantle. Crust - Mantle Interactions:

Proceedings of the International School Earth and Planetary Sciences. Sienna p. 77-95

Page 58: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

57

Gurney, J.J., Helmstaedt, H., and Moore, R.O., 1993, A review of the use and application of mantle

mineral geochemistry in diamond exploration: Pure and Applied Chemistry, vol. 65, p. 2423–

2442 Hawkesworth, C. J., Erlank, A. J., Kempton, P. D. & Waters, F. G. (1990). Mantle metasomatism:

isotope and trace-element trends in xenoliths from Kimberley, South Africa. Chemical Geology

vol 85, p 19-34.

Klemme, S., Gunther, D., Hametner, K., Prowatke, S. and Zack, T. (2006). The partitioning of

trace elements between ilmenite, ulvospinel, armalcolite and silicate melts with implications for

the early differentiation of the moon. Chemical Geology vol. 234 p. 251-263.

Kostrovitsky S.I. Malkovets V.G. Verichev E.M. Garanin V.K. Suvorova L.V. (2004)

Megacrysts from the Grib kimberlite pipe (Arkhangelsk Province, Russia), Lithos, vol. 44 p 1 –

4 McDonough, W.F. (1990). Constraints on the composition of the continental lithospheric mantle.

Earth and Planetary Science Letters, vol. 101 p. 36-909

McDonough, W.F. and Sun, S.-S. (1995). Composition of the Earth. Chemical Geology vol. 120

p.223-253.

Moore R.O., Griffin W.L., Gurney J.J., Ryan C.G., Cousens D.R., Sie S.H., Suter G.F. (1992) Trace

element geochemistry of ilmenite megacrysts from the Monastery kimberlite, South Africa.

Lithos, vol. 29 p. 1 - 18

Page 59: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

58

Pearson, D.G., Canil, D., and Shirey, S., 2003. Mantle samples included in volcanic rocks:

Xenoliths and Diamonds. In: Holland, H.D., Turekian K.K. (Eds.), The Mantle and Core.

Treatise on Geochemistry, vol. 2, p. 171-275.

Rehfeldt T., Jacob D.E., Carlson R.W., Foley S.F. (2007) Fe-rich Dunite Xenoliths from South

African Kimberlites: Cumulates from Karoo Flood Basalts Journal of Petrology V. 48 p 1387 –

1409 Schulze D. J. (1987) Megacrysts from alkalic volcanic rocks. In Mantle xenoliths (ed. P.

H. Nixon). John Wiley, Chichester. p. 433-451.

Schulze D.J, Anderson P.F.N., Hearn B.C., Hetman C.M., (1995) Origin and significance of

ilmenite megacrysts and macrocrysts from kimberlites. International Geology Review vol. 37,

p. 780-812

Schulze D.J. (1990) Silicate-bearing-rutile-dominated nodules from South African kimberlites:

metasomatized cumulates American Mineralogist, vol. 75, p. 97-104

Schulze D. J. (1995) Low-Ca garnet harzburgites from Kimberley, South Africa: Abundance and

bearing on the structure and evolution of the lithosphere. J. Geophys. Res. vol 100, p. 12.513-

12.526 Sweeney RJ, Thompson AB, Ulmer P (1993) Phase relations of a natural MARID composition and

implications for MARID genesis, lithospheric melting and mantle metasomatism. Contrib

Mineral Petrol vol. 115 p. 225–241

Tollo R.P., Haggerty S.E. (1987) Nb-Cr-rutile in the Orapa kimberlite, Botswana. Canadian

Mineralogist, vol. 25, p. 251-264

Page 60: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

59

Van Achterbergh, E. (2004). Geochemical fingerprints of mantle metasomatism. PhD

thesis, Macquarie University, Sydney

Waters F.G. (1987) A suggested origin for MARID xenoliths in kimberlites by high

pressure crystallization of an ultrapotassicrock such as lamproite. Contrib Mineral

Petrol vol. 95, p. 523–

533 White J.L, Sparks R.S.J., Bailey K., Barnett W.P., Field M., Windsor L. (2012) Kimberlite

sills and dykes associated with the Wesselton Kimberlite pipe, Kimberley, South

Africa. South African Journal of Mineralogy vol. 115 p. 1-32

Wyatt, B.A., Baumgartner, M. Anckar E., Grutter H., (2004) Compositional

classification of

“kimberlitic” and “non-kimberlitic” ilmenite. Lithos, vol. 77, p. 819-840

Zhao D., Essene E.J., Zhang Y. (1999) – An oxygen barometer for rutile-ilmenite

assemblages: oxidation state of metasomatic agens in the mantle. Earth and Planetary

Science Letters, vol. 166 p. 127-137

Page 61: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

A

PP

EN

DIX

Tab

le 5. Ilm

enite m

ajor an

d trace elem

ents an

alysis

Du

nite ilm

enites

13 - 4

1-3

3

13

-67

-52

1

3-6

7-5

4

13

-69

-1

13

-69

-2

13

-74

-49

1

3-6

7-5

4

13

-68

-4

13

-74

-47

Majo

r elem

ents w

t%

SiO2

0.0

4

0.0

1

0.0

1

0.0

1

0.0

0

0.0

0

0.0

0

0.0

1

0.0

1

TiO2

5

4.3

9

54

.06

5

4.07

5

4.3

7

41

.59

4

4.81

4

9.02

5

5.09

5

0.98

Nb

2 O5

0.0

9

0.1

0

0.1

0

0.1

1

1.7

4

1.2

0

0.0

9

0.1

3

0.0

8

Al2 O

3

0.4

1

0.1

9

0.2

7

0.3

2

0.0

1

0.0

5

0.2

2

0.2

6

0.5

9

FeO

t 2

8.0

1

30

.28

2

9.38

2

8.43

4

7.5

0

41

.31

31

.36

27

.92

30

.86

Mn

O

0.2

8

0.3

0

0.2

8

0.2

9

0.3

0

0.2

4

0.1

8

0.2

8

0.2

0

MgO

1

4.3

5

13

.36

1

3.74

1

4.2

4

6.1

5

8.7

3

11

.79

14

.68

12

.05

CaO

0.0

2

0.0

2

0.0

1

0.0

3

0.0

2

0.0

2

0.0

3

0.0

2

0.0

2

Cr

2 O3

1.8

3

1.0

7

1.8

6

1.5

0

0.0

8

1.8

6

6.5

3

1.4

5

4.7

1

TOTA

L 9

9.4

2

99

.38

9

9.73

9

9.30

9

7.3

7

98

.22

99

.21

99

.85

99

.50

Fe2 O

3

6.3

5

6.8

8

6.9

8

6.4

4

21

.71

1

8.24

1

2.77

5

.99

9

.83

FeO

2

2.3

0

24

.09

2

3.10

2

2.6

3

27

.96

2

4.90

1

9.87

2

2.53

2

2.01

Trace elemen

t pp

m

Li 2

.31

1

.64

1

.70

6

.10

2

.36

2

.86

3

.13

Na

29

7.9

9

18

5.98

2

81

.88

57

0.98

1

39

.95

65

5.92

5

38

.63

Mg

93

77

3.8

5

72

80

4.6

9

88

97

3.3

0

85

61

7.5

9

50

25

3.2

6

68

90

9.6

1

88

59

8.4

7

K

20

.66

2

3.1

1

24

.55

16

.52

25

.30

9.9

0

30

.99

Ca

72

.01

1

02

.11

77

.31

19

8.90

5

2.60

2

45

.45

10

4.59

Sc 1

5.6

8

17

.08

1

7.07

2

2.31

3

6.26

2

6.54

1

9.41

Ti 3

34

32

3.3

5

31

40

76

.97

3

38

20

1.0

0

30

39

24

.14

3

61

65

7.3

6

28

05

53

.07

3

30

52

5.2

8

V

93

2.3

0

89

2.05

1

03

7.7

3

11

06

.67

2

06

0.8

1

11

62

.25

1

15

7.6

6

Cr

12

51

8.6

1

73

19

.63

1

27

92

.25

1

02

61

.16

1

27

23

.84

4

46

68

.87

9

94

3.4

0

Mn

2

43

1.4

1

23

20

.10

2

42

4.4

6

18

86

.30

2

90

4.8

8

14

92

.12

2

30

5.9

0

Fe 1

75

62

7.8

6

15

88

41

.88

1

80

01

3.6

0

14

75

02

.01

3

54

20

1.2

1

17

59

26

.65

1

75

18

8.2

4

Co

1

72

.28

1

53

.34

16

1.46

2

02

.38

14

5.72

1

95

.48

18

6.50

60

Page 62: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

N

i 1

18

2.0

7

60

7.84

9

70

.47

89

0.87

3

22

.32

17

36

.68

9

16

.16

Cu

2

7.3

2

23

.65

21

.10

32

.83

13

.86

44

.19

27

.86

Zn

11

0.5

9

10

5.96

1

14

.74

14

5.87

1

33

.78

13

7.38

1

36

.81

Ga

8.8

9

8.0

4

10

.08

12

.89

3.1

3

11

.46

11

.02

Ge

1

.04

1

.00

-

1.4

9

1.3

7

1.6

3

1.5

3

Sr 0

.23

0

.36

0

.18

0

.19

0

.23

1

.97

0

.24

Y 0

.07

0

.08

0

.05

0

.09

0

.10

0

.42

0

.07

Zr 2

89

.08

4

97

.02

45

6.79

4

94

.88

68

4.67

4

91

.48

53

4.26

Nb

5

66

.39

7

40

.72

69

6.34

8

24

.77

89

75

.78

5

08

.09

77

3.11

Sn

7.1

2

8.2

0

7.8

3

9.0

5

21

.60

6.3

6

9.3

1

Ba

0.3

0

0.2

8

0.3

2

0.5

5

0.4

3

1.8

0

0.4

1

La -

0.0

3

- -

0.0

2

0.3

4

0.0

2

Ce

-

0.0

5

- 0

.04

0

.04

0

.58

0

.02

Pr

- 0

.01

-

- -

0.0

6

0.0

1

Nd

-

0.0

4

- 0

.03

0

.05

0

.31

0

.04

Sm

- -

- 0

.03

0

.04

0

.14

-

Eu

0.0

1

- -

0.0

4

0.0

1

0.0

5

0.0

1

Gd

0

.07

-

- 0

.10

-

0.0

9

-

Tb

- 0

.00

-

0.0

5

0.0

0

0.0

1

0.0

0

Dy

- 0

.02

0

.03

0

.06

0

.02

0

.07

0

.02

Ho

0

.00

0

.00

-

0.0

1

0.0

0

0.0

3

0.0

0

Er -

0.0

1

- 0

.08

0

.02

0

.06

0

.02

Tm

- 0

.00

-

0.0

2

0.0

0

0.0

2

0.0

0

Yb

- 0

.02

-

0.0

2

0.0

2

0.1

1

0.0

2

Lu

0.0

0

- -

0.0

1

0.0

0

0.0

2

0.0

1

Hf

11

.96

1

5.75

1

7.01

1

6.34

1

6.52

1

6.90

1

8.44

Ta 5

5.5

1

59

.77

63

.61

11

7.91

6

83

.97

70

.65

74

.35

W

0.0

6

0.0

4

0.0

6

0.1

4

0.2

1

0.1

2

0.0

8

Pb

0

.21

0

.27

0

.31

-

0.2

2

0.5

1

6.4

8

Th

0.0

0

0.0

0

0.0

0

0.0

1

0.0

0

0.0

7

0.0

0

U

0.0

1

0.0

1

0.0

1

- 0

.06

0

.04

0

.01

61

Page 63: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

13

-74

-75

1

3-7

4-7

4

13

-47

-12

6

13

-47

-12

5

13

-74

-77

Majo

r elem

ents w

t%

SiO2

0

.04

0.0

3

0.0

4

0.0

4

0.0

2

TiO2

4

6.92

5

4.9

6

54

.16

5

4.06

5

5.40

Nb

2 O5

0

.62

0.0

7

0.1

9

0.1

4

0.1

0

Al2 O

3

0.0

0

0.2

9

0.1

1

0.1

6

0.0

9

FeO

t 4

2.46

2

7.66

3

1.10

2

6.91

3

0.19

Mn

O

0.4

2

0.2

6

0.3

1

0.1

9

0.3

0

MgO

7

.43

1

4.9

5

13

.24

1

4.66

1

2.99

CaO

0

.01

0.0

1

0.0

0

0.0

1

0.0

6

Cr

2 O3

1

.78

2.2

6

1.0

5

4.1

0

1.1

4

TOTA

L 1

01

.23

10

1.18

1

00

.94

10

1.00

1

00

.76

Fe2 O

3

15

.62

6.8

1

7.2

9

7.0

7

4.7

7

FeO

2

8.41

2

1.5

4

24

.54

2

0.55

2

5.90

Trace elemen

t pp

m

Li

2.2

7

2.0

7

1.9

7

1.7

2

0.4

6

Na

15

2.25

1

85

.35

17

8.27

1

56

.51

21

.86

Mg

46

80

3.9

1

92

94

2.8

4

82

01

7.1

3

53

76

1.0

6

50

93

.23

K

5.7

6

8.3

6

9.3

4

- 3

8.03

Ca

50

.74

65

.01

21

1.09

9

1.80

3

1.70

Sc 3

8.09

1

7.46

2

1.58

1

2.61

0

.84

Ti 2

88

67

0.3

2

33

94

24

.50

3

40

64

3.1

9

20

12

38

.10

1

23

77

.32

V

10

72

.59

1

71

.20

10

6.64

1

11

.90

16

.40

Cr

12

14

2.3

7

15

44

4.4

1

71

97

.86

2

80

40

.33

2

45

.79

Mn

3

14

3.9

0

21

29

.87

2

24

1.6

6

99

0.40

8

5.99

Fe 2

59

88

5.4

9

16

45

37

.97

1

79

27

1.5

9

94

55

0.2

1

98

47

.73

Co

1

40

.35

17

6.23

1

68

.12

10

5.70

6

.69

Ni

34

5.43

1

36

3.3

2

82

8.71

1

32

1.4

6

42

.79

Cu

8

.00

2

8.38

3

0.54

2

0.98

2

.11

Zn

14

6.11

1

16

.19

12

1.83

6

4.11

4

.87

Ga

3.5

7

10

.19

9.2

3

7.3

7

0.1

7

Ge

1

.63

1

.18

1

.20

0

.73

0

.18

62

Page 64: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

Sr

1.2

7

0.2

1

0.2

3

0.1

7

0.6

4

Y 0

.04

0

.06

0

.14

0

.08

0

.02

Zr 6

23

.54

43

6.05

5

97

.66

22

0.21

1

2.86

Nb

4

35

4.4

2

61

2.31

1

03

3.6

8

36

0.28

1

9.91

Sn

19

.94

7.9

8

9.8

1

4.4

4

0.1

9

Ba

1.8

9

0.3

0

0.3

2

0.1

8

1.2

3

La 0

.08

-

- 0

.02

0

.11

Ce

0

.14

0

.01

0

.03

0

.05

0

.15

Pr

0.0

2

- 0

.01

-

0.0

1

Nd

0

.05

0

.03

0

.03

0

.04

0

.05

Sm

0.0

4

- 0

.05

0

.03

0

.02

Eu

0.0

1

0.0

1

0.0

1

0.0

1

0.0

0

Gd

-

0.0

4

- 0

.01

0

.01

Tb

- 0

.00

0

.01

0

.00

0

.00

Dy

- 0

.01

0

.03

0

.01

0

.01

Ho

-

0.0

0

0.0

1

0.0

0

0.0

0

Er 0

.01

0

.01

0

.01

0

.01

0

.00

Tm

- 0

.00

0

.01

0

.00

0

.00

Yb

0.0

4

0.0

2

0.0

1

0.0

2

0.0

0

Lu

0.0

0

- 0

.00

0

.00

0

.00

Hf

17

.81

16

.18

19

.58

8.2

5

0.4

8

Ta 4

46

.58

69

.81

10

8.51

4

0.83

3

.08

W

0.1

3

0.0

9

0.0

6

0.0

6

0.0

1

Pb

1

.31

0

.92

0

.81

0

.26

0

.08

Th

0.0

0

0.0

0

0.0

0

0.0

0

0.0

2

U

0.0

4

0.0

1

0.0

1

0.0

1

0.0

0

63

Page 65: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

Gran

ny Sm

ith ilm

enites

13

-41

-31

1

3-4

5-2

35

1

3-4

5-2

38

1

3-4

5-2

33

1

3-4

5-2

43

1

3-4

1-3

2

13

-45

-26

9

13

-74

-52

1

3-7

4-5

3

Majo

r elem

ents w

t%

SiO2

0

.02

0

.01

0

.01

0

.01

0

.00

0

.02

0

.03

0

.03

0

.02

TiO2

5

3.7

3

54

.12

54

.03

54

.04

54

.24

5

3.86

5

3.58

5

3.87

5

3.91

Nb

2 O5

0

.14

0

.11

0

.07

0

.09

0

.10

0

.09

0

.07

0

.09

0

.07

Al2 O

3

0.1

7

0.3

0

0.4

1

0.4

1

0.2

6

0.3

6

0.4

9

0.3

5

0.4

9

FeO

t 3

0.7

8

28

.97

27

.69

27

.73

29

.25

2

8.56

2

6.92

2

8.18

2

6.78

Mn

O

0.3

1

0.2

8

0.2

5

0.2

7

0.2

9

0.2

6

0.2

8

0.2

9

0.2

7

MgO

1

3.1

0

13

.94

14

.50

14

.47

13

.84

1

4.14

1

4.42

1

3.94

1

4.51

CaO

0

.02

0

.03

0

.02

0

.02

0

.03

0

.02

0

.02

0

.02

0

.03

Cr

2 O3

1

.03

1

.52

2

.19

2

.17

1

.34

2

.09

2

.71

1

.74

2

.71

TOTA

L 1

00

.01

9

9.94

9

9.86

9

9.90

1

00

.03

1

00

.13

99

.16

99

.14

99

.41

Fe2 O

3

7.1

9

6.7

1

6.8

6

6.8

0

6.6

6

7.2

1

6.5

6

6.2

1

6.2

6

FeO

2

4.3

1

22

.93

21

.52

21

.61

23

.26

2

2.08

2

1.01

2

2.59

2

1.14

Trace elemen

ts pp

m

Li 2

.59

2

.06

2

.55

2

.69

2

.32

2

.63

2

.30

4

.28

Na

26

9.0

3

29

6.12

3

10

.42

41

1.66

3

72

.99

3

70

.77

27

0.30

8

21

.70

Mg

80

40

4.1

9

87

12

7.9

0

89

63

7.3

5

92

81

8.5

7

84

29

9.0

6

88

49

5.7

5

82

65

5.2

9

83

85

4.3

8

K

28

.49

1

7.02

2

4.78

1

2.87

2

0.9

6

33

.21

18

.51

25

.36

Ca

81

.38

9

0.04

5

6.73

1

32

.93

10

7.7

9

12

3.12

9

1.54

9

1.67

Sc 1

7.8

9

15

.88

15

.52

15

.20

16

.64

1

6.20

1

6.48

1

7.52

Ti 3

30

53

5.9

1

32

69

22

.60

3

31

92

1.7

7

33

33

93

.78

3

20

12

0.4

7

33

17

26

.71

3

23

49

0.1

5

31

17

03

.58

V

10

55

.17

9

86

.85

10

22

.78

1

01

9.8

7

10

29

.95

1

05

4.5

4

99

5.77

1

16

5.6

9

Cr

70

46

.00

1

03

97

.97

1

49

81

.29

1

48

44

.48

9

16

6.6

4

14

29

7.2

2

86

87

.78

1

85

38

.49

Mn

2

66

5.0

1

23

22

.35

2

18

6.0

8

21

57

.67

2

33

7.6

2

23

54

.61

2

43

8.2

1

20

87

.18

Fe 1

77

67

3.9

1

16

13

22

.11

1

66

15

2.7

6

16

75

76

.59

1

76

45

6.4

6

17

66

36

.76

1

75

69

7.5

1

14

40

75

.04

Co

1

49

.99

1

54

.30

16

5.41

1

59

.96

16

0.9

3

16

4.84

1

56

.36

18

3.37

Ni

53

3.1

9

82

8.43

1

15

1.2

6

11

30

.58

7

33

.48

1

16

4.1

6

64

7.54

1

55

4.0

7

Cu

1

7.6

8

23

.84

24

.58

26

.31

22

.79

2

5.09

1

9.96

3

3.83

Zn

11

3.3

1

10

8.74

1

10

.17

10

5.14

1

09

.68

1

13

.92

10

9.81

1

25

.74

64

Page 66: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

G

a 8

.61

9

.44

1

0.90

1

0.54

9

.50

1

1.18

8

.36

1

4.58

Ge

1

.12

1

.22

0

.95

1

.16

1

.03

0

.97

0

.70

1

.43

Sr 0

.22

0

.19

0

.18

0

.37

0

.23

1

.11

0

.26

0

.27

Y 0

.06

0

.07

0

.05

0

.06

0

.07

0

.07

0

.07

0

.08

Zr 5

51

.67

4

27

.23

38

5.07

3

90

.21

47

9.5

5

42

5.76

4

55

.68

49

5.63

Nb

1

05

1.2

2

86

2.13

4

90

.60

50

2.92

7

52

.26

6

02

.56

92

2.14

5

89

.95

Sn

8.9

4

7.1

1

7.0

3

6.6

9

7.5

9

7.8

6

7.6

0

10

.12

Ba

0.3

3

0.3

1

0.3

2

0.4

9

0.5

1

3.4

1

- 0

.94

La -

- -

0.0

4

- 0

.05

0

.02

-

Ce

0

.02

-

- 0

.04

-

0.0

9

0.0

3

0.0

4

Pr

- -

- 0

.01

-

- -

-

Nd

-

- -

0.0

5

- 0

.04

0

.03

-

Sm

- -

- -

- -

- 0

.04

Eu

- -

- -

- -

- 0

.02

Gd

-

- -

- -

- -

0.0

5

Tb

- -

- -

- -

- 0

.02

Dy

0.0

2

0.0

2

- 0

.02

0

.02

0

.02

0

.03

0

.06

Ho

0

.00

-

- -

- -

- 0

.02

Er 0

.01

0

.01

-

- -

- 0

.03

0

.02

Tm

0.0

0

0.0

0

- 0

.00

-

- -

0.0

1

Yb

0.0

1

- -

0.0

3

- 0

.04

0

.02

0

.02

Lu

0.0

0

0.0

0

- -

- -

- -

Hf

19

.40

1

3.67

1

4.08

1

4.23

1

7.0

3

15

.34

15

.97

17

.08

Ta 7

5.9

1

63

.86

52

.03

56

.09

67

.36

5

8.11

7

9.81

7

9.77

W

0.0

6

0.0

8

0.0

8

0.0

6

0.0

6

0.1

2

0.0

6

0.0

9

Pb

0

.09

0

.06

0

.17

0

.15

0

.32

0

.37

0

.14

0

.07

Th

0.0

0

0.0

0

- 0

.01

-

- 0

.01

-

U

0.0

1

0.0

1

- 0

.01

-

- 0

.01

0

.02

65

Page 67: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

13

-74

-51

1

3-7

4-4

8

13

-47

-60

1

3-4

7-6

2

13

-47

-63

1

3-6

9-5

1

3-6

9-4

1

3-7

4-5

4

Majo

r elemen

ts wt%

SiO2

0

.01

0

.00

0

.01

0

.02

0

.02

0

.01

0

.02

0

.01

TiO2

5

3.5

5

54

.12

5

4.11

5

4.1

6

53

.82

54

.01

54

.28

54

.37

Nb

2 O5

0

.07

0

.10

0

.07

0

.10

0

.08

0

.08

0

.13

0

.14

Al2 O

3

0.5

3

0.2

9

0.3

1

0.2

9

0.3

7

0.2

6

0.1

5

0.1

3

FeO

t 2

6.7

2

28

.78

2

8.36

2

8.9

1

28

.33

29

.26

29

.89

30

.10

Mn

O

0.2

5

0.2

8

0.2

9

0.3

1

0.2

7

0.3

2

0.3

2

0.3

3

MgO

1

4.4

7

13

.58

1

3.90

1

3.7

3

13

.93

13

.42

13

.32

13

.29

CaO

0

.02

0

.02

0

.03

0

.02

0

.02

0

.03

0

.06

0

.06

Cr

2 O3

3

.19

1

.47

1

.60

1

.51

1

.98

1

.43

1

.06

1

.04

TOTA

L 9

9.4

7

99

.22

9

9.29

9

9.6

7

99

.48

99

.45

99

.84

10

0.10

Fe2 O

3

6.7

3

5.7

9

6.0

9

6.2

1

6.5

4

6.1

6

6.1

7

6.2

5

FeO

2

0.6

6

23

.57

2

2.88

2

3.3

2

22

.44

23

.72

24

.34

24

.48

Trace elemen

ts pp

m

Li 3

.36

2.2

3

3.9

4

4.1

0

2.9

0

4.3

9

2.6

6

Na

89

5.1

4

6

39

.37

75

2.2

9

64

3.90

6

28

.24

68

2.37

1

40

.62

Mg

82

59

1.3

9

7

91

92

.25

7

89

59

.26

8

52

99

.44

8

82

67

.01

8

35

26

.07

9

82

44

.77

K

52

.78

36

.89

- 7

1.22

3

2.71

9

.79

6

4.51

Ca

15

7.2

2

1

18

.24

17

5.1

8

83

.11

19

3.53

2

20

.43

24

3.70

Sc 1

7.6

6

1

9.24

1

8.7

3

17

.79

18

.86

19

.55

18

.90

Ti 3

13

73

9.3

5

3

18

17

4.5

0

30

80

65

.92

3

22

95

7.0

3

30

18

02

.22

3

03

22

4.4

2

37

45

81

.93

V

12

31

.29

11

40

.93

1

16

4.7

1

11

05

.92

1

04

8.8

3

10

63

.09

8

0.52

Cr

18

53

8.4

9

1

00

55

.94

1

09

45

.24

1

03

29

.57

1

35

44

.73

9

78

2.3

0

71

14

.40

Mn

2

18

1.6

7

2

50

0.6

0

24

14

.90

2

51

4.2

9

22

09

.50

2

41

9.6

2

24

91

.77

Fe 1

45

74

8.6

9

1

60

59

4.1

8

15

12

81

.70

1

73

34

2.0

1

17

05

35

.97

1

71

64

8.0

3

20

27

87

.96

Co

1

75

.90

17

4.65

1

73

.66

1

72

.83

17

9.41

1

69

.90

16

7.97

Ni

15

94

.29

91

4.11

9

62

.07

9

90

.64

11

67

.96

9

20

.68

58

4.12

Cu

4

2.8

5

3

4.42

3

3.2

9

31

.08

32

.98

28

.88

20

.48

Zn

13

4.9

7

1

42

.93

15

4.1

4

14

8.69

1

41

.10

14

5.88

1

18

.18

Ga

15

.59

12

.88

11

.35

1

2.34

1

2.94

1

1.46

7

.71

Ge

3

.46

2.5

6

1.8

8

2.2

4

1.4

8

2.1

7

1.5

0

66

Page 68: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

Sr

0.2

2

0.2

4

0.3

0

0.1

2

0.1

8

0.2

3

0.4

5

Y 0

.08

0

.08

0

.11

0

.04

0

.09

0

.09

0

.11

Zr 5

25

.64

58

3.96

5

67

.96

5

06

.99

41

6.41

5

09

.56

54

1.87

Nb

6

17

.74

84

5.96

6

20

.89

6

69

.14

58

8.19

5

94

.32

99

5.34

Sn

11

.18

10

.91

10

.47

8

.62

9

.12

8

.63

8

.95

Ba

1.0

9

1.6

3

0.8

0

- 0

.40

0

.17

0

.91

La 0

.04

-

0.0

3

0.0

3

0.0

1

0.0

2

0.0

3

Ce

-

0.0

2

0.0

3

- 0

.03

0

.02

0

.03

Pr

- -

0.0

3

- 0

.01

0

.03

0

.01

Nd

0

.05

-

0.0

4

0.0

9

0.1

0

- 0

.03

Sm

- -

0.1

1

0.0

6

0.0

7

- -

Eu

0.0

5

0.0

2

- 0

.03

0

.05

0

.04

-

Gd

-

0.0

8

- 0

.05

0

.07

0

.14

0

.02

Tb

0.0

1

0.0

2

0.0

0

0.0

1

- -

0.0

0

Dy

0.0

5

- -

- 0

.05

0

.02

0

.02

Ho

0

.01

-

- 0

.02

0

.00

0

.01

0

.00

Er 0

.03

0

.06

0

.04

0

.06

0

.03

-

0.0

2

Tm

0.0

1

0.0

1

0.0

0

0.0

2

0.0

1

0.0

1

0.0

0

Yb

0.0

4

0.0

4

0.0

2

0.0

2

- 0

.01

0

.02

Lu

0.0

1

- -

0.0

1

0.0

1

0.0

1

0.0

0

Hf

18

.07

19

.72

17

.73

1

8.64

1

6.23

1

8.43

2

0.20

Ta 8

7.86

1

12

.12

76

.30

9

4.24

7

4.20

8

2.58

8

3.44

W

0.1

8

0.0

9

0.0

6

0.1

5

0.0

9

0.0

4

0.0

4

Pb

0

.04

-

0.1

2

0.0

2

- 0

.02

2

.69

Th

- 0

.01

0

.01

-

0.0

1

- 0

.00

U

0.0

1

0.0

2

0.0

1

0.0

1

0.0

3

0.0

3

0.0

1

67

Page 69: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

FR

B4

93

FR

B7

77

1

3-7

4-2

2

13

-74

-48

Majo

r elemen

ts wt%

SiO2

0.0

1

0.0

1

0.0

0

0.0

1

TiO2

54

.87

55

.06

5

2.5

8

54

.16

Nb

2 O5

0.1

1

0.1

1

0.3

4

0.0

6

Al2 O

3 0

.18

0

.35

0

.01

0

.46

FeOt

29

.36

27

.15

3

4.1

2

26

.83

Mn

O

0.3

1

0.2

7

0.3

3

0.2

4

MgO

1

3.71

1

4.7

3

11

.00

1

4.75

CaO

0

.03

0

.02

0

.05

0

.02

Cr

2 O3

1

.35

2

.15

1

.40

2

.81

TOTA

L 1

00

.51

1

00

.41

1

00

.63

1

00

.01

Fe2 O

3 5

.90

5

.63

7

.93

6

.60

FeO

24

.04

22

.08

2

6.9

8

20

.89

Trace elemen

ts pp

m

Li

3.0

0

2

.83

Na

40

5.0

7

4

43

.28

Mg

92

70

5.8

0

5

62

79

.42

K

11

9.0

3

4

7.89

Ca

50

6.1

2

5

6.26

Sc 1

6.2

8

1

3.59

Ti 3

59

35

9.5

8

2

11

56

8.4

2

V

14

7.0

7

8

14

.21

Cr

14

72

8.1

8

2

18

22

.06

Mn

2

12

6.8

3

1

02

5.0

4

Fe

17

01

80

.38

10

35

90

.06

Co

1

76

.12

14

6.40

Ni

13

21

.27

15

17

.51

Cu

3

2.7

3

2

9.71

Zn

12

0.5

4

9

6.00

Ga

11

.66

11

.85

Ge

0

.77

1.1

3

68

Page 70: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

Sr

5.5

4

0.0

9

Y 0

.15

0

.04

Zr 3

93

.65

3

11

.75

Nb

6

12

.86

4

41

.58

Sn

7.6

5

7.3

4

Ba

6.5

0

0.6

2

La 0

.90

-

Ce

1

.63

0

.03

Pr

0.3

2

0.0

1

Nd

1

.45

-

Sm

0.2

3

-

Eu

0.0

7

-

Gd

0

.18

0

.10

Tb

0.0

1

0.0

1

Dy

0.0

5

0.0

3

Ho

0

.01

0

.00

Er 0

.03

0

.00

Tm

- 0

.00

Yb

- 0

.13

Lu

- -

Hf

14

.70

1

2.05

Ta 5

5.4

1

55

.29

W

0.0

7

0.0

6

Pb

0

.55

-

Th

0.1

7

-

U

0.0

4

0.0

1

69

Page 71: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

MA

RID

ilmen

ites

13

-41

-22

1

3-4

5-2

68

1

3-4

0-5

4

13

-74

-40

1

3-7

4-4

0

13

-74

-19

1

3-1

20

-50

13

-74

-40

Majo

r elem

ents w

t%

SiO2

0

.01

0

.01

0

.01

0

.01

0

.03

0

.01

0

.01

0

.02

TiO2

5

2.3

5

44

.55

4

8.36

5

6.65

5

2.47

5

3.80

5

2.81

5

8.40

Nb

2 O5

0

.03

1

.23

0

.55

0

.08

0

.01

0

.32

0

.12

0

.13

Al2 O

3

0.0

2

0.0

1

0.0

1

0.0

3

0.0

5

0.0

3

0.0

3

0.0

0

FeO

t 3

8.2

0

43

.84

4

2.48

2

5.96

3

7.13

3

1.11

3

6.55

2

3.66

Mn

O

0.4

5

0.4

1

0.5

9

0.3

6

0.4

9

0.3

1

0.3

9

0.4

3

MgO

8

.08

6

.53

6

.59

1

5.21

8

.33

1

2.04

8

.88

1

7.53

CaO

0

.02

0

.01

0

.01

0

.05

0

.03

0

.02

0

.03

0

.05

Cr

2 O3

0

.47

1

.98

0

.42

0

.51

0

.40

1

.27

0

.62

0

.47

TOTA

L 1

00

.33

1

00

.30

1

00

.23

99

.14

99

.54

99

.44

10

0.04

1

01

.02

Fe2 O

3

6.8

5

17

.17

1

2.15

2

.98

6

.08

5

.28

6

.07

3

.28

FeO

3

2.0

4

28

.39

3

1.55

2

3.28

3

1.66

2

6.35

3

1.09

2

0.71

Trace elem

ents p

pm

Li 3

.10

1

.43

2

.51

Na

28

6.0

4

30

3.5

8

18

3.30

Mg

59

27

4.3

2

42

97

6.3

5

42

23

0.0

5

K

34

.56

1

7.9

5

27

.91

Ca

- 4

0.2

4

38

.97

Sc 9

.53

3

1.7

0

25

.35

Ti 3

70

69

2.7

8

27

14

64

.19

3

04

33

6.0

4

V

11

92

.45

2

23

1.7

8

11

39

.50

Cr

32

15

.16

1

35

44

.73

2

87

3.1

2

Mn

4

17

9.7

7

33

58

.10

4

95

2.7

7

Fe 2

19

15

4.6

7

27

39

78

.03

2

63

02

2.3

1

Co

1

90

.40

1

33

.26

1

36

.45

Ni

55

1.4

2

35

4.1

4

29

0.52

Cu

2

3.7

5

7.6

6

5.2

3

70

Page 72: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

Zn

2

04

.78

1

42

.43

1

64

.33

Ga

2.1

8

1.3

2

0.6

8

Ge

1

.73

0

.96

0

.86

Sr 0

.19

0

.19

0

.18

Y 0

.12

0

.05

0

.04

Zr 2

24

.96

4

63

.75

2

83

.25

Nb

3

05

.38

9

31

0.7

4

38

85

.11

Sn

6.9

9

19

.70

9

.81

Ba

- -

-

La -

0.0

4

-

Ce

0

.12

0

.05

-

Pr

0.0

2

- -

Nd

-

- 0

.03

Sm

- -

-

Eu

- -

0.0

2

Gd

0

.20

-

-

Tb

0.0

2

- 0

.00

Dy

- 0

.02

0

.02

Ho

-

- 0

.00

Er -

0.0

2

0.0

1

Tm

- 0

.00

-

Yb

0.3

1

0.0

3

-

Lu

- 0

.01

-

Hf

7.0

4

11

.72

7

.75

Ta 2

6.6

2

57

8.3

1

10

5.54

W

2.5

4

0.1

9

0.1

5

Pb

-

0.1

3

0.1

7

Th

0.0

6

0.0

1

-

U

0.0

3

0.0

5

0.0

4

71

Page 73: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

1

3-7

4-3

8

13

-74

-37

1

3-7

4-5

0

Majo

r elemen

ts wt%

SiO2

0

.01

0

.02

0

.02

TiO2

5

6.6

7

55

.21

5

4.51

Nb

2 O5

0

.12

0

.33

0

.18

Al2 O

3

0.0

0

0.0

3

0.0

1

FeO

t 2

9.4

4

28

.61

3

3.61

Mn

O

0.3

0

0.2

5

0.3

6

MgO

1

3.2

8

13

.96

1

0.62

CaO

0

.13

0

.03

0

.04

Cr

2 O3

0

.62

1

.62

0

.78

TOTA

L 1

00

.88

1

00

.56

1

00

.58

Fe2 O

3

3.0

7

5.0

2

4.5

4

FeO

2

6.6

8

24

.09

2

9.52

Trace elemen

ts pp

m

Li

2

.86

5

.70

Na

3

09

.53

1

84

7.6

0

Mg

9

37

73

.62

8

77

46

.68

K

1

6.1

9

63

37

.10

Ca

2

20

.67

6

49

0.9

6

Sc

17

.57

1

8.27

Ti

36

19

14

.10

3

90

54

5.3

3

V

6

39

.59

4

28

.43

Cr

1

10

75

.21

5

36

3.1

6

Mn

21

60

.54

3

25

1.2

3

Fe

1

79

68

5.1

6

21

51

33

.36

Co

22

2.0

6

31

0.94

Ni

9

52

.37

1

49

4.3

0

Cu

23

.92

3

73

.20

Zn

1

19

.16

1

86

.98

Ga

2

.61

1

.92

Ge

1.3

3

1.3

6

72

Page 74: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

Sr

0.2

9

51

.83

Y 0

.11

0

.41

Zr 5

03

.54

4

27

.44

Nb

2

00

9.7

1

28

07

.14

Sn

8.0

2

10

.42

Ba

0.5

1

18

.55

La 0

.04

3

.60

Ce

0

.03

4

.39

Pr

0.0

2

0.4

7

Nd

0

.03

2

.04

Sm

0.0

4

0.3

1

Eu

- 0

.08

Gd

0

.03

0

.16

Tb

0.0

0

0.0

2

Dy

0.0

2

0.1

3

Ho

0

.00

0

.02

Er 0

.01

0

.05

Tm

- 0

.01

Yb

0.0

1

0.0

5

Lu

0.0

0

0.0

1

Hf

12

.79

10

.86

Ta 1

04

.23

9

4.58

W

0.0

4

0.7

9

Pb

0

.96

4

.41

Th

0.0

0

0.6

3

U

0.0

1

0.3

5

73

Page 75: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

Ru

tile-ilmen

ite intergro

wth

s

13

-45

-25

6

13

-45

-25

4

13

-45

-25

7

13

-45

-25

3

13

-45

-25

5

13

-45

-26

7

13

-45

-26

5

13

-45

-26

6

13

-47

-52

Majo

r elem

ents w

t%

SiO2

0

.01

0

.01

0

.00

0

.01

0

.02

0

.02

0

.01

0

.00

0

.04

TiO2

5

3.4

3

54

.79

53

.79

5

4.23

5

4.05

5

3.90

5

3.5

2

52

.72

50

.68

Nb

2 O5

0

.08

0

.14

0

.10

0

.13

0

.10

0

.09

0

.12

0

.08

0

.08

Al2 O

3

0.6

1

0.4

0

0.5

4

0.2

4

0.4

0

0.5

6

0.3

6

0.5

3

1.1

9

FeO

t 2

6.4

5

28

.34

27

.73

2

8.63

2

7.74

2

6.62

2

9.9

8

28

.00

25

.72

Mn

O

0.2

5

0.2

7

0.2

4

0.2

7

0.2

9

0.2

4

0.2

5

0.2

0

0.1

6

MgO

1

4.6

8

14

.34

13

.94

1

4.20

1

4.13

1

4.88

1

2.7

8

13

.41

12

.33

CaO

0

.02

0

.05

0

.03

0

.02

0

.05

0

.02

0

.07

0

.03

0

.01

Cr

2 O3

3

.61

1

.28

3

.13

1

.26

2

.76

3

.07

2

.17

4

.58

9

.13

TOTA

L 9

9.8

5

10

0.22

1

00

.14

9

9.64

1

00

.19

10

0.08

9

9.8

9

10

0.31

1

00

.05

Fe2 O

3

7.1

7

6.0

0

6.5

0

6.5

6

6.5

0

6.9

5

6.4

9

7.5

7

7.1

9

FeO

2

0.0

0

22

.95

21

.88

2

2.72

2

1.88

2

0.36

2

4.1

3

21

.19

19

.25

Trace elemen

ts pp

m

Li 1

.99

2

.65

4

.92

2

.07

5

.63

2

.39

2

.81

-

Na

34

4.7

9

22

4.21

3

36

.82

2

73

.51

41

9.34

3

50

.29

98

0.8

3

2

07

.57

Mg

98

38

1.6

9

80

84

1.7

6

13

96

49

.07

8

74

92

.23

1

09

25

5.2

5

89

03

4.0

9

82

77

6.0

3

5

40

12

.27

K

20

.17

1

4.69

1

61

.47

1

9.62

4

0.59

1

1.64

1

1.6

6

1

27

.13

Ca

13

2.6

9

20

1.77

4

50

.17

8

3.13

3

52

.24

91

.36

32

5.6

7

2

63

.80

Sc 1

6.9

9

17

.00

29

.10

1

7.36

2

1.96

1

5.04

2

6.9

0

1

6.83

Ti 3

61

47

0.2

7

32

35

09

.75

5

05

01

8.8

6

34

32

36

.79

4

05

70

9.6

9

33

30

72

.29

3

33

31

6.5

7

2

28

98

4.5

7

V

10

68

.67

9

59

.87

16

12

.41

1

02

2.9

5

12

51

.49

1

09

1.7

0

11

50

.03

83

3.82

Cr

24

69

5.1

9

87

56

.19

2

14

11

.62

8

61

9.3

7

18

88

0.5

3

21

00

1.1

7

14

84

4.4

8

2

86

62

.84

Mn

1

35

9.3

7

21

17

.51

2

17

6.1

2

22

35

.68

2

28

4.7

0

20

03

.33

2

04

4.3

5

9

28

.63

Fe 1

70

20

8.1

4

15

24

09

.45

2

31

76

0.4

7

17

81

75

.19

1

86

06

6.0

2

14

89

49

.10

1

98

61

9.8

2

7

60

16

.02

Co

1

86

.58

1

57

.65

27

9.9

9

16

0.44

2

08

.18

16

3.51

2

05

.62

10

7.55

Ni

20

15

.24

1

32

3.9

2

24

99

.54

9

24

.78

15

75

.74

1

69

5.9

7

14

73

.43

10

17

.06

Cu

3

2.4

3

29

.41

42

.40

2

7.04

3

6.71

3

1.61

3

1.8

5

2

0.19

Zn

10

9.9

0

11

0.86

1

94

.46

1

06

.60

13

4.33

1

05

.80

16

8.2

1

5

5.45

74

Page 76: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

G

a 1

0.5

8

8.9

2

14

.50

9

.14

1

0.45

1

1.64

1

3.5

0

6.9

5

Ge

1

.67

1

.05

-

1.2

7

1.7

9

1.4

8

1.6

8

2.1

1

Sr 0

.34

0

.31

5

.01

0

.14

0

.46

0

.23

1

.59

3

.01

Y 0

.06

0

.11

0

.12

0

.07

0

.14

0

.07

0

.20

0

.31

Zr 3

58

.59

4

56

.22

68

4.5

3

48

6.32

4

89

.07

38

6.86

8

45

.94

3

56

.05

Nb

5

34

.22

1

01

0.5

0

11

32

.86

9

45

.41

68

4.30

5

12

.25

13

16

.63

4

68

.42

Sn

7.3

7

8.2

3

12

.32

7

.85

8

.61

8

.01

1

0.1

1

4.6

4

Ba

0.4

0

- 1

8.3

4

0.4

1

0.6

0

- 3

.90

3

.85

La 0

.03

-

0.7

3

0.0

2

0.0

3

- 0

.48

0

.82

Ce

0

.04

0

.07

0

.67

-

0.1

6

0.0

2

1.3

5

1.6

1

Pr

- 0

.01

0

.10

-

0.0

6

- 0

.08

0

.12

Nd

0

.05

0

.10

0

.60

-

0.1

0

- 0

.11

0

.45

Sm

- -

- -

- -

- -

Eu

0.0

2

0.0

2

0.0

9

- 0

.07

-

0.0

7

0.0

4

Gd

-

- 0

.16

-

- -

0.1

8

0.1

0

Tb

- -

- -

0.0

0

- 0

.02

0

.01

Dy

0.0

2

0.0

3

- 0

.02

0

.06

0

.02

0

.08

0

.09

Ho

0

.00

0

.01

-

- 0

.01

0

.00

0

.02

0

.01

Er -

- 0

.05

-

- -

0.0

4

0.0

3

Tm

- -

- -

0.0

1

- -

0.0

1

Yb

0.0

2

0.0

3

- 0

.02

0

.03

0

.02

0

.03

0

.05

Lu

- -

0.0

3

- -

0.0

0

0.0

2

0.0

1

Hf

13

.73

1

3.53

2

7.2

2

16

.71

16

.47

14

.27

31

.96

1

2.09

Ta 4

2.9

3

69

.25

16

0.6

8

62

.75

68

.03

42

.70

20

0.5

1

44

.45

W

0.1

4

0.0

6

0.2

2

0.0

6

0.1

1

0.0

7

0.2

3

0.1

0

Pb

0

.09

0

.53

-

0.1

1

0.1

0

0.1

4

0.9

4

2.2

3

Th

0.0

1

0.0

0

- 0

.00

0

.01

0

.00

0

.04

0

.04

U

0.0

4

0.0

1

0.1

2

0.0

1

0.0

2

0.0

1

0.1

8

0.3

0

75

Page 77: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

13

-47

-53

1

3-4

7-5

0

13

-47

-48

1

3-4

7-5

1

13

-47

-49

1

3-4

7-4

5

Majo

r elemen

ts wt%

SiO

2

0.0

5

0.0

6

0.0

3

0.0

2

0.0

3

0.0

2

TiO2

5

2.6

1

53

.06

51

.45

53

.38

50

.06

52

.10

Nb

2 O5

0

.07

0

.15

0

.11

0

.09

0

.06

0

.07

Al2 O

3

0.8

5

0.1

9

0.4

7

0.5

7

0.6

4

0.2

0

FeO

t 2

8.1

8

29

.51

28

.90

29

.63

30

.00

27

.00

Mn

O

0.2

0

0.1

6

0.2

2

0.2

0

0.1

0

0.1

6

MgO

1

4.0

8

12

.72

12

.73

13

.13

12

.21

14

.04

CaO

0

.03

0

.00

0

.07

0

.05

0

.03

0

.02

Cr

2 O3

4

.20

4

.60

5

.98

2

.94

6

.70

6

.36

TOTA

L 1

01

.16

1

01

.19

10

0.88

1

00

.74

10

0.95

1

00

.89

Fe2 O

3

8.9

3

7.3

0

9.2

2

7.3

0

11

.05

9.1

8

FeO

2

0.1

4

22

.94

20

.60

23

.07

20

.05

18

.74

Trace elemen

ts pp

m

Li 3

.49

4.0

3

-

6.8

0

Na

33

7.1

1

1

19

.67

42

1.49

41

2.85

Mg

78

35

9.0

7

1

41

02

3.3

9

11

18

02

.00

81

82

5.4

2

K

14

0.8

7

1

07

.09

59

.43

2

18

.06

Ca

36

0.0

8

2

71

.37

60

5.69

11

80

.92

Sc 2

2.8

6

2

6.21

2

8.74

22

.00

Ti 3

14

90

0.8

0

4

95

43

8.2

8

51

49

23

.61

33

71

28

.44

V

10

89

.12

15

51

.69

1

19

7.9

2

1

39

9.1

2

Cr

36

58

4.4

5

4

09

14

.66

3

13

44

.42

43

50

7.3

2

Mn

1

28

1.9

6

2

23

6.0

5

21

61

.62

13

69

.66

Fe 1

07

99

9.8

1

1

31

62

5.9

2

15

94

03

.05

10

92

29

.01

Co

1

60

.31

23

6.88

2

62

.15

1

22

.97

Ni

16

31

.72

22

53

.18

2

12

7.7

9

1

40

8.5

1

Cu

2

6.7

7

3

2.94

5

3.24

32

.95

Zn

87

.51

14

4.78

1

52

.13

4

9.87

Ga

13

.62

15

.65

13

.59

8

.18

Ge

4

.27

3.0

3

5.4

4

2

.76

76

Page 78: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

Sr

0.6

0

1.2

6

4.4

7

41

.17

Y 0

.22

0

.34

0

.47

0

.84

Zr 4

46

.48

5

43

.18

53

6.31

6

63

.87

Nb

6

28

.41

1

35

5.0

5

90

9.31

7

80

.21

Sn

6.9

8

14

.82

6.9

6

6.9

9

Ba

3.3

0

3.5

3

9.8

3

29

.33

La 0

.12

0

.74

1

.62

7

.80

Ce

0

.09

1

.13

1

.02

1

2.26

Pr

0.0

4

0.0

8

0.0

7

1.1

2

Nd

-

0.4

3

0.5

1

3.7

3

Sm

0.2

6

<0.2

13

0

.28

1

.00

Eu

- <0

.04

7

0.0

7

0.2

4

Gd

-

<0.1

56

0

.21

0

.39

Tb

0.0

1

<0.0

17

1

0.0

4

0.0

8

Dy

0.0

3

0.1

0

0.1

1

0.2

1

Ho

0

.01

0

.02

0

.03

0

.03

Er 0

.03

0

.08

0

.07

0

.08

Tm

- <0

.01

10

0

.01

0

.01

Yb

0.0

2

0.0

8

0.0

6

0.1

0

Lu

0.0

1

<0.0

12

3

- 0

.01

Hf

14

.81

2

1.10

2

2.80

2

5.05

Ta 5

8.8

0

11

9.79

1

52

.00

90

.05

W

0.1

1

0.4

5

0.1

3

0.2

8

Pb

1

.95

2

.32

3

.28

3

.89

Th

0.0

1

0.4

1

0.0

3

0.6

7

U

0.0

3

0.3

3

0.0

8

0.8

2

77

Page 79: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

Orth

op

yroxen

ite ilmen

ites

13

-74

-46

1

3-7

4-5

5

13

-74

-56

1

3-6

7-5

4

13

-74

-21

1

3-7

4-4

5

13

-74

-20

1

3-4

7-1

9

13

-47

-26

Majo

r elem

ents w

t%

SiO2

0

.00

0

.01

0

.02

0

.01

0

.01

0

.02

0

.00

0

.03

0

.00

TiO2

4

9.6

4

41

.75

53

.85

49

.54

54

.58

5

5.89

5

5.25

5

4.81

5

4.50

Nb

2 O5

0

.56

1

.39

0

.08

0

.08

0

.08

0

.04

0

.08

0

.09

0

.10

Al2 O

3

0.1

2

0.0

6

0.3

8

0.1

0

0.1

9

0.0

9

0.0

5

0.0

6

0.3

1

FeO

t 3

6.1

2

49

.63

29

.15

32

.37

31

.99

3

1.16

3

2.31

3

2.05

2

8.56

Mn

O

0.2

9

0.2

9

0.2

6

0.1

9

0.2

7

0.3

0

0.3

0

0.2

8

0.2

7

MgO

1

0.8

3

6.0

6

13

.47

11

.42

12

.61

1

2.67

1

2.14

1

2.39

1

3.88

CaO

0

.04

0

.01

0

.03

0

.03

0

.03

0

.02

0

.02

0

.02

0

.03

Cr

2 O3

2

.45

0

.82

2

.14

6

.32

0

.56

0

.16

0

.54

0

.63

2

.57

TOTA

L 1

00

.05

1

00

.01

99

.38

10

0.05

1

00

.32

1

00

.35

10

0.69

1

00

.37

10

0.23

Fe2 O

3

11

.68

2

2.06

5

.94

1

1.28

5

.85

3

.81

4

.76

5

.34

5

.71

FeO

2

4.4

4

27

.57

23

.21

21

.08

26

.14

2

7.34

2

7.55

2

6.72

2

2.85

Trace elemen

ts pp

m

Li 2

.29

4

.13

2

.73

Na

35

8.6

2

87

3.42

7

73

.27

Mg

73

48

9.2

3

31

55

2.6

7

78

73

9.5

0

K

27

.41

1

8.49

4

4.82

Ca

24

0.0

2

47

.14

16

1.50

Sc 3

2.2

3

35

.12

19

.72

Ti 3

29

62

9.1

6

23

45

54

.71

3

08

52

3.0

5

V

11

33

.60

2

58

1.1

8

11

33

.79

Cr

16

75

9.8

9

56

09

.43

1

47

07

.66

Mn

2

72

2.8

6

26

27

.21

2

21

6.9

7

Fe 2

44

64

2.3

2

25

25

77

.73

1

55

47

7.5

4

Co

1

59

.71

1

12

.89

17

3.65

Ni

72

1.9

9

18

8.12

1

26

4.7

8

Cu

2

2.2

8

15

.58

32

.09

Zn

12

2.9

8

12

3.98

1

37

.76

78

Page 80: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

G

a 5

.65

1

.68

1

3.13

Ge

1

.20

2

.20

2

.01

Sr 0

.27

0

.20

2

.56

Y 0

.48

0

.05

0

.17

Zr 5

71

.14

5

39

.32

50

2.84

Nb

5

87

7.4

8

10

98

7.4

7

61

6.39

Sn

13

.33

2

9.44

9

.81

Ba

- 0

.33

0

.99

La -

0.0

3

0.3

9

Ce

0

.06

0

.02

0

.44

Pr

0.0

1

- 0

.11

Nd

0

.06

0

.04

0

.53

Sm

0.0

8

- 0

.15

Eu

- 0

.04

0

.03

Gd

-

0.0

9

-

Tb

0.0

1

0.0

1

0.0

3

Dy

0.1

1

0.0

8

0.0

5

Ho

0

.02

-

-

Er 0

.07

-

0.0

3

Tm

0.0

1

0.0

1

0.0

2

Yb

0.0

8

0.0

4

0.0

8

Lu

0.0

1

0.0

2

-

Hf

14

.01

1

0.82

1

7.06

Ta 6

11

.08

4

68

.20

79

.73

W

0.1

1

0.5

0

0.1

1

Pb

0

.19

-

-

Th

0.0

2

0.0

0

0.0

8

U

0.1

0

0.1

4

0.0

3

79

Page 81: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

1

3-7

4-5

8

13

-74

-57

1

3-7

4-6

1

13

-74

-59

1

3-4

7-2

3

13

-47

-53

1

3-4

7-5

4

13

-47

-58

1

3-4

7-4

1

Majo

r elemen

ts wt%

SiO2

0

.02

0

.01

0

.00

0

.02

0

.03

0

.01

0

.02

0

.02

0

.02

TiO2

5

4.15

5

3.6

4

52

.59

50

.97

54

.32

53

.27

53

.21

51

.39

54

.06

Nb

2 O5

0

.03

0

.08

0

.13

0

.47

0

.17

0

.06

0

.06

0

.02

0

.11

Al2 O

3

0.0

9

0.2

9

0.3

7

0.0

8

0.2

7

0.0

8

0.1

3

0.0

9

0.2

5

FeO

t 3

3.17

3

4.9

6

35

.75

34

.93

31

.38

32

.89

32

.87

32

.87

32

.81

Mn

O

0.2

9

0.2

9

0.3

0

0.2

5

0.2

6

0.2

8

0.2

7

0.2

4

0.2

8

MgO

1

1.48

1

0.8

6

10

.85

11

.24

12

.62

11

.78

11

.91

11

.45

12

.29

CaO

0

.02

0

.01

0

.02

0

.03

0

.05

0

.02

0

.03

0

.02

0

.05

Cr

2 O3

1

.16

0

.47

0

.38

2

.47

1

.45

1

.33

1

.24

3

.14

0

.52

TOTA

L 1

00

.41

10

0.6

0

10

0.39

1

00

.45

10

0.53

9

9.71

9

9.74

9

9.23

1

00

.38

Fe2 O

3

5.7

3

6.5

2

8.1

5

10

.04

5.8

2

6.8

4

7.0

5

8.7

6

6.5

4

FeO

2

7.43

2

8.4

4

27

.60

24

.90

25

.56

26

.05

25

.82

24

.10

26

.27

Trace elemen

ts pp

m

Li

5

.68

4

.61

6.3

3

Na

1

80

.11

17

2.07

26

8.36

Mg

7

84

60

.72

7

63

07

.88

97

13

5.9

0

K

2

1.02

3

9.50

36

.99

Ca

1

39

.42

17

1.69

29

4.54

Sc

24

.46

22

.10

3

0.85

Ti

33

25

35

.96

3

33

97

9.7

2

3

96

61

1.1

1

V

1

05

8.4

7

96

6.22

11

95

.80

Cr

9

07

7.5

8

85

01

.03

35

56

.05

Mn

12

21

.02

1

11

0.0

8

1

44

6.9

4

Fe

18

59

15

.04

1

85

56

9.7

6

2

16

00

5.9

1

Co

18

9.65

1

82

.75

2

35

.74

Ni

1

21

9.2

8

11

84

.74

87

2.13

Cu

23

.44

24

.27

2

1.77

Zn

1

36

.55

12

9.14

16

2.38

Ga

8

.45

7

.62

10

.05

Ge

1.6

7

2.0

0

2

.13

80

Page 82: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

Sr

0.2

5

0.1

2

0.2

0

Y 0

.28

0

.33

0

.21

Zr 3

39

.32

31

9.94

8

02

.49

Nb

5

32

.07

40

0.66

8

72

.42

Sn

5.1

8

4.4

1

7.8

7

Ba

- -

-

La 0

.08

-

0.0

8

Ce

0

.25

0

.17

0

.29

Pr

0.0

2

- 0

.09

Nd

0

.11

-

0.0

8

Sm

0.1

4

0.2

0

0.6

7

Eu

0.0

6

0.0

9

-

Gd

0

.12

0

.20

-

Tb

0.0

1

0.0

5

0.0

2

Dy

0.2

7

- 0

.18

Ho

0

.01

0

.02

0

.02

Er 0

.04

0

.04

0

.12

Tm

0.0

2

0.0

1

-

Yb

- 0

.09

0

.16

Lu

0.0

1

0.0

2

-

Hf

13

.60

15

.30

27

.95

Ta 9

0.48

5

8.96

1

35

.91

W

0.0

5

0.0

9

0.2

7

Pb

-

- -

Th

0.0

3

0.0

3

0.0

4

U

0.1

1

0.1

4

0.2

6

81

Page 83: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

13

-47

-55

13

-47

-58

1

3-4

7-20

13

-47-25

1

3-4

7-28

13

-47-27

1

3-4

7-24

13

-47

-21

Majo

r elem

ents w

t%

SiO2

0.0

1

0.0

2

0.0

1

0.0

1

0.0

4

0.0

1

0.0

2

0.0

0

TiO2

49

.72

52

.91

51

.74

54

.48

54

.63

54

.60

54

.46

52

.95

Nb

2 O5

0.0

6

0.1

5

0.3

9

0.1

1

0.1

4

0.1

4

0.0

5

0.1

2

Al2 O

3 0

.08

0

.38

0

.02

0

.30

0

.37

0

.41

0

.53

0

.36

FeO

t 3

1.36

3

2.12

3

5.93

3

0.84

2

9.42

2

8.72

2

7.20

3

0.61

Mn

O

0.1

8

0.2

5

0.3

1

0.2

5

0.2

3

0.2

6

0.2

3

0.2

6

MgO

1

0.72

1

2.33

1

0.99

1

2.62

1

3.26

1

3.00

1

4.84

1

2.57

CaO

0

.01

0

.03

0

.02

0

.03

0

.03

0

.03

0

.01

0

.04

Cr

2 O3

7

.94

2

.09

1

.17

1

.76

2

.19

3

.13

3

.16

3

.34

TOTA

L 1

00.08

1

00

.29

100

.58

100

.39

100

.32

100

.30

100

.49

10

0.25

Fe2 O

3 9

.62

7

.60

9

.44

5

.34

5

.02

4

.40

6

.34

7

.15

FeO

21

.74

24

.52

26

.48

25

.50

24

.40

24

.32

20

.86

23

.47

Trace elemen

ts pp

m

Li 3

.02

1

.91

Na

40

5.22

2

42

.84

Mg

71

72

7.3

5

80

65

3.2

0

K

56

.29

3

5.83

Ca

12

3.1

0

15

9.32

Sc 2

4.7

7

20

.71

Ti 3

00

37

2.6

1

32

68

91

.05

V

14

22

.57

8

61

.84

Cr

54

31

5.7

3

14

30

0.6

4

Mn

1

36

9.4

7

15

99

.44

Fe 1

67

46

7.6

4

19

51

83

.17

Co

1

72

.59

1

80

.97

Ni

13

51

.15

1

24

7.6

6

Cu

3

1.9

5

35

.97

Zn

12

2.3

7

15

4.30

Ga

8.7

3

11

.11

Ge

1

.68

0

.75

82

Page 84: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

Sr

0.5

7

0.2

5

Y 0

.08

0

.10

Zr 4

33

.81

4

95

.84

Nb

3

78

.69

8

20

.81

Sn

5.0

3

5.9

4

Ba

3.1

2

0.7

2

La 0

.12

0

.03

Ce

0

.11

0

.11

Pr

0.0

4

0.0

3

Nd

-

0.1

0

Sm

0.2

7

0.1

3

Eu

0.0

6

-

Gd

-

-

Tb

- 0

.02

Dy

0.1

1

0.0

4

Ho

0

.01

0

.01

Er 0

.03

0

.05

Tm

- 0

.02

Yb

0.0

5

0.0

4

Lu

0.0

2

0.0

2

Hf

15

.37

2

0.29

Ta 7

4.5

5

10

2.56

W

0.0

9

0.1

7

Pb

-

-

Th

0.0

1

-

U

- 0

.05

83

Page 85: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

Kam

fersdam

ilmen

ite xen

ocrysts

K-1

K

-2

K-3

K

-4

K-5

K

-6

K-7

K

-8

K-9

K

-10

K

-11

K

-12

Majo

r elemen

ts wt%

TiO2

4

6.2

40

5

4.2

40

4

6.9

80

4

5.52

0

53

.980

4

1.77

0

54

.310

5

3.07

0

49

.660

4

8.49

0

54

.185

5

4.21

0

SiO2

0

.00

8

0.0

05

0

.00

2

0.0

01

0

.01

9

0.0

17

0

.00

7

0.0

09

0

.01

1

0.0

06

0

.01

0

0.0

14

Nb

2 O5

0

.52

2

0.0

85

0

.56

4

0.8

25

0

.11

8

1.2

84

0

.10

9

0.1

77

0

.41

5

0.6

02

0

.10

9

0.0

91

Al2 O

3

0.0

22

0

.30

6

0.0

19

0

.02

5

0.2

50

0

.01

4

0.2

99

0

.10

0

0.0

28

0

.01

7

0.3

23

0

.32

5

Cr

2 O3

1

.83

0

1.5

90

1

.91

5

1.9

95

1

.32

1

1.2

12

1

.55

5

1.0

45

1

.46

9

2.2

65

1

.61

5

1.6

90

FeO

*

42

.08

5

28

.66

0

41

.28

0

42

.800

2

9.36

5

47

.645

2

8.14

5

32

.230

3

8.21

5

38

.670

2

8.59

0

28

.560

Mn

O

0.4

08

0

.27

3

0.4

19

0

.38

1

0.2

96

0

.36

0

0.3

22

0

.33

6

0.3

90

0

.42

2

0.3

03

0

.27

8

MgO

7

.13

0

13

.69

0

7.5

75

6

.84

5

13

.355

5

.36

0

13

.975

1

1.90

0

8.9

60

8

.65

5

13

.915

1

3.81

0

NiO

0

.02

7

0.1

23

0

.04

8

0.0

25

0

.11

3

0.0

14

0

.11

5

0.0

85

0

.05

5

0.0

70

0

.13

6

0.1

37

CaO

0

.01

3

0.0

17

0

.00

5

0.0

05

0

.01

5

0.0

04

0

.03

2

0.0

17

0

.01

5

0.0

07

0

.02

2

0.0

30

Total

98

.28

4

98

.99

0

98

.80

7

98

.422

9

8.83

2

97

.679

9

8.87

0

98

.969

9

9.21

7

99

.205

9

9.20

7

99

.144

K-1

3

K-1

4

K-1

5

K-1

6

K-1

7

K-1

8

K-1

9

K-2

0

K-2

1

K-2

2

K-2

3

K-2

4

Majo

r elemen

ts wt%

TiO2

5

3.7

00

4

8.7

60

5

3.2

50

5

4.19

5

54

.460

5

3.86

0

54

.400

5

4.10

5

54

.040

4

8.97

0

53

.005

4

7.09

0

SiO2

0

.00

5

0.0

00

0

.00

0

0.0

30

0

.01

0

0.0

04

0

.03

5

0.0

22

0

.00

8

0.0

02

0

.01

1

0.0

00

Nb

2 O5

0

.19

1

0.5

16

0

.14

7

0.0

84

0

.12

8

0.1

44

0

.10

0

0.0

87

0

.09

4

0.5

14

0

.17

7

0.7

05

Al2 O

3

0.1

42

0

.01

7

0.1

31

0

.32

8

0.2

45

0

.18

9

0.2

90

0

.35

5

0.2

96

0

.02

0

0.1

19

0

.01

9

Cr

2 O3

1

.03

0

1.9

35

1

.06

8

1.7

60

1

.34

5

1.0

49

1

.45

9

1.8

60

1

.58

0

1.6

70

1

.10

9

3.0

30

FeO

*

31

.59

0

38

.81

5

32

.02

0

28

.125

2

9.53

0

30

.730

2

8.93

0

28

.185

2

8.68

0

38

.350

3

2.02

5

39

.595

Mn

O

0.3

49

0

.40

6

0.3

41

0

.31

2

0.2

89

0

.32

9

0.2

61

0

.28

9

0.2

77

0

.40

2

0.3

34

0

.37

7

MgO

1

2.3

40

8

.65

5

12

.07

5

13

.970

1

3.29

0

12

.690

1

3.65

0

14

.000

1

3.66

0

8.7

40

1

2.11

0

8.0

40

NiO

0

.07

3

0.0

78

0

.07

7

0.1

11

0

.08

6

0.0

92

0

.13

3

0.1

45

0

.09

5

0.0

57

0

.07

0

0.0

70

CaO

0

.01

1

0.0

03

0

.01

3

0.0

35

0

.01

4

0.0

15

0

.01

0

0.0

22

0

.01

7

0.0

27

0

.02

3

0.0

14

Total

99

.43

2

99

.18

5

99

.12

2

98

.950

9

9.39

6

99

.102

9

9.26

7

99

.070

9

8.74

6

98

.753

9

8.98

2

98

.940

84

Page 86: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

K-2

5

K-2

6

K-2

7

K-2

8

K-29

K

-30

K-31

K

-32

K-33

K

-34

K-35

K

-36

Majo

r elemen

ts wt%

TiO2

5

4.1

45

4

3.1

65

5

4.0

15

5

4.30

0

54

.145

4

3.16

0

53

.765

4

5.67

5

54

.225

5

4.00

5

53

.990

5

1.76

0

SiO2

0

.01

1

0.0

00

0

.01

0

0.0

36

0

.02

0

0.0

10

0

.01

4

0.0

00

0

.00

5

0.0

10

0

.01

1

0.0

06

Nb

2 O5

0

.09

8

1.2

55

0

.13

2

0.0

83

0

.13

2

1.3

69

0

.11

0

0.7

41

0

.09

6

0.1

10

0

.08

3

0.1

80

Al2 O

3

0.2

57

0

.01

5

0.2

38

0

.38

4

0.2

32

0

.02

0

0.5

26

0

.00

5

0.2

66

0

.20

9

0.3

68

0

.14

6

Cr

2 O3

1

.29

3

1.6

50

1

.30

7

1.9

10

1

.27

7

2.0

15

2

.70

5

2.4

20

1

.34

9

1.2

54

1

.95

0

0.9

95

FeO

*

29

.48

5

45

.73

0

29

.36

5

27

.735

2

9.67

5

42

.975

2

7.23

5

41

.625

2

9.27

5

29

.850

2

7.86

0

29

.900

Mn

O

0.2

97

0

.38

5

0.2

86

0

.28

5

0.3

02

0

.39

2

0.2

52

0

.37

5

0.3

16

0

.33

8

0.2

81

0

.30

9

MgO

1

3.3

95

5

.87

0

13

.32

0

14

.065

1

3.19

0

6.4

90

1

4.12

5

7.3

40

1

3.58

5

13

.165

1

4.12

0

12

.340

NiO

0

.11

7

0.0

30

0

.11

2

0.1

53

0

.09

2

0.0

40

0

.21

2

0.0

46

0

.10

5

0.0

73

0

.15

8

0.0

65

CaO

0

.01

6

0.0

12

0

.01

8

0.0

17

0

.02

1

0.0

02

0

.04

6

0.0

12

0

.01

9

0.0

18

0

.00

9

0.0

13

Total

99

.11

4

98

.11

2

98

.80

3

98

.968

9

9.08

6

96

.472

9

8.99

0

98

.239

9

9.24

2

99

.032

9

8.83

0

95

.713

K

-37

K

-38

K

-39

K

-40

K

-41

K

-42

K

-43

K

-44

K

-45

K

-46

K

-47

K

-48

Majo

r elemen

ts wt%

TiO2

4

5.4

50

5

3.7

75

5

4.1

20

5

2.41

0

46

.74

5

53

.925

5

3.91

5

40

.945

4

5.87

5

42

.920

5

4.27

5

54

.145

SiO2

0

.00

0

0.0

02

0

.03

6

0.0

20

0

.00

0

0.0

26

0

.00

0

0.0

06

0

.00

6

0.0

09

0

.01

5

0.0

11

Nb

2 O5

0

.84

8

0.0

97

0

.10

2

0.2

37

0

.92

3

0.0

98

0

.14

5

1.4

32

0

.60

5

1.4

90

0

.12

1

0.1

07

Al2 O

3

0.0

19

0

.33

1

0.3

63

0

.07

0

0.0

25

0

.31

3

0.2

06

0

.00

5

0.0

06

0

.01

3

0.2

79

0

.26

2

Cr

2 O3

2

.79

0

1.6

80

1

.87

0

1.1

53

2

.74

5

1.6

65

1

.19

2

0.8

60

2

.01

5

1.7

70

1

.18

0

1.5

00

FeO

*

35

.47

5

28

.12

5

28

.14

0

33

.080

3

9.4

00

2

9.02

0

29

.910

4

9.28

5

42

.305

4

5.85

0

29

.670

2

8.98

5

Mn

O

0.3

41

0

.29

4

0.2

71

0

.37

0

0.4

11

0

.29

6

0.3

13

0

.33

8

0.4

04

0

.37

7

0.2

59

0

.30

4

MgO

8

.69

5

13

.89

0

13

.99

0

11

.265

8

.01

5

13

.560

1

3.13

5

4.9

65

7

.20

0

5.7

65

1

3.31

0

13

.395

NiO

0

.08

5

0.1

36

0

.14

3

0.0

97

0

.06

0

0.1

30

0

.09

4

0.0

30

0

.03

8

0.0

37

0

.15

0

0.1

16

CaO

0

.01

5

0.0

13

0

.01

9

0.0

11

0

.01

2

0.0

12

0

.01

8

0.0

03

0

.00

9

0.0

03

0

.02

5

0.0

16

Total

93

.71

8

98

.34

3

99

.05

4

98

.712

9

8.3

36

9

9.04

5

98

.927

9

7.86

8

98

.463

9

8.23

4

99

.285

9

8.84

0

85

Page 87: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

FeO

*

Mn

O

MgO

NiO

CaO

Total

34

.79

0

0.4

25

10

.05

0

0.1

01

0.0

06

98

.32

2

29

.010

0.2

29

13

.320

0.2

19

0.0

33

98

.658

26

.42

0

0.2

36

14

.05

0

0.2

25

0.0

30

97

.88

1

41

.150

0.4

05

7.2

90

0.0

56

0.0

19

98

.197

43

.610

0.3

37

6.3

90

0.0

00

0.0

03

97

.377

41

.410

0.3

92

7.2

10

0.0

30

0.0

04

98

.079

38

.46

0

0.4

34

8.5

40

0.0

36

0.0

01

98

.70

6

48

.800

0.3

86

4.8

90

0.0

26

0.0

09

97

.238

39

.090

0.1

84

10

.400

0.1

43

0.0

14

97

.822

32

.900

0.2

26

10

.940

0.1

47

0.0

48

98

.228

29

.370

0.2

63

13

.180

0.1

59

0.0

19

98

.842

31

.820

0.3

09

12

.300

0.0

98

0.0

12

99

.114

K-4

9

K-5

0

K-5

1

K-5

2

K-5

3

Majo

r elemen

ts wt%

TiO2

5

1.2

00

4

7.1

20

5

4.4

60

5

4.07

5

53

.90

5

SiO2

0

.01

5

0.0

00

0

.01

3

0.0

04

0

.03

0

Nb

2 O5

0

.10

2

0.8

74

0

.12

0

0.1

02

0

.08

9

Al2 O

3

0.3

33

0

.02

2

0.3

02

0

.28

7

0.3

07

Cr

2 O3

1

.60

0

2.7

70

1

.30

7

1.4

41

1

.58

0

FeO

*

26

.24

5

39

.29

5

28

.51

0

28

.925

2

8.4

50

Mn

O

0.2

73

0

.42

4

0.2

79

0

.29

8

0.2

95

MgO

1

3.6

50

8

.13

0

13

.70

0

13

.590

1

3.8

80

NiO

0

.12

2

0.0

69

0

.11

0

0.1

33

0

.12

8

CaO

0

.01

3

0.0

11

0

.02

1

0.0

18

0

.01

6

Total

93

.55

3

98

.71

5

98

.82

2

98

.873

9

8.6

81

Otto

’s Ko

pje ilm

enite xe

no

crysts

OK

-1 O

K-2

O

K-3

OK

-4

OK

-5 O

K-6

OK

-7 O

K-8

OK

-9 O

K-10

OK

-11 O

K-12

Majo

r elemen

ts wt%

TiO2

4

9.9

70

5

3.3

70

5

2.6

00

4

6.62

0

43

.470

4

6.04

0

49

.460

4

0.98

0

44

.660

5

0.09

0

53

.470

5

3.15

0

SiO2

0

.02

2

0.0

54

0

.00

1

0.0

13

0

.01

3

0.0

35

0

.01

0

0.0

18

0

.01

2

0.0

37

0

.02

0

0.0

30

Nb

2 O5

0

.54

4

0.0

98

0

.06

3

0.7

83

1

.30

4

0.6

99

0

.42

3

1.4

50

1

.31

7

0.6

11

0

.10

0

0.1

98

Al2 O

3

0.0

24

0

.51

5

0.6

06

0

.01

1

0.0

21

0

.02

0

0.0

23

0

.00

5

0.2

72

0

.34

0

0.3

63

0

.12

8

Cr

2 O3

2

.39

0

1.8

10

3

.65

0

1.8

50

2

.23

0

2.2

40

1

.32

0

0.6

74

1

.73

0

2.8

90

1

.90

0

1.0

69

86

Page 88: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

FeO

*

Mn

O

MgO

NiO

CaO

Total

30

.04

0

0.2

54

12

.24

0

0.1

55

0.0

30

98

.21

4

28

.310

0.2

71

13

.900

0.1

34

0.0

09

98

.543

31

.15

0

0.3

13

12

.20

0

0.0

71

0.0

18

97

.83

6

47

.110

0.3

61

5.4

90

0.0

22

0.0

07

97

.723

42

.040

0.6

09

5.7

80

0.0

47

0.0

16

98

.670

37

.870

0.3

79

8.7

60

0.0

70

0.0

10

98

.311

30

.11

0

0.2

41

12

.57

0

0.1

92

0.0

25

98

.13

0

43

.240

0.3

81

6.6

20

0.0

32

0.0

12

97

.746

45

.350

0.4

09

5.7

90

0.0

39

0.0

05

97

.783

36

.680

0.3

65

9.8

40

0.0

45

0.0

59

98

.331

27

.620

0.2

40

13

.870

0.1

54

0.0

43

98

.160

38

.270

0.3

93

8.2

30

0.0

33

0.0

05

97

.160

OK

-13

OK

-14

OK

-15

O

K-1

6

OK

-17

O

K-1

8

OK

-19

O

K-2

0

OK

-21

OK

-22

OK

-23

OK

-24

Majo

r elemen

ts wt%

TiO2

4

7.8

50

4

7.0

10

4

3.1

80

4

9.06

0

52

.740

4

5.54

0

49

.590

4

6.67

0

46

.870

4

7.92

0

46

.410

4

0.91

0

SiO2

0

.00

5

0.0

02

0

.00

4

0.0

12

0

.02

8

0.0

12

0

.01

2

0.0

00

0

.00

8

0.0

00

0

.00

3

0.0

00

Nb

2 O5

0

.46

6

0.6

72

1

.52

0

0.4

13

0

.05

4

0.7

93

0

.54

7

0.9

04

0

.95

8

0.7

17

1

.04

0

1.4

70

Al2 O

3

0.0

28

0

.02

6

0.0

20

0

.02

6

0.0

00

0

.01

7

0.0

27

0

.02

0

0.0

20

0

.02

4

0.0

20

0

.01

8

Cr

2 O3

1

.68

0

2.5

30

1

.89

0

1.5

40

1

.30

0

2.3

10

1

.29

1

2.5

30

2

.75

0

2.4

00

2

.68

0

0.7

56

FeO

*

38

.84

0

39

.52

0

43

.92

0

38

.220

3

3.41

0

42

.050

3

7.30

0

39

.590

3

9.18

0

38

.520

3

9.59

0

49

.000

Mn

O

0.3

80

0

.38

6

0.3

83

0

.36

5

0.4

30

0

.42

8

0.3

14

0

.36

4

0.4

16

0

.39

8

0.4

04

0

.34

8

MgO

8

.74

0

8.0

80

6

.53

0

8.6

30

1

0.40

0

6.9

10

9

.31

0

7.9

50

8

.16

0

8.5

40

7

.93

0

4.8

80

NiO

0

.06

3

0.0

58

0

.04

5

0.0

65

0

.11

9

0.0

46

0

.06

6

0.0

62

0

.06

4

0.0

83

0

.06

5

0.0

38

CaO

0

.01

5

0.0

13

0

.02

0

0.0

08

0

.03

0

0.0

02

0

.02

0

0.0

05

0

.01

8

0.0

00

0

.00

5

0.0

13

Total

98

.06

8

98

.29

8

97

.51

1

98

.338

9

8.51

0

98

.108

9

8.47

6

98

.095

9

8.44

4

98

.602

9

8.14

6

97

.433

OK

-25

OK

-26

OK

-27

O

K-2

8

OK

-29

O

K-3

0

OK

-31

O

K-3

2

OK

-33

OK

-34

OK

-35

OK

-36

Majo

r elemen

ts wt%

TiO2

5

3.2

00

5

3.8

10

5

2.7

40

4

1.97

0

48

.130

4

8.81

0

52

.170

4

3.85

0

42

.890

4

7.33

0

53

.670

4

6.97

0

SiO2

0

.00

8

0.0

03

0

.03

5

0.0

00

0

.00

0

0.0

00

0

.01

6

0.0

00

0

.01

9

0.0

27

0

.00

5

0.0

07

Nb

2 O5

0

.13

6

0.1

08

0

.14

1

1.4

18

0

.58

0

0.6

05

0

.13

6

1.3

40

1

.49

0

0.9

66

0

.07

6

0.7

43

Al2 O

3

0.3

81

0

.32

7

0.1

47

0

.01

2

0.0

11

0

.01

7

0.4

60

0

.01

2

0.0

01

0

.16

0

0.4

21

0

.01

9

Cr

2 O3

1

.77

0

1.6

70

1

.02

1

1.3

33

1

.45

7

1.7

90

2

.21

0

2.2

60

1

.79

0

2.8

60

2

.06

0

2.4

90

87

Page 89: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

FeO

*

Mn

O

MgO

NiO

CaO

Total

38

.59

0

0.4

18

8.5

10

0.0

71

0.0

03

98

.78

0

30

.080

0.2

88

12

.990

0.0

80

0.0

25

98

.607

46

.44

0

0.3

98

5.6

40

0.0

59

0.0

14

97

.88

4

32

.400

0.3

64

11

.750

0.0

75

0.0

11

98

.791

37

.050

0.3

69

9.0

20

0.0

75

0.0

15

98

.474

44

.670

0.3

73

6.1

70

0.0

40

0.0

00

97

.816

41

.37

0

0.4

21

7.3

00

0.0

51

0.0

19

98

.58

0

39

.840

0.3

95

7.9

70

0.0

53

0.0

02

98

.318

41

.280

0.3

87

7.6

00

0.0

31

0.0

01

98

.139

38

.650

0.3

49

8.5

30

0.0

80

0.0

09

98

.433

26

.760

0.2

50

13

.860

0.1

85

0.0

63

95

.833

33

.640

0.3

31

10

.880

0.0

74

0.0

54

98

.771

OK

-37

OK

-38

OK

-39

O

K-4

0

OK

-41

O

K-4

2

OK

-43

O

K-4

4

OK

-45

OK

-46

OK

-47

OK

-48

Majo

r elemen

ts wt%

TiO2

4

9.9

40

5

3.6

70

3

9.2

90

5

3.86

0

43

.290

4

6.29

0

45

.860

4

8.99

0

46

.750

4

5.56

0

46

.740

4

8.31

0

SiO2

0

.00

1

0.0

15

0

.02

0

0.0

00

0

.01

7

0.0

08

0

.00

0

0.0

32

0

.00

2

0.0

13

0

.00

4

0.0

05

Nb

2 O5

0

.40

4

0.1

61

1

.59

0

0.0

82

1

.33

1

0.6

54

0

.87

8

0.6

05

0

.56

5

0.7

01

0

.54

8

0.4

44

Al2 O

3

0.0

15

0

.42

3

0.0

12

0

.39

5

0.0

18

0

.01

1

0.0

18

0

.02

7

0.0

16

0

.02

1

0.0

16

0

.02

0

Cr

2 O3

1

.28

1

2.0

80

0

.29

9

1.8

20

2

.03

0

1.9

60

2

.57

0

2.0

50

1

.68

0

1.8

80

1

.70

0

1.7

90

FeO

*

38

.56

0

28

.99

0

50

.69

0

28

.320

4

4.79

0

41

.250

4

0.94

0

37

.140

4

1.73

0

42

.450

4

0.46

0

38

.950

Mn

O

0.4

37

0

.23

1

0.3

18

0

.27

1

0.3

92

0

.42

8

0.3

70

0

.33

4

0.3

90

0

.42

6

0.3

04

0

.39

4

MgO

8

.69

0

13

.17

0

4.4

80

1

3.73

0

6.3

50

7

.18

0

7.4

90

9

.51

0

7.2

20

7

.10

0

8.3

00

8

.51

0

NiO

0

.05

0

0.1

93

0

.01

9

0.1

97

0

.01

3

0.0

33

0

.05

2

0.0

70

0

.03

7

0.0

32

0

.03

5

0.0

82

CaO

0

.02

0

0.0

64

0

.01

2

0.0

54

0

.00

5

0.0

04

0

.00

2

0.0

17

0

.02

5

0.0

00

0

.01

5

0.0

22

Total

99

.39

8

98

.99

6

96

.72

9

98

.729

9

8.23

5

97

.818

9

8.17

9

98

.774

9

8.41

4

98

.183

9

8.12

3

98

.526

OK

-49

O

K-50

O

K-51

O

K-5

2

OK

-53

O

K-5

4

OK

-55

O

K-5

6

OK

-57

OK

-58

OK

-59

OK

-60

Majo

r elemen

ts wt%

TiO2

4

7.8

40

5

3.7

00

4

2.5

70

5

2.86

0

49

.240

4

3.59

0

46

.470

4

6.61

0

46

.360

4

8.83

0

52

.870

5

1.81

0

SiO2

0

.04

4

0.0

00

0

.00

0

0.0

01

0

.00

0

0.0

00

0

.00

0

0.0

26

0

.00

0

0.0

27

0

.02

7

0.0

30

Nb

2 O5

0

.80

3

0.1

53

1

.40

5

0.1

70

0

.50

1

0.9

16

0

.67

0

0.7

54

0

.66

5

0.4

35

0

.10

9

0.3

28

Al2 O

3

0.0

23

0

.19

1

0.0

17

0

.09

0

0.0

25

0

.00

7

0.0

28

0

.02

9

0.0

16

0

.02

4

0.3

72

0

.09

5

Cr

2 O3

2

.48

0

1.1

00

1

.34

2

1.0

71

2

.18

0

2.0

50

2

.25

0

2.6

40

1

.80

0

1.5

00

1

.33

8

1.5

30

88

Page 90: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

O

K-61

O

K-6

2

OK

-63

O

K-6

4

OK

-65

O

K-6

6

OK

-67

O

K-68

O

K-69

O

K-70

M

ajor e

leme

nts

wt%

TiO2

5

4.1

00

5

2.6

20

5

0.09

0

49

.190

4

8.34

0

53

.460

5

1.11

0

53

.770

5

3.99

0

53

.170

SiO2

0

.00

7

0.0

31

0

.01

7

0.0

29

0

.01

2

0.0

09

0

.02

8

0.0

04

0

.01

2

0.0

00

Nb

2 O5

0

.10

1

0.2

09

0

.32

5

0.3

68

0

.56

5

0.1

23

0

.43

3

0.1

01

0

.11

9

0.1

64

Al2 O

3

0.3

26

0

.07

2

0.0

24

0

.02

1

0.0

14

0

.44

7

0.2

85

0

.21

2

0.2

59

0

.12

7

Cr

2 O3

1

.66

0

1.1

61

1

.33

7

1.3

43

2

.07

0

2.2

10

2

.00

0

1.4

51

1

.44

9

1.0

67

FeO

*

28

.34

0

33

.26

0

37

.580

3

8.52

0

38

.630

2

9.45

0

33

.730

3

0.38

0

29

.020

3

1.83

0

Mn

O

0.2

41

0

.35

9

0.4

03

0

.41

5

0.3

72

0

.24

2

0.2

32

0

.29

5

0.3

28

0

.34

5

MgO

1

3.8

10

1

1.4

10

9

.09

0

8.6

70

8

.51

0

12

.690

1

1.03

0

12

.830

1

3.42

0

12

.170

NiO

0

.13

0

0.0

61

0

.07

6

0.0

68

0

.08

8

0.2

06

0

.07

9

0.1

11

0

.11

4

0.0

67

CaO

0

.03

7

0.0

18

0

.00

5

0.0

22

0

.00

0

0.0

63

0

.05

7

0.0

66

0

.02

1

0.0

07

Total

98

.75

3

99

.20

0

98

.946

9

8.64

5

98

.600

9

8.89

9

98

.983

9

9.22

1

98

.732

9

8.94

6

Wesselto

n ilm

enite

xen

ocrysts

M

ajor el

W-1

emen

ts wt%

W-2

W

-3

W-4

W

-5

W-6

W

-7

W-8

W

-9

W-1

0

W-1

1

W-1

2

TiO2

5

5.1

10

5

2.9

60

5

5.63

0

54

.66

0

54

.500

5

5.49

0

49

.270

5

4.99

0

54

.920

5

4.7

20

5

4.92

0

55

.060

SiO2

0

.03

9

0.0

01

0

.02

2

0.0

00

0

.03

3

0.0

03

0

.00

0

0.0

07

0

.01

7

0.0

11

0

.04

9

0.0

14

Nb

2 O5

0

.08

8

0.1

62

0

.10

6

0.0

60

0

.08

4

0.1

41

0

.61

5

0.1

17

0

.14

0

0.0

92

0

.11

7

0.0

77

Al2 O

3

0.2

51

0

.10

8

0.2

41

0

.41

3

0.4

27

0

.28

9

0.0

18

0

.23

6

0.1

74

0

.25

1

0.2

65

0

.36

9

Cr

2 O3

1

.34

3

3.2

00

1

.36

2

2.2

20

2

.29

0

1.1

65

2

.07

0

1.2

94

1

.12

7

1.4

16

1

.45

5

1.8

10

FeO

t 2

8.7

10

2

9.2

40

2

8.65

0

26

.34

0

26

.500

2

7.99

0

37

.530

2

8.50

0

29

.870

2

8.8

90

2

8.29

0

27

.330

Mn

O

0.2

90

0

.23

9

0.2

99

0

.28

7

0.2

65

0

.34

8

0.4

46

0

.27

8

0.3

11

0

.27

4

0.2

89

0

.23

9

MgO

1

3.6

10

1

2.9

70

1

3.53

0

14

.33

0

14

.420

1

4.15

0

8.6

10

1

3.54

0

12

.960

1

3.3

90

1

3.63

0

14

.320

CaO

0

.02

3

0.0

14

0

.01

0

0.0

25

0

.03

6

0.0

53

0

.00

0

0.0

26

0

.01

9

0.0

16

0

.00

6

0.0

22

Total

99

.46

3

98

.89

3

99

.850

9

8.3

35

9

8.55

5

99

.630

9

8.55

8

98

.987

9

9.53

8

99

.06

1

99

.020

9

9.24

2

89

Page 91: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

M

ajor el

W-1

3

emen

ts wt%

W-1

4

W-1

5

W-1

6

W-1

7

W-1

8

W-1

9

W-2

0

W-2

1

W-2

2

W-2

3

W-2

4

TiO2

4

7.6

90

5

4.2

60

5

0.30

0

54

.87

0

54

.010

5

4.4

90

5

4.13

0

54

.650

5

3.86

0

54

.88

0

52

.080

5

4.80

0

SiO2

0

.00

9

0.0

10

0

.03

2

0.0

02

0

.01

8

0.0

46

0

.02

7

0.0

16

0

.00

0

0.0

17

0

.00

7

0.0

16

Nb

2 O5

0

.80

7

0.1

66

0

.40

4

0.1

43

0

.18

3

0.1

53

0

.15

9

0.0

94

0

.17

2

0.0

97

0

.32

8

0.0

85

Al2 O

3

0.0

12

0

.14

3

0.0

11

0

.21

4

0.1

32

0

.14

1

0.1

32

0

.46

1

0.1

03

0

.26

3

0.0

34

0

.21

2

Cr

2 O3

2

.42

0

1.0

70

1

.76

0

1.2

67

1

.14

0

1.0

57

1

.08

8

2.0

90

1

.17

4

1.4

10

1

.50

0

1.2

37

FeO

t 3

9.3

50

3

0.6

90

3

6.96

0

29

.27

0

31

.190

3

0.8

90

3

0.87

0

27

.380

3

1.77

0

28

.41

0

36

.930

2

9.32

0

Mn

O

0.3

84

0

.32

1

0.4

02

0

.28

9

0.3

05

0

.34

7

0.3

20

0

.28

8

0.3

06

0

.29

2

0.4

79

0

.31

7

MgO

7

.98

0

12

.50

0

9.1

20

1

3.4

00

1

2.11

0

12

.47

0

12

.240

1

4.34

0

11

.900

1

3.7

70

7

.97

0

13

.370

CaO

0

.01

3

0.0

12

0

.00

9

0.0

26

0

.03

3

0.0

18

0

.01

3

0.0

33

0

.01

3

0.0

18

0

.00

3

0.0

13

Total

98

.66

4

99

.17

1

98

.998

9

9.4

81

9

9.12

0

99

.61

1

98

.979

9

9.35

1

99

.298

9

9.1

57

9

9.33

0

99

.370

Majo

r el

W-2

5

emen

ts wt%

W-2

6

W-2

7

W-2

8

W-2

9

W-3

0

W-3

1

W-3

2

W-3

3

W-3

4

W-3

5

W-3

6

TiO2

5

4.2

70

5

5.0

60

5

4.88

0

55

.01

0

54

.940

5

4.6

00

5

5.19

0

50

.370

5

0.20

0

47

.14

0

54

.390

5

5.04

0

SiO2

0

.01

6

0.0

00

0

.00

8

0.0

39

0

.00

8

0.0

10

0

.01

0

0.0

04

0

.00

0

0.0

06

0

.00

0

0.0

00

Nb

2 O5

0

.16

8

0.1

09

0

.13

8

0.0

81

0

.13

9

0.1

47

0

.14

6

0.3

09

0

.98

7

0.5

28

0

.09

9

0.1

04

Al2 O

3

0.0

94

0

.31

0

0.2

93

0

.45

5

0.1

81

0

.16

5

0.2

47

0

.01

6

0.2

79

0

.02

3

0.2

16

0

.20

9

Cr

2 O3

1

.10

8

0.9

99

1

.12

3

1.8

90

1

.05

3

1.0

09

1

.03

5

1.4

55

2

.64

0

1.8

60

1

.21

7

1.2

22

FeO

t 3

0.9

80

2

9.2

90

2

8.28

0

26

.89

0

30

.280

3

0.2

00

2

9.22

0

37

.640

3

2.80

0

41

.30

0

29

.730

2

8.85

0

Mn

O

0.2

88

0

.29

1

0.2

70

0

.25

6

0.3

11

0

.30

1

0.3

06

0

.38

9

0.3

59

0

.36

3

0.2

94

0

.29

7

MgO

1

2.6

00

1

3.4

50

1

4.04

0

14

.12

0

12

.870

1

2.7

90

1

3.56

0

8.6

80

1

1.62

0

7.0

10

1

3.22

0

13

.350

CaO

0

.01

9

0.0

08

0

.03

1

0.0

23

0

.02

4

0.0

31

0

.03

3

0.0

11

0

.08

7

0.0

08

0

.01

9

0.0

10

Total

99

.54

4

99

.51

6

99

.062

9

8.7

63

9

9.80

6

99

.25

3

99

.747

9

8.87

4

98

.972

9

8.2

38

9

9.18

5

99

.083

90

Page 92: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

M

ajor el

W-3

7

emen

ts wt%

W-3

8

W-3

9

W-4

0

W-4

1

W-4

2

W-4

3

W-4

4

W-4

5

W-4

6

W-4

7

W-4

8

TiO2

5

4.2

80

5

5.22

0

54

.79

0

53

.620

5

5.01

0

54

.100

5

5.23

0

54

.900

5

4.75

0

53

.560

5

3.46

0

54

.870

SiO2

0

.00

0

0.0

09

0

.00

5

0.0

21

0

.00

0

0.0

02

0

.02

1

0.0

35

0

.02

0

0.0

00

0

.02

6

0.0

20

Nb

2 O5

0

.14

0

0.0

90

0

.07

2

0.1

92

0

.10

8

0.1

17

0

.08

0

0.0

91

0

.12

1

0.1

33

0

.19

6

0.1

16

Al2 O

3

0.1

67

0

.33

2

0.5

81

0

.12

5

0.2

48

0

.24

4

0.4

06

0

.36

9

0.2

05

0

.13

0

0.1

26

0

.23

0

Cr

2 O3

1

.05

5

1.4

70

3

.04

0

1.1

70

1

.36

0

1.8

50

1

.96

0

1.9

80

1

.14

7

1.0

44

1

.23

6

1.2

80

FeO

t 3

0.4

20

2

7.86

0

25

.75

0

31

.500

2

8.69

0

28

.990

2

7.18

0

27

.310

2

9.12

0

30

.870

3

1.14

0

28

.540

Mn

O

0.3

45

0

.33

0

0.2

36

0

.34

6

0.2

74

0

.29

5

0.2

76

0

.28

6

0.3

55

0

.35

3

0.3

25

0

.30

5

MgO

1

2.9

10

1

4.05

0

14

.81

0

12

.150

1

3.65

0

13

.490

1

4.31

0

14

.230

1

3.28

0

12

.210

1

2.09

0

13

.440

CaO

0

.02

3

0.0

15

0

.02

1

0.0

21

0

.00

6

0.0

20

0

.01

8

0.0

24

0

.02

3

0.0

10

0

.02

2

0.0

16

Total

99

.33

9

99

.376

9

9.3

05

9

9.14

5

99

.345

9

9.10

8

99

.481

9

9.22

4

99

.022

9

8.31

0

98

.621

9

8.81

8

M

ajor e

lemen

ts wt%

W-4

9

W-5

0

W-5

1

W-5

2

W-5

3

W-5

4

W-5

5

W-5

6

W-5

7

W-5

8

W-5

9

TiO2

4

6.3

70

4

9.8

50

4

3.63

0

54

.860

5

4.80

0

54

.910

5

4.8

40

5

5.16

0

48

.58

0

54

.560

5

4.83

0

SiO2

0

.00

0

0.0

07

0

.00

0

0.0

17

0

.01

4

0.0

17

0

.03

1

0.0

09

0

.01

0

0.0

03

0

.00

9

Nb

2 O5

0

.69

2

0.4

63

1

.24

2

0.1

13

0

.07

0

0.1

15

0

.10

6

0.1

21

0

.44

0

0.1

26

0

.12

4

Al2 O

3

0.0

29

0

.02

3

0.0

33

0

.30

1

0.5

01

0

.23

4

0.2

96

0

.29

2

0.0

09

0

.16

7

0.2

57

Cr

2 O3

1

.10

5

1.3

35

2

.10

0

1.5

90

2

.76

0

1.2

67

1

.66

0

1.1

72

1

.84

0

1.0

08

1

.36

6

FeO

t 4

3.2

70

3

8.0

90

4

4.00

0

28

.510

2

5.92

0

28

.850

2

8.3

10

2

6.91

0

39

.39

0

30

.370

2

8.25

0

Mn

O

0.3

80

0

.44

3

0.3

57

0

.29

2

0.2

73

0

.30

9

0.2

54

0

.32

3

0.4

01

0

.32

5

0.2

59

MgO

6

.49

0

8.3

00

6

.39

0

13

.710

1

4.72

0

13

.500

1

3.8

70

1

4.45

0

7.8

70

1

2.71

0

13

.980

CaO

0

.01

2

0.0

00

0

.00

4

0.0

18

0

.03

9

0.0

24

0

.01

6

0.0

38

0

.00

8

0.0

35

0

.01

9

Total

98

.34

8

98

.51

0

97

.756

9

9.41

0

99

.098

9

9.22

6

99

.38

4

98

.474

9

8.5

49

9

9.30

5

99

.094

91

Page 93: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

Bu

ltfon

tein ilm

enite xe

no

crysts

Bu

l-1

Bu

l-2

Bu

l-3

Bu

l-4

Bu

l-5

Bu

l-6

Bu

l-7

Bu

l-8

Bu

l-9

Bu

l-10

Bu

l-11

Bu

l-12

Majo

r elemen

ts wt%

TiO2

5

2.5

95

4

2.82

5

54

.40

5

47

.22

5

53

.400

5

2.31

5

53

.970

5

4.25

0

52

.460

5

0.29

5

54

.050

5

3.39

0

SiO2

0

.00

9

0.0

00

0

.01

9

0.0

20

0

.01

3

0.0

10

0

.00

1

0.0

04

0

.00

7

0.0

14

0

.00

8

0.0

00

Nb

2 O5

0

.17

2

1.5

75

0

.06

0

0.9

06

0

.15

3

0.3

18

0

.15

6

0.1

01

0

.18

8

0.3

16

0

.10

3

0.1

65

Al2 O

3

0.0

17

0

.00

7

0.4

10

0

.02

6

0.1

42

0

.03

3

0.3

43

0

.24

9

0.0

27

0

.33

5

0.2

12

0

.14

7

Cr

2 O3

0

.82

3

0.9

02

2

.17

5

2.6

10

1

.08

2

0.8

77

1

.77

0

1.3

52

0

.39

8

0.6

46

1

.22

9

1.0

58

FeO

t 3

5.1

20

4

7.05

5

27

.55

0

39

.40

0

31

.605

3

6.55

0

30

.670

2

9.70

0

37

.560

3

7.12

5

30

.325

3

1.62

5

Mn

O

0.4

27

0

.39

2

0.2

74

0

.39

3

0.3

17

0

.38

9

0.2

36

0

.30

4

0.4

74

0

.32

5

0.3

06

0

.34

0

MgO

1

0.1

90

5

.51

0

14

.39

0

8.2

55

1

2.33

0

9.5

95

1

2.40

0

13

.410

8

.56

5

9.9

75

1

3.12

5

12

.425

NiO

0

.13

3

0.0

21

0

.15

0

0.0

70

0

.09

3

0.0

99

0

.14

6

0.0

97

0

.09

1

0.1

11

0

.07

0

0.0

68

CaO

0

.00

7

0.0

03

0

.01

1

0.0

11

0

.07

6

0.0

06

0

.02

4

0.0

18

0

.01

5

0.0

10

0

.02

6

0.0

14

Total

99

.49

4

98

.289

9

9.4

44

9

8.9

15

9

9.21

0

10

0.1

91

9

9.71

6

99

.485

9

9.78

4

99

.153

9

9.45

5

99

.232

Bu

l-13

B

ul-1

4

Bu

l-15

B

ul-1

6

Bu

l-17

B

ul-1

8

Bu

l-19

B

ul-2

0

Bu

l-21

B

ul-2

2

Bu

l-23

B

ul-2

4

Majo

r elemen

ts wt%

TiO2

5

3.3

15

5

4.34

5

54

.075

5

3.6

85

5

3.57

5

54

.020

4

8.75

5

52

.520

4

5.83

0

52

.550

4

5.28

0

47

.950

SiO2

0

.00

7

0.0

21

0

.03

0

0.0

00

0

.00

2

0.0

08

0

.00

0

0.0

16

0

.01

0

0.0

10

0

.01

1

0.0

12

Nb

2 O5

0

.17

3

0.1

18

0

.08

9

0.1

53

0

.15

1

0.0

96

0

.46

6

0.2

29

0

.68

6

0.0

96

0

.58

3

0.7

75

Al2 O

3

0.1

28

0

.28

6

0.4

16

0

.16

0

0.1

24

0

.33

9

0.0

26

0

.08

0

0.0

11

0

.03

3

0.0

20

0

.01

9

Cr

2 O3

1

.06

7

1.4

35

2

.23

0

1.0

39

1

.08

8

1.8

65

2

.36

5

1.2

72

1

.90

0

4.0

00

1

.78

5

2.6

25

FeO

t 3

1.9

85

2

8.94

0

27

.565

3

1.1

20

3

1.65

0

28

.715

3

8.65

0

32

.885

4

2.80

5

30

.070

4

4.02

5

38

.865

Mn

O

0.3

33

0

.30

3

0.2

78

0

.35

7

0.3

34

0

.28

9

0.4

46

0

.33

5

0.4

11

0

.31

6

0.3

94

0

.39

6

MgO

1

2.0

00

1

3.88

0

14

.220

1

2.5

65

1

2.27

5

13

.745

8

.69

5

11

.620

6

.99

5

12

.670

6

.60

5

8.5

45

NiO

0

.08

3

0.1

25

0

.17

2

0.0

85

0

.06

4

0.1

24

0

.11

1

0.0

63

0

.04

4

0.2

42

0

.04

1

0.0

71

CaO

0

.01

0

0.0

31

0

.01

3

0.0

10

0

.01

7

0.0

18

0

.00

7

0.0

11

0

.00

0

0.0

15

0

.00

6

0.0

03

Total

99

.10

1

99

.484

9

9.08

7

99

.17

4

99

.279

9

9.21

9

99

.521

9

9.03

1

98

.693

1

00

.00

1

98

.749

9

9.26

2

92

Page 94: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

Bu

l-25

Bu

l-26

B

ul-2

7

Bu

l-28

B

ul-2

9

Bu

l-30

B

ul-3

1

Bu

l-32

B

ul-3

3

Bu

l-34

B

ul-3

5

Bu

l-36

Majo

r elemen

ts wt%

TiO2

5

0.0

20

5

4.22

5

53

.70

0

47

.36

5

42

.645

4

2.42

0

54

.285

4

6.91

5

46

.215

4

8.35

0

47

.160

5

0.91

0

SiO2

0

.00

0

0.0

16

0

.00

2

0.0

03

0

.00

0

0.0

17

0

.01

0

0.0

00

0

.00

0

0.0

00

0

.00

0

0.0

19

Nb

2 O5

0

.58

1

0.0

72

0

.15

1

0.8

48

1

.44

1

1.4

75

0

.12

2

0.5

59

0

.59

7

0.7

48

0

.80

3

0.0

71

Al2 O

3

0.0

22

0

.37

7

0.1

36

0

.02

0

0.0

12

0

.01

5

0.2

30

0

.01

8

0.0

18

0

.02

3

0.0

26

0

.70

5

Cr

2 O3

2

.35

5

1.9

50

1

.08

2

2.7

30

1

.43

3

1.4

08

1

.28

9

1.9

10

1

.91

0

2.3

35

2

.82

5

4.1

60

FeO

t 3

6.6

95

2

9.42

5

31

.76

5

39

.06

5

46

.565

4

7.21

0

29

.815

4

2.28

5

42

.915

3

8.93

5

40

.035

3

0.83

0

Mn

O

0.4

07

0

.27

6

0.3

28

0

.38

0

0.3

58

0

.38

1

0.2

76

0

.42

2

0.3

90

0

.42

0

0.4

08

0

.20

6

MgO

9

.47

0

13

.210

1

2.4

10

8

.38

5

5.7

90

5

.46

5

13

.360

7

.16

5

6.9

10

8

.52

0

8.0

90

1

2.30

5

NiO

0

.12

4

0.2

16

0

.08

7

0.0

78

0

.04

2

0.0

20

0

.10

3

0.0

61

0

.05

3

0.0

78

0

.04

8

0.2

35

CaO

0

.00

6

0.0

38

0

.02

1

0.0

15

0

.00

5

0.0

05

0

.01

6

0.0

05

0

.00

9

0.0

02

0

.00

1

0.0

08

Total

99

.68

0

99

.805

9

9.6

83

9

8.8

88

9

8.29

2

98

.416

9

9.50

6

99

.341

9

9.01

7

99

.411

9

9.39

6

99

.449

Bu

l-37

B

ul-3

8

Bu

l-39

Bu

l-40

Bu

l-41

Bu

l-42

Bu

l-43

Bu

l-44

Bu

l-45

Bu

l-46

Bu

l-47

Majo

r elemen

ts wt%

TiO2

5

4.72

5

53

.080

5

3.32

0

48

.55

5

53

.995

5

1.6

55

4

8.98

0

51

.565

4

7.45

0

42

.695

5

4.30

5

SiO2

0

.01

4

0.0

04

0

.00

0

0.0

28

0

.01

6

0.0

15

0

.00

6

0.0

00

0

.00

5

0.0

09

0

.02

2

Nb

2 O5

0

.11

4

0.1

62

0

.18

9

0.7

02

0

.08

4

0.2

83

0

.52

3

0.2

53

0

.86

6

1.4

31

0

.10

3

Al2 O

3

0.3

41

0

.12

8

0.1

11

0

.02

4

0.3

04

0

.03

0

0.1

35

0

.02

7

0.0

26

0

.02

4

0.2

75

Cr

2 O3

1

.45

2

1.0

59

1

.13

0

1.6

30

1

.50

5

1.4

37

1

.65

0

1.3

24

2

.63

0

1.9

65

1

.48

2

FeO

t 2

8.62

5

32

.250

3

2.25

5

38

.75

5

28

.845

3

3.1

45

3

6.64

0

35

.535

3

9.11

5

45

.765

2

9.06

0

Mn

O

0.2

60

0

.34

3

0.3

49

0

.41

2

0.2

83

0

.42

3

0.2

46

0

.40

2

0.3

69

0

.36

2

0.3

11

MgO

1

3.67

0

12

.160

1

1.88

5

8.4

15

1

3.67

5

11

.71

5

10

.695

1

0.08

5

8.5

90

6

.02

0

13

.640

NiO

0

.14

2

0.0

88

0

.07

5

0.0

65

0

.11

5

0.0

95

0

.09

5

0.1

08

0

.05

8

0.0

37

0

.13

1

CaO

0

.04

4

0.0

10

0

.01

8

0.0

07

0

.01

8

0.0

22

0

.01

6

0.0

08

0

.01

0

0.0

00

0

.04

2

Total

99

.387

9

9.28

3

99

.331

9

8.5

93

9

8.84

0

98

.82

1

98

.986

9

9.30

7

99

.120

9

8.30

8

99

.372

93

Page 95: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

Tab

le 5. G

rann

y S

mith

Clin

op

yro

xen

e majo

r elemen

t analy

sis

13

-45

-22

1

Po

rph

yroclast

Margin

C

en

ter

W

t.%

At om

un

its

Wt.%

A

t om u

nits

SiO2

5

4.97

97

4

1.9

54

Si

SiO2

5

5.14

49

7

1.9

59

Si

TiO2

0

.33

60

96

0

.00

9

Ti TiO

2

0.3

50

11

2

0.0

09

Ti

Al2 O

3

1.8

22

56

5

0.0

76

A

l A

l2 O3

1

.99

18

41

0

.08

3

Al

Fe2 O

3

0.0

00

0

.09

3

Fe+3

Fe

2 O3

0

.00

0

0.0

99

Fe+

3

Cr

2 O3

1

.01

01

5

0.0

28

C

r+3

Cr

2 O3

1

.08

19

41

0

.03

0

Cr+3

Fe

O

3.1

27

34

1

0.0

00

Fe+

2

FeO

3

.32

09

94

0

.00

0

Fe+2

M

nO

0

.09

30

81

0

.00

3

Mn

M

nO

0

.09

36

41

0

.00

3

Mn

M

gO

16

.981

61

0

.90

0

Mg

MgO

1

6.69

13

4

0.8

84

M

g C

aO

20

.718

14

0

.78

9

Ca

CaO

2

0.22

25

0

.77

0

Ca

Na

2 O

2.1

24

72

8

0.1

46

N

a N

a2 O

2

.34

26

95

0

.16

1

Na

K2 O

0

.01

68

37

0

.00

1

K

K2 O

0

.00

69

92

0

.00

0

K

H2 O

0.0

00

H

H

2 O

0

.00

0

H

Ca/(C

a+M

g) 0

.46

71

98

C

a/(Ca+

Mg)

0.4

65

46

3

Mg/(M

g+Fe) 0

.90

63

61

M

g/(Mg+Fe)

0.8

99

59

94

Page 96: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

Ne

ob

last

M

argin

C

en

ter

SiO

2

Wt.%

5

4.83

69

7

At

1.9

63

o

m U

nits Si

SiO

2

Wt.%

5

5.28

36

A

t 1

.97

0

om

Un

its Si

TiO2

0

.37

81

21

0

.01

0

Ti TiO

2

0.2

91

48

5

0.0

08

Ti

Al2 O

3

1.3

45

93

0

.05

7

Al

Al2 O

3

1.3

61

41

6

0.0

57

A

l Fe

2 O3

0

.00

0

0.0

88

Fe+

3

Fe2 O

3

0.0

00

0

.09

3

Fe+3

C

r2 O

3

0.7

97

92

5

0.0

23

C

r+3

Cr

2 O3

0

.80

79

85

0

.02

3

Cr+3

Fe

O

3.2

53

98

9

0.0

09

Fe+

2

FeO

3

.32

59

23

0

.00

7

Fe+2

M

nO

0

.07

01

24

0

.00

2

Mn

M

nO

0

.06

77

18

0

.00

2

Mn

M

gO

17

.133

94

0

.91

4

Mg

MgO

1

6.97

35

9

0.9

02

M

g C

aO

21

.336

67

0

.81

8

Ca

CaO

2

1.26

08

9

0.8

12

C

a N

a2 O

1

.64

67

71

0

.11

4

Na

Na

2 O

1.8

45

94

6

0.1

28

N

a K

2 O

0.0

08

28

5

0.0

00

K

K

2 O

0.0

08

28

5

0.0

00

K

H

2 O

0

.00

0

H

H2 O

0.0

00

H

C

a/(Ca+

Mg)

0.4

72

30

1

Ca/(C

a+M

g) 0

.47

37

58

M

g/(Mg+Fe)

0.9

03

71

7

Mg/(M

g+Fe) 0

.90

09

62

95

Page 97: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

13

-45

-22

3

Po

rph

yroclast

M

argin

C

en

ter

Wt.%

At o

m U

nits

Wt.%

At o

m U

nits

SiO2

5

5.1

50

52

1

.96

7

Si SiO

2

54

.974

95

1

.96

5

Si TiO

2

0.3

06

76

6

0.0

08

Ti

TiO2

0

.29

38

44

0

.00

8

Ti A

l2 O3

1

.34

57

15

0

.05

7

Al

Al2 O

3

1.3

80

39

1

0.0

58

A

l Fe

2 O3

0

.00

0

0.0

98

Fe+

3

Fe2 O

3

0.0

00

0

.10

0

Fe+3

C

r2 O

3

0.8

33

99

2

0.0

24

C

r+3

Cr

2 O3

0

.89

07

51

0

.02

5

Cr+3

Fe

O

3.3

73

92

1

0.0

02

Fe+

2

FeO

3

.36

05

83

0

.00

0

Fe+2

M

nO

0

.11

72

65

0

.00

4

Mn

M

nO

0

.11

36

67

0

.00

3

Mn

M

gO

17

.01

91

7

0.9

05

M

g M

gO

16

.969

73

0

.90

4

Mg

CaO

2

1.0

75

43

0

.80

6

Ca

CaO

2

0.98

10

6

0.8

04

C

a N

a2 O

1

.86

50

93

0

.12

9

Na

Na

2 O

1.8

95

32

9

0.1

31

N

a K

2 O

0.0

11

84

2

0.0

01

K

K

2 O

0.0

11

84

2

0.0

01

K

H

2 O

0

0.0

00

H

H

2 O

0

.00

0

H

Ca/(C

a+M

g) 0

.47

09

06

C

a/(Ca+

Mg)

0.4

70

51

3

Mg/(M

g+Fe) 0

.89

99

18

M

g/(Mg+Fe)

0.9

00

01

2

96

Page 98: Major and trace element geochemistry of ilmenite suites ... · University of Toronto. The LA-ICP-MS set up consists of Thermo Elemental (VG) PlasmaQuad PQ ExCell ICP-MS coupled to

Neo

blast

M

argin

C

en

ter

SiO

2

wt%

5

4.7

31

93

A

t 1

.96

7

om

un

its Si

SiO

2

wt%

5

5.24

45

6

At

1.9

71

o

m u

nits Si

TiO2

0

.37

27

65

0

.01

0

Ti TiO

2

0.2

46

24

2

0.0

07

Ti

Al2 O

3

1.2

09

37

0

.05

1

Al

Al2 O

3

1.3

18

78

9

0.0

55

A

l Fe

2 O3

0

.00

0

0.0

83

Fe+

3

Fe2 O

3

0.0

00

0

.09

0

Fe+3

C

r2 O

3

0.8

10

94

8

0.0

23

C

r+3

Cr

2 O3

0

.73

62

79

0

.02

1

Cr+3

Fe

O

3.1

28

67

3

0.0

11

Fe+

2

FeO

3

.08

29

36

0

.00

2

Fe+2

M

nO

0

.10

28

15

0

.00

3

Mn

M

nO

0

.09

68

34

0

.00

3

Mn

M

gO

16

.87

97

2

0.9

04

M

g M

gO

16

.976

12

0

.90

3

Mg

CaO

2

1.6

61

94

0

.83

4

Ca

CaO

2

1.59

49

8

0.8

26

C

a N

a2 O

1

.61

31

23

0

.11

2

Na

Na

2 O

1.7

54

55

4

0.1

21

N

a K

2 O

0

0.0

00

K

K

2 O

0.0

16

97

2

0.0

01

K

H

2 O

0

.00

0

H

H2 O

0.0

00

H

C

a/(Ca+

Mg)

0.4

79

80

3

Ca/(C

a+M

g) 0

.47

76

1

Mg/(M

g+Fe) 0

.90

58

13

M

g/(Mg+Fe)

0.9

07

54

1

97